sdio_chip.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654
  1. /*
  2. * Copyright (c) 2011 Broadcom Corporation
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  11. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  13. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  14. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. /* ***** SDIO interface chip backplane handle functions ***** */
  17. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18. #include <linux/types.h>
  19. #include <linux/netdevice.h>
  20. #include <linux/mmc/card.h>
  21. #include <linux/ssb/ssb_regs.h>
  22. #include <linux/bcma/bcma.h>
  23. #include <chipcommon.h>
  24. #include <brcm_hw_ids.h>
  25. #include <brcmu_wifi.h>
  26. #include <brcmu_utils.h>
  27. #include <soc.h>
  28. #include "dhd_dbg.h"
  29. #include "sdio_host.h"
  30. #include "sdio_chip.h"
  31. /* chip core base & ramsize */
  32. /* bcm4329 */
  33. /* SDIO device core, ID 0x829 */
  34. #define BCM4329_CORE_BUS_BASE 0x18011000
  35. /* internal memory core, ID 0x80e */
  36. #define BCM4329_CORE_SOCRAM_BASE 0x18003000
  37. /* ARM Cortex M3 core, ID 0x82a */
  38. #define BCM4329_CORE_ARM_BASE 0x18002000
  39. #define BCM4329_RAMSIZE 0x48000
  40. #define SBCOREREV(sbidh) \
  41. ((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \
  42. ((sbidh) & SSB_IDHIGH_RCLO))
  43. /* SOC Interconnect types (aka chip types) */
  44. #define SOCI_SB 0
  45. #define SOCI_AI 1
  46. /* EROM CompIdentB */
  47. #define CIB_REV_MASK 0xff000000
  48. #define CIB_REV_SHIFT 24
  49. #define SDIOD_DRVSTR_KEY(chip, pmu) (((chip) << 16) | (pmu))
  50. /* SDIO Pad drive strength to select value mappings */
  51. struct sdiod_drive_str {
  52. u8 strength; /* Pad Drive Strength in mA */
  53. u8 sel; /* Chip-specific select value */
  54. };
  55. /* SDIO Drive Strength to sel value table for PMU Rev 11 (1.8V) */
  56. static const struct sdiod_drive_str sdiod_drvstr_tab1_1v8[] = {
  57. {32, 0x6},
  58. {26, 0x7},
  59. {22, 0x4},
  60. {16, 0x5},
  61. {12, 0x2},
  62. {8, 0x3},
  63. {4, 0x0},
  64. {0, 0x1}
  65. };
  66. u8
  67. brcmf_sdio_chip_getinfidx(struct chip_info *ci, u16 coreid)
  68. {
  69. u8 idx;
  70. for (idx = 0; idx < BRCMF_MAX_CORENUM; idx++)
  71. if (coreid == ci->c_inf[idx].id)
  72. return idx;
  73. return BRCMF_MAX_CORENUM;
  74. }
  75. static u32
  76. brcmf_sdio_sb_corerev(struct brcmf_sdio_dev *sdiodev,
  77. struct chip_info *ci, u16 coreid)
  78. {
  79. u32 regdata;
  80. u8 idx;
  81. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  82. regdata = brcmf_sdio_regrl(sdiodev,
  83. CORE_SB(ci->c_inf[idx].base, sbidhigh),
  84. NULL);
  85. return SBCOREREV(regdata);
  86. }
  87. static u32
  88. brcmf_sdio_ai_corerev(struct brcmf_sdio_dev *sdiodev,
  89. struct chip_info *ci, u16 coreid)
  90. {
  91. u8 idx;
  92. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  93. return (ci->c_inf[idx].cib & CIB_REV_MASK) >> CIB_REV_SHIFT;
  94. }
  95. static bool
  96. brcmf_sdio_sb_iscoreup(struct brcmf_sdio_dev *sdiodev,
  97. struct chip_info *ci, u16 coreid)
  98. {
  99. u32 regdata;
  100. u8 idx;
  101. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  102. regdata = brcmf_sdio_regrl(sdiodev,
  103. CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  104. NULL);
  105. regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT |
  106. SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK);
  107. return (SSB_TMSLOW_CLOCK == regdata);
  108. }
  109. static bool
  110. brcmf_sdio_ai_iscoreup(struct brcmf_sdio_dev *sdiodev,
  111. struct chip_info *ci, u16 coreid)
  112. {
  113. u32 regdata;
  114. u8 idx;
  115. bool ret;
  116. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  117. regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  118. NULL);
  119. ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK;
  120. regdata = brcmf_sdio_regrl(sdiodev,
  121. ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
  122. NULL);
  123. ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0);
  124. return ret;
  125. }
  126. static void
  127. brcmf_sdio_sb_coredisable(struct brcmf_sdio_dev *sdiodev,
  128. struct chip_info *ci, u16 coreid)
  129. {
  130. u32 regdata, base;
  131. u8 idx;
  132. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  133. base = ci->c_inf[idx].base;
  134. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow), NULL);
  135. if (regdata & SSB_TMSLOW_RESET)
  136. return;
  137. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow), NULL);
  138. if ((regdata & SSB_TMSLOW_CLOCK) != 0) {
  139. /*
  140. * set target reject and spin until busy is clear
  141. * (preserve core-specific bits)
  142. */
  143. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow),
  144. NULL);
  145. brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbtmstatelow),
  146. regdata | SSB_TMSLOW_REJECT, NULL);
  147. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow),
  148. NULL);
  149. udelay(1);
  150. SPINWAIT((brcmf_sdio_regrl(sdiodev,
  151. CORE_SB(base, sbtmstatehigh),
  152. NULL) &
  153. SSB_TMSHIGH_BUSY), 100000);
  154. regdata = brcmf_sdio_regrl(sdiodev,
  155. CORE_SB(base, sbtmstatehigh),
  156. NULL);
  157. if (regdata & SSB_TMSHIGH_BUSY)
  158. brcmf_err("core state still busy\n");
  159. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbidlow),
  160. NULL);
  161. if (regdata & SSB_IDLOW_INITIATOR) {
  162. regdata = brcmf_sdio_regrl(sdiodev,
  163. CORE_SB(base, sbimstate),
  164. NULL);
  165. regdata |= SSB_IMSTATE_REJECT;
  166. brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbimstate),
  167. regdata, NULL);
  168. regdata = brcmf_sdio_regrl(sdiodev,
  169. CORE_SB(base, sbimstate),
  170. NULL);
  171. udelay(1);
  172. SPINWAIT((brcmf_sdio_regrl(sdiodev,
  173. CORE_SB(base, sbimstate),
  174. NULL) &
  175. SSB_IMSTATE_BUSY), 100000);
  176. }
  177. /* set reset and reject while enabling the clocks */
  178. regdata = SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
  179. SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET;
  180. brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbtmstatelow),
  181. regdata, NULL);
  182. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow),
  183. NULL);
  184. udelay(10);
  185. /* clear the initiator reject bit */
  186. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbidlow),
  187. NULL);
  188. if (regdata & SSB_IDLOW_INITIATOR) {
  189. regdata = brcmf_sdio_regrl(sdiodev,
  190. CORE_SB(base, sbimstate),
  191. NULL);
  192. regdata &= ~SSB_IMSTATE_REJECT;
  193. brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbimstate),
  194. regdata, NULL);
  195. }
  196. }
  197. /* leave reset and reject asserted */
  198. brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbtmstatelow),
  199. (SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET), NULL);
  200. udelay(1);
  201. }
  202. static void
  203. brcmf_sdio_ai_coredisable(struct brcmf_sdio_dev *sdiodev,
  204. struct chip_info *ci, u16 coreid)
  205. {
  206. u8 idx;
  207. u32 regdata;
  208. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  209. /* if core is already in reset, just return */
  210. regdata = brcmf_sdio_regrl(sdiodev,
  211. ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
  212. NULL);
  213. if ((regdata & BCMA_RESET_CTL_RESET) != 0)
  214. return;
  215. brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL, 0, NULL);
  216. regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  217. NULL);
  218. udelay(10);
  219. brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
  220. BCMA_RESET_CTL_RESET, NULL);
  221. udelay(1);
  222. }
  223. static void
  224. brcmf_sdio_sb_resetcore(struct brcmf_sdio_dev *sdiodev,
  225. struct chip_info *ci, u16 coreid)
  226. {
  227. u32 regdata;
  228. u8 idx;
  229. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  230. /*
  231. * Must do the disable sequence first to work for
  232. * arbitrary current core state.
  233. */
  234. brcmf_sdio_sb_coredisable(sdiodev, ci, coreid);
  235. /*
  236. * Now do the initialization sequence.
  237. * set reset while enabling the clock and
  238. * forcing them on throughout the core
  239. */
  240. brcmf_sdio_regwl(sdiodev,
  241. CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  242. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK | SSB_TMSLOW_RESET,
  243. NULL);
  244. regdata = brcmf_sdio_regrl(sdiodev,
  245. CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  246. NULL);
  247. udelay(1);
  248. /* clear any serror */
  249. regdata = brcmf_sdio_regrl(sdiodev,
  250. CORE_SB(ci->c_inf[idx].base, sbtmstatehigh),
  251. NULL);
  252. if (regdata & SSB_TMSHIGH_SERR)
  253. brcmf_sdio_regwl(sdiodev,
  254. CORE_SB(ci->c_inf[idx].base, sbtmstatehigh),
  255. 0, NULL);
  256. regdata = brcmf_sdio_regrl(sdiodev,
  257. CORE_SB(ci->c_inf[idx].base, sbimstate),
  258. NULL);
  259. if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO))
  260. brcmf_sdio_regwl(sdiodev,
  261. CORE_SB(ci->c_inf[idx].base, sbimstate),
  262. regdata & ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO),
  263. NULL);
  264. /* clear reset and allow it to propagate throughout the core */
  265. brcmf_sdio_regwl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  266. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK, NULL);
  267. regdata = brcmf_sdio_regrl(sdiodev,
  268. CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  269. NULL);
  270. udelay(1);
  271. /* leave clock enabled */
  272. brcmf_sdio_regwl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  273. SSB_TMSLOW_CLOCK, NULL);
  274. regdata = brcmf_sdio_regrl(sdiodev,
  275. CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  276. NULL);
  277. udelay(1);
  278. }
  279. static void
  280. brcmf_sdio_ai_resetcore(struct brcmf_sdio_dev *sdiodev,
  281. struct chip_info *ci, u16 coreid)
  282. {
  283. u8 idx;
  284. u32 regdata;
  285. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  286. /* must disable first to work for arbitrary current core state */
  287. brcmf_sdio_ai_coredisable(sdiodev, ci, coreid);
  288. /* now do initialization sequence */
  289. brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  290. BCMA_IOCTL_FGC | BCMA_IOCTL_CLK, NULL);
  291. regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  292. NULL);
  293. brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
  294. 0, NULL);
  295. udelay(1);
  296. brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  297. BCMA_IOCTL_CLK, NULL);
  298. regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  299. NULL);
  300. udelay(1);
  301. }
  302. static int brcmf_sdio_chip_recognition(struct brcmf_sdio_dev *sdiodev,
  303. struct chip_info *ci, u32 regs)
  304. {
  305. u32 regdata;
  306. /*
  307. * Get CC core rev
  308. * Chipid is assume to be at offset 0 from regs arg
  309. * For different chiptypes or old sdio hosts w/o chipcommon,
  310. * other ways of recognition should be added here.
  311. */
  312. ci->c_inf[0].id = BCMA_CORE_CHIPCOMMON;
  313. ci->c_inf[0].base = regs;
  314. regdata = brcmf_sdio_regrl(sdiodev,
  315. CORE_CC_REG(ci->c_inf[0].base, chipid),
  316. NULL);
  317. ci->chip = regdata & CID_ID_MASK;
  318. ci->chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT;
  319. ci->socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
  320. brcmf_dbg(INFO, "chipid=0x%x chiprev=%d\n", ci->chip, ci->chiprev);
  321. /* Address of cores for new chips should be added here */
  322. switch (ci->chip) {
  323. case BCM43241_CHIP_ID:
  324. ci->c_inf[0].wrapbase = 0x18100000;
  325. ci->c_inf[0].cib = 0x2a084411;
  326. ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
  327. ci->c_inf[1].base = 0x18002000;
  328. ci->c_inf[1].wrapbase = 0x18102000;
  329. ci->c_inf[1].cib = 0x0e004211;
  330. ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM;
  331. ci->c_inf[2].base = 0x18004000;
  332. ci->c_inf[2].wrapbase = 0x18104000;
  333. ci->c_inf[2].cib = 0x14080401;
  334. ci->c_inf[3].id = BCMA_CORE_ARM_CM3;
  335. ci->c_inf[3].base = 0x18003000;
  336. ci->c_inf[3].wrapbase = 0x18103000;
  337. ci->c_inf[3].cib = 0x07004211;
  338. ci->ramsize = 0x90000;
  339. break;
  340. case BCM4329_CHIP_ID:
  341. ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
  342. ci->c_inf[1].base = BCM4329_CORE_BUS_BASE;
  343. ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM;
  344. ci->c_inf[2].base = BCM4329_CORE_SOCRAM_BASE;
  345. ci->c_inf[3].id = BCMA_CORE_ARM_CM3;
  346. ci->c_inf[3].base = BCM4329_CORE_ARM_BASE;
  347. ci->ramsize = BCM4329_RAMSIZE;
  348. break;
  349. case BCM4330_CHIP_ID:
  350. ci->c_inf[0].wrapbase = 0x18100000;
  351. ci->c_inf[0].cib = 0x27004211;
  352. ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
  353. ci->c_inf[1].base = 0x18002000;
  354. ci->c_inf[1].wrapbase = 0x18102000;
  355. ci->c_inf[1].cib = 0x07004211;
  356. ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM;
  357. ci->c_inf[2].base = 0x18004000;
  358. ci->c_inf[2].wrapbase = 0x18104000;
  359. ci->c_inf[2].cib = 0x0d080401;
  360. ci->c_inf[3].id = BCMA_CORE_ARM_CM3;
  361. ci->c_inf[3].base = 0x18003000;
  362. ci->c_inf[3].wrapbase = 0x18103000;
  363. ci->c_inf[3].cib = 0x03004211;
  364. ci->ramsize = 0x48000;
  365. break;
  366. case BCM4334_CHIP_ID:
  367. ci->c_inf[0].wrapbase = 0x18100000;
  368. ci->c_inf[0].cib = 0x29004211;
  369. ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
  370. ci->c_inf[1].base = 0x18002000;
  371. ci->c_inf[1].wrapbase = 0x18102000;
  372. ci->c_inf[1].cib = 0x0d004211;
  373. ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM;
  374. ci->c_inf[2].base = 0x18004000;
  375. ci->c_inf[2].wrapbase = 0x18104000;
  376. ci->c_inf[2].cib = 0x13080401;
  377. ci->c_inf[3].id = BCMA_CORE_ARM_CM3;
  378. ci->c_inf[3].base = 0x18003000;
  379. ci->c_inf[3].wrapbase = 0x18103000;
  380. ci->c_inf[3].cib = 0x07004211;
  381. ci->ramsize = 0x80000;
  382. break;
  383. default:
  384. brcmf_err("chipid 0x%x is not supported\n", ci->chip);
  385. return -ENODEV;
  386. }
  387. switch (ci->socitype) {
  388. case SOCI_SB:
  389. ci->iscoreup = brcmf_sdio_sb_iscoreup;
  390. ci->corerev = brcmf_sdio_sb_corerev;
  391. ci->coredisable = brcmf_sdio_sb_coredisable;
  392. ci->resetcore = brcmf_sdio_sb_resetcore;
  393. break;
  394. case SOCI_AI:
  395. ci->iscoreup = brcmf_sdio_ai_iscoreup;
  396. ci->corerev = brcmf_sdio_ai_corerev;
  397. ci->coredisable = brcmf_sdio_ai_coredisable;
  398. ci->resetcore = brcmf_sdio_ai_resetcore;
  399. break;
  400. default:
  401. brcmf_err("socitype %u not supported\n", ci->socitype);
  402. return -ENODEV;
  403. }
  404. return 0;
  405. }
  406. static int
  407. brcmf_sdio_chip_buscoreprep(struct brcmf_sdio_dev *sdiodev)
  408. {
  409. int err = 0;
  410. u8 clkval, clkset;
  411. /* Try forcing SDIO core to do ALPAvail request only */
  412. clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_ALP_AVAIL_REQ;
  413. brcmf_sdio_regwb(sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, clkset, &err);
  414. if (err) {
  415. brcmf_err("error writing for HT off\n");
  416. return err;
  417. }
  418. /* If register supported, wait for ALPAvail and then force ALP */
  419. /* This may take up to 15 milliseconds */
  420. clkval = brcmf_sdio_regrb(sdiodev,
  421. SBSDIO_FUNC1_CHIPCLKCSR, NULL);
  422. if ((clkval & ~SBSDIO_AVBITS) != clkset) {
  423. brcmf_err("ChipClkCSR access: wrote 0x%02x read 0x%02x\n",
  424. clkset, clkval);
  425. return -EACCES;
  426. }
  427. SPINWAIT(((clkval = brcmf_sdio_regrb(sdiodev,
  428. SBSDIO_FUNC1_CHIPCLKCSR, NULL)),
  429. !SBSDIO_ALPAV(clkval)),
  430. PMU_MAX_TRANSITION_DLY);
  431. if (!SBSDIO_ALPAV(clkval)) {
  432. brcmf_err("timeout on ALPAV wait, clkval 0x%02x\n",
  433. clkval);
  434. return -EBUSY;
  435. }
  436. clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_FORCE_ALP;
  437. brcmf_sdio_regwb(sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, clkset, &err);
  438. udelay(65);
  439. /* Also, disable the extra SDIO pull-ups */
  440. brcmf_sdio_regwb(sdiodev, SBSDIO_FUNC1_SDIOPULLUP, 0, NULL);
  441. return 0;
  442. }
  443. static void
  444. brcmf_sdio_chip_buscoresetup(struct brcmf_sdio_dev *sdiodev,
  445. struct chip_info *ci)
  446. {
  447. u32 base = ci->c_inf[0].base;
  448. /* get chipcommon rev */
  449. ci->c_inf[0].rev = ci->corerev(sdiodev, ci, ci->c_inf[0].id);
  450. /* get chipcommon capabilites */
  451. ci->c_inf[0].caps = brcmf_sdio_regrl(sdiodev,
  452. CORE_CC_REG(base, capabilities),
  453. NULL);
  454. /* get pmu caps & rev */
  455. if (ci->c_inf[0].caps & CC_CAP_PMU) {
  456. ci->pmucaps =
  457. brcmf_sdio_regrl(sdiodev,
  458. CORE_CC_REG(base, pmucapabilities),
  459. NULL);
  460. ci->pmurev = ci->pmucaps & PCAP_REV_MASK;
  461. }
  462. ci->c_inf[1].rev = ci->corerev(sdiodev, ci, ci->c_inf[1].id);
  463. brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, buscore rev/type=%d/0x%x\n",
  464. ci->c_inf[0].rev, ci->pmurev,
  465. ci->c_inf[1].rev, ci->c_inf[1].id);
  466. /*
  467. * Make sure any on-chip ARM is off (in case strapping is wrong),
  468. * or downloaded code was already running.
  469. */
  470. ci->coredisable(sdiodev, ci, BCMA_CORE_ARM_CM3);
  471. }
  472. int brcmf_sdio_chip_attach(struct brcmf_sdio_dev *sdiodev,
  473. struct chip_info **ci_ptr, u32 regs)
  474. {
  475. int ret;
  476. struct chip_info *ci;
  477. brcmf_dbg(TRACE, "Enter\n");
  478. /* alloc chip_info_t */
  479. ci = kzalloc(sizeof(struct chip_info), GFP_ATOMIC);
  480. if (!ci)
  481. return -ENOMEM;
  482. ret = brcmf_sdio_chip_buscoreprep(sdiodev);
  483. if (ret != 0)
  484. goto err;
  485. ret = brcmf_sdio_chip_recognition(sdiodev, ci, regs);
  486. if (ret != 0)
  487. goto err;
  488. brcmf_sdio_chip_buscoresetup(sdiodev, ci);
  489. brcmf_sdio_regwl(sdiodev, CORE_CC_REG(ci->c_inf[0].base, gpiopullup),
  490. 0, NULL);
  491. brcmf_sdio_regwl(sdiodev, CORE_CC_REG(ci->c_inf[0].base, gpiopulldown),
  492. 0, NULL);
  493. *ci_ptr = ci;
  494. return 0;
  495. err:
  496. kfree(ci);
  497. return ret;
  498. }
  499. void
  500. brcmf_sdio_chip_detach(struct chip_info **ci_ptr)
  501. {
  502. brcmf_dbg(TRACE, "Enter\n");
  503. kfree(*ci_ptr);
  504. *ci_ptr = NULL;
  505. }
  506. static char *brcmf_sdio_chip_name(uint chipid, char *buf, uint len)
  507. {
  508. const char *fmt;
  509. fmt = ((chipid > 0xa000) || (chipid < 0x4000)) ? "%d" : "%x";
  510. snprintf(buf, len, fmt, chipid);
  511. return buf;
  512. }
  513. void
  514. brcmf_sdio_chip_drivestrengthinit(struct brcmf_sdio_dev *sdiodev,
  515. struct chip_info *ci, u32 drivestrength)
  516. {
  517. struct sdiod_drive_str *str_tab = NULL;
  518. u32 str_mask = 0;
  519. u32 str_shift = 0;
  520. char chn[8];
  521. u32 base = ci->c_inf[0].base;
  522. if (!(ci->c_inf[0].caps & CC_CAP_PMU))
  523. return;
  524. switch (SDIOD_DRVSTR_KEY(ci->chip, ci->pmurev)) {
  525. case SDIOD_DRVSTR_KEY(BCM4330_CHIP_ID, 12):
  526. str_tab = (struct sdiod_drive_str *)&sdiod_drvstr_tab1_1v8;
  527. str_mask = 0x00003800;
  528. str_shift = 11;
  529. break;
  530. default:
  531. brcmf_err("No SDIO Drive strength init done for chip %s rev %d pmurev %d\n",
  532. brcmf_sdio_chip_name(ci->chip, chn, 8),
  533. ci->chiprev, ci->pmurev);
  534. break;
  535. }
  536. if (str_tab != NULL) {
  537. u32 drivestrength_sel = 0;
  538. u32 cc_data_temp;
  539. int i;
  540. for (i = 0; str_tab[i].strength != 0; i++) {
  541. if (drivestrength >= str_tab[i].strength) {
  542. drivestrength_sel = str_tab[i].sel;
  543. break;
  544. }
  545. }
  546. brcmf_sdio_regwl(sdiodev, CORE_CC_REG(base, chipcontrol_addr),
  547. 1, NULL);
  548. cc_data_temp =
  549. brcmf_sdio_regrl(sdiodev,
  550. CORE_CC_REG(base, chipcontrol_addr),
  551. NULL);
  552. cc_data_temp &= ~str_mask;
  553. drivestrength_sel <<= str_shift;
  554. cc_data_temp |= drivestrength_sel;
  555. brcmf_sdio_regwl(sdiodev, CORE_CC_REG(base, chipcontrol_addr),
  556. cc_data_temp, NULL);
  557. brcmf_dbg(INFO, "SDIO: %dmA drive strength selected, set to 0x%08x\n",
  558. drivestrength, cc_data_temp);
  559. }
  560. }