ar9003_phy.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626
  1. /*
  2. * Copyright (c) 2010-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/export.h>
  17. #include "hw.h"
  18. #include "ar9003_phy.h"
  19. static const int firstep_table[] =
  20. /* level: 0 1 2 3 4 5 6 7 8 */
  21. { -4, -2, 0, 2, 4, 6, 8, 10, 12 }; /* lvl 0-8, default 2 */
  22. static const int cycpwrThr1_table[] =
  23. /* level: 0 1 2 3 4 5 6 7 8 */
  24. { -6, -4, -2, 0, 2, 4, 6, 8 }; /* lvl 0-7, default 3 */
  25. /*
  26. * register values to turn OFDM weak signal detection OFF
  27. */
  28. static const int m1ThreshLow_off = 127;
  29. static const int m2ThreshLow_off = 127;
  30. static const int m1Thresh_off = 127;
  31. static const int m2Thresh_off = 127;
  32. static const int m2CountThr_off = 31;
  33. static const int m2CountThrLow_off = 63;
  34. static const int m1ThreshLowExt_off = 127;
  35. static const int m2ThreshLowExt_off = 127;
  36. static const int m1ThreshExt_off = 127;
  37. static const int m2ThreshExt_off = 127;
  38. /**
  39. * ar9003_hw_set_channel - set channel on single-chip device
  40. * @ah: atheros hardware structure
  41. * @chan:
  42. *
  43. * This is the function to change channel on single-chip devices, that is
  44. * for AR9300 family of chipsets.
  45. *
  46. * This function takes the channel value in MHz and sets
  47. * hardware channel value. Assumes writes have been enabled to analog bus.
  48. *
  49. * Actual Expression,
  50. *
  51. * For 2GHz channel,
  52. * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
  53. * (freq_ref = 40MHz)
  54. *
  55. * For 5GHz channel,
  56. * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
  57. * (freq_ref = 40MHz/(24>>amodeRefSel))
  58. *
  59. * For 5GHz channels which are 5MHz spaced,
  60. * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
  61. * (freq_ref = 40MHz)
  62. */
  63. static int ar9003_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
  64. {
  65. u16 bMode, fracMode = 0, aModeRefSel = 0;
  66. u32 freq, channelSel = 0, reg32 = 0;
  67. struct chan_centers centers;
  68. int loadSynthChannel;
  69. ath9k_hw_get_channel_centers(ah, chan, &centers);
  70. freq = centers.synth_center;
  71. if (freq < 4800) { /* 2 GHz, fractional mode */
  72. if (AR_SREV_9330(ah)) {
  73. u32 chan_frac;
  74. u32 div;
  75. if (ah->is_clk_25mhz)
  76. div = 75;
  77. else
  78. div = 120;
  79. channelSel = (freq * 4) / div;
  80. chan_frac = (((freq * 4) % div) * 0x20000) / div;
  81. channelSel = (channelSel << 17) | chan_frac;
  82. } else if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
  83. u32 chan_frac;
  84. /*
  85. * freq_ref = 40 / (refdiva >> amoderefsel); where refdiva=1 and amoderefsel=0
  86. * ndiv = ((chan_mhz * 4) / 3) / freq_ref;
  87. * chansel = int(ndiv), chanfrac = (ndiv - chansel) * 0x20000
  88. */
  89. channelSel = (freq * 4) / 120;
  90. chan_frac = (((freq * 4) % 120) * 0x20000) / 120;
  91. channelSel = (channelSel << 17) | chan_frac;
  92. } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
  93. if (ah->is_clk_25mhz) {
  94. u32 chan_frac;
  95. channelSel = (freq * 2) / 75;
  96. chan_frac = (((freq * 2) % 75) * 0x20000) / 75;
  97. channelSel = (channelSel << 17) | chan_frac;
  98. } else
  99. channelSel = CHANSEL_2G(freq) >> 1;
  100. } else
  101. channelSel = CHANSEL_2G(freq);
  102. /* Set to 2G mode */
  103. bMode = 1;
  104. } else {
  105. if ((AR_SREV_9340(ah) || AR_SREV_9550(ah)) &&
  106. ah->is_clk_25mhz) {
  107. u32 chan_frac;
  108. channelSel = freq / 75;
  109. chan_frac = ((freq % 75) * 0x20000) / 75;
  110. channelSel = (channelSel << 17) | chan_frac;
  111. } else {
  112. channelSel = CHANSEL_5G(freq);
  113. /* Doubler is ON, so, divide channelSel by 2. */
  114. channelSel >>= 1;
  115. }
  116. /* Set to 5G mode */
  117. bMode = 0;
  118. }
  119. /* Enable fractional mode for all channels */
  120. fracMode = 1;
  121. aModeRefSel = 0;
  122. loadSynthChannel = 0;
  123. reg32 = (bMode << 29);
  124. REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
  125. /* Enable Long shift Select for Synthesizer */
  126. REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_SYNTH4,
  127. AR_PHY_SYNTH4_LONG_SHIFT_SELECT, 1);
  128. /* Program Synth. setting */
  129. reg32 = (channelSel << 2) | (fracMode << 30) |
  130. (aModeRefSel << 28) | (loadSynthChannel << 31);
  131. REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
  132. /* Toggle Load Synth channel bit */
  133. loadSynthChannel = 1;
  134. reg32 = (channelSel << 2) | (fracMode << 30) |
  135. (aModeRefSel << 28) | (loadSynthChannel << 31);
  136. REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
  137. ah->curchan = chan;
  138. return 0;
  139. }
  140. /**
  141. * ar9003_hw_spur_mitigate_mrc_cck - convert baseband spur frequency
  142. * @ah: atheros hardware structure
  143. * @chan:
  144. *
  145. * For single-chip solutions. Converts to baseband spur frequency given the
  146. * input channel frequency and compute register settings below.
  147. *
  148. * Spur mitigation for MRC CCK
  149. */
  150. static void ar9003_hw_spur_mitigate_mrc_cck(struct ath_hw *ah,
  151. struct ath9k_channel *chan)
  152. {
  153. static const u32 spur_freq[4] = { 2420, 2440, 2464, 2480 };
  154. int cur_bb_spur, negative = 0, cck_spur_freq;
  155. int i;
  156. int range, max_spur_cnts, synth_freq;
  157. u8 *spur_fbin_ptr = ar9003_get_spur_chan_ptr(ah, IS_CHAN_2GHZ(chan));
  158. /*
  159. * Need to verify range +/- 10 MHz in control channel, otherwise spur
  160. * is out-of-band and can be ignored.
  161. */
  162. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
  163. AR_SREV_9550(ah)) {
  164. if (spur_fbin_ptr[0] == 0) /* No spur */
  165. return;
  166. max_spur_cnts = 5;
  167. if (IS_CHAN_HT40(chan)) {
  168. range = 19;
  169. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  170. AR_PHY_GC_DYN2040_PRI_CH) == 0)
  171. synth_freq = chan->channel + 10;
  172. else
  173. synth_freq = chan->channel - 10;
  174. } else {
  175. range = 10;
  176. synth_freq = chan->channel;
  177. }
  178. } else {
  179. range = AR_SREV_9462(ah) ? 5 : 10;
  180. max_spur_cnts = 4;
  181. synth_freq = chan->channel;
  182. }
  183. for (i = 0; i < max_spur_cnts; i++) {
  184. if (AR_SREV_9462(ah) && (i == 0 || i == 3))
  185. continue;
  186. negative = 0;
  187. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
  188. AR_SREV_9550(ah))
  189. cur_bb_spur = ath9k_hw_fbin2freq(spur_fbin_ptr[i],
  190. IS_CHAN_2GHZ(chan));
  191. else
  192. cur_bb_spur = spur_freq[i];
  193. cur_bb_spur -= synth_freq;
  194. if (cur_bb_spur < 0) {
  195. negative = 1;
  196. cur_bb_spur = -cur_bb_spur;
  197. }
  198. if (cur_bb_spur < range) {
  199. cck_spur_freq = (int)((cur_bb_spur << 19) / 11);
  200. if (negative == 1)
  201. cck_spur_freq = -cck_spur_freq;
  202. cck_spur_freq = cck_spur_freq & 0xfffff;
  203. REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
  204. AR_PHY_AGC_CONTROL_YCOK_MAX, 0x7);
  205. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  206. AR_PHY_CCK_SPUR_MIT_SPUR_RSSI_THR, 0x7f);
  207. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  208. AR_PHY_CCK_SPUR_MIT_SPUR_FILTER_TYPE,
  209. 0x2);
  210. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  211. AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT,
  212. 0x1);
  213. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  214. AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ,
  215. cck_spur_freq);
  216. return;
  217. }
  218. }
  219. REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
  220. AR_PHY_AGC_CONTROL_YCOK_MAX, 0x5);
  221. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  222. AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 0x0);
  223. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  224. AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 0x0);
  225. }
  226. /* Clean all spur register fields */
  227. static void ar9003_hw_spur_ofdm_clear(struct ath_hw *ah)
  228. {
  229. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  230. AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0);
  231. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  232. AR_PHY_TIMING11_SPUR_FREQ_SD, 0);
  233. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  234. AR_PHY_TIMING11_SPUR_DELTA_PHASE, 0);
  235. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  236. AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, 0);
  237. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  238. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0);
  239. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  240. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0);
  241. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  242. AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0);
  243. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  244. AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 0);
  245. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  246. AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 0);
  247. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  248. AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0);
  249. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  250. AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0);
  251. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  252. AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0);
  253. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  254. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, 0);
  255. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  256. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, 0);
  257. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  258. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, 0);
  259. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  260. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0);
  261. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  262. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0);
  263. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  264. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0);
  265. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  266. AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0);
  267. }
  268. static void ar9003_hw_spur_ofdm(struct ath_hw *ah,
  269. int freq_offset,
  270. int spur_freq_sd,
  271. int spur_delta_phase,
  272. int spur_subchannel_sd,
  273. int range,
  274. int synth_freq)
  275. {
  276. int mask_index = 0;
  277. /* OFDM Spur mitigation */
  278. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  279. AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0x1);
  280. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  281. AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd);
  282. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  283. AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase);
  284. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  285. AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, spur_subchannel_sd);
  286. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  287. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0x1);
  288. if (!(AR_SREV_9565(ah) && range == 10 && synth_freq == 2437))
  289. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  290. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0x1);
  291. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  292. AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0x1);
  293. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  294. AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, 34);
  295. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  296. AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 1);
  297. if (REG_READ_FIELD(ah, AR_PHY_MODE,
  298. AR_PHY_MODE_DYNAMIC) == 0x1)
  299. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  300. AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 1);
  301. mask_index = (freq_offset << 4) / 5;
  302. if (mask_index < 0)
  303. mask_index = mask_index - 1;
  304. mask_index = mask_index & 0x7f;
  305. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  306. AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0x1);
  307. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  308. AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0x1);
  309. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  310. AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0x1);
  311. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  312. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, mask_index);
  313. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  314. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, mask_index);
  315. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  316. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, mask_index);
  317. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  318. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0xc);
  319. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  320. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0xc);
  321. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  322. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0);
  323. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  324. AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0xff);
  325. }
  326. static void ar9003_hw_spur_ofdm_9565(struct ath_hw *ah,
  327. int freq_offset)
  328. {
  329. int mask_index = 0;
  330. mask_index = (freq_offset << 4) / 5;
  331. if (mask_index < 0)
  332. mask_index = mask_index - 1;
  333. mask_index = mask_index & 0x7f;
  334. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  335. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_B,
  336. mask_index);
  337. /* A == B */
  338. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_B,
  339. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A,
  340. mask_index);
  341. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  342. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_B,
  343. mask_index);
  344. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  345. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_B, 0xe);
  346. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  347. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_B, 0xe);
  348. /* A == B */
  349. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_B,
  350. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0);
  351. }
  352. static void ar9003_hw_spur_ofdm_work(struct ath_hw *ah,
  353. struct ath9k_channel *chan,
  354. int freq_offset,
  355. int range,
  356. int synth_freq)
  357. {
  358. int spur_freq_sd = 0;
  359. int spur_subchannel_sd = 0;
  360. int spur_delta_phase = 0;
  361. if (IS_CHAN_HT40(chan)) {
  362. if (freq_offset < 0) {
  363. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  364. AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
  365. spur_subchannel_sd = 1;
  366. else
  367. spur_subchannel_sd = 0;
  368. spur_freq_sd = ((freq_offset + 10) << 9) / 11;
  369. } else {
  370. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  371. AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
  372. spur_subchannel_sd = 0;
  373. else
  374. spur_subchannel_sd = 1;
  375. spur_freq_sd = ((freq_offset - 10) << 9) / 11;
  376. }
  377. spur_delta_phase = (freq_offset << 17) / 5;
  378. } else {
  379. spur_subchannel_sd = 0;
  380. spur_freq_sd = (freq_offset << 9) /11;
  381. spur_delta_phase = (freq_offset << 18) / 5;
  382. }
  383. spur_freq_sd = spur_freq_sd & 0x3ff;
  384. spur_delta_phase = spur_delta_phase & 0xfffff;
  385. ar9003_hw_spur_ofdm(ah,
  386. freq_offset,
  387. spur_freq_sd,
  388. spur_delta_phase,
  389. spur_subchannel_sd,
  390. range, synth_freq);
  391. }
  392. /* Spur mitigation for OFDM */
  393. static void ar9003_hw_spur_mitigate_ofdm(struct ath_hw *ah,
  394. struct ath9k_channel *chan)
  395. {
  396. int synth_freq;
  397. int range = 10;
  398. int freq_offset = 0;
  399. int mode;
  400. u8* spurChansPtr;
  401. unsigned int i;
  402. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  403. if (IS_CHAN_5GHZ(chan)) {
  404. spurChansPtr = &(eep->modalHeader5G.spurChans[0]);
  405. mode = 0;
  406. }
  407. else {
  408. spurChansPtr = &(eep->modalHeader2G.spurChans[0]);
  409. mode = 1;
  410. }
  411. if (spurChansPtr[0] == 0)
  412. return; /* No spur in the mode */
  413. if (IS_CHAN_HT40(chan)) {
  414. range = 19;
  415. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  416. AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
  417. synth_freq = chan->channel - 10;
  418. else
  419. synth_freq = chan->channel + 10;
  420. } else {
  421. range = 10;
  422. synth_freq = chan->channel;
  423. }
  424. ar9003_hw_spur_ofdm_clear(ah);
  425. for (i = 0; i < AR_EEPROM_MODAL_SPURS && spurChansPtr[i]; i++) {
  426. freq_offset = ath9k_hw_fbin2freq(spurChansPtr[i], mode);
  427. freq_offset -= synth_freq;
  428. if (abs(freq_offset) < range) {
  429. ar9003_hw_spur_ofdm_work(ah, chan, freq_offset,
  430. range, synth_freq);
  431. if (AR_SREV_9565(ah) && (i < 4)) {
  432. freq_offset = ath9k_hw_fbin2freq(spurChansPtr[i + 1],
  433. mode);
  434. freq_offset -= synth_freq;
  435. if (abs(freq_offset) < range)
  436. ar9003_hw_spur_ofdm_9565(ah, freq_offset);
  437. }
  438. break;
  439. }
  440. }
  441. }
  442. static void ar9003_hw_spur_mitigate(struct ath_hw *ah,
  443. struct ath9k_channel *chan)
  444. {
  445. if (!AR_SREV_9565(ah))
  446. ar9003_hw_spur_mitigate_mrc_cck(ah, chan);
  447. ar9003_hw_spur_mitigate_ofdm(ah, chan);
  448. }
  449. static u32 ar9003_hw_compute_pll_control(struct ath_hw *ah,
  450. struct ath9k_channel *chan)
  451. {
  452. u32 pll;
  453. pll = SM(0x5, AR_RTC_9300_PLL_REFDIV);
  454. if (chan && IS_CHAN_HALF_RATE(chan))
  455. pll |= SM(0x1, AR_RTC_9300_PLL_CLKSEL);
  456. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  457. pll |= SM(0x2, AR_RTC_9300_PLL_CLKSEL);
  458. pll |= SM(0x2c, AR_RTC_9300_PLL_DIV);
  459. return pll;
  460. }
  461. static void ar9003_hw_set_channel_regs(struct ath_hw *ah,
  462. struct ath9k_channel *chan)
  463. {
  464. u32 phymode;
  465. u32 enableDacFifo = 0;
  466. enableDacFifo =
  467. (REG_READ(ah, AR_PHY_GEN_CTRL) & AR_PHY_GC_ENABLE_DAC_FIFO);
  468. /* Enable 11n HT, 20 MHz */
  469. phymode = AR_PHY_GC_HT_EN | AR_PHY_GC_SINGLE_HT_LTF1 |
  470. AR_PHY_GC_SHORT_GI_40 | enableDacFifo;
  471. /* Configure baseband for dynamic 20/40 operation */
  472. if (IS_CHAN_HT40(chan)) {
  473. phymode |= AR_PHY_GC_DYN2040_EN;
  474. /* Configure control (primary) channel at +-10MHz */
  475. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  476. (chan->chanmode == CHANNEL_G_HT40PLUS))
  477. phymode |= AR_PHY_GC_DYN2040_PRI_CH;
  478. }
  479. /* make sure we preserve INI settings */
  480. phymode |= REG_READ(ah, AR_PHY_GEN_CTRL);
  481. /* turn off Green Field detection for STA for now */
  482. phymode &= ~AR_PHY_GC_GF_DETECT_EN;
  483. REG_WRITE(ah, AR_PHY_GEN_CTRL, phymode);
  484. /* Configure MAC for 20/40 operation */
  485. ath9k_hw_set11nmac2040(ah);
  486. /* global transmit timeout (25 TUs default)*/
  487. REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
  488. /* carrier sense timeout */
  489. REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
  490. }
  491. static void ar9003_hw_init_bb(struct ath_hw *ah,
  492. struct ath9k_channel *chan)
  493. {
  494. u32 synthDelay;
  495. /*
  496. * Wait for the frequency synth to settle (synth goes on
  497. * via AR_PHY_ACTIVE_EN). Read the phy active delay register.
  498. * Value is in 100ns increments.
  499. */
  500. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  501. /* Activate the PHY (includes baseband activate + synthesizer on) */
  502. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
  503. ath9k_hw_synth_delay(ah, chan, synthDelay);
  504. }
  505. static void ar9003_hw_set_chain_masks(struct ath_hw *ah, u8 rx, u8 tx)
  506. {
  507. switch (rx) {
  508. case 0x5:
  509. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  510. AR_PHY_SWAP_ALT_CHAIN);
  511. case 0x3:
  512. case 0x1:
  513. case 0x2:
  514. case 0x7:
  515. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx);
  516. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx);
  517. break;
  518. default:
  519. break;
  520. }
  521. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && (tx == 0x7))
  522. REG_WRITE(ah, AR_SELFGEN_MASK, 0x3);
  523. else
  524. REG_WRITE(ah, AR_SELFGEN_MASK, tx);
  525. if (tx == 0x5) {
  526. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  527. AR_PHY_SWAP_ALT_CHAIN);
  528. }
  529. }
  530. /*
  531. * Override INI values with chip specific configuration.
  532. */
  533. static void ar9003_hw_override_ini(struct ath_hw *ah)
  534. {
  535. u32 val;
  536. /*
  537. * Set the RX_ABORT and RX_DIS and clear it only after
  538. * RXE is set for MAC. This prevents frames with
  539. * corrupted descriptor status.
  540. */
  541. REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
  542. /*
  543. * For AR9280 and above, there is a new feature that allows
  544. * Multicast search based on both MAC Address and Key ID. By default,
  545. * this feature is enabled. But since the driver is not using this
  546. * feature, we switch it off; otherwise multicast search based on
  547. * MAC addr only will fail.
  548. */
  549. val = REG_READ(ah, AR_PCU_MISC_MODE2) & (~AR_ADHOC_MCAST_KEYID_ENABLE);
  550. REG_WRITE(ah, AR_PCU_MISC_MODE2,
  551. val | AR_AGG_WEP_ENABLE_FIX | AR_AGG_WEP_ENABLE);
  552. REG_SET_BIT(ah, AR_PHY_CCK_DETECT,
  553. AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
  554. }
  555. static void ar9003_hw_prog_ini(struct ath_hw *ah,
  556. struct ar5416IniArray *iniArr,
  557. int column)
  558. {
  559. unsigned int i, regWrites = 0;
  560. /* New INI format: Array may be undefined (pre, core, post arrays) */
  561. if (!iniArr->ia_array)
  562. return;
  563. /*
  564. * New INI format: Pre, core, and post arrays for a given subsystem
  565. * may be modal (> 2 columns) or non-modal (2 columns). Determine if
  566. * the array is non-modal and force the column to 1.
  567. */
  568. if (column >= iniArr->ia_columns)
  569. column = 1;
  570. for (i = 0; i < iniArr->ia_rows; i++) {
  571. u32 reg = INI_RA(iniArr, i, 0);
  572. u32 val = INI_RA(iniArr, i, column);
  573. REG_WRITE(ah, reg, val);
  574. DO_DELAY(regWrites);
  575. }
  576. }
  577. static int ar9550_hw_get_modes_txgain_index(struct ath_hw *ah,
  578. struct ath9k_channel *chan)
  579. {
  580. int ret;
  581. switch (chan->chanmode) {
  582. case CHANNEL_A:
  583. case CHANNEL_A_HT20:
  584. if (chan->channel <= 5350)
  585. ret = 1;
  586. else if ((chan->channel > 5350) && (chan->channel <= 5600))
  587. ret = 3;
  588. else
  589. ret = 5;
  590. break;
  591. case CHANNEL_A_HT40PLUS:
  592. case CHANNEL_A_HT40MINUS:
  593. if (chan->channel <= 5350)
  594. ret = 2;
  595. else if ((chan->channel > 5350) && (chan->channel <= 5600))
  596. ret = 4;
  597. else
  598. ret = 6;
  599. break;
  600. case CHANNEL_G:
  601. case CHANNEL_G_HT20:
  602. case CHANNEL_B:
  603. ret = 8;
  604. break;
  605. case CHANNEL_G_HT40PLUS:
  606. case CHANNEL_G_HT40MINUS:
  607. ret = 7;
  608. break;
  609. default:
  610. ret = -EINVAL;
  611. }
  612. return ret;
  613. }
  614. static int ar9003_hw_process_ini(struct ath_hw *ah,
  615. struct ath9k_channel *chan)
  616. {
  617. unsigned int regWrites = 0, i;
  618. u32 modesIndex;
  619. switch (chan->chanmode) {
  620. case CHANNEL_A:
  621. case CHANNEL_A_HT20:
  622. modesIndex = 1;
  623. break;
  624. case CHANNEL_A_HT40PLUS:
  625. case CHANNEL_A_HT40MINUS:
  626. modesIndex = 2;
  627. break;
  628. case CHANNEL_G:
  629. case CHANNEL_G_HT20:
  630. case CHANNEL_B:
  631. modesIndex = 4;
  632. break;
  633. case CHANNEL_G_HT40PLUS:
  634. case CHANNEL_G_HT40MINUS:
  635. modesIndex = 3;
  636. break;
  637. default:
  638. return -EINVAL;
  639. }
  640. for (i = 0; i < ATH_INI_NUM_SPLIT; i++) {
  641. ar9003_hw_prog_ini(ah, &ah->iniSOC[i], modesIndex);
  642. ar9003_hw_prog_ini(ah, &ah->iniMac[i], modesIndex);
  643. ar9003_hw_prog_ini(ah, &ah->iniBB[i], modesIndex);
  644. ar9003_hw_prog_ini(ah, &ah->iniRadio[i], modesIndex);
  645. if (i == ATH_INI_POST && AR_SREV_9462_20(ah))
  646. ar9003_hw_prog_ini(ah,
  647. &ah->ini_radio_post_sys2ant,
  648. modesIndex);
  649. }
  650. REG_WRITE_ARRAY(&ah->iniModesRxGain, 1, regWrites);
  651. if (AR_SREV_9550(ah))
  652. REG_WRITE_ARRAY(&ah->ini_modes_rx_gain_bounds, modesIndex,
  653. regWrites);
  654. if (AR_SREV_9550(ah)) {
  655. int modes_txgain_index;
  656. modes_txgain_index = ar9550_hw_get_modes_txgain_index(ah, chan);
  657. if (modes_txgain_index < 0)
  658. return -EINVAL;
  659. REG_WRITE_ARRAY(&ah->iniModesTxGain, modes_txgain_index,
  660. regWrites);
  661. } else {
  662. REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
  663. }
  664. /*
  665. * For 5GHz channels requiring Fast Clock, apply
  666. * different modal values.
  667. */
  668. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  669. REG_WRITE_ARRAY(&ah->iniModesFastClock,
  670. modesIndex, regWrites);
  671. REG_WRITE_ARRAY(&ah->iniAdditional, 1, regWrites);
  672. if (chan->channel == 2484)
  673. ar9003_hw_prog_ini(ah, &ah->iniCckfirJapan2484, 1);
  674. if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
  675. REG_WRITE(ah, AR_GLB_SWREG_DISCONT_MODE,
  676. AR_GLB_SWREG_DISCONT_EN_BT_WLAN);
  677. ah->modes_index = modesIndex;
  678. ar9003_hw_override_ini(ah);
  679. ar9003_hw_set_channel_regs(ah, chan);
  680. ar9003_hw_set_chain_masks(ah, ah->rxchainmask, ah->txchainmask);
  681. ath9k_hw_apply_txpower(ah, chan, false);
  682. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  683. if (REG_READ_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_0,
  684. AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL))
  685. ah->enabled_cals |= TX_IQ_CAL;
  686. else
  687. ah->enabled_cals &= ~TX_IQ_CAL;
  688. if (REG_READ(ah, AR_PHY_CL_CAL_CTL) & AR_PHY_CL_CAL_ENABLE)
  689. ah->enabled_cals |= TX_CL_CAL;
  690. else
  691. ah->enabled_cals &= ~TX_CL_CAL;
  692. }
  693. return 0;
  694. }
  695. static void ar9003_hw_set_rfmode(struct ath_hw *ah,
  696. struct ath9k_channel *chan)
  697. {
  698. u32 rfMode = 0;
  699. if (chan == NULL)
  700. return;
  701. rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
  702. ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
  703. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  704. rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
  705. if (IS_CHAN_QUARTER_RATE(chan))
  706. rfMode |= AR_PHY_MODE_QUARTER;
  707. if (IS_CHAN_HALF_RATE(chan))
  708. rfMode |= AR_PHY_MODE_HALF;
  709. if (rfMode & (AR_PHY_MODE_QUARTER | AR_PHY_MODE_HALF))
  710. REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
  711. AR_PHY_FRAME_CTL_CF_OVERLAP_WINDOW, 3);
  712. REG_WRITE(ah, AR_PHY_MODE, rfMode);
  713. }
  714. static void ar9003_hw_mark_phy_inactive(struct ath_hw *ah)
  715. {
  716. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
  717. }
  718. static void ar9003_hw_set_delta_slope(struct ath_hw *ah,
  719. struct ath9k_channel *chan)
  720. {
  721. u32 coef_scaled, ds_coef_exp, ds_coef_man;
  722. u32 clockMhzScaled = 0x64000000;
  723. struct chan_centers centers;
  724. /*
  725. * half and quarter rate can divide the scaled clock by 2 or 4
  726. * scale for selected channel bandwidth
  727. */
  728. if (IS_CHAN_HALF_RATE(chan))
  729. clockMhzScaled = clockMhzScaled >> 1;
  730. else if (IS_CHAN_QUARTER_RATE(chan))
  731. clockMhzScaled = clockMhzScaled >> 2;
  732. /*
  733. * ALGO -> coef = 1e8/fcarrier*fclock/40;
  734. * scaled coef to provide precision for this floating calculation
  735. */
  736. ath9k_hw_get_channel_centers(ah, chan, &centers);
  737. coef_scaled = clockMhzScaled / centers.synth_center;
  738. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  739. &ds_coef_exp);
  740. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  741. AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
  742. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  743. AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
  744. /*
  745. * For Short GI,
  746. * scaled coeff is 9/10 that of normal coeff
  747. */
  748. coef_scaled = (9 * coef_scaled) / 10;
  749. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  750. &ds_coef_exp);
  751. /* for short gi */
  752. REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
  753. AR_PHY_SGI_DSC_MAN, ds_coef_man);
  754. REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
  755. AR_PHY_SGI_DSC_EXP, ds_coef_exp);
  756. }
  757. static bool ar9003_hw_rfbus_req(struct ath_hw *ah)
  758. {
  759. REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
  760. return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
  761. AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
  762. }
  763. /*
  764. * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
  765. * Read the phy active delay register. Value is in 100ns increments.
  766. */
  767. static void ar9003_hw_rfbus_done(struct ath_hw *ah)
  768. {
  769. u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  770. ath9k_hw_synth_delay(ah, ah->curchan, synthDelay);
  771. REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
  772. }
  773. static bool ar9003_hw_ani_control(struct ath_hw *ah,
  774. enum ath9k_ani_cmd cmd, int param)
  775. {
  776. struct ath_common *common = ath9k_hw_common(ah);
  777. struct ath9k_channel *chan = ah->curchan;
  778. struct ar5416AniState *aniState = &chan->ani;
  779. s32 value, value2;
  780. switch (cmd & ah->ani_function) {
  781. case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
  782. /*
  783. * on == 1 means ofdm weak signal detection is ON
  784. * on == 1 is the default, for less noise immunity
  785. *
  786. * on == 0 means ofdm weak signal detection is OFF
  787. * on == 0 means more noise imm
  788. */
  789. u32 on = param ? 1 : 0;
  790. if (on)
  791. REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
  792. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  793. else
  794. REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
  795. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  796. if (on != aniState->ofdmWeakSigDetect) {
  797. ath_dbg(common, ANI,
  798. "** ch %d: ofdm weak signal: %s=>%s\n",
  799. chan->channel,
  800. aniState->ofdmWeakSigDetect ?
  801. "on" : "off",
  802. on ? "on" : "off");
  803. if (on)
  804. ah->stats.ast_ani_ofdmon++;
  805. else
  806. ah->stats.ast_ani_ofdmoff++;
  807. aniState->ofdmWeakSigDetect = on;
  808. }
  809. break;
  810. }
  811. case ATH9K_ANI_FIRSTEP_LEVEL:{
  812. u32 level = param;
  813. if (level >= ARRAY_SIZE(firstep_table)) {
  814. ath_dbg(common, ANI,
  815. "ATH9K_ANI_FIRSTEP_LEVEL: level out of range (%u > %zu)\n",
  816. level, ARRAY_SIZE(firstep_table));
  817. return false;
  818. }
  819. /*
  820. * make register setting relative to default
  821. * from INI file & cap value
  822. */
  823. value = firstep_table[level] -
  824. firstep_table[ATH9K_ANI_FIRSTEP_LVL] +
  825. aniState->iniDef.firstep;
  826. if (value < ATH9K_SIG_FIRSTEP_SETTING_MIN)
  827. value = ATH9K_SIG_FIRSTEP_SETTING_MIN;
  828. if (value > ATH9K_SIG_FIRSTEP_SETTING_MAX)
  829. value = ATH9K_SIG_FIRSTEP_SETTING_MAX;
  830. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
  831. AR_PHY_FIND_SIG_FIRSTEP,
  832. value);
  833. /*
  834. * we need to set first step low register too
  835. * make register setting relative to default
  836. * from INI file & cap value
  837. */
  838. value2 = firstep_table[level] -
  839. firstep_table[ATH9K_ANI_FIRSTEP_LVL] +
  840. aniState->iniDef.firstepLow;
  841. if (value2 < ATH9K_SIG_FIRSTEP_SETTING_MIN)
  842. value2 = ATH9K_SIG_FIRSTEP_SETTING_MIN;
  843. if (value2 > ATH9K_SIG_FIRSTEP_SETTING_MAX)
  844. value2 = ATH9K_SIG_FIRSTEP_SETTING_MAX;
  845. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
  846. AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW, value2);
  847. if (level != aniState->firstepLevel) {
  848. ath_dbg(common, ANI,
  849. "** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
  850. chan->channel,
  851. aniState->firstepLevel,
  852. level,
  853. ATH9K_ANI_FIRSTEP_LVL,
  854. value,
  855. aniState->iniDef.firstep);
  856. ath_dbg(common, ANI,
  857. "** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n",
  858. chan->channel,
  859. aniState->firstepLevel,
  860. level,
  861. ATH9K_ANI_FIRSTEP_LVL,
  862. value2,
  863. aniState->iniDef.firstepLow);
  864. if (level > aniState->firstepLevel)
  865. ah->stats.ast_ani_stepup++;
  866. else if (level < aniState->firstepLevel)
  867. ah->stats.ast_ani_stepdown++;
  868. aniState->firstepLevel = level;
  869. }
  870. break;
  871. }
  872. case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
  873. u32 level = param;
  874. if (level >= ARRAY_SIZE(cycpwrThr1_table)) {
  875. ath_dbg(common, ANI,
  876. "ATH9K_ANI_SPUR_IMMUNITY_LEVEL: level out of range (%u > %zu)\n",
  877. level, ARRAY_SIZE(cycpwrThr1_table));
  878. return false;
  879. }
  880. /*
  881. * make register setting relative to default
  882. * from INI file & cap value
  883. */
  884. value = cycpwrThr1_table[level] -
  885. cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL] +
  886. aniState->iniDef.cycpwrThr1;
  887. if (value < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
  888. value = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
  889. if (value > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
  890. value = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
  891. REG_RMW_FIELD(ah, AR_PHY_TIMING5,
  892. AR_PHY_TIMING5_CYCPWR_THR1,
  893. value);
  894. /*
  895. * set AR_PHY_EXT_CCA for extension channel
  896. * make register setting relative to default
  897. * from INI file & cap value
  898. */
  899. value2 = cycpwrThr1_table[level] -
  900. cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL] +
  901. aniState->iniDef.cycpwrThr1Ext;
  902. if (value2 < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
  903. value2 = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
  904. if (value2 > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
  905. value2 = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
  906. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
  907. AR_PHY_EXT_CYCPWR_THR1, value2);
  908. if (level != aniState->spurImmunityLevel) {
  909. ath_dbg(common, ANI,
  910. "** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n",
  911. chan->channel,
  912. aniState->spurImmunityLevel,
  913. level,
  914. ATH9K_ANI_SPUR_IMMUNE_LVL,
  915. value,
  916. aniState->iniDef.cycpwrThr1);
  917. ath_dbg(common, ANI,
  918. "** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n",
  919. chan->channel,
  920. aniState->spurImmunityLevel,
  921. level,
  922. ATH9K_ANI_SPUR_IMMUNE_LVL,
  923. value2,
  924. aniState->iniDef.cycpwrThr1Ext);
  925. if (level > aniState->spurImmunityLevel)
  926. ah->stats.ast_ani_spurup++;
  927. else if (level < aniState->spurImmunityLevel)
  928. ah->stats.ast_ani_spurdown++;
  929. aniState->spurImmunityLevel = level;
  930. }
  931. break;
  932. }
  933. case ATH9K_ANI_MRC_CCK:{
  934. /*
  935. * is_on == 1 means MRC CCK ON (default, less noise imm)
  936. * is_on == 0 means MRC CCK is OFF (more noise imm)
  937. */
  938. bool is_on = param ? 1 : 0;
  939. REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
  940. AR_PHY_MRC_CCK_ENABLE, is_on);
  941. REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
  942. AR_PHY_MRC_CCK_MUX_REG, is_on);
  943. if (is_on != aniState->mrcCCK) {
  944. ath_dbg(common, ANI, "** ch %d: MRC CCK: %s=>%s\n",
  945. chan->channel,
  946. aniState->mrcCCK ? "on" : "off",
  947. is_on ? "on" : "off");
  948. if (is_on)
  949. ah->stats.ast_ani_ccklow++;
  950. else
  951. ah->stats.ast_ani_cckhigh++;
  952. aniState->mrcCCK = is_on;
  953. }
  954. break;
  955. }
  956. case ATH9K_ANI_PRESENT:
  957. break;
  958. default:
  959. ath_dbg(common, ANI, "invalid cmd %u\n", cmd);
  960. return false;
  961. }
  962. ath_dbg(common, ANI,
  963. "ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n",
  964. aniState->spurImmunityLevel,
  965. aniState->ofdmWeakSigDetect ? "on" : "off",
  966. aniState->firstepLevel,
  967. aniState->mrcCCK ? "on" : "off",
  968. aniState->listenTime,
  969. aniState->ofdmPhyErrCount,
  970. aniState->cckPhyErrCount);
  971. return true;
  972. }
  973. static void ar9003_hw_do_getnf(struct ath_hw *ah,
  974. int16_t nfarray[NUM_NF_READINGS])
  975. {
  976. #define AR_PHY_CH_MINCCA_PWR 0x1FF00000
  977. #define AR_PHY_CH_MINCCA_PWR_S 20
  978. #define AR_PHY_CH_EXT_MINCCA_PWR 0x01FF0000
  979. #define AR_PHY_CH_EXT_MINCCA_PWR_S 16
  980. int16_t nf;
  981. int i;
  982. for (i = 0; i < AR9300_MAX_CHAINS; i++) {
  983. if (ah->rxchainmask & BIT(i)) {
  984. nf = MS(REG_READ(ah, ah->nf_regs[i]),
  985. AR_PHY_CH_MINCCA_PWR);
  986. nfarray[i] = sign_extend32(nf, 8);
  987. if (IS_CHAN_HT40(ah->curchan)) {
  988. u8 ext_idx = AR9300_MAX_CHAINS + i;
  989. nf = MS(REG_READ(ah, ah->nf_regs[ext_idx]),
  990. AR_PHY_CH_EXT_MINCCA_PWR);
  991. nfarray[ext_idx] = sign_extend32(nf, 8);
  992. }
  993. }
  994. }
  995. }
  996. static void ar9003_hw_set_nf_limits(struct ath_hw *ah)
  997. {
  998. ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_2GHZ;
  999. ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_2GHZ;
  1000. ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9300_2GHZ;
  1001. ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_5GHZ;
  1002. ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_5GHZ;
  1003. ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9300_5GHZ;
  1004. if (AR_SREV_9330(ah))
  1005. ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9330_2GHZ;
  1006. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  1007. ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9462_2GHZ;
  1008. ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9462_2GHZ;
  1009. ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9462_5GHZ;
  1010. ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9462_5GHZ;
  1011. }
  1012. }
  1013. /*
  1014. * Initialize the ANI register values with default (ini) values.
  1015. * This routine is called during a (full) hardware reset after
  1016. * all the registers are initialised from the INI.
  1017. */
  1018. static void ar9003_hw_ani_cache_ini_regs(struct ath_hw *ah)
  1019. {
  1020. struct ar5416AniState *aniState;
  1021. struct ath_common *common = ath9k_hw_common(ah);
  1022. struct ath9k_channel *chan = ah->curchan;
  1023. struct ath9k_ani_default *iniDef;
  1024. u32 val;
  1025. aniState = &ah->curchan->ani;
  1026. iniDef = &aniState->iniDef;
  1027. ath_dbg(common, ANI, "ver %d.%d opmode %u chan %d Mhz/0x%x\n",
  1028. ah->hw_version.macVersion,
  1029. ah->hw_version.macRev,
  1030. ah->opmode,
  1031. chan->channel,
  1032. chan->channelFlags);
  1033. val = REG_READ(ah, AR_PHY_SFCORR);
  1034. iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
  1035. iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
  1036. iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
  1037. val = REG_READ(ah, AR_PHY_SFCORR_LOW);
  1038. iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
  1039. iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
  1040. iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
  1041. val = REG_READ(ah, AR_PHY_SFCORR_EXT);
  1042. iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
  1043. iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
  1044. iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
  1045. iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
  1046. iniDef->firstep = REG_READ_FIELD(ah,
  1047. AR_PHY_FIND_SIG,
  1048. AR_PHY_FIND_SIG_FIRSTEP);
  1049. iniDef->firstepLow = REG_READ_FIELD(ah,
  1050. AR_PHY_FIND_SIG_LOW,
  1051. AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW);
  1052. iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
  1053. AR_PHY_TIMING5,
  1054. AR_PHY_TIMING5_CYCPWR_THR1);
  1055. iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
  1056. AR_PHY_EXT_CCA,
  1057. AR_PHY_EXT_CYCPWR_THR1);
  1058. /* these levels just got reset to defaults by the INI */
  1059. aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL;
  1060. aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL;
  1061. aniState->ofdmWeakSigDetect = ATH9K_ANI_USE_OFDM_WEAK_SIG;
  1062. aniState->mrcCCK = true;
  1063. }
  1064. static void ar9003_hw_set_radar_params(struct ath_hw *ah,
  1065. struct ath_hw_radar_conf *conf)
  1066. {
  1067. u32 radar_0 = 0, radar_1 = 0;
  1068. if (!conf) {
  1069. REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
  1070. return;
  1071. }
  1072. radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA;
  1073. radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR);
  1074. radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI);
  1075. radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT);
  1076. radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI);
  1077. radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND);
  1078. radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI;
  1079. radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK;
  1080. radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN);
  1081. radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH);
  1082. radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH);
  1083. REG_WRITE(ah, AR_PHY_RADAR_0, radar_0);
  1084. REG_WRITE(ah, AR_PHY_RADAR_1, radar_1);
  1085. if (conf->ext_channel)
  1086. REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
  1087. else
  1088. REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
  1089. }
  1090. static void ar9003_hw_set_radar_conf(struct ath_hw *ah)
  1091. {
  1092. struct ath_hw_radar_conf *conf = &ah->radar_conf;
  1093. conf->fir_power = -28;
  1094. conf->radar_rssi = 0;
  1095. conf->pulse_height = 10;
  1096. conf->pulse_rssi = 24;
  1097. conf->pulse_inband = 8;
  1098. conf->pulse_maxlen = 255;
  1099. conf->pulse_inband_step = 12;
  1100. conf->radar_inband = 8;
  1101. }
  1102. static void ar9003_hw_antdiv_comb_conf_get(struct ath_hw *ah,
  1103. struct ath_hw_antcomb_conf *antconf)
  1104. {
  1105. u32 regval;
  1106. regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
  1107. antconf->main_lna_conf = (regval & AR_PHY_ANT_DIV_MAIN_LNACONF) >>
  1108. AR_PHY_ANT_DIV_MAIN_LNACONF_S;
  1109. antconf->alt_lna_conf = (regval & AR_PHY_ANT_DIV_ALT_LNACONF) >>
  1110. AR_PHY_ANT_DIV_ALT_LNACONF_S;
  1111. antconf->fast_div_bias = (regval & AR_PHY_ANT_FAST_DIV_BIAS) >>
  1112. AR_PHY_ANT_FAST_DIV_BIAS_S;
  1113. if (AR_SREV_9330_11(ah)) {
  1114. antconf->lna1_lna2_delta = -9;
  1115. antconf->div_group = 1;
  1116. } else if (AR_SREV_9485(ah)) {
  1117. antconf->lna1_lna2_delta = -9;
  1118. antconf->div_group = 2;
  1119. } else if (AR_SREV_9565(ah)) {
  1120. antconf->lna1_lna2_delta = -3;
  1121. antconf->div_group = 3;
  1122. } else {
  1123. antconf->lna1_lna2_delta = -3;
  1124. antconf->div_group = 0;
  1125. }
  1126. }
  1127. static void ar9003_hw_antdiv_comb_conf_set(struct ath_hw *ah,
  1128. struct ath_hw_antcomb_conf *antconf)
  1129. {
  1130. u32 regval;
  1131. regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
  1132. regval &= ~(AR_PHY_ANT_DIV_MAIN_LNACONF |
  1133. AR_PHY_ANT_DIV_ALT_LNACONF |
  1134. AR_PHY_ANT_FAST_DIV_BIAS |
  1135. AR_PHY_ANT_DIV_MAIN_GAINTB |
  1136. AR_PHY_ANT_DIV_ALT_GAINTB);
  1137. regval |= ((antconf->main_lna_conf << AR_PHY_ANT_DIV_MAIN_LNACONF_S)
  1138. & AR_PHY_ANT_DIV_MAIN_LNACONF);
  1139. regval |= ((antconf->alt_lna_conf << AR_PHY_ANT_DIV_ALT_LNACONF_S)
  1140. & AR_PHY_ANT_DIV_ALT_LNACONF);
  1141. regval |= ((antconf->fast_div_bias << AR_PHY_ANT_FAST_DIV_BIAS_S)
  1142. & AR_PHY_ANT_FAST_DIV_BIAS);
  1143. regval |= ((antconf->main_gaintb << AR_PHY_ANT_DIV_MAIN_GAINTB_S)
  1144. & AR_PHY_ANT_DIV_MAIN_GAINTB);
  1145. regval |= ((antconf->alt_gaintb << AR_PHY_ANT_DIV_ALT_GAINTB_S)
  1146. & AR_PHY_ANT_DIV_ALT_GAINTB);
  1147. REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
  1148. }
  1149. static void ar9003_hw_antctrl_shared_chain_lnadiv(struct ath_hw *ah,
  1150. bool enable)
  1151. {
  1152. u8 ant_div_ctl1;
  1153. u32 regval;
  1154. if (!AR_SREV_9565(ah))
  1155. return;
  1156. ah->shared_chain_lnadiv = enable;
  1157. ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  1158. regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
  1159. regval &= (~AR_ANT_DIV_CTRL_ALL);
  1160. regval |= (ant_div_ctl1 & 0x3f) << AR_ANT_DIV_CTRL_ALL_S;
  1161. regval &= ~AR_PHY_ANT_DIV_LNADIV;
  1162. regval |= ((ant_div_ctl1 >> 6) & 0x1) << AR_PHY_ANT_DIV_LNADIV_S;
  1163. if (enable)
  1164. regval |= AR_ANT_DIV_ENABLE;
  1165. REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
  1166. regval = REG_READ(ah, AR_PHY_CCK_DETECT);
  1167. regval &= ~AR_FAST_DIV_ENABLE;
  1168. regval |= ((ant_div_ctl1 >> 7) & 0x1) << AR_FAST_DIV_ENABLE_S;
  1169. if (enable)
  1170. regval |= AR_FAST_DIV_ENABLE;
  1171. REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
  1172. if (enable) {
  1173. REG_SET_BIT(ah, AR_PHY_MC_GAIN_CTRL,
  1174. (1 << AR_PHY_ANT_SW_RX_PROT_S));
  1175. if (ah->curchan && IS_CHAN_2GHZ(ah->curchan))
  1176. REG_SET_BIT(ah, AR_PHY_RESTART,
  1177. AR_PHY_RESTART_ENABLE_DIV_M2FLAG);
  1178. REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV,
  1179. AR_BTCOEX_WL_LNADIV_FORCE_ON);
  1180. } else {
  1181. REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL, AR_ANT_DIV_ENABLE);
  1182. REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL,
  1183. (1 << AR_PHY_ANT_SW_RX_PROT_S));
  1184. REG_CLR_BIT(ah, AR_PHY_CCK_DETECT, AR_FAST_DIV_ENABLE);
  1185. REG_CLR_BIT(ah, AR_BTCOEX_WL_LNADIV,
  1186. AR_BTCOEX_WL_LNADIV_FORCE_ON);
  1187. regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
  1188. regval &= ~(AR_PHY_ANT_DIV_MAIN_LNACONF |
  1189. AR_PHY_ANT_DIV_ALT_LNACONF |
  1190. AR_PHY_ANT_DIV_MAIN_GAINTB |
  1191. AR_PHY_ANT_DIV_ALT_GAINTB);
  1192. regval |= (AR_PHY_ANT_DIV_LNA1 << AR_PHY_ANT_DIV_MAIN_LNACONF_S);
  1193. regval |= (AR_PHY_ANT_DIV_LNA2 << AR_PHY_ANT_DIV_ALT_LNACONF_S);
  1194. REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
  1195. }
  1196. }
  1197. static int ar9003_hw_fast_chan_change(struct ath_hw *ah,
  1198. struct ath9k_channel *chan,
  1199. u8 *ini_reloaded)
  1200. {
  1201. unsigned int regWrites = 0;
  1202. u32 modesIndex;
  1203. switch (chan->chanmode) {
  1204. case CHANNEL_A:
  1205. case CHANNEL_A_HT20:
  1206. modesIndex = 1;
  1207. break;
  1208. case CHANNEL_A_HT40PLUS:
  1209. case CHANNEL_A_HT40MINUS:
  1210. modesIndex = 2;
  1211. break;
  1212. case CHANNEL_G:
  1213. case CHANNEL_G_HT20:
  1214. case CHANNEL_B:
  1215. modesIndex = 4;
  1216. break;
  1217. case CHANNEL_G_HT40PLUS:
  1218. case CHANNEL_G_HT40MINUS:
  1219. modesIndex = 3;
  1220. break;
  1221. default:
  1222. return -EINVAL;
  1223. }
  1224. if (modesIndex == ah->modes_index) {
  1225. *ini_reloaded = false;
  1226. goto set_rfmode;
  1227. }
  1228. ar9003_hw_prog_ini(ah, &ah->iniSOC[ATH_INI_POST], modesIndex);
  1229. ar9003_hw_prog_ini(ah, &ah->iniMac[ATH_INI_POST], modesIndex);
  1230. ar9003_hw_prog_ini(ah, &ah->iniBB[ATH_INI_POST], modesIndex);
  1231. ar9003_hw_prog_ini(ah, &ah->iniRadio[ATH_INI_POST], modesIndex);
  1232. if (AR_SREV_9462_20(ah))
  1233. ar9003_hw_prog_ini(ah, &ah->ini_radio_post_sys2ant,
  1234. modesIndex);
  1235. REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
  1236. /*
  1237. * For 5GHz channels requiring Fast Clock, apply
  1238. * different modal values.
  1239. */
  1240. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  1241. REG_WRITE_ARRAY(&ah->iniModesFastClock, modesIndex, regWrites);
  1242. if (AR_SREV_9565(ah))
  1243. REG_WRITE_ARRAY(&ah->iniModesFastClock, 1, regWrites);
  1244. REG_WRITE_ARRAY(&ah->iniAdditional, 1, regWrites);
  1245. ah->modes_index = modesIndex;
  1246. *ini_reloaded = true;
  1247. set_rfmode:
  1248. ar9003_hw_set_rfmode(ah, chan);
  1249. return 0;
  1250. }
  1251. void ar9003_hw_attach_phy_ops(struct ath_hw *ah)
  1252. {
  1253. struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
  1254. struct ath_hw_ops *ops = ath9k_hw_ops(ah);
  1255. static const u32 ar9300_cca_regs[6] = {
  1256. AR_PHY_CCA_0,
  1257. AR_PHY_CCA_1,
  1258. AR_PHY_CCA_2,
  1259. AR_PHY_EXT_CCA,
  1260. AR_PHY_EXT_CCA_1,
  1261. AR_PHY_EXT_CCA_2,
  1262. };
  1263. priv_ops->rf_set_freq = ar9003_hw_set_channel;
  1264. priv_ops->spur_mitigate_freq = ar9003_hw_spur_mitigate;
  1265. priv_ops->compute_pll_control = ar9003_hw_compute_pll_control;
  1266. priv_ops->set_channel_regs = ar9003_hw_set_channel_regs;
  1267. priv_ops->init_bb = ar9003_hw_init_bb;
  1268. priv_ops->process_ini = ar9003_hw_process_ini;
  1269. priv_ops->set_rfmode = ar9003_hw_set_rfmode;
  1270. priv_ops->mark_phy_inactive = ar9003_hw_mark_phy_inactive;
  1271. priv_ops->set_delta_slope = ar9003_hw_set_delta_slope;
  1272. priv_ops->rfbus_req = ar9003_hw_rfbus_req;
  1273. priv_ops->rfbus_done = ar9003_hw_rfbus_done;
  1274. priv_ops->ani_control = ar9003_hw_ani_control;
  1275. priv_ops->do_getnf = ar9003_hw_do_getnf;
  1276. priv_ops->ani_cache_ini_regs = ar9003_hw_ani_cache_ini_regs;
  1277. priv_ops->set_radar_params = ar9003_hw_set_radar_params;
  1278. priv_ops->fast_chan_change = ar9003_hw_fast_chan_change;
  1279. ops->antdiv_comb_conf_get = ar9003_hw_antdiv_comb_conf_get;
  1280. ops->antdiv_comb_conf_set = ar9003_hw_antdiv_comb_conf_set;
  1281. ops->antctrl_shared_chain_lnadiv = ar9003_hw_antctrl_shared_chain_lnadiv;
  1282. ar9003_hw_set_nf_limits(ah);
  1283. ar9003_hw_set_radar_conf(ah);
  1284. memcpy(ah->nf_regs, ar9300_cca_regs, sizeof(ah->nf_regs));
  1285. }
  1286. void ar9003_hw_bb_watchdog_config(struct ath_hw *ah)
  1287. {
  1288. struct ath_common *common = ath9k_hw_common(ah);
  1289. u32 idle_tmo_ms = ah->bb_watchdog_timeout_ms;
  1290. u32 val, idle_count;
  1291. if (!idle_tmo_ms) {
  1292. /* disable IRQ, disable chip-reset for BB panic */
  1293. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2,
  1294. REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) &
  1295. ~(AR_PHY_WATCHDOG_RST_ENABLE |
  1296. AR_PHY_WATCHDOG_IRQ_ENABLE));
  1297. /* disable watchdog in non-IDLE mode, disable in IDLE mode */
  1298. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1,
  1299. REG_READ(ah, AR_PHY_WATCHDOG_CTL_1) &
  1300. ~(AR_PHY_WATCHDOG_NON_IDLE_ENABLE |
  1301. AR_PHY_WATCHDOG_IDLE_ENABLE));
  1302. ath_dbg(common, RESET, "Disabled BB Watchdog\n");
  1303. return;
  1304. }
  1305. /* enable IRQ, disable chip-reset for BB watchdog */
  1306. val = REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) & AR_PHY_WATCHDOG_CNTL2_MASK;
  1307. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2,
  1308. (val | AR_PHY_WATCHDOG_IRQ_ENABLE) &
  1309. ~AR_PHY_WATCHDOG_RST_ENABLE);
  1310. /* bound limit to 10 secs */
  1311. if (idle_tmo_ms > 10000)
  1312. idle_tmo_ms = 10000;
  1313. /*
  1314. * The time unit for watchdog event is 2^15 44/88MHz cycles.
  1315. *
  1316. * For HT20 we have a time unit of 2^15/44 MHz = .74 ms per tick
  1317. * For HT40 we have a time unit of 2^15/88 MHz = .37 ms per tick
  1318. *
  1319. * Given we use fast clock now in 5 GHz, these time units should
  1320. * be common for both 2 GHz and 5 GHz.
  1321. */
  1322. idle_count = (100 * idle_tmo_ms) / 74;
  1323. if (ah->curchan && IS_CHAN_HT40(ah->curchan))
  1324. idle_count = (100 * idle_tmo_ms) / 37;
  1325. /*
  1326. * enable watchdog in non-IDLE mode, disable in IDLE mode,
  1327. * set idle time-out.
  1328. */
  1329. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1,
  1330. AR_PHY_WATCHDOG_NON_IDLE_ENABLE |
  1331. AR_PHY_WATCHDOG_IDLE_MASK |
  1332. (AR_PHY_WATCHDOG_NON_IDLE_MASK & (idle_count << 2)));
  1333. ath_dbg(common, RESET, "Enabled BB Watchdog timeout (%u ms)\n",
  1334. idle_tmo_ms);
  1335. }
  1336. void ar9003_hw_bb_watchdog_read(struct ath_hw *ah)
  1337. {
  1338. /*
  1339. * we want to avoid printing in ISR context so we save the
  1340. * watchdog status to be printed later in bottom half context.
  1341. */
  1342. ah->bb_watchdog_last_status = REG_READ(ah, AR_PHY_WATCHDOG_STATUS);
  1343. /*
  1344. * the watchdog timer should reset on status read but to be sure
  1345. * sure we write 0 to the watchdog status bit.
  1346. */
  1347. REG_WRITE(ah, AR_PHY_WATCHDOG_STATUS,
  1348. ah->bb_watchdog_last_status & ~AR_PHY_WATCHDOG_STATUS_CLR);
  1349. }
  1350. void ar9003_hw_bb_watchdog_dbg_info(struct ath_hw *ah)
  1351. {
  1352. struct ath_common *common = ath9k_hw_common(ah);
  1353. u32 status;
  1354. if (likely(!(common->debug_mask & ATH_DBG_RESET)))
  1355. return;
  1356. status = ah->bb_watchdog_last_status;
  1357. ath_dbg(common, RESET,
  1358. "\n==== BB update: BB status=0x%08x ====\n", status);
  1359. ath_dbg(common, RESET,
  1360. "** BB state: wd=%u det=%u rdar=%u rOFDM=%d rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
  1361. MS(status, AR_PHY_WATCHDOG_INFO),
  1362. MS(status, AR_PHY_WATCHDOG_DET_HANG),
  1363. MS(status, AR_PHY_WATCHDOG_RADAR_SM),
  1364. MS(status, AR_PHY_WATCHDOG_RX_OFDM_SM),
  1365. MS(status, AR_PHY_WATCHDOG_RX_CCK_SM),
  1366. MS(status, AR_PHY_WATCHDOG_TX_OFDM_SM),
  1367. MS(status, AR_PHY_WATCHDOG_TX_CCK_SM),
  1368. MS(status, AR_PHY_WATCHDOG_AGC_SM),
  1369. MS(status, AR_PHY_WATCHDOG_SRCH_SM));
  1370. ath_dbg(common, RESET, "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
  1371. REG_READ(ah, AR_PHY_WATCHDOG_CTL_1),
  1372. REG_READ(ah, AR_PHY_WATCHDOG_CTL_2));
  1373. ath_dbg(common, RESET, "** BB mode: BB_gen_controls=0x%08x **\n",
  1374. REG_READ(ah, AR_PHY_GEN_CTRL));
  1375. #define PCT(_field) (common->cc_survey._field * 100 / common->cc_survey.cycles)
  1376. if (common->cc_survey.cycles)
  1377. ath_dbg(common, RESET,
  1378. "** BB busy times: rx_clear=%d%%, rx_frame=%d%%, tx_frame=%d%% **\n",
  1379. PCT(rx_busy), PCT(rx_frame), PCT(tx_frame));
  1380. ath_dbg(common, RESET, "==== BB update: done ====\n\n");
  1381. }
  1382. EXPORT_SYMBOL(ar9003_hw_bb_watchdog_dbg_info);
  1383. void ar9003_hw_disable_phy_restart(struct ath_hw *ah)
  1384. {
  1385. u32 val;
  1386. /* While receiving unsupported rate frame rx state machine
  1387. * gets into a state 0xb and if phy_restart happens in that
  1388. * state, BB would go hang. If RXSM is in 0xb state after
  1389. * first bb panic, ensure to disable the phy_restart.
  1390. */
  1391. if (!((MS(ah->bb_watchdog_last_status,
  1392. AR_PHY_WATCHDOG_RX_OFDM_SM) == 0xb) ||
  1393. ah->bb_hang_rx_ofdm))
  1394. return;
  1395. ah->bb_hang_rx_ofdm = true;
  1396. val = REG_READ(ah, AR_PHY_RESTART);
  1397. val &= ~AR_PHY_RESTART_ENA;
  1398. REG_WRITE(ah, AR_PHY_RESTART, val);
  1399. }
  1400. EXPORT_SYMBOL(ar9003_hw_disable_phy_restart);