sh_eth.c 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543
  1. /*
  2. * SuperH Ethernet device driver
  3. *
  4. * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
  5. * Copyright (C) 2008-2012 Renesas Solutions Corp.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. *
  19. * The full GNU General Public License is included in this distribution in
  20. * the file called "COPYING".
  21. */
  22. #include <linux/init.h>
  23. #include <linux/module.h>
  24. #include <linux/kernel.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/delay.h>
  30. #include <linux/platform_device.h>
  31. #include <linux/mdio-bitbang.h>
  32. #include <linux/netdevice.h>
  33. #include <linux/phy.h>
  34. #include <linux/cache.h>
  35. #include <linux/io.h>
  36. #include <linux/pm_runtime.h>
  37. #include <linux/slab.h>
  38. #include <linux/ethtool.h>
  39. #include <linux/if_vlan.h>
  40. #include <linux/clk.h>
  41. #include <linux/sh_eth.h>
  42. #include "sh_eth.h"
  43. #define SH_ETH_DEF_MSG_ENABLE \
  44. (NETIF_MSG_LINK | \
  45. NETIF_MSG_TIMER | \
  46. NETIF_MSG_RX_ERR| \
  47. NETIF_MSG_TX_ERR)
  48. #if defined(CONFIG_CPU_SUBTYPE_SH7734) || \
  49. defined(CONFIG_CPU_SUBTYPE_SH7763) || \
  50. defined(CONFIG_ARCH_R8A7740)
  51. static void sh_eth_select_mii(struct net_device *ndev)
  52. {
  53. u32 value = 0x0;
  54. struct sh_eth_private *mdp = netdev_priv(ndev);
  55. switch (mdp->phy_interface) {
  56. case PHY_INTERFACE_MODE_GMII:
  57. value = 0x2;
  58. break;
  59. case PHY_INTERFACE_MODE_MII:
  60. value = 0x1;
  61. break;
  62. case PHY_INTERFACE_MODE_RMII:
  63. value = 0x0;
  64. break;
  65. default:
  66. pr_warn("PHY interface mode was not setup. Set to MII.\n");
  67. value = 0x1;
  68. break;
  69. }
  70. sh_eth_write(ndev, value, RMII_MII);
  71. }
  72. #endif
  73. /* There is CPU dependent code */
  74. #if defined(CONFIG_CPU_SUBTYPE_SH7724) || defined(CONFIG_ARCH_R8A7779)
  75. #define SH_ETH_RESET_DEFAULT 1
  76. static void sh_eth_set_duplex(struct net_device *ndev)
  77. {
  78. struct sh_eth_private *mdp = netdev_priv(ndev);
  79. if (mdp->duplex) /* Full */
  80. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  81. else /* Half */
  82. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  83. }
  84. static void sh_eth_set_rate(struct net_device *ndev)
  85. {
  86. struct sh_eth_private *mdp = netdev_priv(ndev);
  87. unsigned int bits = ECMR_RTM;
  88. #if defined(CONFIG_ARCH_R8A7779)
  89. bits |= ECMR_ELB;
  90. #endif
  91. switch (mdp->speed) {
  92. case 10: /* 10BASE */
  93. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~bits, ECMR);
  94. break;
  95. case 100:/* 100BASE */
  96. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | bits, ECMR);
  97. break;
  98. default:
  99. break;
  100. }
  101. }
  102. /* SH7724 */
  103. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  104. .set_duplex = sh_eth_set_duplex,
  105. .set_rate = sh_eth_set_rate,
  106. .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
  107. .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
  108. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
  109. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  110. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  111. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  112. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  113. .apr = 1,
  114. .mpr = 1,
  115. .tpauser = 1,
  116. .hw_swap = 1,
  117. .rpadir = 1,
  118. .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
  119. };
  120. #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
  121. #define SH_ETH_HAS_BOTH_MODULES 1
  122. #define SH_ETH_HAS_TSU 1
  123. static int sh_eth_check_reset(struct net_device *ndev);
  124. static void sh_eth_set_duplex(struct net_device *ndev)
  125. {
  126. struct sh_eth_private *mdp = netdev_priv(ndev);
  127. if (mdp->duplex) /* Full */
  128. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  129. else /* Half */
  130. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  131. }
  132. static void sh_eth_set_rate(struct net_device *ndev)
  133. {
  134. struct sh_eth_private *mdp = netdev_priv(ndev);
  135. switch (mdp->speed) {
  136. case 10: /* 10BASE */
  137. sh_eth_write(ndev, 0, RTRATE);
  138. break;
  139. case 100:/* 100BASE */
  140. sh_eth_write(ndev, 1, RTRATE);
  141. break;
  142. default:
  143. break;
  144. }
  145. }
  146. /* SH7757 */
  147. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  148. .set_duplex = sh_eth_set_duplex,
  149. .set_rate = sh_eth_set_rate,
  150. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  151. .rmcr_value = 0x00000001,
  152. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  153. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  154. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  155. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  156. .apr = 1,
  157. .mpr = 1,
  158. .tpauser = 1,
  159. .hw_swap = 1,
  160. .no_ade = 1,
  161. .rpadir = 1,
  162. .rpadir_value = 2 << 16,
  163. };
  164. #define SH_GIGA_ETH_BASE 0xfee00000
  165. #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
  166. #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
  167. static void sh_eth_chip_reset_giga(struct net_device *ndev)
  168. {
  169. int i;
  170. unsigned long mahr[2], malr[2];
  171. /* save MAHR and MALR */
  172. for (i = 0; i < 2; i++) {
  173. malr[i] = ioread32((void *)GIGA_MALR(i));
  174. mahr[i] = ioread32((void *)GIGA_MAHR(i));
  175. }
  176. /* reset device */
  177. iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
  178. mdelay(1);
  179. /* restore MAHR and MALR */
  180. for (i = 0; i < 2; i++) {
  181. iowrite32(malr[i], (void *)GIGA_MALR(i));
  182. iowrite32(mahr[i], (void *)GIGA_MAHR(i));
  183. }
  184. }
  185. static int sh_eth_is_gether(struct sh_eth_private *mdp);
  186. static int sh_eth_reset(struct net_device *ndev)
  187. {
  188. struct sh_eth_private *mdp = netdev_priv(ndev);
  189. int ret = 0;
  190. if (sh_eth_is_gether(mdp)) {
  191. sh_eth_write(ndev, 0x03, EDSR);
  192. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
  193. EDMR);
  194. ret = sh_eth_check_reset(ndev);
  195. if (ret)
  196. goto out;
  197. /* Table Init */
  198. sh_eth_write(ndev, 0x0, TDLAR);
  199. sh_eth_write(ndev, 0x0, TDFAR);
  200. sh_eth_write(ndev, 0x0, TDFXR);
  201. sh_eth_write(ndev, 0x0, TDFFR);
  202. sh_eth_write(ndev, 0x0, RDLAR);
  203. sh_eth_write(ndev, 0x0, RDFAR);
  204. sh_eth_write(ndev, 0x0, RDFXR);
  205. sh_eth_write(ndev, 0x0, RDFFR);
  206. } else {
  207. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
  208. EDMR);
  209. mdelay(3);
  210. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
  211. EDMR);
  212. }
  213. out:
  214. return ret;
  215. }
  216. static void sh_eth_set_duplex_giga(struct net_device *ndev)
  217. {
  218. struct sh_eth_private *mdp = netdev_priv(ndev);
  219. if (mdp->duplex) /* Full */
  220. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  221. else /* Half */
  222. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  223. }
  224. static void sh_eth_set_rate_giga(struct net_device *ndev)
  225. {
  226. struct sh_eth_private *mdp = netdev_priv(ndev);
  227. switch (mdp->speed) {
  228. case 10: /* 10BASE */
  229. sh_eth_write(ndev, 0x00000000, GECMR);
  230. break;
  231. case 100:/* 100BASE */
  232. sh_eth_write(ndev, 0x00000010, GECMR);
  233. break;
  234. case 1000: /* 1000BASE */
  235. sh_eth_write(ndev, 0x00000020, GECMR);
  236. break;
  237. default:
  238. break;
  239. }
  240. }
  241. /* SH7757(GETHERC) */
  242. static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
  243. .chip_reset = sh_eth_chip_reset_giga,
  244. .set_duplex = sh_eth_set_duplex_giga,
  245. .set_rate = sh_eth_set_rate_giga,
  246. .ecsr_value = ECSR_ICD | ECSR_MPD,
  247. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  248. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  249. .tx_check = EESR_TC1 | EESR_FTC,
  250. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  251. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  252. EESR_ECI,
  253. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  254. EESR_TFE,
  255. .fdr_value = 0x0000072f,
  256. .rmcr_value = 0x00000001,
  257. .apr = 1,
  258. .mpr = 1,
  259. .tpauser = 1,
  260. .bculr = 1,
  261. .hw_swap = 1,
  262. .rpadir = 1,
  263. .rpadir_value = 2 << 16,
  264. .no_trimd = 1,
  265. .no_ade = 1,
  266. .tsu = 1,
  267. };
  268. static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
  269. {
  270. if (sh_eth_is_gether(mdp))
  271. return &sh_eth_my_cpu_data_giga;
  272. else
  273. return &sh_eth_my_cpu_data;
  274. }
  275. #elif defined(CONFIG_CPU_SUBTYPE_SH7734) || defined(CONFIG_CPU_SUBTYPE_SH7763)
  276. #define SH_ETH_HAS_TSU 1
  277. static int sh_eth_check_reset(struct net_device *ndev);
  278. static void sh_eth_reset_hw_crc(struct net_device *ndev);
  279. static void sh_eth_chip_reset(struct net_device *ndev)
  280. {
  281. struct sh_eth_private *mdp = netdev_priv(ndev);
  282. /* reset device */
  283. sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
  284. mdelay(1);
  285. }
  286. static void sh_eth_set_duplex(struct net_device *ndev)
  287. {
  288. struct sh_eth_private *mdp = netdev_priv(ndev);
  289. if (mdp->duplex) /* Full */
  290. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  291. else /* Half */
  292. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  293. }
  294. static void sh_eth_set_rate(struct net_device *ndev)
  295. {
  296. struct sh_eth_private *mdp = netdev_priv(ndev);
  297. switch (mdp->speed) {
  298. case 10: /* 10BASE */
  299. sh_eth_write(ndev, GECMR_10, GECMR);
  300. break;
  301. case 100:/* 100BASE */
  302. sh_eth_write(ndev, GECMR_100, GECMR);
  303. break;
  304. case 1000: /* 1000BASE */
  305. sh_eth_write(ndev, GECMR_1000, GECMR);
  306. break;
  307. default:
  308. break;
  309. }
  310. }
  311. /* sh7763 */
  312. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  313. .chip_reset = sh_eth_chip_reset,
  314. .set_duplex = sh_eth_set_duplex,
  315. .set_rate = sh_eth_set_rate,
  316. .ecsr_value = ECSR_ICD | ECSR_MPD,
  317. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  318. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  319. .tx_check = EESR_TC1 | EESR_FTC,
  320. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  321. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  322. EESR_ECI,
  323. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  324. EESR_TFE,
  325. .apr = 1,
  326. .mpr = 1,
  327. .tpauser = 1,
  328. .bculr = 1,
  329. .hw_swap = 1,
  330. .no_trimd = 1,
  331. .no_ade = 1,
  332. .tsu = 1,
  333. #if defined(CONFIG_CPU_SUBTYPE_SH7734)
  334. .hw_crc = 1,
  335. .select_mii = 1,
  336. #endif
  337. };
  338. static int sh_eth_reset(struct net_device *ndev)
  339. {
  340. int ret = 0;
  341. sh_eth_write(ndev, EDSR_ENALL, EDSR);
  342. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
  343. ret = sh_eth_check_reset(ndev);
  344. if (ret)
  345. goto out;
  346. /* Table Init */
  347. sh_eth_write(ndev, 0x0, TDLAR);
  348. sh_eth_write(ndev, 0x0, TDFAR);
  349. sh_eth_write(ndev, 0x0, TDFXR);
  350. sh_eth_write(ndev, 0x0, TDFFR);
  351. sh_eth_write(ndev, 0x0, RDLAR);
  352. sh_eth_write(ndev, 0x0, RDFAR);
  353. sh_eth_write(ndev, 0x0, RDFXR);
  354. sh_eth_write(ndev, 0x0, RDFFR);
  355. /* Reset HW CRC register */
  356. sh_eth_reset_hw_crc(ndev);
  357. /* Select MII mode */
  358. if (sh_eth_my_cpu_data.select_mii)
  359. sh_eth_select_mii(ndev);
  360. out:
  361. return ret;
  362. }
  363. static void sh_eth_reset_hw_crc(struct net_device *ndev)
  364. {
  365. if (sh_eth_my_cpu_data.hw_crc)
  366. sh_eth_write(ndev, 0x0, CSMR);
  367. }
  368. #elif defined(CONFIG_ARCH_R8A7740)
  369. #define SH_ETH_HAS_TSU 1
  370. static int sh_eth_check_reset(struct net_device *ndev);
  371. static void sh_eth_chip_reset(struct net_device *ndev)
  372. {
  373. struct sh_eth_private *mdp = netdev_priv(ndev);
  374. /* reset device */
  375. sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
  376. mdelay(1);
  377. sh_eth_select_mii(ndev);
  378. }
  379. static int sh_eth_reset(struct net_device *ndev)
  380. {
  381. int ret = 0;
  382. sh_eth_write(ndev, EDSR_ENALL, EDSR);
  383. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
  384. ret = sh_eth_check_reset(ndev);
  385. if (ret)
  386. goto out;
  387. /* Table Init */
  388. sh_eth_write(ndev, 0x0, TDLAR);
  389. sh_eth_write(ndev, 0x0, TDFAR);
  390. sh_eth_write(ndev, 0x0, TDFXR);
  391. sh_eth_write(ndev, 0x0, TDFFR);
  392. sh_eth_write(ndev, 0x0, RDLAR);
  393. sh_eth_write(ndev, 0x0, RDFAR);
  394. sh_eth_write(ndev, 0x0, RDFXR);
  395. sh_eth_write(ndev, 0x0, RDFFR);
  396. out:
  397. return ret;
  398. }
  399. static void sh_eth_set_duplex(struct net_device *ndev)
  400. {
  401. struct sh_eth_private *mdp = netdev_priv(ndev);
  402. if (mdp->duplex) /* Full */
  403. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  404. else /* Half */
  405. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  406. }
  407. static void sh_eth_set_rate(struct net_device *ndev)
  408. {
  409. struct sh_eth_private *mdp = netdev_priv(ndev);
  410. switch (mdp->speed) {
  411. case 10: /* 10BASE */
  412. sh_eth_write(ndev, GECMR_10, GECMR);
  413. break;
  414. case 100:/* 100BASE */
  415. sh_eth_write(ndev, GECMR_100, GECMR);
  416. break;
  417. case 1000: /* 1000BASE */
  418. sh_eth_write(ndev, GECMR_1000, GECMR);
  419. break;
  420. default:
  421. break;
  422. }
  423. }
  424. /* R8A7740 */
  425. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  426. .chip_reset = sh_eth_chip_reset,
  427. .set_duplex = sh_eth_set_duplex,
  428. .set_rate = sh_eth_set_rate,
  429. .ecsr_value = ECSR_ICD | ECSR_MPD,
  430. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  431. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  432. .tx_check = EESR_TC1 | EESR_FTC,
  433. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  434. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  435. EESR_ECI,
  436. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  437. EESR_TFE,
  438. .apr = 1,
  439. .mpr = 1,
  440. .tpauser = 1,
  441. .bculr = 1,
  442. .hw_swap = 1,
  443. .no_trimd = 1,
  444. .no_ade = 1,
  445. .tsu = 1,
  446. .select_mii = 1,
  447. };
  448. #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
  449. #define SH_ETH_RESET_DEFAULT 1
  450. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  451. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  452. .apr = 1,
  453. .mpr = 1,
  454. .tpauser = 1,
  455. .hw_swap = 1,
  456. };
  457. #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
  458. #define SH_ETH_RESET_DEFAULT 1
  459. #define SH_ETH_HAS_TSU 1
  460. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  461. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  462. .tsu = 1,
  463. };
  464. #endif
  465. static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
  466. {
  467. if (!cd->ecsr_value)
  468. cd->ecsr_value = DEFAULT_ECSR_INIT;
  469. if (!cd->ecsipr_value)
  470. cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
  471. if (!cd->fcftr_value)
  472. cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
  473. DEFAULT_FIFO_F_D_RFD;
  474. if (!cd->fdr_value)
  475. cd->fdr_value = DEFAULT_FDR_INIT;
  476. if (!cd->rmcr_value)
  477. cd->rmcr_value = DEFAULT_RMCR_VALUE;
  478. if (!cd->tx_check)
  479. cd->tx_check = DEFAULT_TX_CHECK;
  480. if (!cd->eesr_err_check)
  481. cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
  482. if (!cd->tx_error_check)
  483. cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
  484. }
  485. #if defined(SH_ETH_RESET_DEFAULT)
  486. /* Chip Reset */
  487. static int sh_eth_reset(struct net_device *ndev)
  488. {
  489. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
  490. mdelay(3);
  491. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
  492. return 0;
  493. }
  494. #else
  495. static int sh_eth_check_reset(struct net_device *ndev)
  496. {
  497. int ret = 0;
  498. int cnt = 100;
  499. while (cnt > 0) {
  500. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  501. break;
  502. mdelay(1);
  503. cnt--;
  504. }
  505. if (cnt < 0) {
  506. printk(KERN_ERR "Device reset fail\n");
  507. ret = -ETIMEDOUT;
  508. }
  509. return ret;
  510. }
  511. #endif
  512. #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
  513. static void sh_eth_set_receive_align(struct sk_buff *skb)
  514. {
  515. int reserve;
  516. reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
  517. if (reserve)
  518. skb_reserve(skb, reserve);
  519. }
  520. #else
  521. static void sh_eth_set_receive_align(struct sk_buff *skb)
  522. {
  523. skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
  524. }
  525. #endif
  526. /* CPU <-> EDMAC endian convert */
  527. static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
  528. {
  529. switch (mdp->edmac_endian) {
  530. case EDMAC_LITTLE_ENDIAN:
  531. return cpu_to_le32(x);
  532. case EDMAC_BIG_ENDIAN:
  533. return cpu_to_be32(x);
  534. }
  535. return x;
  536. }
  537. static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
  538. {
  539. switch (mdp->edmac_endian) {
  540. case EDMAC_LITTLE_ENDIAN:
  541. return le32_to_cpu(x);
  542. case EDMAC_BIG_ENDIAN:
  543. return be32_to_cpu(x);
  544. }
  545. return x;
  546. }
  547. /*
  548. * Program the hardware MAC address from dev->dev_addr.
  549. */
  550. static void update_mac_address(struct net_device *ndev)
  551. {
  552. sh_eth_write(ndev,
  553. (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  554. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
  555. sh_eth_write(ndev,
  556. (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
  557. }
  558. /*
  559. * Get MAC address from SuperH MAC address register
  560. *
  561. * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
  562. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
  563. * When you want use this device, you must set MAC address in bootloader.
  564. *
  565. */
  566. static void read_mac_address(struct net_device *ndev, unsigned char *mac)
  567. {
  568. if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
  569. memcpy(ndev->dev_addr, mac, 6);
  570. } else {
  571. ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
  572. ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
  573. ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
  574. ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
  575. ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
  576. ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
  577. }
  578. }
  579. static int sh_eth_is_gether(struct sh_eth_private *mdp)
  580. {
  581. if (mdp->reg_offset == sh_eth_offset_gigabit)
  582. return 1;
  583. else
  584. return 0;
  585. }
  586. static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
  587. {
  588. if (sh_eth_is_gether(mdp))
  589. return EDTRR_TRNS_GETHER;
  590. else
  591. return EDTRR_TRNS_ETHER;
  592. }
  593. struct bb_info {
  594. void (*set_gate)(void *addr);
  595. struct mdiobb_ctrl ctrl;
  596. void *addr;
  597. u32 mmd_msk;/* MMD */
  598. u32 mdo_msk;
  599. u32 mdi_msk;
  600. u32 mdc_msk;
  601. };
  602. /* PHY bit set */
  603. static void bb_set(void *addr, u32 msk)
  604. {
  605. iowrite32(ioread32(addr) | msk, addr);
  606. }
  607. /* PHY bit clear */
  608. static void bb_clr(void *addr, u32 msk)
  609. {
  610. iowrite32((ioread32(addr) & ~msk), addr);
  611. }
  612. /* PHY bit read */
  613. static int bb_read(void *addr, u32 msk)
  614. {
  615. return (ioread32(addr) & msk) != 0;
  616. }
  617. /* Data I/O pin control */
  618. static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  619. {
  620. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  621. if (bitbang->set_gate)
  622. bitbang->set_gate(bitbang->addr);
  623. if (bit)
  624. bb_set(bitbang->addr, bitbang->mmd_msk);
  625. else
  626. bb_clr(bitbang->addr, bitbang->mmd_msk);
  627. }
  628. /* Set bit data*/
  629. static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
  630. {
  631. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  632. if (bitbang->set_gate)
  633. bitbang->set_gate(bitbang->addr);
  634. if (bit)
  635. bb_set(bitbang->addr, bitbang->mdo_msk);
  636. else
  637. bb_clr(bitbang->addr, bitbang->mdo_msk);
  638. }
  639. /* Get bit data*/
  640. static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
  641. {
  642. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  643. if (bitbang->set_gate)
  644. bitbang->set_gate(bitbang->addr);
  645. return bb_read(bitbang->addr, bitbang->mdi_msk);
  646. }
  647. /* MDC pin control */
  648. static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  649. {
  650. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  651. if (bitbang->set_gate)
  652. bitbang->set_gate(bitbang->addr);
  653. if (bit)
  654. bb_set(bitbang->addr, bitbang->mdc_msk);
  655. else
  656. bb_clr(bitbang->addr, bitbang->mdc_msk);
  657. }
  658. /* mdio bus control struct */
  659. static struct mdiobb_ops bb_ops = {
  660. .owner = THIS_MODULE,
  661. .set_mdc = sh_mdc_ctrl,
  662. .set_mdio_dir = sh_mmd_ctrl,
  663. .set_mdio_data = sh_set_mdio,
  664. .get_mdio_data = sh_get_mdio,
  665. };
  666. /* free skb and descriptor buffer */
  667. static void sh_eth_ring_free(struct net_device *ndev)
  668. {
  669. struct sh_eth_private *mdp = netdev_priv(ndev);
  670. int i;
  671. /* Free Rx skb ringbuffer */
  672. if (mdp->rx_skbuff) {
  673. for (i = 0; i < mdp->num_rx_ring; i++) {
  674. if (mdp->rx_skbuff[i])
  675. dev_kfree_skb(mdp->rx_skbuff[i]);
  676. }
  677. }
  678. kfree(mdp->rx_skbuff);
  679. mdp->rx_skbuff = NULL;
  680. /* Free Tx skb ringbuffer */
  681. if (mdp->tx_skbuff) {
  682. for (i = 0; i < mdp->num_tx_ring; i++) {
  683. if (mdp->tx_skbuff[i])
  684. dev_kfree_skb(mdp->tx_skbuff[i]);
  685. }
  686. }
  687. kfree(mdp->tx_skbuff);
  688. mdp->tx_skbuff = NULL;
  689. }
  690. /* format skb and descriptor buffer */
  691. static void sh_eth_ring_format(struct net_device *ndev)
  692. {
  693. struct sh_eth_private *mdp = netdev_priv(ndev);
  694. int i;
  695. struct sk_buff *skb;
  696. struct sh_eth_rxdesc *rxdesc = NULL;
  697. struct sh_eth_txdesc *txdesc = NULL;
  698. int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
  699. int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
  700. mdp->cur_rx = mdp->cur_tx = 0;
  701. mdp->dirty_rx = mdp->dirty_tx = 0;
  702. memset(mdp->rx_ring, 0, rx_ringsize);
  703. /* build Rx ring buffer */
  704. for (i = 0; i < mdp->num_rx_ring; i++) {
  705. /* skb */
  706. mdp->rx_skbuff[i] = NULL;
  707. skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
  708. mdp->rx_skbuff[i] = skb;
  709. if (skb == NULL)
  710. break;
  711. dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
  712. DMA_FROM_DEVICE);
  713. sh_eth_set_receive_align(skb);
  714. /* RX descriptor */
  715. rxdesc = &mdp->rx_ring[i];
  716. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  717. rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  718. /* The size of the buffer is 16 byte boundary. */
  719. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  720. /* Rx descriptor address set */
  721. if (i == 0) {
  722. sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
  723. if (sh_eth_is_gether(mdp))
  724. sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
  725. }
  726. }
  727. mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
  728. /* Mark the last entry as wrapping the ring. */
  729. rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
  730. memset(mdp->tx_ring, 0, tx_ringsize);
  731. /* build Tx ring buffer */
  732. for (i = 0; i < mdp->num_tx_ring; i++) {
  733. mdp->tx_skbuff[i] = NULL;
  734. txdesc = &mdp->tx_ring[i];
  735. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  736. txdesc->buffer_length = 0;
  737. if (i == 0) {
  738. /* Tx descriptor address set */
  739. sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
  740. if (sh_eth_is_gether(mdp))
  741. sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
  742. }
  743. }
  744. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  745. }
  746. /* Get skb and descriptor buffer */
  747. static int sh_eth_ring_init(struct net_device *ndev)
  748. {
  749. struct sh_eth_private *mdp = netdev_priv(ndev);
  750. int rx_ringsize, tx_ringsize, ret = 0;
  751. /*
  752. * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
  753. * card needs room to do 8 byte alignment, +2 so we can reserve
  754. * the first 2 bytes, and +16 gets room for the status word from the
  755. * card.
  756. */
  757. mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
  758. (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
  759. if (mdp->cd->rpadir)
  760. mdp->rx_buf_sz += NET_IP_ALIGN;
  761. /* Allocate RX and TX skb rings */
  762. mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * mdp->num_rx_ring,
  763. GFP_KERNEL);
  764. if (!mdp->rx_skbuff) {
  765. dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
  766. ret = -ENOMEM;
  767. return ret;
  768. }
  769. mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * mdp->num_tx_ring,
  770. GFP_KERNEL);
  771. if (!mdp->tx_skbuff) {
  772. dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
  773. ret = -ENOMEM;
  774. goto skb_ring_free;
  775. }
  776. /* Allocate all Rx descriptors. */
  777. rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
  778. mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
  779. GFP_KERNEL);
  780. if (!mdp->rx_ring) {
  781. dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
  782. rx_ringsize);
  783. ret = -ENOMEM;
  784. goto desc_ring_free;
  785. }
  786. mdp->dirty_rx = 0;
  787. /* Allocate all Tx descriptors. */
  788. tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
  789. mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
  790. GFP_KERNEL);
  791. if (!mdp->tx_ring) {
  792. dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
  793. tx_ringsize);
  794. ret = -ENOMEM;
  795. goto desc_ring_free;
  796. }
  797. return ret;
  798. desc_ring_free:
  799. /* free DMA buffer */
  800. dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  801. skb_ring_free:
  802. /* Free Rx and Tx skb ring buffer */
  803. sh_eth_ring_free(ndev);
  804. mdp->tx_ring = NULL;
  805. mdp->rx_ring = NULL;
  806. return ret;
  807. }
  808. static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
  809. {
  810. int ringsize;
  811. if (mdp->rx_ring) {
  812. ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
  813. dma_free_coherent(NULL, ringsize, mdp->rx_ring,
  814. mdp->rx_desc_dma);
  815. mdp->rx_ring = NULL;
  816. }
  817. if (mdp->tx_ring) {
  818. ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
  819. dma_free_coherent(NULL, ringsize, mdp->tx_ring,
  820. mdp->tx_desc_dma);
  821. mdp->tx_ring = NULL;
  822. }
  823. }
  824. static int sh_eth_dev_init(struct net_device *ndev, bool start)
  825. {
  826. int ret = 0;
  827. struct sh_eth_private *mdp = netdev_priv(ndev);
  828. u32 val;
  829. /* Soft Reset */
  830. ret = sh_eth_reset(ndev);
  831. if (ret)
  832. goto out;
  833. /* Descriptor format */
  834. sh_eth_ring_format(ndev);
  835. if (mdp->cd->rpadir)
  836. sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
  837. /* all sh_eth int mask */
  838. sh_eth_write(ndev, 0, EESIPR);
  839. #if defined(__LITTLE_ENDIAN)
  840. if (mdp->cd->hw_swap)
  841. sh_eth_write(ndev, EDMR_EL, EDMR);
  842. else
  843. #endif
  844. sh_eth_write(ndev, 0, EDMR);
  845. /* FIFO size set */
  846. sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
  847. sh_eth_write(ndev, 0, TFTR);
  848. /* Frame recv control */
  849. sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
  850. sh_eth_write(ndev, DESC_I_RINT8 | DESC_I_RINT5 | DESC_I_TINT2, TRSCER);
  851. if (mdp->cd->bculr)
  852. sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
  853. sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
  854. if (!mdp->cd->no_trimd)
  855. sh_eth_write(ndev, 0, TRIMD);
  856. /* Recv frame limit set register */
  857. sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
  858. RFLR);
  859. sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
  860. if (start)
  861. sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
  862. /* PAUSE Prohibition */
  863. val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
  864. ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
  865. sh_eth_write(ndev, val, ECMR);
  866. if (mdp->cd->set_rate)
  867. mdp->cd->set_rate(ndev);
  868. /* E-MAC Status Register clear */
  869. sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
  870. /* E-MAC Interrupt Enable register */
  871. if (start)
  872. sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
  873. /* Set MAC address */
  874. update_mac_address(ndev);
  875. /* mask reset */
  876. if (mdp->cd->apr)
  877. sh_eth_write(ndev, APR_AP, APR);
  878. if (mdp->cd->mpr)
  879. sh_eth_write(ndev, MPR_MP, MPR);
  880. if (mdp->cd->tpauser)
  881. sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
  882. if (start) {
  883. /* Setting the Rx mode will start the Rx process. */
  884. sh_eth_write(ndev, EDRRR_R, EDRRR);
  885. netif_start_queue(ndev);
  886. }
  887. out:
  888. return ret;
  889. }
  890. /* free Tx skb function */
  891. static int sh_eth_txfree(struct net_device *ndev)
  892. {
  893. struct sh_eth_private *mdp = netdev_priv(ndev);
  894. struct sh_eth_txdesc *txdesc;
  895. int freeNum = 0;
  896. int entry = 0;
  897. for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
  898. entry = mdp->dirty_tx % mdp->num_tx_ring;
  899. txdesc = &mdp->tx_ring[entry];
  900. if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
  901. break;
  902. /* Free the original skb. */
  903. if (mdp->tx_skbuff[entry]) {
  904. dma_unmap_single(&ndev->dev, txdesc->addr,
  905. txdesc->buffer_length, DMA_TO_DEVICE);
  906. dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
  907. mdp->tx_skbuff[entry] = NULL;
  908. freeNum++;
  909. }
  910. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  911. if (entry >= mdp->num_tx_ring - 1)
  912. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  913. ndev->stats.tx_packets++;
  914. ndev->stats.tx_bytes += txdesc->buffer_length;
  915. }
  916. return freeNum;
  917. }
  918. /* Packet receive function */
  919. static int sh_eth_rx(struct net_device *ndev, u32 intr_status)
  920. {
  921. struct sh_eth_private *mdp = netdev_priv(ndev);
  922. struct sh_eth_rxdesc *rxdesc;
  923. int entry = mdp->cur_rx % mdp->num_rx_ring;
  924. int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
  925. struct sk_buff *skb;
  926. u16 pkt_len = 0;
  927. u32 desc_status;
  928. rxdesc = &mdp->rx_ring[entry];
  929. while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
  930. desc_status = edmac_to_cpu(mdp, rxdesc->status);
  931. pkt_len = rxdesc->frame_length;
  932. #if defined(CONFIG_ARCH_R8A7740)
  933. desc_status >>= 16;
  934. #endif
  935. if (--boguscnt < 0)
  936. break;
  937. if (!(desc_status & RDFEND))
  938. ndev->stats.rx_length_errors++;
  939. if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
  940. RD_RFS5 | RD_RFS6 | RD_RFS10)) {
  941. ndev->stats.rx_errors++;
  942. if (desc_status & RD_RFS1)
  943. ndev->stats.rx_crc_errors++;
  944. if (desc_status & RD_RFS2)
  945. ndev->stats.rx_frame_errors++;
  946. if (desc_status & RD_RFS3)
  947. ndev->stats.rx_length_errors++;
  948. if (desc_status & RD_RFS4)
  949. ndev->stats.rx_length_errors++;
  950. if (desc_status & RD_RFS6)
  951. ndev->stats.rx_missed_errors++;
  952. if (desc_status & RD_RFS10)
  953. ndev->stats.rx_over_errors++;
  954. } else {
  955. if (!mdp->cd->hw_swap)
  956. sh_eth_soft_swap(
  957. phys_to_virt(ALIGN(rxdesc->addr, 4)),
  958. pkt_len + 2);
  959. skb = mdp->rx_skbuff[entry];
  960. mdp->rx_skbuff[entry] = NULL;
  961. if (mdp->cd->rpadir)
  962. skb_reserve(skb, NET_IP_ALIGN);
  963. skb_put(skb, pkt_len);
  964. skb->protocol = eth_type_trans(skb, ndev);
  965. netif_rx(skb);
  966. ndev->stats.rx_packets++;
  967. ndev->stats.rx_bytes += pkt_len;
  968. }
  969. rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
  970. entry = (++mdp->cur_rx) % mdp->num_rx_ring;
  971. rxdesc = &mdp->rx_ring[entry];
  972. }
  973. /* Refill the Rx ring buffers. */
  974. for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
  975. entry = mdp->dirty_rx % mdp->num_rx_ring;
  976. rxdesc = &mdp->rx_ring[entry];
  977. /* The size of the buffer is 16 byte boundary. */
  978. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  979. if (mdp->rx_skbuff[entry] == NULL) {
  980. skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
  981. mdp->rx_skbuff[entry] = skb;
  982. if (skb == NULL)
  983. break; /* Better luck next round. */
  984. dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
  985. DMA_FROM_DEVICE);
  986. sh_eth_set_receive_align(skb);
  987. skb_checksum_none_assert(skb);
  988. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  989. }
  990. if (entry >= mdp->num_rx_ring - 1)
  991. rxdesc->status |=
  992. cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
  993. else
  994. rxdesc->status |=
  995. cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  996. }
  997. /* Restart Rx engine if stopped. */
  998. /* If we don't need to check status, don't. -KDU */
  999. if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
  1000. /* fix the values for the next receiving if RDE is set */
  1001. if (intr_status & EESR_RDE)
  1002. mdp->cur_rx = mdp->dirty_rx =
  1003. (sh_eth_read(ndev, RDFAR) -
  1004. sh_eth_read(ndev, RDLAR)) >> 4;
  1005. sh_eth_write(ndev, EDRRR_R, EDRRR);
  1006. }
  1007. return 0;
  1008. }
  1009. static void sh_eth_rcv_snd_disable(struct net_device *ndev)
  1010. {
  1011. /* disable tx and rx */
  1012. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
  1013. ~(ECMR_RE | ECMR_TE), ECMR);
  1014. }
  1015. static void sh_eth_rcv_snd_enable(struct net_device *ndev)
  1016. {
  1017. /* enable tx and rx */
  1018. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
  1019. (ECMR_RE | ECMR_TE), ECMR);
  1020. }
  1021. /* error control function */
  1022. static void sh_eth_error(struct net_device *ndev, int intr_status)
  1023. {
  1024. struct sh_eth_private *mdp = netdev_priv(ndev);
  1025. u32 felic_stat;
  1026. u32 link_stat;
  1027. u32 mask;
  1028. if (intr_status & EESR_ECI) {
  1029. felic_stat = sh_eth_read(ndev, ECSR);
  1030. sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
  1031. if (felic_stat & ECSR_ICD)
  1032. ndev->stats.tx_carrier_errors++;
  1033. if (felic_stat & ECSR_LCHNG) {
  1034. /* Link Changed */
  1035. if (mdp->cd->no_psr || mdp->no_ether_link) {
  1036. if (mdp->link == PHY_DOWN)
  1037. link_stat = 0;
  1038. else
  1039. link_stat = PHY_ST_LINK;
  1040. } else {
  1041. link_stat = (sh_eth_read(ndev, PSR));
  1042. if (mdp->ether_link_active_low)
  1043. link_stat = ~link_stat;
  1044. }
  1045. if (!(link_stat & PHY_ST_LINK))
  1046. sh_eth_rcv_snd_disable(ndev);
  1047. else {
  1048. /* Link Up */
  1049. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
  1050. ~DMAC_M_ECI, EESIPR);
  1051. /*clear int */
  1052. sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
  1053. ECSR);
  1054. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
  1055. DMAC_M_ECI, EESIPR);
  1056. /* enable tx and rx */
  1057. sh_eth_rcv_snd_enable(ndev);
  1058. }
  1059. }
  1060. }
  1061. if (intr_status & EESR_TWB) {
  1062. /* Write buck end. unused write back interrupt */
  1063. if (intr_status & EESR_TABT) /* Transmit Abort int */
  1064. ndev->stats.tx_aborted_errors++;
  1065. if (netif_msg_tx_err(mdp))
  1066. dev_err(&ndev->dev, "Transmit Abort\n");
  1067. }
  1068. if (intr_status & EESR_RABT) {
  1069. /* Receive Abort int */
  1070. if (intr_status & EESR_RFRMER) {
  1071. /* Receive Frame Overflow int */
  1072. ndev->stats.rx_frame_errors++;
  1073. if (netif_msg_rx_err(mdp))
  1074. dev_err(&ndev->dev, "Receive Abort\n");
  1075. }
  1076. }
  1077. if (intr_status & EESR_TDE) {
  1078. /* Transmit Descriptor Empty int */
  1079. ndev->stats.tx_fifo_errors++;
  1080. if (netif_msg_tx_err(mdp))
  1081. dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
  1082. }
  1083. if (intr_status & EESR_TFE) {
  1084. /* FIFO under flow */
  1085. ndev->stats.tx_fifo_errors++;
  1086. if (netif_msg_tx_err(mdp))
  1087. dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
  1088. }
  1089. if (intr_status & EESR_RDE) {
  1090. /* Receive Descriptor Empty int */
  1091. ndev->stats.rx_over_errors++;
  1092. if (netif_msg_rx_err(mdp))
  1093. dev_err(&ndev->dev, "Receive Descriptor Empty\n");
  1094. }
  1095. if (intr_status & EESR_RFE) {
  1096. /* Receive FIFO Overflow int */
  1097. ndev->stats.rx_fifo_errors++;
  1098. if (netif_msg_rx_err(mdp))
  1099. dev_err(&ndev->dev, "Receive FIFO Overflow\n");
  1100. }
  1101. if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
  1102. /* Address Error */
  1103. ndev->stats.tx_fifo_errors++;
  1104. if (netif_msg_tx_err(mdp))
  1105. dev_err(&ndev->dev, "Address Error\n");
  1106. }
  1107. mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
  1108. if (mdp->cd->no_ade)
  1109. mask &= ~EESR_ADE;
  1110. if (intr_status & mask) {
  1111. /* Tx error */
  1112. u32 edtrr = sh_eth_read(ndev, EDTRR);
  1113. /* dmesg */
  1114. dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
  1115. intr_status, mdp->cur_tx);
  1116. dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
  1117. mdp->dirty_tx, (u32) ndev->state, edtrr);
  1118. /* dirty buffer free */
  1119. sh_eth_txfree(ndev);
  1120. /* SH7712 BUG */
  1121. if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
  1122. /* tx dma start */
  1123. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  1124. }
  1125. /* wakeup */
  1126. netif_wake_queue(ndev);
  1127. }
  1128. }
  1129. static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
  1130. {
  1131. struct net_device *ndev = netdev;
  1132. struct sh_eth_private *mdp = netdev_priv(ndev);
  1133. struct sh_eth_cpu_data *cd = mdp->cd;
  1134. irqreturn_t ret = IRQ_NONE;
  1135. u32 intr_status = 0;
  1136. spin_lock(&mdp->lock);
  1137. /* Get interrpt stat */
  1138. intr_status = sh_eth_read(ndev, EESR);
  1139. /* Clear interrupt */
  1140. if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
  1141. EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
  1142. cd->tx_check | cd->eesr_err_check)) {
  1143. sh_eth_write(ndev, intr_status, EESR);
  1144. ret = IRQ_HANDLED;
  1145. } else
  1146. goto other_irq;
  1147. if (intr_status & (EESR_FRC | /* Frame recv*/
  1148. EESR_RMAF | /* Multi cast address recv*/
  1149. EESR_RRF | /* Bit frame recv */
  1150. EESR_RTLF | /* Long frame recv*/
  1151. EESR_RTSF | /* short frame recv */
  1152. EESR_PRE | /* PHY-LSI recv error */
  1153. EESR_CERF)){ /* recv frame CRC error */
  1154. sh_eth_rx(ndev, intr_status);
  1155. }
  1156. /* Tx Check */
  1157. if (intr_status & cd->tx_check) {
  1158. sh_eth_txfree(ndev);
  1159. netif_wake_queue(ndev);
  1160. }
  1161. if (intr_status & cd->eesr_err_check)
  1162. sh_eth_error(ndev, intr_status);
  1163. other_irq:
  1164. spin_unlock(&mdp->lock);
  1165. return ret;
  1166. }
  1167. /* PHY state control function */
  1168. static void sh_eth_adjust_link(struct net_device *ndev)
  1169. {
  1170. struct sh_eth_private *mdp = netdev_priv(ndev);
  1171. struct phy_device *phydev = mdp->phydev;
  1172. int new_state = 0;
  1173. if (phydev->link != PHY_DOWN) {
  1174. if (phydev->duplex != mdp->duplex) {
  1175. new_state = 1;
  1176. mdp->duplex = phydev->duplex;
  1177. if (mdp->cd->set_duplex)
  1178. mdp->cd->set_duplex(ndev);
  1179. }
  1180. if (phydev->speed != mdp->speed) {
  1181. new_state = 1;
  1182. mdp->speed = phydev->speed;
  1183. if (mdp->cd->set_rate)
  1184. mdp->cd->set_rate(ndev);
  1185. }
  1186. if (mdp->link == PHY_DOWN) {
  1187. sh_eth_write(ndev,
  1188. (sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
  1189. new_state = 1;
  1190. mdp->link = phydev->link;
  1191. }
  1192. } else if (mdp->link) {
  1193. new_state = 1;
  1194. mdp->link = PHY_DOWN;
  1195. mdp->speed = 0;
  1196. mdp->duplex = -1;
  1197. }
  1198. if (new_state && netif_msg_link(mdp))
  1199. phy_print_status(phydev);
  1200. }
  1201. /* PHY init function */
  1202. static int sh_eth_phy_init(struct net_device *ndev)
  1203. {
  1204. struct sh_eth_private *mdp = netdev_priv(ndev);
  1205. char phy_id[MII_BUS_ID_SIZE + 3];
  1206. struct phy_device *phydev = NULL;
  1207. snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
  1208. mdp->mii_bus->id , mdp->phy_id);
  1209. mdp->link = PHY_DOWN;
  1210. mdp->speed = 0;
  1211. mdp->duplex = -1;
  1212. /* Try connect to PHY */
  1213. phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
  1214. 0, mdp->phy_interface);
  1215. if (IS_ERR(phydev)) {
  1216. dev_err(&ndev->dev, "phy_connect failed\n");
  1217. return PTR_ERR(phydev);
  1218. }
  1219. dev_info(&ndev->dev, "attached phy %i to driver %s\n",
  1220. phydev->addr, phydev->drv->name);
  1221. mdp->phydev = phydev;
  1222. return 0;
  1223. }
  1224. /* PHY control start function */
  1225. static int sh_eth_phy_start(struct net_device *ndev)
  1226. {
  1227. struct sh_eth_private *mdp = netdev_priv(ndev);
  1228. int ret;
  1229. ret = sh_eth_phy_init(ndev);
  1230. if (ret)
  1231. return ret;
  1232. /* reset phy - this also wakes it from PDOWN */
  1233. phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
  1234. phy_start(mdp->phydev);
  1235. return 0;
  1236. }
  1237. static int sh_eth_get_settings(struct net_device *ndev,
  1238. struct ethtool_cmd *ecmd)
  1239. {
  1240. struct sh_eth_private *mdp = netdev_priv(ndev);
  1241. unsigned long flags;
  1242. int ret;
  1243. spin_lock_irqsave(&mdp->lock, flags);
  1244. ret = phy_ethtool_gset(mdp->phydev, ecmd);
  1245. spin_unlock_irqrestore(&mdp->lock, flags);
  1246. return ret;
  1247. }
  1248. static int sh_eth_set_settings(struct net_device *ndev,
  1249. struct ethtool_cmd *ecmd)
  1250. {
  1251. struct sh_eth_private *mdp = netdev_priv(ndev);
  1252. unsigned long flags;
  1253. int ret;
  1254. spin_lock_irqsave(&mdp->lock, flags);
  1255. /* disable tx and rx */
  1256. sh_eth_rcv_snd_disable(ndev);
  1257. ret = phy_ethtool_sset(mdp->phydev, ecmd);
  1258. if (ret)
  1259. goto error_exit;
  1260. if (ecmd->duplex == DUPLEX_FULL)
  1261. mdp->duplex = 1;
  1262. else
  1263. mdp->duplex = 0;
  1264. if (mdp->cd->set_duplex)
  1265. mdp->cd->set_duplex(ndev);
  1266. error_exit:
  1267. mdelay(1);
  1268. /* enable tx and rx */
  1269. sh_eth_rcv_snd_enable(ndev);
  1270. spin_unlock_irqrestore(&mdp->lock, flags);
  1271. return ret;
  1272. }
  1273. static int sh_eth_nway_reset(struct net_device *ndev)
  1274. {
  1275. struct sh_eth_private *mdp = netdev_priv(ndev);
  1276. unsigned long flags;
  1277. int ret;
  1278. spin_lock_irqsave(&mdp->lock, flags);
  1279. ret = phy_start_aneg(mdp->phydev);
  1280. spin_unlock_irqrestore(&mdp->lock, flags);
  1281. return ret;
  1282. }
  1283. static u32 sh_eth_get_msglevel(struct net_device *ndev)
  1284. {
  1285. struct sh_eth_private *mdp = netdev_priv(ndev);
  1286. return mdp->msg_enable;
  1287. }
  1288. static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
  1289. {
  1290. struct sh_eth_private *mdp = netdev_priv(ndev);
  1291. mdp->msg_enable = value;
  1292. }
  1293. static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
  1294. "rx_current", "tx_current",
  1295. "rx_dirty", "tx_dirty",
  1296. };
  1297. #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
  1298. static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
  1299. {
  1300. switch (sset) {
  1301. case ETH_SS_STATS:
  1302. return SH_ETH_STATS_LEN;
  1303. default:
  1304. return -EOPNOTSUPP;
  1305. }
  1306. }
  1307. static void sh_eth_get_ethtool_stats(struct net_device *ndev,
  1308. struct ethtool_stats *stats, u64 *data)
  1309. {
  1310. struct sh_eth_private *mdp = netdev_priv(ndev);
  1311. int i = 0;
  1312. /* device-specific stats */
  1313. data[i++] = mdp->cur_rx;
  1314. data[i++] = mdp->cur_tx;
  1315. data[i++] = mdp->dirty_rx;
  1316. data[i++] = mdp->dirty_tx;
  1317. }
  1318. static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
  1319. {
  1320. switch (stringset) {
  1321. case ETH_SS_STATS:
  1322. memcpy(data, *sh_eth_gstrings_stats,
  1323. sizeof(sh_eth_gstrings_stats));
  1324. break;
  1325. }
  1326. }
  1327. static void sh_eth_get_ringparam(struct net_device *ndev,
  1328. struct ethtool_ringparam *ring)
  1329. {
  1330. struct sh_eth_private *mdp = netdev_priv(ndev);
  1331. ring->rx_max_pending = RX_RING_MAX;
  1332. ring->tx_max_pending = TX_RING_MAX;
  1333. ring->rx_pending = mdp->num_rx_ring;
  1334. ring->tx_pending = mdp->num_tx_ring;
  1335. }
  1336. static int sh_eth_set_ringparam(struct net_device *ndev,
  1337. struct ethtool_ringparam *ring)
  1338. {
  1339. struct sh_eth_private *mdp = netdev_priv(ndev);
  1340. int ret;
  1341. if (ring->tx_pending > TX_RING_MAX ||
  1342. ring->rx_pending > RX_RING_MAX ||
  1343. ring->tx_pending < TX_RING_MIN ||
  1344. ring->rx_pending < RX_RING_MIN)
  1345. return -EINVAL;
  1346. if (ring->rx_mini_pending || ring->rx_jumbo_pending)
  1347. return -EINVAL;
  1348. if (netif_running(ndev)) {
  1349. netif_tx_disable(ndev);
  1350. /* Disable interrupts by clearing the interrupt mask. */
  1351. sh_eth_write(ndev, 0x0000, EESIPR);
  1352. /* Stop the chip's Tx and Rx processes. */
  1353. sh_eth_write(ndev, 0, EDTRR);
  1354. sh_eth_write(ndev, 0, EDRRR);
  1355. synchronize_irq(ndev->irq);
  1356. }
  1357. /* Free all the skbuffs in the Rx queue. */
  1358. sh_eth_ring_free(ndev);
  1359. /* Free DMA buffer */
  1360. sh_eth_free_dma_buffer(mdp);
  1361. /* Set new parameters */
  1362. mdp->num_rx_ring = ring->rx_pending;
  1363. mdp->num_tx_ring = ring->tx_pending;
  1364. ret = sh_eth_ring_init(ndev);
  1365. if (ret < 0) {
  1366. dev_err(&ndev->dev, "%s: sh_eth_ring_init failed.\n", __func__);
  1367. return ret;
  1368. }
  1369. ret = sh_eth_dev_init(ndev, false);
  1370. if (ret < 0) {
  1371. dev_err(&ndev->dev, "%s: sh_eth_dev_init failed.\n", __func__);
  1372. return ret;
  1373. }
  1374. if (netif_running(ndev)) {
  1375. sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
  1376. /* Setting the Rx mode will start the Rx process. */
  1377. sh_eth_write(ndev, EDRRR_R, EDRRR);
  1378. netif_wake_queue(ndev);
  1379. }
  1380. return 0;
  1381. }
  1382. static const struct ethtool_ops sh_eth_ethtool_ops = {
  1383. .get_settings = sh_eth_get_settings,
  1384. .set_settings = sh_eth_set_settings,
  1385. .nway_reset = sh_eth_nway_reset,
  1386. .get_msglevel = sh_eth_get_msglevel,
  1387. .set_msglevel = sh_eth_set_msglevel,
  1388. .get_link = ethtool_op_get_link,
  1389. .get_strings = sh_eth_get_strings,
  1390. .get_ethtool_stats = sh_eth_get_ethtool_stats,
  1391. .get_sset_count = sh_eth_get_sset_count,
  1392. .get_ringparam = sh_eth_get_ringparam,
  1393. .set_ringparam = sh_eth_set_ringparam,
  1394. };
  1395. /* network device open function */
  1396. static int sh_eth_open(struct net_device *ndev)
  1397. {
  1398. int ret = 0;
  1399. struct sh_eth_private *mdp = netdev_priv(ndev);
  1400. pm_runtime_get_sync(&mdp->pdev->dev);
  1401. ret = request_irq(ndev->irq, sh_eth_interrupt,
  1402. #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
  1403. defined(CONFIG_CPU_SUBTYPE_SH7764) || \
  1404. defined(CONFIG_CPU_SUBTYPE_SH7757)
  1405. IRQF_SHARED,
  1406. #else
  1407. 0,
  1408. #endif
  1409. ndev->name, ndev);
  1410. if (ret) {
  1411. dev_err(&ndev->dev, "Can not assign IRQ number\n");
  1412. return ret;
  1413. }
  1414. /* Descriptor set */
  1415. ret = sh_eth_ring_init(ndev);
  1416. if (ret)
  1417. goto out_free_irq;
  1418. /* device init */
  1419. ret = sh_eth_dev_init(ndev, true);
  1420. if (ret)
  1421. goto out_free_irq;
  1422. /* PHY control start*/
  1423. ret = sh_eth_phy_start(ndev);
  1424. if (ret)
  1425. goto out_free_irq;
  1426. return ret;
  1427. out_free_irq:
  1428. free_irq(ndev->irq, ndev);
  1429. pm_runtime_put_sync(&mdp->pdev->dev);
  1430. return ret;
  1431. }
  1432. /* Timeout function */
  1433. static void sh_eth_tx_timeout(struct net_device *ndev)
  1434. {
  1435. struct sh_eth_private *mdp = netdev_priv(ndev);
  1436. struct sh_eth_rxdesc *rxdesc;
  1437. int i;
  1438. netif_stop_queue(ndev);
  1439. if (netif_msg_timer(mdp))
  1440. dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
  1441. " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
  1442. /* tx_errors count up */
  1443. ndev->stats.tx_errors++;
  1444. /* Free all the skbuffs in the Rx queue. */
  1445. for (i = 0; i < mdp->num_rx_ring; i++) {
  1446. rxdesc = &mdp->rx_ring[i];
  1447. rxdesc->status = 0;
  1448. rxdesc->addr = 0xBADF00D0;
  1449. if (mdp->rx_skbuff[i])
  1450. dev_kfree_skb(mdp->rx_skbuff[i]);
  1451. mdp->rx_skbuff[i] = NULL;
  1452. }
  1453. for (i = 0; i < mdp->num_tx_ring; i++) {
  1454. if (mdp->tx_skbuff[i])
  1455. dev_kfree_skb(mdp->tx_skbuff[i]);
  1456. mdp->tx_skbuff[i] = NULL;
  1457. }
  1458. /* device init */
  1459. sh_eth_dev_init(ndev, true);
  1460. }
  1461. /* Packet transmit function */
  1462. static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  1463. {
  1464. struct sh_eth_private *mdp = netdev_priv(ndev);
  1465. struct sh_eth_txdesc *txdesc;
  1466. u32 entry;
  1467. unsigned long flags;
  1468. spin_lock_irqsave(&mdp->lock, flags);
  1469. if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
  1470. if (!sh_eth_txfree(ndev)) {
  1471. if (netif_msg_tx_queued(mdp))
  1472. dev_warn(&ndev->dev, "TxFD exhausted.\n");
  1473. netif_stop_queue(ndev);
  1474. spin_unlock_irqrestore(&mdp->lock, flags);
  1475. return NETDEV_TX_BUSY;
  1476. }
  1477. }
  1478. spin_unlock_irqrestore(&mdp->lock, flags);
  1479. entry = mdp->cur_tx % mdp->num_tx_ring;
  1480. mdp->tx_skbuff[entry] = skb;
  1481. txdesc = &mdp->tx_ring[entry];
  1482. /* soft swap. */
  1483. if (!mdp->cd->hw_swap)
  1484. sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
  1485. skb->len + 2);
  1486. txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
  1487. DMA_TO_DEVICE);
  1488. if (skb->len < ETHERSMALL)
  1489. txdesc->buffer_length = ETHERSMALL;
  1490. else
  1491. txdesc->buffer_length = skb->len;
  1492. if (entry >= mdp->num_tx_ring - 1)
  1493. txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
  1494. else
  1495. txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
  1496. mdp->cur_tx++;
  1497. if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
  1498. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  1499. return NETDEV_TX_OK;
  1500. }
  1501. /* device close function */
  1502. static int sh_eth_close(struct net_device *ndev)
  1503. {
  1504. struct sh_eth_private *mdp = netdev_priv(ndev);
  1505. netif_stop_queue(ndev);
  1506. /* Disable interrupts by clearing the interrupt mask. */
  1507. sh_eth_write(ndev, 0x0000, EESIPR);
  1508. /* Stop the chip's Tx and Rx processes. */
  1509. sh_eth_write(ndev, 0, EDTRR);
  1510. sh_eth_write(ndev, 0, EDRRR);
  1511. /* PHY Disconnect */
  1512. if (mdp->phydev) {
  1513. phy_stop(mdp->phydev);
  1514. phy_disconnect(mdp->phydev);
  1515. }
  1516. free_irq(ndev->irq, ndev);
  1517. /* Free all the skbuffs in the Rx queue. */
  1518. sh_eth_ring_free(ndev);
  1519. /* free DMA buffer */
  1520. sh_eth_free_dma_buffer(mdp);
  1521. pm_runtime_put_sync(&mdp->pdev->dev);
  1522. return 0;
  1523. }
  1524. static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
  1525. {
  1526. struct sh_eth_private *mdp = netdev_priv(ndev);
  1527. pm_runtime_get_sync(&mdp->pdev->dev);
  1528. ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
  1529. sh_eth_write(ndev, 0, TROCR); /* (write clear) */
  1530. ndev->stats.collisions += sh_eth_read(ndev, CDCR);
  1531. sh_eth_write(ndev, 0, CDCR); /* (write clear) */
  1532. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
  1533. sh_eth_write(ndev, 0, LCCR); /* (write clear) */
  1534. if (sh_eth_is_gether(mdp)) {
  1535. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
  1536. sh_eth_write(ndev, 0, CERCR); /* (write clear) */
  1537. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
  1538. sh_eth_write(ndev, 0, CEECR); /* (write clear) */
  1539. } else {
  1540. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
  1541. sh_eth_write(ndev, 0, CNDCR); /* (write clear) */
  1542. }
  1543. pm_runtime_put_sync(&mdp->pdev->dev);
  1544. return &ndev->stats;
  1545. }
  1546. /* ioctl to device function */
  1547. static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
  1548. int cmd)
  1549. {
  1550. struct sh_eth_private *mdp = netdev_priv(ndev);
  1551. struct phy_device *phydev = mdp->phydev;
  1552. if (!netif_running(ndev))
  1553. return -EINVAL;
  1554. if (!phydev)
  1555. return -ENODEV;
  1556. return phy_mii_ioctl(phydev, rq, cmd);
  1557. }
  1558. #if defined(SH_ETH_HAS_TSU)
  1559. /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
  1560. static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
  1561. int entry)
  1562. {
  1563. return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
  1564. }
  1565. static u32 sh_eth_tsu_get_post_mask(int entry)
  1566. {
  1567. return 0x0f << (28 - ((entry % 8) * 4));
  1568. }
  1569. static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
  1570. {
  1571. return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
  1572. }
  1573. static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
  1574. int entry)
  1575. {
  1576. struct sh_eth_private *mdp = netdev_priv(ndev);
  1577. u32 tmp;
  1578. void *reg_offset;
  1579. reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
  1580. tmp = ioread32(reg_offset);
  1581. iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
  1582. }
  1583. static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
  1584. int entry)
  1585. {
  1586. struct sh_eth_private *mdp = netdev_priv(ndev);
  1587. u32 post_mask, ref_mask, tmp;
  1588. void *reg_offset;
  1589. reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
  1590. post_mask = sh_eth_tsu_get_post_mask(entry);
  1591. ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
  1592. tmp = ioread32(reg_offset);
  1593. iowrite32(tmp & ~post_mask, reg_offset);
  1594. /* If other port enables, the function returns "true" */
  1595. return tmp & ref_mask;
  1596. }
  1597. static int sh_eth_tsu_busy(struct net_device *ndev)
  1598. {
  1599. int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
  1600. struct sh_eth_private *mdp = netdev_priv(ndev);
  1601. while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
  1602. udelay(10);
  1603. timeout--;
  1604. if (timeout <= 0) {
  1605. dev_err(&ndev->dev, "%s: timeout\n", __func__);
  1606. return -ETIMEDOUT;
  1607. }
  1608. }
  1609. return 0;
  1610. }
  1611. static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
  1612. const u8 *addr)
  1613. {
  1614. u32 val;
  1615. val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
  1616. iowrite32(val, reg);
  1617. if (sh_eth_tsu_busy(ndev) < 0)
  1618. return -EBUSY;
  1619. val = addr[4] << 8 | addr[5];
  1620. iowrite32(val, reg + 4);
  1621. if (sh_eth_tsu_busy(ndev) < 0)
  1622. return -EBUSY;
  1623. return 0;
  1624. }
  1625. static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
  1626. {
  1627. u32 val;
  1628. val = ioread32(reg);
  1629. addr[0] = (val >> 24) & 0xff;
  1630. addr[1] = (val >> 16) & 0xff;
  1631. addr[2] = (val >> 8) & 0xff;
  1632. addr[3] = val & 0xff;
  1633. val = ioread32(reg + 4);
  1634. addr[4] = (val >> 8) & 0xff;
  1635. addr[5] = val & 0xff;
  1636. }
  1637. static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
  1638. {
  1639. struct sh_eth_private *mdp = netdev_priv(ndev);
  1640. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1641. int i;
  1642. u8 c_addr[ETH_ALEN];
  1643. for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
  1644. sh_eth_tsu_read_entry(reg_offset, c_addr);
  1645. if (memcmp(addr, c_addr, ETH_ALEN) == 0)
  1646. return i;
  1647. }
  1648. return -ENOENT;
  1649. }
  1650. static int sh_eth_tsu_find_empty(struct net_device *ndev)
  1651. {
  1652. u8 blank[ETH_ALEN];
  1653. int entry;
  1654. memset(blank, 0, sizeof(blank));
  1655. entry = sh_eth_tsu_find_entry(ndev, blank);
  1656. return (entry < 0) ? -ENOMEM : entry;
  1657. }
  1658. static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
  1659. int entry)
  1660. {
  1661. struct sh_eth_private *mdp = netdev_priv(ndev);
  1662. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1663. int ret;
  1664. u8 blank[ETH_ALEN];
  1665. sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
  1666. ~(1 << (31 - entry)), TSU_TEN);
  1667. memset(blank, 0, sizeof(blank));
  1668. ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
  1669. if (ret < 0)
  1670. return ret;
  1671. return 0;
  1672. }
  1673. static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
  1674. {
  1675. struct sh_eth_private *mdp = netdev_priv(ndev);
  1676. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1677. int i, ret;
  1678. if (!mdp->cd->tsu)
  1679. return 0;
  1680. i = sh_eth_tsu_find_entry(ndev, addr);
  1681. if (i < 0) {
  1682. /* No entry found, create one */
  1683. i = sh_eth_tsu_find_empty(ndev);
  1684. if (i < 0)
  1685. return -ENOMEM;
  1686. ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
  1687. if (ret < 0)
  1688. return ret;
  1689. /* Enable the entry */
  1690. sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
  1691. (1 << (31 - i)), TSU_TEN);
  1692. }
  1693. /* Entry found or created, enable POST */
  1694. sh_eth_tsu_enable_cam_entry_post(ndev, i);
  1695. return 0;
  1696. }
  1697. static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
  1698. {
  1699. struct sh_eth_private *mdp = netdev_priv(ndev);
  1700. int i, ret;
  1701. if (!mdp->cd->tsu)
  1702. return 0;
  1703. i = sh_eth_tsu_find_entry(ndev, addr);
  1704. if (i) {
  1705. /* Entry found */
  1706. if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
  1707. goto done;
  1708. /* Disable the entry if both ports was disabled */
  1709. ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
  1710. if (ret < 0)
  1711. return ret;
  1712. }
  1713. done:
  1714. return 0;
  1715. }
  1716. static int sh_eth_tsu_purge_all(struct net_device *ndev)
  1717. {
  1718. struct sh_eth_private *mdp = netdev_priv(ndev);
  1719. int i, ret;
  1720. if (unlikely(!mdp->cd->tsu))
  1721. return 0;
  1722. for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
  1723. if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
  1724. continue;
  1725. /* Disable the entry if both ports was disabled */
  1726. ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
  1727. if (ret < 0)
  1728. return ret;
  1729. }
  1730. return 0;
  1731. }
  1732. static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
  1733. {
  1734. struct sh_eth_private *mdp = netdev_priv(ndev);
  1735. u8 addr[ETH_ALEN];
  1736. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1737. int i;
  1738. if (unlikely(!mdp->cd->tsu))
  1739. return;
  1740. for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
  1741. sh_eth_tsu_read_entry(reg_offset, addr);
  1742. if (is_multicast_ether_addr(addr))
  1743. sh_eth_tsu_del_entry(ndev, addr);
  1744. }
  1745. }
  1746. /* Multicast reception directions set */
  1747. static void sh_eth_set_multicast_list(struct net_device *ndev)
  1748. {
  1749. struct sh_eth_private *mdp = netdev_priv(ndev);
  1750. u32 ecmr_bits;
  1751. int mcast_all = 0;
  1752. unsigned long flags;
  1753. spin_lock_irqsave(&mdp->lock, flags);
  1754. /*
  1755. * Initial condition is MCT = 1, PRM = 0.
  1756. * Depending on ndev->flags, set PRM or clear MCT
  1757. */
  1758. ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
  1759. if (!(ndev->flags & IFF_MULTICAST)) {
  1760. sh_eth_tsu_purge_mcast(ndev);
  1761. mcast_all = 1;
  1762. }
  1763. if (ndev->flags & IFF_ALLMULTI) {
  1764. sh_eth_tsu_purge_mcast(ndev);
  1765. ecmr_bits &= ~ECMR_MCT;
  1766. mcast_all = 1;
  1767. }
  1768. if (ndev->flags & IFF_PROMISC) {
  1769. sh_eth_tsu_purge_all(ndev);
  1770. ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
  1771. } else if (mdp->cd->tsu) {
  1772. struct netdev_hw_addr *ha;
  1773. netdev_for_each_mc_addr(ha, ndev) {
  1774. if (mcast_all && is_multicast_ether_addr(ha->addr))
  1775. continue;
  1776. if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
  1777. if (!mcast_all) {
  1778. sh_eth_tsu_purge_mcast(ndev);
  1779. ecmr_bits &= ~ECMR_MCT;
  1780. mcast_all = 1;
  1781. }
  1782. }
  1783. }
  1784. } else {
  1785. /* Normal, unicast/broadcast-only mode. */
  1786. ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
  1787. }
  1788. /* update the ethernet mode */
  1789. sh_eth_write(ndev, ecmr_bits, ECMR);
  1790. spin_unlock_irqrestore(&mdp->lock, flags);
  1791. }
  1792. static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
  1793. {
  1794. if (!mdp->port)
  1795. return TSU_VTAG0;
  1796. else
  1797. return TSU_VTAG1;
  1798. }
  1799. static int sh_eth_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1800. {
  1801. struct sh_eth_private *mdp = netdev_priv(ndev);
  1802. int vtag_reg_index = sh_eth_get_vtag_index(mdp);
  1803. if (unlikely(!mdp->cd->tsu))
  1804. return -EPERM;
  1805. /* No filtering if vid = 0 */
  1806. if (!vid)
  1807. return 0;
  1808. mdp->vlan_num_ids++;
  1809. /*
  1810. * The controller has one VLAN tag HW filter. So, if the filter is
  1811. * already enabled, the driver disables it and the filte
  1812. */
  1813. if (mdp->vlan_num_ids > 1) {
  1814. /* disable VLAN filter */
  1815. sh_eth_tsu_write(mdp, 0, vtag_reg_index);
  1816. return 0;
  1817. }
  1818. sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
  1819. vtag_reg_index);
  1820. return 0;
  1821. }
  1822. static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1823. {
  1824. struct sh_eth_private *mdp = netdev_priv(ndev);
  1825. int vtag_reg_index = sh_eth_get_vtag_index(mdp);
  1826. if (unlikely(!mdp->cd->tsu))
  1827. return -EPERM;
  1828. /* No filtering if vid = 0 */
  1829. if (!vid)
  1830. return 0;
  1831. mdp->vlan_num_ids--;
  1832. sh_eth_tsu_write(mdp, 0, vtag_reg_index);
  1833. return 0;
  1834. }
  1835. #endif /* SH_ETH_HAS_TSU */
  1836. /* SuperH's TSU register init function */
  1837. static void sh_eth_tsu_init(struct sh_eth_private *mdp)
  1838. {
  1839. sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
  1840. sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
  1841. sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
  1842. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
  1843. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
  1844. sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
  1845. sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
  1846. sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
  1847. sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
  1848. sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
  1849. if (sh_eth_is_gether(mdp)) {
  1850. sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
  1851. sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
  1852. } else {
  1853. sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
  1854. sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
  1855. }
  1856. sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
  1857. sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
  1858. sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
  1859. sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
  1860. sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
  1861. sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
  1862. sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
  1863. }
  1864. /* MDIO bus release function */
  1865. static int sh_mdio_release(struct net_device *ndev)
  1866. {
  1867. struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
  1868. /* unregister mdio bus */
  1869. mdiobus_unregister(bus);
  1870. /* remove mdio bus info from net_device */
  1871. dev_set_drvdata(&ndev->dev, NULL);
  1872. /* free interrupts memory */
  1873. kfree(bus->irq);
  1874. /* free bitbang info */
  1875. free_mdio_bitbang(bus);
  1876. return 0;
  1877. }
  1878. /* MDIO bus init function */
  1879. static int sh_mdio_init(struct net_device *ndev, int id,
  1880. struct sh_eth_plat_data *pd)
  1881. {
  1882. int ret, i;
  1883. struct bb_info *bitbang;
  1884. struct sh_eth_private *mdp = netdev_priv(ndev);
  1885. /* create bit control struct for PHY */
  1886. bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
  1887. if (!bitbang) {
  1888. ret = -ENOMEM;
  1889. goto out;
  1890. }
  1891. /* bitbang init */
  1892. bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
  1893. bitbang->set_gate = pd->set_mdio_gate;
  1894. bitbang->mdi_msk = 0x08;
  1895. bitbang->mdo_msk = 0x04;
  1896. bitbang->mmd_msk = 0x02;/* MMD */
  1897. bitbang->mdc_msk = 0x01;
  1898. bitbang->ctrl.ops = &bb_ops;
  1899. /* MII controller setting */
  1900. mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
  1901. if (!mdp->mii_bus) {
  1902. ret = -ENOMEM;
  1903. goto out_free_bitbang;
  1904. }
  1905. /* Hook up MII support for ethtool */
  1906. mdp->mii_bus->name = "sh_mii";
  1907. mdp->mii_bus->parent = &ndev->dev;
  1908. snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
  1909. mdp->pdev->name, id);
  1910. /* PHY IRQ */
  1911. mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
  1912. if (!mdp->mii_bus->irq) {
  1913. ret = -ENOMEM;
  1914. goto out_free_bus;
  1915. }
  1916. for (i = 0; i < PHY_MAX_ADDR; i++)
  1917. mdp->mii_bus->irq[i] = PHY_POLL;
  1918. /* register mdio bus */
  1919. ret = mdiobus_register(mdp->mii_bus);
  1920. if (ret)
  1921. goto out_free_irq;
  1922. dev_set_drvdata(&ndev->dev, mdp->mii_bus);
  1923. return 0;
  1924. out_free_irq:
  1925. kfree(mdp->mii_bus->irq);
  1926. out_free_bus:
  1927. free_mdio_bitbang(mdp->mii_bus);
  1928. out_free_bitbang:
  1929. kfree(bitbang);
  1930. out:
  1931. return ret;
  1932. }
  1933. static const u16 *sh_eth_get_register_offset(int register_type)
  1934. {
  1935. const u16 *reg_offset = NULL;
  1936. switch (register_type) {
  1937. case SH_ETH_REG_GIGABIT:
  1938. reg_offset = sh_eth_offset_gigabit;
  1939. break;
  1940. case SH_ETH_REG_FAST_SH4:
  1941. reg_offset = sh_eth_offset_fast_sh4;
  1942. break;
  1943. case SH_ETH_REG_FAST_SH3_SH2:
  1944. reg_offset = sh_eth_offset_fast_sh3_sh2;
  1945. break;
  1946. default:
  1947. printk(KERN_ERR "Unknown register type (%d)\n", register_type);
  1948. break;
  1949. }
  1950. return reg_offset;
  1951. }
  1952. static const struct net_device_ops sh_eth_netdev_ops = {
  1953. .ndo_open = sh_eth_open,
  1954. .ndo_stop = sh_eth_close,
  1955. .ndo_start_xmit = sh_eth_start_xmit,
  1956. .ndo_get_stats = sh_eth_get_stats,
  1957. #if defined(SH_ETH_HAS_TSU)
  1958. .ndo_set_rx_mode = sh_eth_set_multicast_list,
  1959. .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
  1960. .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
  1961. #endif
  1962. .ndo_tx_timeout = sh_eth_tx_timeout,
  1963. .ndo_do_ioctl = sh_eth_do_ioctl,
  1964. .ndo_validate_addr = eth_validate_addr,
  1965. .ndo_set_mac_address = eth_mac_addr,
  1966. .ndo_change_mtu = eth_change_mtu,
  1967. };
  1968. static int sh_eth_drv_probe(struct platform_device *pdev)
  1969. {
  1970. int ret, devno = 0;
  1971. struct resource *res;
  1972. struct net_device *ndev = NULL;
  1973. struct sh_eth_private *mdp = NULL;
  1974. struct sh_eth_plat_data *pd;
  1975. /* get base addr */
  1976. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1977. if (unlikely(res == NULL)) {
  1978. dev_err(&pdev->dev, "invalid resource\n");
  1979. ret = -EINVAL;
  1980. goto out;
  1981. }
  1982. ndev = alloc_etherdev(sizeof(struct sh_eth_private));
  1983. if (!ndev) {
  1984. ret = -ENOMEM;
  1985. goto out;
  1986. }
  1987. /* The sh Ether-specific entries in the device structure. */
  1988. ndev->base_addr = res->start;
  1989. devno = pdev->id;
  1990. if (devno < 0)
  1991. devno = 0;
  1992. ndev->dma = -1;
  1993. ret = platform_get_irq(pdev, 0);
  1994. if (ret < 0) {
  1995. ret = -ENODEV;
  1996. goto out_release;
  1997. }
  1998. ndev->irq = ret;
  1999. SET_NETDEV_DEV(ndev, &pdev->dev);
  2000. /* Fill in the fields of the device structure with ethernet values. */
  2001. ether_setup(ndev);
  2002. mdp = netdev_priv(ndev);
  2003. mdp->num_tx_ring = TX_RING_SIZE;
  2004. mdp->num_rx_ring = RX_RING_SIZE;
  2005. mdp->addr = ioremap(res->start, resource_size(res));
  2006. if (mdp->addr == NULL) {
  2007. ret = -ENOMEM;
  2008. dev_err(&pdev->dev, "ioremap failed.\n");
  2009. goto out_release;
  2010. }
  2011. spin_lock_init(&mdp->lock);
  2012. mdp->pdev = pdev;
  2013. pm_runtime_enable(&pdev->dev);
  2014. pm_runtime_resume(&pdev->dev);
  2015. pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
  2016. /* get PHY ID */
  2017. mdp->phy_id = pd->phy;
  2018. mdp->phy_interface = pd->phy_interface;
  2019. /* EDMAC endian */
  2020. mdp->edmac_endian = pd->edmac_endian;
  2021. mdp->no_ether_link = pd->no_ether_link;
  2022. mdp->ether_link_active_low = pd->ether_link_active_low;
  2023. mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
  2024. /* set cpu data */
  2025. #if defined(SH_ETH_HAS_BOTH_MODULES)
  2026. mdp->cd = sh_eth_get_cpu_data(mdp);
  2027. #else
  2028. mdp->cd = &sh_eth_my_cpu_data;
  2029. #endif
  2030. sh_eth_set_default_cpu_data(mdp->cd);
  2031. /* set function */
  2032. ndev->netdev_ops = &sh_eth_netdev_ops;
  2033. SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
  2034. ndev->watchdog_timeo = TX_TIMEOUT;
  2035. /* debug message level */
  2036. mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
  2037. /* read and set MAC address */
  2038. read_mac_address(ndev, pd->mac_addr);
  2039. /* ioremap the TSU registers */
  2040. if (mdp->cd->tsu) {
  2041. struct resource *rtsu;
  2042. rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  2043. if (!rtsu) {
  2044. dev_err(&pdev->dev, "Not found TSU resource\n");
  2045. ret = -ENODEV;
  2046. goto out_release;
  2047. }
  2048. mdp->tsu_addr = ioremap(rtsu->start,
  2049. resource_size(rtsu));
  2050. mdp->port = devno % 2;
  2051. ndev->features = NETIF_F_HW_VLAN_FILTER;
  2052. }
  2053. /* initialize first or needed device */
  2054. if (!devno || pd->needs_init) {
  2055. if (mdp->cd->chip_reset)
  2056. mdp->cd->chip_reset(ndev);
  2057. if (mdp->cd->tsu) {
  2058. /* TSU init (Init only)*/
  2059. sh_eth_tsu_init(mdp);
  2060. }
  2061. }
  2062. /* network device register */
  2063. ret = register_netdev(ndev);
  2064. if (ret)
  2065. goto out_release;
  2066. /* mdio bus init */
  2067. ret = sh_mdio_init(ndev, pdev->id, pd);
  2068. if (ret)
  2069. goto out_unregister;
  2070. /* print device information */
  2071. pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
  2072. (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
  2073. platform_set_drvdata(pdev, ndev);
  2074. return ret;
  2075. out_unregister:
  2076. unregister_netdev(ndev);
  2077. out_release:
  2078. /* net_dev free */
  2079. if (mdp && mdp->addr)
  2080. iounmap(mdp->addr);
  2081. if (mdp && mdp->tsu_addr)
  2082. iounmap(mdp->tsu_addr);
  2083. if (ndev)
  2084. free_netdev(ndev);
  2085. out:
  2086. return ret;
  2087. }
  2088. static int sh_eth_drv_remove(struct platform_device *pdev)
  2089. {
  2090. struct net_device *ndev = platform_get_drvdata(pdev);
  2091. struct sh_eth_private *mdp = netdev_priv(ndev);
  2092. if (mdp->cd->tsu)
  2093. iounmap(mdp->tsu_addr);
  2094. sh_mdio_release(ndev);
  2095. unregister_netdev(ndev);
  2096. pm_runtime_disable(&pdev->dev);
  2097. iounmap(mdp->addr);
  2098. free_netdev(ndev);
  2099. platform_set_drvdata(pdev, NULL);
  2100. return 0;
  2101. }
  2102. static int sh_eth_runtime_nop(struct device *dev)
  2103. {
  2104. /*
  2105. * Runtime PM callback shared between ->runtime_suspend()
  2106. * and ->runtime_resume(). Simply returns success.
  2107. *
  2108. * This driver re-initializes all registers after
  2109. * pm_runtime_get_sync() anyway so there is no need
  2110. * to save and restore registers here.
  2111. */
  2112. return 0;
  2113. }
  2114. static struct dev_pm_ops sh_eth_dev_pm_ops = {
  2115. .runtime_suspend = sh_eth_runtime_nop,
  2116. .runtime_resume = sh_eth_runtime_nop,
  2117. };
  2118. static struct platform_driver sh_eth_driver = {
  2119. .probe = sh_eth_drv_probe,
  2120. .remove = sh_eth_drv_remove,
  2121. .driver = {
  2122. .name = CARDNAME,
  2123. .pm = &sh_eth_dev_pm_ops,
  2124. },
  2125. };
  2126. module_platform_driver(sh_eth_driver);
  2127. MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
  2128. MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
  2129. MODULE_LICENSE("GPL v2");