qlge_main.c 132 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/bitops.h>
  11. #include <linux/types.h>
  12. #include <linux/module.h>
  13. #include <linux/list.h>
  14. #include <linux/pci.h>
  15. #include <linux/dma-mapping.h>
  16. #include <linux/pagemap.h>
  17. #include <linux/sched.h>
  18. #include <linux/slab.h>
  19. #include <linux/dmapool.h>
  20. #include <linux/mempool.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/kthread.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/errno.h>
  25. #include <linux/ioport.h>
  26. #include <linux/in.h>
  27. #include <linux/ip.h>
  28. #include <linux/ipv6.h>
  29. #include <net/ipv6.h>
  30. #include <linux/tcp.h>
  31. #include <linux/udp.h>
  32. #include <linux/if_arp.h>
  33. #include <linux/if_ether.h>
  34. #include <linux/netdevice.h>
  35. #include <linux/etherdevice.h>
  36. #include <linux/ethtool.h>
  37. #include <linux/if_vlan.h>
  38. #include <linux/skbuff.h>
  39. #include <linux/delay.h>
  40. #include <linux/mm.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/prefetch.h>
  43. #include <net/ip6_checksum.h>
  44. #include "qlge.h"
  45. char qlge_driver_name[] = DRV_NAME;
  46. const char qlge_driver_version[] = DRV_VERSION;
  47. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  48. MODULE_DESCRIPTION(DRV_STRING " ");
  49. MODULE_LICENSE("GPL");
  50. MODULE_VERSION(DRV_VERSION);
  51. static const u32 default_msg =
  52. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  53. /* NETIF_MSG_TIMER | */
  54. NETIF_MSG_IFDOWN |
  55. NETIF_MSG_IFUP |
  56. NETIF_MSG_RX_ERR |
  57. NETIF_MSG_TX_ERR |
  58. /* NETIF_MSG_TX_QUEUED | */
  59. /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
  60. /* NETIF_MSG_PKTDATA | */
  61. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  62. static int debug = -1; /* defaults above */
  63. module_param(debug, int, 0664);
  64. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  65. #define MSIX_IRQ 0
  66. #define MSI_IRQ 1
  67. #define LEG_IRQ 2
  68. static int qlge_irq_type = MSIX_IRQ;
  69. module_param(qlge_irq_type, int, 0664);
  70. MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  71. static int qlge_mpi_coredump;
  72. module_param(qlge_mpi_coredump, int, 0);
  73. MODULE_PARM_DESC(qlge_mpi_coredump,
  74. "Option to enable MPI firmware dump. "
  75. "Default is OFF - Do Not allocate memory. ");
  76. static int qlge_force_coredump;
  77. module_param(qlge_force_coredump, int, 0);
  78. MODULE_PARM_DESC(qlge_force_coredump,
  79. "Option to allow force of firmware core dump. "
  80. "Default is OFF - Do not allow.");
  81. static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
  82. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
  83. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
  84. /* required last entry */
  85. {0,}
  86. };
  87. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  88. static int ql_wol(struct ql_adapter *qdev);
  89. static void qlge_set_multicast_list(struct net_device *ndev);
  90. /* This hardware semaphore causes exclusive access to
  91. * resources shared between the NIC driver, MPI firmware,
  92. * FCOE firmware and the FC driver.
  93. */
  94. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  95. {
  96. u32 sem_bits = 0;
  97. switch (sem_mask) {
  98. case SEM_XGMAC0_MASK:
  99. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  100. break;
  101. case SEM_XGMAC1_MASK:
  102. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  103. break;
  104. case SEM_ICB_MASK:
  105. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  106. break;
  107. case SEM_MAC_ADDR_MASK:
  108. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  109. break;
  110. case SEM_FLASH_MASK:
  111. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  112. break;
  113. case SEM_PROBE_MASK:
  114. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  115. break;
  116. case SEM_RT_IDX_MASK:
  117. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  118. break;
  119. case SEM_PROC_REG_MASK:
  120. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  121. break;
  122. default:
  123. netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
  124. return -EINVAL;
  125. }
  126. ql_write32(qdev, SEM, sem_bits | sem_mask);
  127. return !(ql_read32(qdev, SEM) & sem_bits);
  128. }
  129. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  130. {
  131. unsigned int wait_count = 30;
  132. do {
  133. if (!ql_sem_trylock(qdev, sem_mask))
  134. return 0;
  135. udelay(100);
  136. } while (--wait_count);
  137. return -ETIMEDOUT;
  138. }
  139. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  140. {
  141. ql_write32(qdev, SEM, sem_mask);
  142. ql_read32(qdev, SEM); /* flush */
  143. }
  144. /* This function waits for a specific bit to come ready
  145. * in a given register. It is used mostly by the initialize
  146. * process, but is also used in kernel thread API such as
  147. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  148. */
  149. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  150. {
  151. u32 temp;
  152. int count = UDELAY_COUNT;
  153. while (count) {
  154. temp = ql_read32(qdev, reg);
  155. /* check for errors */
  156. if (temp & err_bit) {
  157. netif_alert(qdev, probe, qdev->ndev,
  158. "register 0x%.08x access error, value = 0x%.08x!.\n",
  159. reg, temp);
  160. return -EIO;
  161. } else if (temp & bit)
  162. return 0;
  163. udelay(UDELAY_DELAY);
  164. count--;
  165. }
  166. netif_alert(qdev, probe, qdev->ndev,
  167. "Timed out waiting for reg %x to come ready.\n", reg);
  168. return -ETIMEDOUT;
  169. }
  170. /* The CFG register is used to download TX and RX control blocks
  171. * to the chip. This function waits for an operation to complete.
  172. */
  173. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  174. {
  175. int count = UDELAY_COUNT;
  176. u32 temp;
  177. while (count) {
  178. temp = ql_read32(qdev, CFG);
  179. if (temp & CFG_LE)
  180. return -EIO;
  181. if (!(temp & bit))
  182. return 0;
  183. udelay(UDELAY_DELAY);
  184. count--;
  185. }
  186. return -ETIMEDOUT;
  187. }
  188. /* Used to issue init control blocks to hw. Maps control block,
  189. * sets address, triggers download, waits for completion.
  190. */
  191. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  192. u16 q_id)
  193. {
  194. u64 map;
  195. int status = 0;
  196. int direction;
  197. u32 mask;
  198. u32 value;
  199. direction =
  200. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  201. PCI_DMA_FROMDEVICE;
  202. map = pci_map_single(qdev->pdev, ptr, size, direction);
  203. if (pci_dma_mapping_error(qdev->pdev, map)) {
  204. netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
  205. return -ENOMEM;
  206. }
  207. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  208. if (status)
  209. return status;
  210. status = ql_wait_cfg(qdev, bit);
  211. if (status) {
  212. netif_err(qdev, ifup, qdev->ndev,
  213. "Timed out waiting for CFG to come ready.\n");
  214. goto exit;
  215. }
  216. ql_write32(qdev, ICB_L, (u32) map);
  217. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  218. mask = CFG_Q_MASK | (bit << 16);
  219. value = bit | (q_id << CFG_Q_SHIFT);
  220. ql_write32(qdev, CFG, (mask | value));
  221. /*
  222. * Wait for the bit to clear after signaling hw.
  223. */
  224. status = ql_wait_cfg(qdev, bit);
  225. exit:
  226. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  227. pci_unmap_single(qdev->pdev, map, size, direction);
  228. return status;
  229. }
  230. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  231. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  232. u32 *value)
  233. {
  234. u32 offset = 0;
  235. int status;
  236. switch (type) {
  237. case MAC_ADDR_TYPE_MULTI_MAC:
  238. case MAC_ADDR_TYPE_CAM_MAC:
  239. {
  240. status =
  241. ql_wait_reg_rdy(qdev,
  242. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  243. if (status)
  244. goto exit;
  245. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  246. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  247. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  248. status =
  249. ql_wait_reg_rdy(qdev,
  250. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  251. if (status)
  252. goto exit;
  253. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  254. status =
  255. ql_wait_reg_rdy(qdev,
  256. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  257. if (status)
  258. goto exit;
  259. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  260. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  261. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  262. status =
  263. ql_wait_reg_rdy(qdev,
  264. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  265. if (status)
  266. goto exit;
  267. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  268. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  269. status =
  270. ql_wait_reg_rdy(qdev,
  271. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  272. if (status)
  273. goto exit;
  274. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  275. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  276. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  277. status =
  278. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  279. MAC_ADDR_MR, 0);
  280. if (status)
  281. goto exit;
  282. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  283. }
  284. break;
  285. }
  286. case MAC_ADDR_TYPE_VLAN:
  287. case MAC_ADDR_TYPE_MULTI_FLTR:
  288. default:
  289. netif_crit(qdev, ifup, qdev->ndev,
  290. "Address type %d not yet supported.\n", type);
  291. status = -EPERM;
  292. }
  293. exit:
  294. return status;
  295. }
  296. /* Set up a MAC, multicast or VLAN address for the
  297. * inbound frame matching.
  298. */
  299. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  300. u16 index)
  301. {
  302. u32 offset = 0;
  303. int status = 0;
  304. switch (type) {
  305. case MAC_ADDR_TYPE_MULTI_MAC:
  306. {
  307. u32 upper = (addr[0] << 8) | addr[1];
  308. u32 lower = (addr[2] << 24) | (addr[3] << 16) |
  309. (addr[4] << 8) | (addr[5]);
  310. status =
  311. ql_wait_reg_rdy(qdev,
  312. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  313. if (status)
  314. goto exit;
  315. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  316. (index << MAC_ADDR_IDX_SHIFT) |
  317. type | MAC_ADDR_E);
  318. ql_write32(qdev, MAC_ADDR_DATA, lower);
  319. status =
  320. ql_wait_reg_rdy(qdev,
  321. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  322. if (status)
  323. goto exit;
  324. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  325. (index << MAC_ADDR_IDX_SHIFT) |
  326. type | MAC_ADDR_E);
  327. ql_write32(qdev, MAC_ADDR_DATA, upper);
  328. status =
  329. ql_wait_reg_rdy(qdev,
  330. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  331. if (status)
  332. goto exit;
  333. break;
  334. }
  335. case MAC_ADDR_TYPE_CAM_MAC:
  336. {
  337. u32 cam_output;
  338. u32 upper = (addr[0] << 8) | addr[1];
  339. u32 lower =
  340. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  341. (addr[5]);
  342. status =
  343. ql_wait_reg_rdy(qdev,
  344. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  345. if (status)
  346. goto exit;
  347. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  348. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  349. type); /* type */
  350. ql_write32(qdev, MAC_ADDR_DATA, lower);
  351. status =
  352. ql_wait_reg_rdy(qdev,
  353. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  354. if (status)
  355. goto exit;
  356. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  357. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  358. type); /* type */
  359. ql_write32(qdev, MAC_ADDR_DATA, upper);
  360. status =
  361. ql_wait_reg_rdy(qdev,
  362. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  363. if (status)
  364. goto exit;
  365. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  366. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  367. type); /* type */
  368. /* This field should also include the queue id
  369. and possibly the function id. Right now we hardcode
  370. the route field to NIC core.
  371. */
  372. cam_output = (CAM_OUT_ROUTE_NIC |
  373. (qdev->
  374. func << CAM_OUT_FUNC_SHIFT) |
  375. (0 << CAM_OUT_CQ_ID_SHIFT));
  376. if (qdev->ndev->features & NETIF_F_HW_VLAN_RX)
  377. cam_output |= CAM_OUT_RV;
  378. /* route to NIC core */
  379. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  380. break;
  381. }
  382. case MAC_ADDR_TYPE_VLAN:
  383. {
  384. u32 enable_bit = *((u32 *) &addr[0]);
  385. /* For VLAN, the addr actually holds a bit that
  386. * either enables or disables the vlan id we are
  387. * addressing. It's either MAC_ADDR_E on or off.
  388. * That's bit-27 we're talking about.
  389. */
  390. status =
  391. ql_wait_reg_rdy(qdev,
  392. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  393. if (status)
  394. goto exit;
  395. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  396. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  397. type | /* type */
  398. enable_bit); /* enable/disable */
  399. break;
  400. }
  401. case MAC_ADDR_TYPE_MULTI_FLTR:
  402. default:
  403. netif_crit(qdev, ifup, qdev->ndev,
  404. "Address type %d not yet supported.\n", type);
  405. status = -EPERM;
  406. }
  407. exit:
  408. return status;
  409. }
  410. /* Set or clear MAC address in hardware. We sometimes
  411. * have to clear it to prevent wrong frame routing
  412. * especially in a bonding environment.
  413. */
  414. static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
  415. {
  416. int status;
  417. char zero_mac_addr[ETH_ALEN];
  418. char *addr;
  419. if (set) {
  420. addr = &qdev->current_mac_addr[0];
  421. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  422. "Set Mac addr %pM\n", addr);
  423. } else {
  424. memset(zero_mac_addr, 0, ETH_ALEN);
  425. addr = &zero_mac_addr[0];
  426. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  427. "Clearing MAC address\n");
  428. }
  429. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  430. if (status)
  431. return status;
  432. status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
  433. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  434. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  435. if (status)
  436. netif_err(qdev, ifup, qdev->ndev,
  437. "Failed to init mac address.\n");
  438. return status;
  439. }
  440. void ql_link_on(struct ql_adapter *qdev)
  441. {
  442. netif_err(qdev, link, qdev->ndev, "Link is up.\n");
  443. netif_carrier_on(qdev->ndev);
  444. ql_set_mac_addr(qdev, 1);
  445. }
  446. void ql_link_off(struct ql_adapter *qdev)
  447. {
  448. netif_err(qdev, link, qdev->ndev, "Link is down.\n");
  449. netif_carrier_off(qdev->ndev);
  450. ql_set_mac_addr(qdev, 0);
  451. }
  452. /* Get a specific frame routing value from the CAM.
  453. * Used for debug and reg dump.
  454. */
  455. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  456. {
  457. int status = 0;
  458. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  459. if (status)
  460. goto exit;
  461. ql_write32(qdev, RT_IDX,
  462. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  463. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  464. if (status)
  465. goto exit;
  466. *value = ql_read32(qdev, RT_DATA);
  467. exit:
  468. return status;
  469. }
  470. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  471. * to route different frame types to various inbound queues. We send broadcast/
  472. * multicast/error frames to the default queue for slow handling,
  473. * and CAM hit/RSS frames to the fast handling queues.
  474. */
  475. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  476. int enable)
  477. {
  478. int status = -EINVAL; /* Return error if no mask match. */
  479. u32 value = 0;
  480. switch (mask) {
  481. case RT_IDX_CAM_HIT:
  482. {
  483. value = RT_IDX_DST_CAM_Q | /* dest */
  484. RT_IDX_TYPE_NICQ | /* type */
  485. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  486. break;
  487. }
  488. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  489. {
  490. value = RT_IDX_DST_DFLT_Q | /* dest */
  491. RT_IDX_TYPE_NICQ | /* type */
  492. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  493. break;
  494. }
  495. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  496. {
  497. value = RT_IDX_DST_DFLT_Q | /* dest */
  498. RT_IDX_TYPE_NICQ | /* type */
  499. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  500. break;
  501. }
  502. case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
  503. {
  504. value = RT_IDX_DST_DFLT_Q | /* dest */
  505. RT_IDX_TYPE_NICQ | /* type */
  506. (RT_IDX_IP_CSUM_ERR_SLOT <<
  507. RT_IDX_IDX_SHIFT); /* index */
  508. break;
  509. }
  510. case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
  511. {
  512. value = RT_IDX_DST_DFLT_Q | /* dest */
  513. RT_IDX_TYPE_NICQ | /* type */
  514. (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
  515. RT_IDX_IDX_SHIFT); /* index */
  516. break;
  517. }
  518. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  519. {
  520. value = RT_IDX_DST_DFLT_Q | /* dest */
  521. RT_IDX_TYPE_NICQ | /* type */
  522. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  523. break;
  524. }
  525. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  526. {
  527. value = RT_IDX_DST_DFLT_Q | /* dest */
  528. RT_IDX_TYPE_NICQ | /* type */
  529. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  530. break;
  531. }
  532. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  533. {
  534. value = RT_IDX_DST_DFLT_Q | /* dest */
  535. RT_IDX_TYPE_NICQ | /* type */
  536. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  537. break;
  538. }
  539. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  540. {
  541. value = RT_IDX_DST_RSS | /* dest */
  542. RT_IDX_TYPE_NICQ | /* type */
  543. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  544. break;
  545. }
  546. case 0: /* Clear the E-bit on an entry. */
  547. {
  548. value = RT_IDX_DST_DFLT_Q | /* dest */
  549. RT_IDX_TYPE_NICQ | /* type */
  550. (index << RT_IDX_IDX_SHIFT);/* index */
  551. break;
  552. }
  553. default:
  554. netif_err(qdev, ifup, qdev->ndev,
  555. "Mask type %d not yet supported.\n", mask);
  556. status = -EPERM;
  557. goto exit;
  558. }
  559. if (value) {
  560. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  561. if (status)
  562. goto exit;
  563. value |= (enable ? RT_IDX_E : 0);
  564. ql_write32(qdev, RT_IDX, value);
  565. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  566. }
  567. exit:
  568. return status;
  569. }
  570. static void ql_enable_interrupts(struct ql_adapter *qdev)
  571. {
  572. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  573. }
  574. static void ql_disable_interrupts(struct ql_adapter *qdev)
  575. {
  576. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  577. }
  578. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  579. * Otherwise, we may have multiple outstanding workers and don't want to
  580. * enable until the last one finishes. In this case, the irq_cnt gets
  581. * incremented every time we queue a worker and decremented every time
  582. * a worker finishes. Once it hits zero we enable the interrupt.
  583. */
  584. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  585. {
  586. u32 var = 0;
  587. unsigned long hw_flags = 0;
  588. struct intr_context *ctx = qdev->intr_context + intr;
  589. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  590. /* Always enable if we're MSIX multi interrupts and
  591. * it's not the default (zeroeth) interrupt.
  592. */
  593. ql_write32(qdev, INTR_EN,
  594. ctx->intr_en_mask);
  595. var = ql_read32(qdev, STS);
  596. return var;
  597. }
  598. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  599. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  600. ql_write32(qdev, INTR_EN,
  601. ctx->intr_en_mask);
  602. var = ql_read32(qdev, STS);
  603. }
  604. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  605. return var;
  606. }
  607. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  608. {
  609. u32 var = 0;
  610. struct intr_context *ctx;
  611. /* HW disables for us if we're MSIX multi interrupts and
  612. * it's not the default (zeroeth) interrupt.
  613. */
  614. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  615. return 0;
  616. ctx = qdev->intr_context + intr;
  617. spin_lock(&qdev->hw_lock);
  618. if (!atomic_read(&ctx->irq_cnt)) {
  619. ql_write32(qdev, INTR_EN,
  620. ctx->intr_dis_mask);
  621. var = ql_read32(qdev, STS);
  622. }
  623. atomic_inc(&ctx->irq_cnt);
  624. spin_unlock(&qdev->hw_lock);
  625. return var;
  626. }
  627. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  628. {
  629. int i;
  630. for (i = 0; i < qdev->intr_count; i++) {
  631. /* The enable call does a atomic_dec_and_test
  632. * and enables only if the result is zero.
  633. * So we precharge it here.
  634. */
  635. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  636. i == 0))
  637. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  638. ql_enable_completion_interrupt(qdev, i);
  639. }
  640. }
  641. static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
  642. {
  643. int status, i;
  644. u16 csum = 0;
  645. __le16 *flash = (__le16 *)&qdev->flash;
  646. status = strncmp((char *)&qdev->flash, str, 4);
  647. if (status) {
  648. netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
  649. return status;
  650. }
  651. for (i = 0; i < size; i++)
  652. csum += le16_to_cpu(*flash++);
  653. if (csum)
  654. netif_err(qdev, ifup, qdev->ndev,
  655. "Invalid flash checksum, csum = 0x%.04x.\n", csum);
  656. return csum;
  657. }
  658. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  659. {
  660. int status = 0;
  661. /* wait for reg to come ready */
  662. status = ql_wait_reg_rdy(qdev,
  663. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  664. if (status)
  665. goto exit;
  666. /* set up for reg read */
  667. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  668. /* wait for reg to come ready */
  669. status = ql_wait_reg_rdy(qdev,
  670. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  671. if (status)
  672. goto exit;
  673. /* This data is stored on flash as an array of
  674. * __le32. Since ql_read32() returns cpu endian
  675. * we need to swap it back.
  676. */
  677. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  678. exit:
  679. return status;
  680. }
  681. static int ql_get_8000_flash_params(struct ql_adapter *qdev)
  682. {
  683. u32 i, size;
  684. int status;
  685. __le32 *p = (__le32 *)&qdev->flash;
  686. u32 offset;
  687. u8 mac_addr[6];
  688. /* Get flash offset for function and adjust
  689. * for dword access.
  690. */
  691. if (!qdev->port)
  692. offset = FUNC0_FLASH_OFFSET / sizeof(u32);
  693. else
  694. offset = FUNC1_FLASH_OFFSET / sizeof(u32);
  695. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  696. return -ETIMEDOUT;
  697. size = sizeof(struct flash_params_8000) / sizeof(u32);
  698. for (i = 0; i < size; i++, p++) {
  699. status = ql_read_flash_word(qdev, i+offset, p);
  700. if (status) {
  701. netif_err(qdev, ifup, qdev->ndev,
  702. "Error reading flash.\n");
  703. goto exit;
  704. }
  705. }
  706. status = ql_validate_flash(qdev,
  707. sizeof(struct flash_params_8000) / sizeof(u16),
  708. "8000");
  709. if (status) {
  710. netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
  711. status = -EINVAL;
  712. goto exit;
  713. }
  714. /* Extract either manufacturer or BOFM modified
  715. * MAC address.
  716. */
  717. if (qdev->flash.flash_params_8000.data_type1 == 2)
  718. memcpy(mac_addr,
  719. qdev->flash.flash_params_8000.mac_addr1,
  720. qdev->ndev->addr_len);
  721. else
  722. memcpy(mac_addr,
  723. qdev->flash.flash_params_8000.mac_addr,
  724. qdev->ndev->addr_len);
  725. if (!is_valid_ether_addr(mac_addr)) {
  726. netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
  727. status = -EINVAL;
  728. goto exit;
  729. }
  730. memcpy(qdev->ndev->dev_addr,
  731. mac_addr,
  732. qdev->ndev->addr_len);
  733. exit:
  734. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  735. return status;
  736. }
  737. static int ql_get_8012_flash_params(struct ql_adapter *qdev)
  738. {
  739. int i;
  740. int status;
  741. __le32 *p = (__le32 *)&qdev->flash;
  742. u32 offset = 0;
  743. u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
  744. /* Second function's parameters follow the first
  745. * function's.
  746. */
  747. if (qdev->port)
  748. offset = size;
  749. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  750. return -ETIMEDOUT;
  751. for (i = 0; i < size; i++, p++) {
  752. status = ql_read_flash_word(qdev, i+offset, p);
  753. if (status) {
  754. netif_err(qdev, ifup, qdev->ndev,
  755. "Error reading flash.\n");
  756. goto exit;
  757. }
  758. }
  759. status = ql_validate_flash(qdev,
  760. sizeof(struct flash_params_8012) / sizeof(u16),
  761. "8012");
  762. if (status) {
  763. netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
  764. status = -EINVAL;
  765. goto exit;
  766. }
  767. if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
  768. status = -EINVAL;
  769. goto exit;
  770. }
  771. memcpy(qdev->ndev->dev_addr,
  772. qdev->flash.flash_params_8012.mac_addr,
  773. qdev->ndev->addr_len);
  774. exit:
  775. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  776. return status;
  777. }
  778. /* xgmac register are located behind the xgmac_addr and xgmac_data
  779. * register pair. Each read/write requires us to wait for the ready
  780. * bit before reading/writing the data.
  781. */
  782. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  783. {
  784. int status;
  785. /* wait for reg to come ready */
  786. status = ql_wait_reg_rdy(qdev,
  787. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  788. if (status)
  789. return status;
  790. /* write the data to the data reg */
  791. ql_write32(qdev, XGMAC_DATA, data);
  792. /* trigger the write */
  793. ql_write32(qdev, XGMAC_ADDR, reg);
  794. return status;
  795. }
  796. /* xgmac register are located behind the xgmac_addr and xgmac_data
  797. * register pair. Each read/write requires us to wait for the ready
  798. * bit before reading/writing the data.
  799. */
  800. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  801. {
  802. int status = 0;
  803. /* wait for reg to come ready */
  804. status = ql_wait_reg_rdy(qdev,
  805. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  806. if (status)
  807. goto exit;
  808. /* set up for reg read */
  809. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  810. /* wait for reg to come ready */
  811. status = ql_wait_reg_rdy(qdev,
  812. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  813. if (status)
  814. goto exit;
  815. /* get the data */
  816. *data = ql_read32(qdev, XGMAC_DATA);
  817. exit:
  818. return status;
  819. }
  820. /* This is used for reading the 64-bit statistics regs. */
  821. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  822. {
  823. int status = 0;
  824. u32 hi = 0;
  825. u32 lo = 0;
  826. status = ql_read_xgmac_reg(qdev, reg, &lo);
  827. if (status)
  828. goto exit;
  829. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  830. if (status)
  831. goto exit;
  832. *data = (u64) lo | ((u64) hi << 32);
  833. exit:
  834. return status;
  835. }
  836. static int ql_8000_port_initialize(struct ql_adapter *qdev)
  837. {
  838. int status;
  839. /*
  840. * Get MPI firmware version for driver banner
  841. * and ethool info.
  842. */
  843. status = ql_mb_about_fw(qdev);
  844. if (status)
  845. goto exit;
  846. status = ql_mb_get_fw_state(qdev);
  847. if (status)
  848. goto exit;
  849. /* Wake up a worker to get/set the TX/RX frame sizes. */
  850. queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
  851. exit:
  852. return status;
  853. }
  854. /* Take the MAC Core out of reset.
  855. * Enable statistics counting.
  856. * Take the transmitter/receiver out of reset.
  857. * This functionality may be done in the MPI firmware at a
  858. * later date.
  859. */
  860. static int ql_8012_port_initialize(struct ql_adapter *qdev)
  861. {
  862. int status = 0;
  863. u32 data;
  864. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  865. /* Another function has the semaphore, so
  866. * wait for the port init bit to come ready.
  867. */
  868. netif_info(qdev, link, qdev->ndev,
  869. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  870. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  871. if (status) {
  872. netif_crit(qdev, link, qdev->ndev,
  873. "Port initialize timed out.\n");
  874. }
  875. return status;
  876. }
  877. netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
  878. /* Set the core reset. */
  879. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  880. if (status)
  881. goto end;
  882. data |= GLOBAL_CFG_RESET;
  883. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  884. if (status)
  885. goto end;
  886. /* Clear the core reset and turn on jumbo for receiver. */
  887. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  888. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  889. data |= GLOBAL_CFG_TX_STAT_EN;
  890. data |= GLOBAL_CFG_RX_STAT_EN;
  891. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  892. if (status)
  893. goto end;
  894. /* Enable transmitter, and clear it's reset. */
  895. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  896. if (status)
  897. goto end;
  898. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  899. data |= TX_CFG_EN; /* Enable the transmitter. */
  900. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  901. if (status)
  902. goto end;
  903. /* Enable receiver and clear it's reset. */
  904. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  905. if (status)
  906. goto end;
  907. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  908. data |= RX_CFG_EN; /* Enable the receiver. */
  909. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  910. if (status)
  911. goto end;
  912. /* Turn on jumbo. */
  913. status =
  914. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  915. if (status)
  916. goto end;
  917. status =
  918. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  919. if (status)
  920. goto end;
  921. /* Signal to the world that the port is enabled. */
  922. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  923. end:
  924. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  925. return status;
  926. }
  927. static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
  928. {
  929. return PAGE_SIZE << qdev->lbq_buf_order;
  930. }
  931. /* Get the next large buffer. */
  932. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  933. {
  934. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  935. rx_ring->lbq_curr_idx++;
  936. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  937. rx_ring->lbq_curr_idx = 0;
  938. rx_ring->lbq_free_cnt++;
  939. return lbq_desc;
  940. }
  941. static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
  942. struct rx_ring *rx_ring)
  943. {
  944. struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
  945. pci_dma_sync_single_for_cpu(qdev->pdev,
  946. dma_unmap_addr(lbq_desc, mapaddr),
  947. rx_ring->lbq_buf_size,
  948. PCI_DMA_FROMDEVICE);
  949. /* If it's the last chunk of our master page then
  950. * we unmap it.
  951. */
  952. if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
  953. == ql_lbq_block_size(qdev))
  954. pci_unmap_page(qdev->pdev,
  955. lbq_desc->p.pg_chunk.map,
  956. ql_lbq_block_size(qdev),
  957. PCI_DMA_FROMDEVICE);
  958. return lbq_desc;
  959. }
  960. /* Get the next small buffer. */
  961. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  962. {
  963. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  964. rx_ring->sbq_curr_idx++;
  965. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  966. rx_ring->sbq_curr_idx = 0;
  967. rx_ring->sbq_free_cnt++;
  968. return sbq_desc;
  969. }
  970. /* Update an rx ring index. */
  971. static void ql_update_cq(struct rx_ring *rx_ring)
  972. {
  973. rx_ring->cnsmr_idx++;
  974. rx_ring->curr_entry++;
  975. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  976. rx_ring->cnsmr_idx = 0;
  977. rx_ring->curr_entry = rx_ring->cq_base;
  978. }
  979. }
  980. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  981. {
  982. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  983. }
  984. static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
  985. struct bq_desc *lbq_desc)
  986. {
  987. if (!rx_ring->pg_chunk.page) {
  988. u64 map;
  989. rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
  990. GFP_ATOMIC,
  991. qdev->lbq_buf_order);
  992. if (unlikely(!rx_ring->pg_chunk.page)) {
  993. netif_err(qdev, drv, qdev->ndev,
  994. "page allocation failed.\n");
  995. return -ENOMEM;
  996. }
  997. rx_ring->pg_chunk.offset = 0;
  998. map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
  999. 0, ql_lbq_block_size(qdev),
  1000. PCI_DMA_FROMDEVICE);
  1001. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1002. __free_pages(rx_ring->pg_chunk.page,
  1003. qdev->lbq_buf_order);
  1004. netif_err(qdev, drv, qdev->ndev,
  1005. "PCI mapping failed.\n");
  1006. return -ENOMEM;
  1007. }
  1008. rx_ring->pg_chunk.map = map;
  1009. rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
  1010. }
  1011. /* Copy the current master pg_chunk info
  1012. * to the current descriptor.
  1013. */
  1014. lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
  1015. /* Adjust the master page chunk for next
  1016. * buffer get.
  1017. */
  1018. rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
  1019. if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
  1020. rx_ring->pg_chunk.page = NULL;
  1021. lbq_desc->p.pg_chunk.last_flag = 1;
  1022. } else {
  1023. rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
  1024. get_page(rx_ring->pg_chunk.page);
  1025. lbq_desc->p.pg_chunk.last_flag = 0;
  1026. }
  1027. return 0;
  1028. }
  1029. /* Process (refill) a large buffer queue. */
  1030. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1031. {
  1032. u32 clean_idx = rx_ring->lbq_clean_idx;
  1033. u32 start_idx = clean_idx;
  1034. struct bq_desc *lbq_desc;
  1035. u64 map;
  1036. int i;
  1037. while (rx_ring->lbq_free_cnt > 32) {
  1038. for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
  1039. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1040. "lbq: try cleaning clean_idx = %d.\n",
  1041. clean_idx);
  1042. lbq_desc = &rx_ring->lbq[clean_idx];
  1043. if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
  1044. rx_ring->lbq_clean_idx = clean_idx;
  1045. netif_err(qdev, ifup, qdev->ndev,
  1046. "Could not get a page chunk, i=%d, clean_idx =%d .\n",
  1047. i, clean_idx);
  1048. return;
  1049. }
  1050. map = lbq_desc->p.pg_chunk.map +
  1051. lbq_desc->p.pg_chunk.offset;
  1052. dma_unmap_addr_set(lbq_desc, mapaddr, map);
  1053. dma_unmap_len_set(lbq_desc, maplen,
  1054. rx_ring->lbq_buf_size);
  1055. *lbq_desc->addr = cpu_to_le64(map);
  1056. pci_dma_sync_single_for_device(qdev->pdev, map,
  1057. rx_ring->lbq_buf_size,
  1058. PCI_DMA_FROMDEVICE);
  1059. clean_idx++;
  1060. if (clean_idx == rx_ring->lbq_len)
  1061. clean_idx = 0;
  1062. }
  1063. rx_ring->lbq_clean_idx = clean_idx;
  1064. rx_ring->lbq_prod_idx += 16;
  1065. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  1066. rx_ring->lbq_prod_idx = 0;
  1067. rx_ring->lbq_free_cnt -= 16;
  1068. }
  1069. if (start_idx != clean_idx) {
  1070. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1071. "lbq: updating prod idx = %d.\n",
  1072. rx_ring->lbq_prod_idx);
  1073. ql_write_db_reg(rx_ring->lbq_prod_idx,
  1074. rx_ring->lbq_prod_idx_db_reg);
  1075. }
  1076. }
  1077. /* Process (refill) a small buffer queue. */
  1078. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1079. {
  1080. u32 clean_idx = rx_ring->sbq_clean_idx;
  1081. u32 start_idx = clean_idx;
  1082. struct bq_desc *sbq_desc;
  1083. u64 map;
  1084. int i;
  1085. while (rx_ring->sbq_free_cnt > 16) {
  1086. for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
  1087. sbq_desc = &rx_ring->sbq[clean_idx];
  1088. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1089. "sbq: try cleaning clean_idx = %d.\n",
  1090. clean_idx);
  1091. if (sbq_desc->p.skb == NULL) {
  1092. netif_printk(qdev, rx_status, KERN_DEBUG,
  1093. qdev->ndev,
  1094. "sbq: getting new skb for index %d.\n",
  1095. sbq_desc->index);
  1096. sbq_desc->p.skb =
  1097. netdev_alloc_skb(qdev->ndev,
  1098. SMALL_BUFFER_SIZE);
  1099. if (sbq_desc->p.skb == NULL) {
  1100. netif_err(qdev, probe, qdev->ndev,
  1101. "Couldn't get an skb.\n");
  1102. rx_ring->sbq_clean_idx = clean_idx;
  1103. return;
  1104. }
  1105. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  1106. map = pci_map_single(qdev->pdev,
  1107. sbq_desc->p.skb->data,
  1108. rx_ring->sbq_buf_size,
  1109. PCI_DMA_FROMDEVICE);
  1110. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1111. netif_err(qdev, ifup, qdev->ndev,
  1112. "PCI mapping failed.\n");
  1113. rx_ring->sbq_clean_idx = clean_idx;
  1114. dev_kfree_skb_any(sbq_desc->p.skb);
  1115. sbq_desc->p.skb = NULL;
  1116. return;
  1117. }
  1118. dma_unmap_addr_set(sbq_desc, mapaddr, map);
  1119. dma_unmap_len_set(sbq_desc, maplen,
  1120. rx_ring->sbq_buf_size);
  1121. *sbq_desc->addr = cpu_to_le64(map);
  1122. }
  1123. clean_idx++;
  1124. if (clean_idx == rx_ring->sbq_len)
  1125. clean_idx = 0;
  1126. }
  1127. rx_ring->sbq_clean_idx = clean_idx;
  1128. rx_ring->sbq_prod_idx += 16;
  1129. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  1130. rx_ring->sbq_prod_idx = 0;
  1131. rx_ring->sbq_free_cnt -= 16;
  1132. }
  1133. if (start_idx != clean_idx) {
  1134. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1135. "sbq: updating prod idx = %d.\n",
  1136. rx_ring->sbq_prod_idx);
  1137. ql_write_db_reg(rx_ring->sbq_prod_idx,
  1138. rx_ring->sbq_prod_idx_db_reg);
  1139. }
  1140. }
  1141. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  1142. struct rx_ring *rx_ring)
  1143. {
  1144. ql_update_sbq(qdev, rx_ring);
  1145. ql_update_lbq(qdev, rx_ring);
  1146. }
  1147. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  1148. * fails at some stage, or from the interrupt when a tx completes.
  1149. */
  1150. static void ql_unmap_send(struct ql_adapter *qdev,
  1151. struct tx_ring_desc *tx_ring_desc, int mapped)
  1152. {
  1153. int i;
  1154. for (i = 0; i < mapped; i++) {
  1155. if (i == 0 || (i == 7 && mapped > 7)) {
  1156. /*
  1157. * Unmap the skb->data area, or the
  1158. * external sglist (AKA the Outbound
  1159. * Address List (OAL)).
  1160. * If its the zeroeth element, then it's
  1161. * the skb->data area. If it's the 7th
  1162. * element and there is more than 6 frags,
  1163. * then its an OAL.
  1164. */
  1165. if (i == 7) {
  1166. netif_printk(qdev, tx_done, KERN_DEBUG,
  1167. qdev->ndev,
  1168. "unmapping OAL area.\n");
  1169. }
  1170. pci_unmap_single(qdev->pdev,
  1171. dma_unmap_addr(&tx_ring_desc->map[i],
  1172. mapaddr),
  1173. dma_unmap_len(&tx_ring_desc->map[i],
  1174. maplen),
  1175. PCI_DMA_TODEVICE);
  1176. } else {
  1177. netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
  1178. "unmapping frag %d.\n", i);
  1179. pci_unmap_page(qdev->pdev,
  1180. dma_unmap_addr(&tx_ring_desc->map[i],
  1181. mapaddr),
  1182. dma_unmap_len(&tx_ring_desc->map[i],
  1183. maplen), PCI_DMA_TODEVICE);
  1184. }
  1185. }
  1186. }
  1187. /* Map the buffers for this transmit. This will return
  1188. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1189. */
  1190. static int ql_map_send(struct ql_adapter *qdev,
  1191. struct ob_mac_iocb_req *mac_iocb_ptr,
  1192. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  1193. {
  1194. int len = skb_headlen(skb);
  1195. dma_addr_t map;
  1196. int frag_idx, err, map_idx = 0;
  1197. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  1198. int frag_cnt = skb_shinfo(skb)->nr_frags;
  1199. if (frag_cnt) {
  1200. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  1201. "frag_cnt = %d.\n", frag_cnt);
  1202. }
  1203. /*
  1204. * Map the skb buffer first.
  1205. */
  1206. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1207. err = pci_dma_mapping_error(qdev->pdev, map);
  1208. if (err) {
  1209. netif_err(qdev, tx_queued, qdev->ndev,
  1210. "PCI mapping failed with error: %d\n", err);
  1211. return NETDEV_TX_BUSY;
  1212. }
  1213. tbd->len = cpu_to_le32(len);
  1214. tbd->addr = cpu_to_le64(map);
  1215. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1216. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  1217. map_idx++;
  1218. /*
  1219. * This loop fills the remainder of the 8 address descriptors
  1220. * in the IOCB. If there are more than 7 fragments, then the
  1221. * eighth address desc will point to an external list (OAL).
  1222. * When this happens, the remainder of the frags will be stored
  1223. * in this list.
  1224. */
  1225. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  1226. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1227. tbd++;
  1228. if (frag_idx == 6 && frag_cnt > 7) {
  1229. /* Let's tack on an sglist.
  1230. * Our control block will now
  1231. * look like this:
  1232. * iocb->seg[0] = skb->data
  1233. * iocb->seg[1] = frag[0]
  1234. * iocb->seg[2] = frag[1]
  1235. * iocb->seg[3] = frag[2]
  1236. * iocb->seg[4] = frag[3]
  1237. * iocb->seg[5] = frag[4]
  1238. * iocb->seg[6] = frag[5]
  1239. * iocb->seg[7] = ptr to OAL (external sglist)
  1240. * oal->seg[0] = frag[6]
  1241. * oal->seg[1] = frag[7]
  1242. * oal->seg[2] = frag[8]
  1243. * oal->seg[3] = frag[9]
  1244. * oal->seg[4] = frag[10]
  1245. * etc...
  1246. */
  1247. /* Tack on the OAL in the eighth segment of IOCB. */
  1248. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1249. sizeof(struct oal),
  1250. PCI_DMA_TODEVICE);
  1251. err = pci_dma_mapping_error(qdev->pdev, map);
  1252. if (err) {
  1253. netif_err(qdev, tx_queued, qdev->ndev,
  1254. "PCI mapping outbound address list with error: %d\n",
  1255. err);
  1256. goto map_error;
  1257. }
  1258. tbd->addr = cpu_to_le64(map);
  1259. /*
  1260. * The length is the number of fragments
  1261. * that remain to be mapped times the length
  1262. * of our sglist (OAL).
  1263. */
  1264. tbd->len =
  1265. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1266. (frag_cnt - frag_idx)) | TX_DESC_C);
  1267. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1268. map);
  1269. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1270. sizeof(struct oal));
  1271. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1272. map_idx++;
  1273. }
  1274. map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
  1275. DMA_TO_DEVICE);
  1276. err = dma_mapping_error(&qdev->pdev->dev, map);
  1277. if (err) {
  1278. netif_err(qdev, tx_queued, qdev->ndev,
  1279. "PCI mapping frags failed with error: %d.\n",
  1280. err);
  1281. goto map_error;
  1282. }
  1283. tbd->addr = cpu_to_le64(map);
  1284. tbd->len = cpu_to_le32(skb_frag_size(frag));
  1285. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1286. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1287. skb_frag_size(frag));
  1288. }
  1289. /* Save the number of segments we've mapped. */
  1290. tx_ring_desc->map_cnt = map_idx;
  1291. /* Terminate the last segment. */
  1292. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1293. return NETDEV_TX_OK;
  1294. map_error:
  1295. /*
  1296. * If the first frag mapping failed, then i will be zero.
  1297. * This causes the unmap of the skb->data area. Otherwise
  1298. * we pass in the number of frags that mapped successfully
  1299. * so they can be umapped.
  1300. */
  1301. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1302. return NETDEV_TX_BUSY;
  1303. }
  1304. /* Categorizing receive firmware frame errors */
  1305. static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err)
  1306. {
  1307. struct nic_stats *stats = &qdev->nic_stats;
  1308. stats->rx_err_count++;
  1309. switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
  1310. case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
  1311. stats->rx_code_err++;
  1312. break;
  1313. case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
  1314. stats->rx_oversize_err++;
  1315. break;
  1316. case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
  1317. stats->rx_undersize_err++;
  1318. break;
  1319. case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
  1320. stats->rx_preamble_err++;
  1321. break;
  1322. case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
  1323. stats->rx_frame_len_err++;
  1324. break;
  1325. case IB_MAC_IOCB_RSP_ERR_CRC:
  1326. stats->rx_crc_err++;
  1327. default:
  1328. break;
  1329. }
  1330. }
  1331. /* Process an inbound completion from an rx ring. */
  1332. static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
  1333. struct rx_ring *rx_ring,
  1334. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1335. u32 length,
  1336. u16 vlan_id)
  1337. {
  1338. struct sk_buff *skb;
  1339. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1340. struct napi_struct *napi = &rx_ring->napi;
  1341. napi->dev = qdev->ndev;
  1342. skb = napi_get_frags(napi);
  1343. if (!skb) {
  1344. netif_err(qdev, drv, qdev->ndev,
  1345. "Couldn't get an skb, exiting.\n");
  1346. rx_ring->rx_dropped++;
  1347. put_page(lbq_desc->p.pg_chunk.page);
  1348. return;
  1349. }
  1350. prefetch(lbq_desc->p.pg_chunk.va);
  1351. __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
  1352. lbq_desc->p.pg_chunk.page,
  1353. lbq_desc->p.pg_chunk.offset,
  1354. length);
  1355. skb->len += length;
  1356. skb->data_len += length;
  1357. skb->truesize += length;
  1358. skb_shinfo(skb)->nr_frags++;
  1359. rx_ring->rx_packets++;
  1360. rx_ring->rx_bytes += length;
  1361. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1362. skb_record_rx_queue(skb, rx_ring->cq_id);
  1363. if (vlan_id != 0xffff)
  1364. __vlan_hwaccel_put_tag(skb, vlan_id);
  1365. napi_gro_frags(napi);
  1366. }
  1367. /* Process an inbound completion from an rx ring. */
  1368. static void ql_process_mac_rx_page(struct ql_adapter *qdev,
  1369. struct rx_ring *rx_ring,
  1370. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1371. u32 length,
  1372. u16 vlan_id)
  1373. {
  1374. struct net_device *ndev = qdev->ndev;
  1375. struct sk_buff *skb = NULL;
  1376. void *addr;
  1377. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1378. struct napi_struct *napi = &rx_ring->napi;
  1379. skb = netdev_alloc_skb(ndev, length);
  1380. if (!skb) {
  1381. netif_err(qdev, drv, qdev->ndev,
  1382. "Couldn't get an skb, need to unwind!.\n");
  1383. rx_ring->rx_dropped++;
  1384. put_page(lbq_desc->p.pg_chunk.page);
  1385. return;
  1386. }
  1387. addr = lbq_desc->p.pg_chunk.va;
  1388. prefetch(addr);
  1389. /* The max framesize filter on this chip is set higher than
  1390. * MTU since FCoE uses 2k frames.
  1391. */
  1392. if (skb->len > ndev->mtu + ETH_HLEN) {
  1393. netif_err(qdev, drv, qdev->ndev,
  1394. "Segment too small, dropping.\n");
  1395. rx_ring->rx_dropped++;
  1396. goto err_out;
  1397. }
  1398. memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
  1399. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1400. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
  1401. length);
  1402. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1403. lbq_desc->p.pg_chunk.offset+ETH_HLEN,
  1404. length-ETH_HLEN);
  1405. skb->len += length-ETH_HLEN;
  1406. skb->data_len += length-ETH_HLEN;
  1407. skb->truesize += length-ETH_HLEN;
  1408. rx_ring->rx_packets++;
  1409. rx_ring->rx_bytes += skb->len;
  1410. skb->protocol = eth_type_trans(skb, ndev);
  1411. skb_checksum_none_assert(skb);
  1412. if ((ndev->features & NETIF_F_RXCSUM) &&
  1413. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1414. /* TCP frame. */
  1415. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1416. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1417. "TCP checksum done!\n");
  1418. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1419. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1420. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1421. /* Unfragmented ipv4 UDP frame. */
  1422. struct iphdr *iph =
  1423. (struct iphdr *) ((u8 *)addr + ETH_HLEN);
  1424. if (!(iph->frag_off &
  1425. htons(IP_MF|IP_OFFSET))) {
  1426. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1427. netif_printk(qdev, rx_status, KERN_DEBUG,
  1428. qdev->ndev,
  1429. "UDP checksum done!\n");
  1430. }
  1431. }
  1432. }
  1433. skb_record_rx_queue(skb, rx_ring->cq_id);
  1434. if (vlan_id != 0xffff)
  1435. __vlan_hwaccel_put_tag(skb, vlan_id);
  1436. if (skb->ip_summed == CHECKSUM_UNNECESSARY)
  1437. napi_gro_receive(napi, skb);
  1438. else
  1439. netif_receive_skb(skb);
  1440. return;
  1441. err_out:
  1442. dev_kfree_skb_any(skb);
  1443. put_page(lbq_desc->p.pg_chunk.page);
  1444. }
  1445. /* Process an inbound completion from an rx ring. */
  1446. static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
  1447. struct rx_ring *rx_ring,
  1448. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1449. u32 length,
  1450. u16 vlan_id)
  1451. {
  1452. struct net_device *ndev = qdev->ndev;
  1453. struct sk_buff *skb = NULL;
  1454. struct sk_buff *new_skb = NULL;
  1455. struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
  1456. skb = sbq_desc->p.skb;
  1457. /* Allocate new_skb and copy */
  1458. new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
  1459. if (new_skb == NULL) {
  1460. netif_err(qdev, probe, qdev->ndev,
  1461. "No skb available, drop the packet.\n");
  1462. rx_ring->rx_dropped++;
  1463. return;
  1464. }
  1465. skb_reserve(new_skb, NET_IP_ALIGN);
  1466. memcpy(skb_put(new_skb, length), skb->data, length);
  1467. skb = new_skb;
  1468. /* loopback self test for ethtool */
  1469. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1470. ql_check_lb_frame(qdev, skb);
  1471. dev_kfree_skb_any(skb);
  1472. return;
  1473. }
  1474. /* The max framesize filter on this chip is set higher than
  1475. * MTU since FCoE uses 2k frames.
  1476. */
  1477. if (skb->len > ndev->mtu + ETH_HLEN) {
  1478. dev_kfree_skb_any(skb);
  1479. rx_ring->rx_dropped++;
  1480. return;
  1481. }
  1482. prefetch(skb->data);
  1483. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1484. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1485. "%s Multicast.\n",
  1486. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1487. IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
  1488. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1489. IB_MAC_IOCB_RSP_M_REG ? "Registered" :
  1490. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1491. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1492. }
  1493. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
  1494. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1495. "Promiscuous Packet.\n");
  1496. rx_ring->rx_packets++;
  1497. rx_ring->rx_bytes += skb->len;
  1498. skb->protocol = eth_type_trans(skb, ndev);
  1499. skb_checksum_none_assert(skb);
  1500. /* If rx checksum is on, and there are no
  1501. * csum or frame errors.
  1502. */
  1503. if ((ndev->features & NETIF_F_RXCSUM) &&
  1504. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1505. /* TCP frame. */
  1506. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1507. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1508. "TCP checksum done!\n");
  1509. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1510. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1511. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1512. /* Unfragmented ipv4 UDP frame. */
  1513. struct iphdr *iph = (struct iphdr *) skb->data;
  1514. if (!(iph->frag_off &
  1515. htons(IP_MF|IP_OFFSET))) {
  1516. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1517. netif_printk(qdev, rx_status, KERN_DEBUG,
  1518. qdev->ndev,
  1519. "UDP checksum done!\n");
  1520. }
  1521. }
  1522. }
  1523. skb_record_rx_queue(skb, rx_ring->cq_id);
  1524. if (vlan_id != 0xffff)
  1525. __vlan_hwaccel_put_tag(skb, vlan_id);
  1526. if (skb->ip_summed == CHECKSUM_UNNECESSARY)
  1527. napi_gro_receive(&rx_ring->napi, skb);
  1528. else
  1529. netif_receive_skb(skb);
  1530. }
  1531. static void ql_realign_skb(struct sk_buff *skb, int len)
  1532. {
  1533. void *temp_addr = skb->data;
  1534. /* Undo the skb_reserve(skb,32) we did before
  1535. * giving to hardware, and realign data on
  1536. * a 2-byte boundary.
  1537. */
  1538. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1539. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1540. skb_copy_to_linear_data(skb, temp_addr,
  1541. (unsigned int)len);
  1542. }
  1543. /*
  1544. * This function builds an skb for the given inbound
  1545. * completion. It will be rewritten for readability in the near
  1546. * future, but for not it works well.
  1547. */
  1548. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1549. struct rx_ring *rx_ring,
  1550. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1551. {
  1552. struct bq_desc *lbq_desc;
  1553. struct bq_desc *sbq_desc;
  1554. struct sk_buff *skb = NULL;
  1555. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1556. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1557. /*
  1558. * Handle the header buffer if present.
  1559. */
  1560. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1561. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1562. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1563. "Header of %d bytes in small buffer.\n", hdr_len);
  1564. /*
  1565. * Headers fit nicely into a small buffer.
  1566. */
  1567. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1568. pci_unmap_single(qdev->pdev,
  1569. dma_unmap_addr(sbq_desc, mapaddr),
  1570. dma_unmap_len(sbq_desc, maplen),
  1571. PCI_DMA_FROMDEVICE);
  1572. skb = sbq_desc->p.skb;
  1573. ql_realign_skb(skb, hdr_len);
  1574. skb_put(skb, hdr_len);
  1575. sbq_desc->p.skb = NULL;
  1576. }
  1577. /*
  1578. * Handle the data buffer(s).
  1579. */
  1580. if (unlikely(!length)) { /* Is there data too? */
  1581. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1582. "No Data buffer in this packet.\n");
  1583. return skb;
  1584. }
  1585. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1586. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1587. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1588. "Headers in small, data of %d bytes in small, combine them.\n",
  1589. length);
  1590. /*
  1591. * Data is less than small buffer size so it's
  1592. * stuffed in a small buffer.
  1593. * For this case we append the data
  1594. * from the "data" small buffer to the "header" small
  1595. * buffer.
  1596. */
  1597. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1598. pci_dma_sync_single_for_cpu(qdev->pdev,
  1599. dma_unmap_addr
  1600. (sbq_desc, mapaddr),
  1601. dma_unmap_len
  1602. (sbq_desc, maplen),
  1603. PCI_DMA_FROMDEVICE);
  1604. memcpy(skb_put(skb, length),
  1605. sbq_desc->p.skb->data, length);
  1606. pci_dma_sync_single_for_device(qdev->pdev,
  1607. dma_unmap_addr
  1608. (sbq_desc,
  1609. mapaddr),
  1610. dma_unmap_len
  1611. (sbq_desc,
  1612. maplen),
  1613. PCI_DMA_FROMDEVICE);
  1614. } else {
  1615. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1616. "%d bytes in a single small buffer.\n",
  1617. length);
  1618. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1619. skb = sbq_desc->p.skb;
  1620. ql_realign_skb(skb, length);
  1621. skb_put(skb, length);
  1622. pci_unmap_single(qdev->pdev,
  1623. dma_unmap_addr(sbq_desc,
  1624. mapaddr),
  1625. dma_unmap_len(sbq_desc,
  1626. maplen),
  1627. PCI_DMA_FROMDEVICE);
  1628. sbq_desc->p.skb = NULL;
  1629. }
  1630. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1631. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1632. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1633. "Header in small, %d bytes in large. Chain large to small!\n",
  1634. length);
  1635. /*
  1636. * The data is in a single large buffer. We
  1637. * chain it to the header buffer's skb and let
  1638. * it rip.
  1639. */
  1640. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1641. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1642. "Chaining page at offset = %d, for %d bytes to skb.\n",
  1643. lbq_desc->p.pg_chunk.offset, length);
  1644. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1645. lbq_desc->p.pg_chunk.offset,
  1646. length);
  1647. skb->len += length;
  1648. skb->data_len += length;
  1649. skb->truesize += length;
  1650. } else {
  1651. /*
  1652. * The headers and data are in a single large buffer. We
  1653. * copy it to a new skb and let it go. This can happen with
  1654. * jumbo mtu on a non-TCP/UDP frame.
  1655. */
  1656. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1657. skb = netdev_alloc_skb(qdev->ndev, length);
  1658. if (skb == NULL) {
  1659. netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
  1660. "No skb available, drop the packet.\n");
  1661. return NULL;
  1662. }
  1663. pci_unmap_page(qdev->pdev,
  1664. dma_unmap_addr(lbq_desc,
  1665. mapaddr),
  1666. dma_unmap_len(lbq_desc, maplen),
  1667. PCI_DMA_FROMDEVICE);
  1668. skb_reserve(skb, NET_IP_ALIGN);
  1669. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1670. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
  1671. length);
  1672. skb_fill_page_desc(skb, 0,
  1673. lbq_desc->p.pg_chunk.page,
  1674. lbq_desc->p.pg_chunk.offset,
  1675. length);
  1676. skb->len += length;
  1677. skb->data_len += length;
  1678. skb->truesize += length;
  1679. length -= length;
  1680. __pskb_pull_tail(skb,
  1681. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1682. VLAN_ETH_HLEN : ETH_HLEN);
  1683. }
  1684. } else {
  1685. /*
  1686. * The data is in a chain of large buffers
  1687. * pointed to by a small buffer. We loop
  1688. * thru and chain them to the our small header
  1689. * buffer's skb.
  1690. * frags: There are 18 max frags and our small
  1691. * buffer will hold 32 of them. The thing is,
  1692. * we'll use 3 max for our 9000 byte jumbo
  1693. * frames. If the MTU goes up we could
  1694. * eventually be in trouble.
  1695. */
  1696. int size, i = 0;
  1697. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1698. pci_unmap_single(qdev->pdev,
  1699. dma_unmap_addr(sbq_desc, mapaddr),
  1700. dma_unmap_len(sbq_desc, maplen),
  1701. PCI_DMA_FROMDEVICE);
  1702. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1703. /*
  1704. * This is an non TCP/UDP IP frame, so
  1705. * the headers aren't split into a small
  1706. * buffer. We have to use the small buffer
  1707. * that contains our sg list as our skb to
  1708. * send upstairs. Copy the sg list here to
  1709. * a local buffer and use it to find the
  1710. * pages to chain.
  1711. */
  1712. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1713. "%d bytes of headers & data in chain of large.\n",
  1714. length);
  1715. skb = sbq_desc->p.skb;
  1716. sbq_desc->p.skb = NULL;
  1717. skb_reserve(skb, NET_IP_ALIGN);
  1718. }
  1719. while (length > 0) {
  1720. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1721. size = (length < rx_ring->lbq_buf_size) ? length :
  1722. rx_ring->lbq_buf_size;
  1723. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1724. "Adding page %d to skb for %d bytes.\n",
  1725. i, size);
  1726. skb_fill_page_desc(skb, i,
  1727. lbq_desc->p.pg_chunk.page,
  1728. lbq_desc->p.pg_chunk.offset,
  1729. size);
  1730. skb->len += size;
  1731. skb->data_len += size;
  1732. skb->truesize += size;
  1733. length -= size;
  1734. i++;
  1735. }
  1736. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1737. VLAN_ETH_HLEN : ETH_HLEN);
  1738. }
  1739. return skb;
  1740. }
  1741. /* Process an inbound completion from an rx ring. */
  1742. static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
  1743. struct rx_ring *rx_ring,
  1744. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1745. u16 vlan_id)
  1746. {
  1747. struct net_device *ndev = qdev->ndev;
  1748. struct sk_buff *skb = NULL;
  1749. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1750. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1751. if (unlikely(!skb)) {
  1752. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1753. "No skb available, drop packet.\n");
  1754. rx_ring->rx_dropped++;
  1755. return;
  1756. }
  1757. /* The max framesize filter on this chip is set higher than
  1758. * MTU since FCoE uses 2k frames.
  1759. */
  1760. if (skb->len > ndev->mtu + ETH_HLEN) {
  1761. dev_kfree_skb_any(skb);
  1762. rx_ring->rx_dropped++;
  1763. return;
  1764. }
  1765. /* loopback self test for ethtool */
  1766. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1767. ql_check_lb_frame(qdev, skb);
  1768. dev_kfree_skb_any(skb);
  1769. return;
  1770. }
  1771. prefetch(skb->data);
  1772. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1773. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
  1774. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1775. IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
  1776. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1777. IB_MAC_IOCB_RSP_M_REG ? "Registered" :
  1778. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1779. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1780. rx_ring->rx_multicast++;
  1781. }
  1782. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1783. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1784. "Promiscuous Packet.\n");
  1785. }
  1786. skb->protocol = eth_type_trans(skb, ndev);
  1787. skb_checksum_none_assert(skb);
  1788. /* If rx checksum is on, and there are no
  1789. * csum or frame errors.
  1790. */
  1791. if ((ndev->features & NETIF_F_RXCSUM) &&
  1792. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1793. /* TCP frame. */
  1794. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1795. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1796. "TCP checksum done!\n");
  1797. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1798. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1799. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1800. /* Unfragmented ipv4 UDP frame. */
  1801. struct iphdr *iph = (struct iphdr *) skb->data;
  1802. if (!(iph->frag_off &
  1803. htons(IP_MF|IP_OFFSET))) {
  1804. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1805. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1806. "TCP checksum done!\n");
  1807. }
  1808. }
  1809. }
  1810. rx_ring->rx_packets++;
  1811. rx_ring->rx_bytes += skb->len;
  1812. skb_record_rx_queue(skb, rx_ring->cq_id);
  1813. if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && (vlan_id != 0))
  1814. __vlan_hwaccel_put_tag(skb, vlan_id);
  1815. if (skb->ip_summed == CHECKSUM_UNNECESSARY)
  1816. napi_gro_receive(&rx_ring->napi, skb);
  1817. else
  1818. netif_receive_skb(skb);
  1819. }
  1820. /* Process an inbound completion from an rx ring. */
  1821. static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1822. struct rx_ring *rx_ring,
  1823. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1824. {
  1825. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1826. u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1827. ((le16_to_cpu(ib_mac_rsp->vlan_id) &
  1828. IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
  1829. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1830. /* Frame error, so drop the packet. */
  1831. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1832. ql_categorize_rx_err(qdev, ib_mac_rsp->flags2);
  1833. return (unsigned long)length;
  1834. }
  1835. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
  1836. /* The data and headers are split into
  1837. * separate buffers.
  1838. */
  1839. ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
  1840. vlan_id);
  1841. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1842. /* The data fit in a single small buffer.
  1843. * Allocate a new skb, copy the data and
  1844. * return the buffer to the free pool.
  1845. */
  1846. ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
  1847. length, vlan_id);
  1848. } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
  1849. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
  1850. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
  1851. /* TCP packet in a page chunk that's been checksummed.
  1852. * Tack it on to our GRO skb and let it go.
  1853. */
  1854. ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
  1855. length, vlan_id);
  1856. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1857. /* Non-TCP packet in a page chunk. Allocate an
  1858. * skb, tack it on frags, and send it up.
  1859. */
  1860. ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
  1861. length, vlan_id);
  1862. } else {
  1863. /* Non-TCP/UDP large frames that span multiple buffers
  1864. * can be processed corrrectly by the split frame logic.
  1865. */
  1866. ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
  1867. vlan_id);
  1868. }
  1869. return (unsigned long)length;
  1870. }
  1871. /* Process an outbound completion from an rx ring. */
  1872. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1873. struct ob_mac_iocb_rsp *mac_rsp)
  1874. {
  1875. struct tx_ring *tx_ring;
  1876. struct tx_ring_desc *tx_ring_desc;
  1877. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1878. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1879. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1880. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1881. tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
  1882. tx_ring->tx_packets++;
  1883. dev_kfree_skb(tx_ring_desc->skb);
  1884. tx_ring_desc->skb = NULL;
  1885. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1886. OB_MAC_IOCB_RSP_S |
  1887. OB_MAC_IOCB_RSP_L |
  1888. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1889. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1890. netif_warn(qdev, tx_done, qdev->ndev,
  1891. "Total descriptor length did not match transfer length.\n");
  1892. }
  1893. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1894. netif_warn(qdev, tx_done, qdev->ndev,
  1895. "Frame too short to be valid, not sent.\n");
  1896. }
  1897. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1898. netif_warn(qdev, tx_done, qdev->ndev,
  1899. "Frame too long, but sent anyway.\n");
  1900. }
  1901. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1902. netif_warn(qdev, tx_done, qdev->ndev,
  1903. "PCI backplane error. Frame not sent.\n");
  1904. }
  1905. }
  1906. atomic_inc(&tx_ring->tx_count);
  1907. }
  1908. /* Fire up a handler to reset the MPI processor. */
  1909. void ql_queue_fw_error(struct ql_adapter *qdev)
  1910. {
  1911. ql_link_off(qdev);
  1912. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1913. }
  1914. void ql_queue_asic_error(struct ql_adapter *qdev)
  1915. {
  1916. ql_link_off(qdev);
  1917. ql_disable_interrupts(qdev);
  1918. /* Clear adapter up bit to signal the recovery
  1919. * process that it shouldn't kill the reset worker
  1920. * thread
  1921. */
  1922. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1923. /* Set asic recovery bit to indicate reset process that we are
  1924. * in fatal error recovery process rather than normal close
  1925. */
  1926. set_bit(QL_ASIC_RECOVERY, &qdev->flags);
  1927. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1928. }
  1929. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1930. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1931. {
  1932. switch (ib_ae_rsp->event) {
  1933. case MGMT_ERR_EVENT:
  1934. netif_err(qdev, rx_err, qdev->ndev,
  1935. "Management Processor Fatal Error.\n");
  1936. ql_queue_fw_error(qdev);
  1937. return;
  1938. case CAM_LOOKUP_ERR_EVENT:
  1939. netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
  1940. netdev_err(qdev->ndev, "This event shouldn't occur.\n");
  1941. ql_queue_asic_error(qdev);
  1942. return;
  1943. case SOFT_ECC_ERROR_EVENT:
  1944. netdev_err(qdev->ndev, "Soft ECC error detected.\n");
  1945. ql_queue_asic_error(qdev);
  1946. break;
  1947. case PCI_ERR_ANON_BUF_RD:
  1948. netdev_err(qdev->ndev, "PCI error occurred when reading "
  1949. "anonymous buffers from rx_ring %d.\n",
  1950. ib_ae_rsp->q_id);
  1951. ql_queue_asic_error(qdev);
  1952. break;
  1953. default:
  1954. netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
  1955. ib_ae_rsp->event);
  1956. ql_queue_asic_error(qdev);
  1957. break;
  1958. }
  1959. }
  1960. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1961. {
  1962. struct ql_adapter *qdev = rx_ring->qdev;
  1963. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1964. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1965. int count = 0;
  1966. struct tx_ring *tx_ring;
  1967. /* While there are entries in the completion queue. */
  1968. while (prod != rx_ring->cnsmr_idx) {
  1969. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1970. "cq_id = %d, prod = %d, cnsmr = %d.\n.",
  1971. rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
  1972. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1973. rmb();
  1974. switch (net_rsp->opcode) {
  1975. case OPCODE_OB_MAC_TSO_IOCB:
  1976. case OPCODE_OB_MAC_IOCB:
  1977. ql_process_mac_tx_intr(qdev, net_rsp);
  1978. break;
  1979. default:
  1980. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1981. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1982. net_rsp->opcode);
  1983. }
  1984. count++;
  1985. ql_update_cq(rx_ring);
  1986. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1987. }
  1988. if (!net_rsp)
  1989. return 0;
  1990. ql_write_cq_idx(rx_ring);
  1991. tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  1992. if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
  1993. if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  1994. /*
  1995. * The queue got stopped because the tx_ring was full.
  1996. * Wake it up, because it's now at least 25% empty.
  1997. */
  1998. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  1999. }
  2000. return count;
  2001. }
  2002. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  2003. {
  2004. struct ql_adapter *qdev = rx_ring->qdev;
  2005. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2006. struct ql_net_rsp_iocb *net_rsp;
  2007. int count = 0;
  2008. /* While there are entries in the completion queue. */
  2009. while (prod != rx_ring->cnsmr_idx) {
  2010. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2011. "cq_id = %d, prod = %d, cnsmr = %d.\n.",
  2012. rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
  2013. net_rsp = rx_ring->curr_entry;
  2014. rmb();
  2015. switch (net_rsp->opcode) {
  2016. case OPCODE_IB_MAC_IOCB:
  2017. ql_process_mac_rx_intr(qdev, rx_ring,
  2018. (struct ib_mac_iocb_rsp *)
  2019. net_rsp);
  2020. break;
  2021. case OPCODE_IB_AE_IOCB:
  2022. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  2023. net_rsp);
  2024. break;
  2025. default:
  2026. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2027. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  2028. net_rsp->opcode);
  2029. break;
  2030. }
  2031. count++;
  2032. ql_update_cq(rx_ring);
  2033. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2034. if (count == budget)
  2035. break;
  2036. }
  2037. ql_update_buffer_queues(qdev, rx_ring);
  2038. ql_write_cq_idx(rx_ring);
  2039. return count;
  2040. }
  2041. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  2042. {
  2043. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  2044. struct ql_adapter *qdev = rx_ring->qdev;
  2045. struct rx_ring *trx_ring;
  2046. int i, work_done = 0;
  2047. struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
  2048. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2049. "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
  2050. /* Service the TX rings first. They start
  2051. * right after the RSS rings. */
  2052. for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
  2053. trx_ring = &qdev->rx_ring[i];
  2054. /* If this TX completion ring belongs to this vector and
  2055. * it's not empty then service it.
  2056. */
  2057. if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
  2058. (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
  2059. trx_ring->cnsmr_idx)) {
  2060. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2061. "%s: Servicing TX completion ring %d.\n",
  2062. __func__, trx_ring->cq_id);
  2063. ql_clean_outbound_rx_ring(trx_ring);
  2064. }
  2065. }
  2066. /*
  2067. * Now service the RSS ring if it's active.
  2068. */
  2069. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  2070. rx_ring->cnsmr_idx) {
  2071. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2072. "%s: Servicing RX completion ring %d.\n",
  2073. __func__, rx_ring->cq_id);
  2074. work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  2075. }
  2076. if (work_done < budget) {
  2077. napi_complete(napi);
  2078. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  2079. }
  2080. return work_done;
  2081. }
  2082. static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
  2083. {
  2084. struct ql_adapter *qdev = netdev_priv(ndev);
  2085. if (features & NETIF_F_HW_VLAN_RX) {
  2086. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  2087. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  2088. } else {
  2089. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  2090. }
  2091. }
  2092. static netdev_features_t qlge_fix_features(struct net_device *ndev,
  2093. netdev_features_t features)
  2094. {
  2095. /*
  2096. * Since there is no support for separate rx/tx vlan accel
  2097. * enable/disable make sure tx flag is always in same state as rx.
  2098. */
  2099. if (features & NETIF_F_HW_VLAN_RX)
  2100. features |= NETIF_F_HW_VLAN_TX;
  2101. else
  2102. features &= ~NETIF_F_HW_VLAN_TX;
  2103. return features;
  2104. }
  2105. static int qlge_set_features(struct net_device *ndev,
  2106. netdev_features_t features)
  2107. {
  2108. netdev_features_t changed = ndev->features ^ features;
  2109. if (changed & NETIF_F_HW_VLAN_RX)
  2110. qlge_vlan_mode(ndev, features);
  2111. return 0;
  2112. }
  2113. static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
  2114. {
  2115. u32 enable_bit = MAC_ADDR_E;
  2116. int err;
  2117. err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
  2118. MAC_ADDR_TYPE_VLAN, vid);
  2119. if (err)
  2120. netif_err(qdev, ifup, qdev->ndev,
  2121. "Failed to init vlan address.\n");
  2122. return err;
  2123. }
  2124. static int qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  2125. {
  2126. struct ql_adapter *qdev = netdev_priv(ndev);
  2127. int status;
  2128. int err;
  2129. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2130. if (status)
  2131. return status;
  2132. err = __qlge_vlan_rx_add_vid(qdev, vid);
  2133. set_bit(vid, qdev->active_vlans);
  2134. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2135. return err;
  2136. }
  2137. static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
  2138. {
  2139. u32 enable_bit = 0;
  2140. int err;
  2141. err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
  2142. MAC_ADDR_TYPE_VLAN, vid);
  2143. if (err)
  2144. netif_err(qdev, ifup, qdev->ndev,
  2145. "Failed to clear vlan address.\n");
  2146. return err;
  2147. }
  2148. static int qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  2149. {
  2150. struct ql_adapter *qdev = netdev_priv(ndev);
  2151. int status;
  2152. int err;
  2153. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2154. if (status)
  2155. return status;
  2156. err = __qlge_vlan_rx_kill_vid(qdev, vid);
  2157. clear_bit(vid, qdev->active_vlans);
  2158. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2159. return err;
  2160. }
  2161. static void qlge_restore_vlan(struct ql_adapter *qdev)
  2162. {
  2163. int status;
  2164. u16 vid;
  2165. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2166. if (status)
  2167. return;
  2168. for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
  2169. __qlge_vlan_rx_add_vid(qdev, vid);
  2170. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2171. }
  2172. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  2173. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  2174. {
  2175. struct rx_ring *rx_ring = dev_id;
  2176. napi_schedule(&rx_ring->napi);
  2177. return IRQ_HANDLED;
  2178. }
  2179. /* This handles a fatal error, MPI activity, and the default
  2180. * rx_ring in an MSI-X multiple vector environment.
  2181. * In MSI/Legacy environment it also process the rest of
  2182. * the rx_rings.
  2183. */
  2184. static irqreturn_t qlge_isr(int irq, void *dev_id)
  2185. {
  2186. struct rx_ring *rx_ring = dev_id;
  2187. struct ql_adapter *qdev = rx_ring->qdev;
  2188. struct intr_context *intr_context = &qdev->intr_context[0];
  2189. u32 var;
  2190. int work_done = 0;
  2191. spin_lock(&qdev->hw_lock);
  2192. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  2193. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2194. "Shared Interrupt, Not ours!\n");
  2195. spin_unlock(&qdev->hw_lock);
  2196. return IRQ_NONE;
  2197. }
  2198. spin_unlock(&qdev->hw_lock);
  2199. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  2200. /*
  2201. * Check for fatal error.
  2202. */
  2203. if (var & STS_FE) {
  2204. ql_queue_asic_error(qdev);
  2205. netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
  2206. var = ql_read32(qdev, ERR_STS);
  2207. netdev_err(qdev->ndev, "Resetting chip. "
  2208. "Error Status Register = 0x%x\n", var);
  2209. return IRQ_HANDLED;
  2210. }
  2211. /*
  2212. * Check MPI processor activity.
  2213. */
  2214. if ((var & STS_PI) &&
  2215. (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
  2216. /*
  2217. * We've got an async event or mailbox completion.
  2218. * Handle it and clear the source of the interrupt.
  2219. */
  2220. netif_err(qdev, intr, qdev->ndev,
  2221. "Got MPI processor interrupt.\n");
  2222. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2223. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
  2224. queue_delayed_work_on(smp_processor_id(),
  2225. qdev->workqueue, &qdev->mpi_work, 0);
  2226. work_done++;
  2227. }
  2228. /*
  2229. * Get the bit-mask that shows the active queues for this
  2230. * pass. Compare it to the queues that this irq services
  2231. * and call napi if there's a match.
  2232. */
  2233. var = ql_read32(qdev, ISR1);
  2234. if (var & intr_context->irq_mask) {
  2235. netif_info(qdev, intr, qdev->ndev,
  2236. "Waking handler for rx_ring[0].\n");
  2237. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2238. napi_schedule(&rx_ring->napi);
  2239. work_done++;
  2240. }
  2241. ql_enable_completion_interrupt(qdev, intr_context->intr);
  2242. return work_done ? IRQ_HANDLED : IRQ_NONE;
  2243. }
  2244. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2245. {
  2246. if (skb_is_gso(skb)) {
  2247. int err;
  2248. if (skb_header_cloned(skb)) {
  2249. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  2250. if (err)
  2251. return err;
  2252. }
  2253. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2254. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  2255. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2256. mac_iocb_ptr->total_hdrs_len =
  2257. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  2258. mac_iocb_ptr->net_trans_offset =
  2259. cpu_to_le16(skb_network_offset(skb) |
  2260. skb_transport_offset(skb)
  2261. << OB_MAC_TRANSPORT_HDR_SHIFT);
  2262. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  2263. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  2264. if (likely(skb->protocol == htons(ETH_P_IP))) {
  2265. struct iphdr *iph = ip_hdr(skb);
  2266. iph->check = 0;
  2267. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2268. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  2269. iph->daddr, 0,
  2270. IPPROTO_TCP,
  2271. 0);
  2272. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  2273. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  2274. tcp_hdr(skb)->check =
  2275. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  2276. &ipv6_hdr(skb)->daddr,
  2277. 0, IPPROTO_TCP, 0);
  2278. }
  2279. return 1;
  2280. }
  2281. return 0;
  2282. }
  2283. static void ql_hw_csum_setup(struct sk_buff *skb,
  2284. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2285. {
  2286. int len;
  2287. struct iphdr *iph = ip_hdr(skb);
  2288. __sum16 *check;
  2289. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2290. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2291. mac_iocb_ptr->net_trans_offset =
  2292. cpu_to_le16(skb_network_offset(skb) |
  2293. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  2294. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2295. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  2296. if (likely(iph->protocol == IPPROTO_TCP)) {
  2297. check = &(tcp_hdr(skb)->check);
  2298. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  2299. mac_iocb_ptr->total_hdrs_len =
  2300. cpu_to_le16(skb_transport_offset(skb) +
  2301. (tcp_hdr(skb)->doff << 2));
  2302. } else {
  2303. check = &(udp_hdr(skb)->check);
  2304. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  2305. mac_iocb_ptr->total_hdrs_len =
  2306. cpu_to_le16(skb_transport_offset(skb) +
  2307. sizeof(struct udphdr));
  2308. }
  2309. *check = ~csum_tcpudp_magic(iph->saddr,
  2310. iph->daddr, len, iph->protocol, 0);
  2311. }
  2312. static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
  2313. {
  2314. struct tx_ring_desc *tx_ring_desc;
  2315. struct ob_mac_iocb_req *mac_iocb_ptr;
  2316. struct ql_adapter *qdev = netdev_priv(ndev);
  2317. int tso;
  2318. struct tx_ring *tx_ring;
  2319. u32 tx_ring_idx = (u32) skb->queue_mapping;
  2320. tx_ring = &qdev->tx_ring[tx_ring_idx];
  2321. if (skb_padto(skb, ETH_ZLEN))
  2322. return NETDEV_TX_OK;
  2323. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  2324. netif_info(qdev, tx_queued, qdev->ndev,
  2325. "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
  2326. __func__, tx_ring_idx);
  2327. netif_stop_subqueue(ndev, tx_ring->wq_id);
  2328. tx_ring->tx_errors++;
  2329. return NETDEV_TX_BUSY;
  2330. }
  2331. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  2332. mac_iocb_ptr = tx_ring_desc->queue_entry;
  2333. memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
  2334. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  2335. mac_iocb_ptr->tid = tx_ring_desc->index;
  2336. /* We use the upper 32-bits to store the tx queue for this IO.
  2337. * When we get the completion we can use it to establish the context.
  2338. */
  2339. mac_iocb_ptr->txq_idx = tx_ring_idx;
  2340. tx_ring_desc->skb = skb;
  2341. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  2342. if (vlan_tx_tag_present(skb)) {
  2343. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  2344. "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
  2345. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  2346. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  2347. }
  2348. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2349. if (tso < 0) {
  2350. dev_kfree_skb_any(skb);
  2351. return NETDEV_TX_OK;
  2352. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  2353. ql_hw_csum_setup(skb,
  2354. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2355. }
  2356. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  2357. NETDEV_TX_OK) {
  2358. netif_err(qdev, tx_queued, qdev->ndev,
  2359. "Could not map the segments.\n");
  2360. tx_ring->tx_errors++;
  2361. return NETDEV_TX_BUSY;
  2362. }
  2363. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  2364. tx_ring->prod_idx++;
  2365. if (tx_ring->prod_idx == tx_ring->wq_len)
  2366. tx_ring->prod_idx = 0;
  2367. wmb();
  2368. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  2369. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  2370. "tx queued, slot %d, len %d\n",
  2371. tx_ring->prod_idx, skb->len);
  2372. atomic_dec(&tx_ring->tx_count);
  2373. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  2374. netif_stop_subqueue(ndev, tx_ring->wq_id);
  2375. if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  2376. /*
  2377. * The queue got stopped because the tx_ring was full.
  2378. * Wake it up, because it's now at least 25% empty.
  2379. */
  2380. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  2381. }
  2382. return NETDEV_TX_OK;
  2383. }
  2384. static void ql_free_shadow_space(struct ql_adapter *qdev)
  2385. {
  2386. if (qdev->rx_ring_shadow_reg_area) {
  2387. pci_free_consistent(qdev->pdev,
  2388. PAGE_SIZE,
  2389. qdev->rx_ring_shadow_reg_area,
  2390. qdev->rx_ring_shadow_reg_dma);
  2391. qdev->rx_ring_shadow_reg_area = NULL;
  2392. }
  2393. if (qdev->tx_ring_shadow_reg_area) {
  2394. pci_free_consistent(qdev->pdev,
  2395. PAGE_SIZE,
  2396. qdev->tx_ring_shadow_reg_area,
  2397. qdev->tx_ring_shadow_reg_dma);
  2398. qdev->tx_ring_shadow_reg_area = NULL;
  2399. }
  2400. }
  2401. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  2402. {
  2403. qdev->rx_ring_shadow_reg_area =
  2404. pci_alloc_consistent(qdev->pdev,
  2405. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  2406. if (qdev->rx_ring_shadow_reg_area == NULL) {
  2407. netif_err(qdev, ifup, qdev->ndev,
  2408. "Allocation of RX shadow space failed.\n");
  2409. return -ENOMEM;
  2410. }
  2411. memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2412. qdev->tx_ring_shadow_reg_area =
  2413. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  2414. &qdev->tx_ring_shadow_reg_dma);
  2415. if (qdev->tx_ring_shadow_reg_area == NULL) {
  2416. netif_err(qdev, ifup, qdev->ndev,
  2417. "Allocation of TX shadow space failed.\n");
  2418. goto err_wqp_sh_area;
  2419. }
  2420. memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2421. return 0;
  2422. err_wqp_sh_area:
  2423. pci_free_consistent(qdev->pdev,
  2424. PAGE_SIZE,
  2425. qdev->rx_ring_shadow_reg_area,
  2426. qdev->rx_ring_shadow_reg_dma);
  2427. return -ENOMEM;
  2428. }
  2429. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2430. {
  2431. struct tx_ring_desc *tx_ring_desc;
  2432. int i;
  2433. struct ob_mac_iocb_req *mac_iocb_ptr;
  2434. mac_iocb_ptr = tx_ring->wq_base;
  2435. tx_ring_desc = tx_ring->q;
  2436. for (i = 0; i < tx_ring->wq_len; i++) {
  2437. tx_ring_desc->index = i;
  2438. tx_ring_desc->skb = NULL;
  2439. tx_ring_desc->queue_entry = mac_iocb_ptr;
  2440. mac_iocb_ptr++;
  2441. tx_ring_desc++;
  2442. }
  2443. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  2444. }
  2445. static void ql_free_tx_resources(struct ql_adapter *qdev,
  2446. struct tx_ring *tx_ring)
  2447. {
  2448. if (tx_ring->wq_base) {
  2449. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2450. tx_ring->wq_base, tx_ring->wq_base_dma);
  2451. tx_ring->wq_base = NULL;
  2452. }
  2453. kfree(tx_ring->q);
  2454. tx_ring->q = NULL;
  2455. }
  2456. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  2457. struct tx_ring *tx_ring)
  2458. {
  2459. tx_ring->wq_base =
  2460. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  2461. &tx_ring->wq_base_dma);
  2462. if ((tx_ring->wq_base == NULL) ||
  2463. tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
  2464. goto pci_alloc_err;
  2465. tx_ring->q =
  2466. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  2467. if (tx_ring->q == NULL)
  2468. goto err;
  2469. return 0;
  2470. err:
  2471. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2472. tx_ring->wq_base, tx_ring->wq_base_dma);
  2473. tx_ring->wq_base = NULL;
  2474. pci_alloc_err:
  2475. netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
  2476. return -ENOMEM;
  2477. }
  2478. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2479. {
  2480. struct bq_desc *lbq_desc;
  2481. uint32_t curr_idx, clean_idx;
  2482. curr_idx = rx_ring->lbq_curr_idx;
  2483. clean_idx = rx_ring->lbq_clean_idx;
  2484. while (curr_idx != clean_idx) {
  2485. lbq_desc = &rx_ring->lbq[curr_idx];
  2486. if (lbq_desc->p.pg_chunk.last_flag) {
  2487. pci_unmap_page(qdev->pdev,
  2488. lbq_desc->p.pg_chunk.map,
  2489. ql_lbq_block_size(qdev),
  2490. PCI_DMA_FROMDEVICE);
  2491. lbq_desc->p.pg_chunk.last_flag = 0;
  2492. }
  2493. put_page(lbq_desc->p.pg_chunk.page);
  2494. lbq_desc->p.pg_chunk.page = NULL;
  2495. if (++curr_idx == rx_ring->lbq_len)
  2496. curr_idx = 0;
  2497. }
  2498. }
  2499. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2500. {
  2501. int i;
  2502. struct bq_desc *sbq_desc;
  2503. for (i = 0; i < rx_ring->sbq_len; i++) {
  2504. sbq_desc = &rx_ring->sbq[i];
  2505. if (sbq_desc == NULL) {
  2506. netif_err(qdev, ifup, qdev->ndev,
  2507. "sbq_desc %d is NULL.\n", i);
  2508. return;
  2509. }
  2510. if (sbq_desc->p.skb) {
  2511. pci_unmap_single(qdev->pdev,
  2512. dma_unmap_addr(sbq_desc, mapaddr),
  2513. dma_unmap_len(sbq_desc, maplen),
  2514. PCI_DMA_FROMDEVICE);
  2515. dev_kfree_skb(sbq_desc->p.skb);
  2516. sbq_desc->p.skb = NULL;
  2517. }
  2518. }
  2519. }
  2520. /* Free all large and small rx buffers associated
  2521. * with the completion queues for this device.
  2522. */
  2523. static void ql_free_rx_buffers(struct ql_adapter *qdev)
  2524. {
  2525. int i;
  2526. struct rx_ring *rx_ring;
  2527. for (i = 0; i < qdev->rx_ring_count; i++) {
  2528. rx_ring = &qdev->rx_ring[i];
  2529. if (rx_ring->lbq)
  2530. ql_free_lbq_buffers(qdev, rx_ring);
  2531. if (rx_ring->sbq)
  2532. ql_free_sbq_buffers(qdev, rx_ring);
  2533. }
  2534. }
  2535. static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
  2536. {
  2537. struct rx_ring *rx_ring;
  2538. int i;
  2539. for (i = 0; i < qdev->rx_ring_count; i++) {
  2540. rx_ring = &qdev->rx_ring[i];
  2541. if (rx_ring->type != TX_Q)
  2542. ql_update_buffer_queues(qdev, rx_ring);
  2543. }
  2544. }
  2545. static void ql_init_lbq_ring(struct ql_adapter *qdev,
  2546. struct rx_ring *rx_ring)
  2547. {
  2548. int i;
  2549. struct bq_desc *lbq_desc;
  2550. __le64 *bq = rx_ring->lbq_base;
  2551. memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
  2552. for (i = 0; i < rx_ring->lbq_len; i++) {
  2553. lbq_desc = &rx_ring->lbq[i];
  2554. memset(lbq_desc, 0, sizeof(*lbq_desc));
  2555. lbq_desc->index = i;
  2556. lbq_desc->addr = bq;
  2557. bq++;
  2558. }
  2559. }
  2560. static void ql_init_sbq_ring(struct ql_adapter *qdev,
  2561. struct rx_ring *rx_ring)
  2562. {
  2563. int i;
  2564. struct bq_desc *sbq_desc;
  2565. __le64 *bq = rx_ring->sbq_base;
  2566. memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
  2567. for (i = 0; i < rx_ring->sbq_len; i++) {
  2568. sbq_desc = &rx_ring->sbq[i];
  2569. memset(sbq_desc, 0, sizeof(*sbq_desc));
  2570. sbq_desc->index = i;
  2571. sbq_desc->addr = bq;
  2572. bq++;
  2573. }
  2574. }
  2575. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2576. struct rx_ring *rx_ring)
  2577. {
  2578. /* Free the small buffer queue. */
  2579. if (rx_ring->sbq_base) {
  2580. pci_free_consistent(qdev->pdev,
  2581. rx_ring->sbq_size,
  2582. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2583. rx_ring->sbq_base = NULL;
  2584. }
  2585. /* Free the small buffer queue control blocks. */
  2586. kfree(rx_ring->sbq);
  2587. rx_ring->sbq = NULL;
  2588. /* Free the large buffer queue. */
  2589. if (rx_ring->lbq_base) {
  2590. pci_free_consistent(qdev->pdev,
  2591. rx_ring->lbq_size,
  2592. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2593. rx_ring->lbq_base = NULL;
  2594. }
  2595. /* Free the large buffer queue control blocks. */
  2596. kfree(rx_ring->lbq);
  2597. rx_ring->lbq = NULL;
  2598. /* Free the rx queue. */
  2599. if (rx_ring->cq_base) {
  2600. pci_free_consistent(qdev->pdev,
  2601. rx_ring->cq_size,
  2602. rx_ring->cq_base, rx_ring->cq_base_dma);
  2603. rx_ring->cq_base = NULL;
  2604. }
  2605. }
  2606. /* Allocate queues and buffers for this completions queue based
  2607. * on the values in the parameter structure. */
  2608. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2609. struct rx_ring *rx_ring)
  2610. {
  2611. /*
  2612. * Allocate the completion queue for this rx_ring.
  2613. */
  2614. rx_ring->cq_base =
  2615. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2616. &rx_ring->cq_base_dma);
  2617. if (rx_ring->cq_base == NULL) {
  2618. netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
  2619. return -ENOMEM;
  2620. }
  2621. if (rx_ring->sbq_len) {
  2622. /*
  2623. * Allocate small buffer queue.
  2624. */
  2625. rx_ring->sbq_base =
  2626. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2627. &rx_ring->sbq_base_dma);
  2628. if (rx_ring->sbq_base == NULL) {
  2629. netif_err(qdev, ifup, qdev->ndev,
  2630. "Small buffer queue allocation failed.\n");
  2631. goto err_mem;
  2632. }
  2633. /*
  2634. * Allocate small buffer queue control blocks.
  2635. */
  2636. rx_ring->sbq =
  2637. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2638. GFP_KERNEL);
  2639. if (rx_ring->sbq == NULL) {
  2640. netif_err(qdev, ifup, qdev->ndev,
  2641. "Small buffer queue control block allocation failed.\n");
  2642. goto err_mem;
  2643. }
  2644. ql_init_sbq_ring(qdev, rx_ring);
  2645. }
  2646. if (rx_ring->lbq_len) {
  2647. /*
  2648. * Allocate large buffer queue.
  2649. */
  2650. rx_ring->lbq_base =
  2651. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2652. &rx_ring->lbq_base_dma);
  2653. if (rx_ring->lbq_base == NULL) {
  2654. netif_err(qdev, ifup, qdev->ndev,
  2655. "Large buffer queue allocation failed.\n");
  2656. goto err_mem;
  2657. }
  2658. /*
  2659. * Allocate large buffer queue control blocks.
  2660. */
  2661. rx_ring->lbq =
  2662. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2663. GFP_KERNEL);
  2664. if (rx_ring->lbq == NULL) {
  2665. netif_err(qdev, ifup, qdev->ndev,
  2666. "Large buffer queue control block allocation failed.\n");
  2667. goto err_mem;
  2668. }
  2669. ql_init_lbq_ring(qdev, rx_ring);
  2670. }
  2671. return 0;
  2672. err_mem:
  2673. ql_free_rx_resources(qdev, rx_ring);
  2674. return -ENOMEM;
  2675. }
  2676. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2677. {
  2678. struct tx_ring *tx_ring;
  2679. struct tx_ring_desc *tx_ring_desc;
  2680. int i, j;
  2681. /*
  2682. * Loop through all queues and free
  2683. * any resources.
  2684. */
  2685. for (j = 0; j < qdev->tx_ring_count; j++) {
  2686. tx_ring = &qdev->tx_ring[j];
  2687. for (i = 0; i < tx_ring->wq_len; i++) {
  2688. tx_ring_desc = &tx_ring->q[i];
  2689. if (tx_ring_desc && tx_ring_desc->skb) {
  2690. netif_err(qdev, ifdown, qdev->ndev,
  2691. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2692. tx_ring_desc->skb, j,
  2693. tx_ring_desc->index);
  2694. ql_unmap_send(qdev, tx_ring_desc,
  2695. tx_ring_desc->map_cnt);
  2696. dev_kfree_skb(tx_ring_desc->skb);
  2697. tx_ring_desc->skb = NULL;
  2698. }
  2699. }
  2700. }
  2701. }
  2702. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2703. {
  2704. int i;
  2705. for (i = 0; i < qdev->tx_ring_count; i++)
  2706. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2707. for (i = 0; i < qdev->rx_ring_count; i++)
  2708. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2709. ql_free_shadow_space(qdev);
  2710. }
  2711. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2712. {
  2713. int i;
  2714. /* Allocate space for our shadow registers and such. */
  2715. if (ql_alloc_shadow_space(qdev))
  2716. return -ENOMEM;
  2717. for (i = 0; i < qdev->rx_ring_count; i++) {
  2718. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2719. netif_err(qdev, ifup, qdev->ndev,
  2720. "RX resource allocation failed.\n");
  2721. goto err_mem;
  2722. }
  2723. }
  2724. /* Allocate tx queue resources */
  2725. for (i = 0; i < qdev->tx_ring_count; i++) {
  2726. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2727. netif_err(qdev, ifup, qdev->ndev,
  2728. "TX resource allocation failed.\n");
  2729. goto err_mem;
  2730. }
  2731. }
  2732. return 0;
  2733. err_mem:
  2734. ql_free_mem_resources(qdev);
  2735. return -ENOMEM;
  2736. }
  2737. /* Set up the rx ring control block and pass it to the chip.
  2738. * The control block is defined as
  2739. * "Completion Queue Initialization Control Block", or cqicb.
  2740. */
  2741. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2742. {
  2743. struct cqicb *cqicb = &rx_ring->cqicb;
  2744. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2745. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2746. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2747. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2748. void __iomem *doorbell_area =
  2749. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2750. int err = 0;
  2751. u16 bq_len;
  2752. u64 tmp;
  2753. __le64 *base_indirect_ptr;
  2754. int page_entries;
  2755. /* Set up the shadow registers for this ring. */
  2756. rx_ring->prod_idx_sh_reg = shadow_reg;
  2757. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2758. *rx_ring->prod_idx_sh_reg = 0;
  2759. shadow_reg += sizeof(u64);
  2760. shadow_reg_dma += sizeof(u64);
  2761. rx_ring->lbq_base_indirect = shadow_reg;
  2762. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2763. shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2764. shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2765. rx_ring->sbq_base_indirect = shadow_reg;
  2766. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2767. /* PCI doorbell mem area + 0x00 for consumer index register */
  2768. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2769. rx_ring->cnsmr_idx = 0;
  2770. rx_ring->curr_entry = rx_ring->cq_base;
  2771. /* PCI doorbell mem area + 0x04 for valid register */
  2772. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2773. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2774. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2775. /* PCI doorbell mem area + 0x1c */
  2776. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2777. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2778. cqicb->msix_vect = rx_ring->irq;
  2779. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2780. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2781. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2782. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2783. /*
  2784. * Set up the control block load flags.
  2785. */
  2786. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2787. FLAGS_LV | /* Load MSI-X vector */
  2788. FLAGS_LI; /* Load irq delay values */
  2789. if (rx_ring->lbq_len) {
  2790. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2791. tmp = (u64)rx_ring->lbq_base_dma;
  2792. base_indirect_ptr = rx_ring->lbq_base_indirect;
  2793. page_entries = 0;
  2794. do {
  2795. *base_indirect_ptr = cpu_to_le64(tmp);
  2796. tmp += DB_PAGE_SIZE;
  2797. base_indirect_ptr++;
  2798. page_entries++;
  2799. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2800. cqicb->lbq_addr =
  2801. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2802. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2803. (u16) rx_ring->lbq_buf_size;
  2804. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2805. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2806. (u16) rx_ring->lbq_len;
  2807. cqicb->lbq_len = cpu_to_le16(bq_len);
  2808. rx_ring->lbq_prod_idx = 0;
  2809. rx_ring->lbq_curr_idx = 0;
  2810. rx_ring->lbq_clean_idx = 0;
  2811. rx_ring->lbq_free_cnt = rx_ring->lbq_len;
  2812. }
  2813. if (rx_ring->sbq_len) {
  2814. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2815. tmp = (u64)rx_ring->sbq_base_dma;
  2816. base_indirect_ptr = rx_ring->sbq_base_indirect;
  2817. page_entries = 0;
  2818. do {
  2819. *base_indirect_ptr = cpu_to_le64(tmp);
  2820. tmp += DB_PAGE_SIZE;
  2821. base_indirect_ptr++;
  2822. page_entries++;
  2823. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
  2824. cqicb->sbq_addr =
  2825. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2826. cqicb->sbq_buf_size =
  2827. cpu_to_le16((u16)(rx_ring->sbq_buf_size));
  2828. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2829. (u16) rx_ring->sbq_len;
  2830. cqicb->sbq_len = cpu_to_le16(bq_len);
  2831. rx_ring->sbq_prod_idx = 0;
  2832. rx_ring->sbq_curr_idx = 0;
  2833. rx_ring->sbq_clean_idx = 0;
  2834. rx_ring->sbq_free_cnt = rx_ring->sbq_len;
  2835. }
  2836. switch (rx_ring->type) {
  2837. case TX_Q:
  2838. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2839. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2840. break;
  2841. case RX_Q:
  2842. /* Inbound completion handling rx_rings run in
  2843. * separate NAPI contexts.
  2844. */
  2845. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2846. 64);
  2847. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2848. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2849. break;
  2850. default:
  2851. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2852. "Invalid rx_ring->type = %d.\n", rx_ring->type);
  2853. }
  2854. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2855. CFG_LCQ, rx_ring->cq_id);
  2856. if (err) {
  2857. netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
  2858. return err;
  2859. }
  2860. return err;
  2861. }
  2862. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2863. {
  2864. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2865. void __iomem *doorbell_area =
  2866. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2867. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2868. (tx_ring->wq_id * sizeof(u64));
  2869. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2870. (tx_ring->wq_id * sizeof(u64));
  2871. int err = 0;
  2872. /*
  2873. * Assign doorbell registers for this tx_ring.
  2874. */
  2875. /* TX PCI doorbell mem area for tx producer index */
  2876. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2877. tx_ring->prod_idx = 0;
  2878. /* TX PCI doorbell mem area + 0x04 */
  2879. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2880. /*
  2881. * Assign shadow registers for this tx_ring.
  2882. */
  2883. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2884. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2885. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2886. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2887. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2888. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2889. wqicb->rid = 0;
  2890. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2891. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2892. ql_init_tx_ring(qdev, tx_ring);
  2893. err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
  2894. (u16) tx_ring->wq_id);
  2895. if (err) {
  2896. netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
  2897. return err;
  2898. }
  2899. return err;
  2900. }
  2901. static void ql_disable_msix(struct ql_adapter *qdev)
  2902. {
  2903. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2904. pci_disable_msix(qdev->pdev);
  2905. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2906. kfree(qdev->msi_x_entry);
  2907. qdev->msi_x_entry = NULL;
  2908. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2909. pci_disable_msi(qdev->pdev);
  2910. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2911. }
  2912. }
  2913. /* We start by trying to get the number of vectors
  2914. * stored in qdev->intr_count. If we don't get that
  2915. * many then we reduce the count and try again.
  2916. */
  2917. static void ql_enable_msix(struct ql_adapter *qdev)
  2918. {
  2919. int i, err;
  2920. /* Get the MSIX vectors. */
  2921. if (qlge_irq_type == MSIX_IRQ) {
  2922. /* Try to alloc space for the msix struct,
  2923. * if it fails then go to MSI/legacy.
  2924. */
  2925. qdev->msi_x_entry = kcalloc(qdev->intr_count,
  2926. sizeof(struct msix_entry),
  2927. GFP_KERNEL);
  2928. if (!qdev->msi_x_entry) {
  2929. qlge_irq_type = MSI_IRQ;
  2930. goto msi;
  2931. }
  2932. for (i = 0; i < qdev->intr_count; i++)
  2933. qdev->msi_x_entry[i].entry = i;
  2934. /* Loop to get our vectors. We start with
  2935. * what we want and settle for what we get.
  2936. */
  2937. do {
  2938. err = pci_enable_msix(qdev->pdev,
  2939. qdev->msi_x_entry, qdev->intr_count);
  2940. if (err > 0)
  2941. qdev->intr_count = err;
  2942. } while (err > 0);
  2943. if (err < 0) {
  2944. kfree(qdev->msi_x_entry);
  2945. qdev->msi_x_entry = NULL;
  2946. netif_warn(qdev, ifup, qdev->ndev,
  2947. "MSI-X Enable failed, trying MSI.\n");
  2948. qdev->intr_count = 1;
  2949. qlge_irq_type = MSI_IRQ;
  2950. } else if (err == 0) {
  2951. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2952. netif_info(qdev, ifup, qdev->ndev,
  2953. "MSI-X Enabled, got %d vectors.\n",
  2954. qdev->intr_count);
  2955. return;
  2956. }
  2957. }
  2958. msi:
  2959. qdev->intr_count = 1;
  2960. if (qlge_irq_type == MSI_IRQ) {
  2961. if (!pci_enable_msi(qdev->pdev)) {
  2962. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2963. netif_info(qdev, ifup, qdev->ndev,
  2964. "Running with MSI interrupts.\n");
  2965. return;
  2966. }
  2967. }
  2968. qlge_irq_type = LEG_IRQ;
  2969. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2970. "Running with legacy interrupts.\n");
  2971. }
  2972. /* Each vector services 1 RSS ring and and 1 or more
  2973. * TX completion rings. This function loops through
  2974. * the TX completion rings and assigns the vector that
  2975. * will service it. An example would be if there are
  2976. * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
  2977. * This would mean that vector 0 would service RSS ring 0
  2978. * and TX completion rings 0,1,2 and 3. Vector 1 would
  2979. * service RSS ring 1 and TX completion rings 4,5,6 and 7.
  2980. */
  2981. static void ql_set_tx_vect(struct ql_adapter *qdev)
  2982. {
  2983. int i, j, vect;
  2984. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  2985. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2986. /* Assign irq vectors to TX rx_rings.*/
  2987. for (vect = 0, j = 0, i = qdev->rss_ring_count;
  2988. i < qdev->rx_ring_count; i++) {
  2989. if (j == tx_rings_per_vector) {
  2990. vect++;
  2991. j = 0;
  2992. }
  2993. qdev->rx_ring[i].irq = vect;
  2994. j++;
  2995. }
  2996. } else {
  2997. /* For single vector all rings have an irq
  2998. * of zero.
  2999. */
  3000. for (i = 0; i < qdev->rx_ring_count; i++)
  3001. qdev->rx_ring[i].irq = 0;
  3002. }
  3003. }
  3004. /* Set the interrupt mask for this vector. Each vector
  3005. * will service 1 RSS ring and 1 or more TX completion
  3006. * rings. This function sets up a bit mask per vector
  3007. * that indicates which rings it services.
  3008. */
  3009. static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
  3010. {
  3011. int j, vect = ctx->intr;
  3012. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  3013. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  3014. /* Add the RSS ring serviced by this vector
  3015. * to the mask.
  3016. */
  3017. ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
  3018. /* Add the TX ring(s) serviced by this vector
  3019. * to the mask. */
  3020. for (j = 0; j < tx_rings_per_vector; j++) {
  3021. ctx->irq_mask |=
  3022. (1 << qdev->rx_ring[qdev->rss_ring_count +
  3023. (vect * tx_rings_per_vector) + j].cq_id);
  3024. }
  3025. } else {
  3026. /* For single vector we just shift each queue's
  3027. * ID into the mask.
  3028. */
  3029. for (j = 0; j < qdev->rx_ring_count; j++)
  3030. ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
  3031. }
  3032. }
  3033. /*
  3034. * Here we build the intr_context structures based on
  3035. * our rx_ring count and intr vector count.
  3036. * The intr_context structure is used to hook each vector
  3037. * to possibly different handlers.
  3038. */
  3039. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  3040. {
  3041. int i = 0;
  3042. struct intr_context *intr_context = &qdev->intr_context[0];
  3043. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  3044. /* Each rx_ring has it's
  3045. * own intr_context since we have separate
  3046. * vectors for each queue.
  3047. */
  3048. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3049. qdev->rx_ring[i].irq = i;
  3050. intr_context->intr = i;
  3051. intr_context->qdev = qdev;
  3052. /* Set up this vector's bit-mask that indicates
  3053. * which queues it services.
  3054. */
  3055. ql_set_irq_mask(qdev, intr_context);
  3056. /*
  3057. * We set up each vectors enable/disable/read bits so
  3058. * there's no bit/mask calculations in the critical path.
  3059. */
  3060. intr_context->intr_en_mask =
  3061. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3062. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  3063. | i;
  3064. intr_context->intr_dis_mask =
  3065. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3066. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  3067. INTR_EN_IHD | i;
  3068. intr_context->intr_read_mask =
  3069. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3070. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  3071. i;
  3072. if (i == 0) {
  3073. /* The first vector/queue handles
  3074. * broadcast/multicast, fatal errors,
  3075. * and firmware events. This in addition
  3076. * to normal inbound NAPI processing.
  3077. */
  3078. intr_context->handler = qlge_isr;
  3079. sprintf(intr_context->name, "%s-rx-%d",
  3080. qdev->ndev->name, i);
  3081. } else {
  3082. /*
  3083. * Inbound queues handle unicast frames only.
  3084. */
  3085. intr_context->handler = qlge_msix_rx_isr;
  3086. sprintf(intr_context->name, "%s-rx-%d",
  3087. qdev->ndev->name, i);
  3088. }
  3089. }
  3090. } else {
  3091. /*
  3092. * All rx_rings use the same intr_context since
  3093. * there is only one vector.
  3094. */
  3095. intr_context->intr = 0;
  3096. intr_context->qdev = qdev;
  3097. /*
  3098. * We set up each vectors enable/disable/read bits so
  3099. * there's no bit/mask calculations in the critical path.
  3100. */
  3101. intr_context->intr_en_mask =
  3102. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  3103. intr_context->intr_dis_mask =
  3104. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3105. INTR_EN_TYPE_DISABLE;
  3106. intr_context->intr_read_mask =
  3107. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  3108. /*
  3109. * Single interrupt means one handler for all rings.
  3110. */
  3111. intr_context->handler = qlge_isr;
  3112. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  3113. /* Set up this vector's bit-mask that indicates
  3114. * which queues it services. In this case there is
  3115. * a single vector so it will service all RSS and
  3116. * TX completion rings.
  3117. */
  3118. ql_set_irq_mask(qdev, intr_context);
  3119. }
  3120. /* Tell the TX completion rings which MSIx vector
  3121. * they will be using.
  3122. */
  3123. ql_set_tx_vect(qdev);
  3124. }
  3125. static void ql_free_irq(struct ql_adapter *qdev)
  3126. {
  3127. int i;
  3128. struct intr_context *intr_context = &qdev->intr_context[0];
  3129. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3130. if (intr_context->hooked) {
  3131. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3132. free_irq(qdev->msi_x_entry[i].vector,
  3133. &qdev->rx_ring[i]);
  3134. } else {
  3135. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  3136. }
  3137. }
  3138. }
  3139. ql_disable_msix(qdev);
  3140. }
  3141. static int ql_request_irq(struct ql_adapter *qdev)
  3142. {
  3143. int i;
  3144. int status = 0;
  3145. struct pci_dev *pdev = qdev->pdev;
  3146. struct intr_context *intr_context = &qdev->intr_context[0];
  3147. ql_resolve_queues_to_irqs(qdev);
  3148. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3149. atomic_set(&intr_context->irq_cnt, 0);
  3150. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3151. status = request_irq(qdev->msi_x_entry[i].vector,
  3152. intr_context->handler,
  3153. 0,
  3154. intr_context->name,
  3155. &qdev->rx_ring[i]);
  3156. if (status) {
  3157. netif_err(qdev, ifup, qdev->ndev,
  3158. "Failed request for MSIX interrupt %d.\n",
  3159. i);
  3160. goto err_irq;
  3161. }
  3162. } else {
  3163. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3164. "trying msi or legacy interrupts.\n");
  3165. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3166. "%s: irq = %d.\n", __func__, pdev->irq);
  3167. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3168. "%s: context->name = %s.\n", __func__,
  3169. intr_context->name);
  3170. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3171. "%s: dev_id = 0x%p.\n", __func__,
  3172. &qdev->rx_ring[0]);
  3173. status =
  3174. request_irq(pdev->irq, qlge_isr,
  3175. test_bit(QL_MSI_ENABLED,
  3176. &qdev->
  3177. flags) ? 0 : IRQF_SHARED,
  3178. intr_context->name, &qdev->rx_ring[0]);
  3179. if (status)
  3180. goto err_irq;
  3181. netif_err(qdev, ifup, qdev->ndev,
  3182. "Hooked intr %d, queue type %s, with name %s.\n",
  3183. i,
  3184. qdev->rx_ring[0].type == DEFAULT_Q ?
  3185. "DEFAULT_Q" :
  3186. qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
  3187. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  3188. intr_context->name);
  3189. }
  3190. intr_context->hooked = 1;
  3191. }
  3192. return status;
  3193. err_irq:
  3194. netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
  3195. ql_free_irq(qdev);
  3196. return status;
  3197. }
  3198. static int ql_start_rss(struct ql_adapter *qdev)
  3199. {
  3200. static const u8 init_hash_seed[] = {
  3201. 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
  3202. 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
  3203. 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
  3204. 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
  3205. 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
  3206. };
  3207. struct ricb *ricb = &qdev->ricb;
  3208. int status = 0;
  3209. int i;
  3210. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  3211. memset((void *)ricb, 0, sizeof(*ricb));
  3212. ricb->base_cq = RSS_L4K;
  3213. ricb->flags =
  3214. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
  3215. ricb->mask = cpu_to_le16((u16)(0x3ff));
  3216. /*
  3217. * Fill out the Indirection Table.
  3218. */
  3219. for (i = 0; i < 1024; i++)
  3220. hash_id[i] = (i & (qdev->rss_ring_count - 1));
  3221. memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
  3222. memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
  3223. status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
  3224. if (status) {
  3225. netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
  3226. return status;
  3227. }
  3228. return status;
  3229. }
  3230. static int ql_clear_routing_entries(struct ql_adapter *qdev)
  3231. {
  3232. int i, status = 0;
  3233. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3234. if (status)
  3235. return status;
  3236. /* Clear all the entries in the routing table. */
  3237. for (i = 0; i < 16; i++) {
  3238. status = ql_set_routing_reg(qdev, i, 0, 0);
  3239. if (status) {
  3240. netif_err(qdev, ifup, qdev->ndev,
  3241. "Failed to init routing register for CAM packets.\n");
  3242. break;
  3243. }
  3244. }
  3245. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3246. return status;
  3247. }
  3248. /* Initialize the frame-to-queue routing. */
  3249. static int ql_route_initialize(struct ql_adapter *qdev)
  3250. {
  3251. int status = 0;
  3252. /* Clear all the entries in the routing table. */
  3253. status = ql_clear_routing_entries(qdev);
  3254. if (status)
  3255. return status;
  3256. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3257. if (status)
  3258. return status;
  3259. status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
  3260. RT_IDX_IP_CSUM_ERR, 1);
  3261. if (status) {
  3262. netif_err(qdev, ifup, qdev->ndev,
  3263. "Failed to init routing register "
  3264. "for IP CSUM error packets.\n");
  3265. goto exit;
  3266. }
  3267. status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
  3268. RT_IDX_TU_CSUM_ERR, 1);
  3269. if (status) {
  3270. netif_err(qdev, ifup, qdev->ndev,
  3271. "Failed to init routing register "
  3272. "for TCP/UDP CSUM error packets.\n");
  3273. goto exit;
  3274. }
  3275. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  3276. if (status) {
  3277. netif_err(qdev, ifup, qdev->ndev,
  3278. "Failed to init routing register for broadcast packets.\n");
  3279. goto exit;
  3280. }
  3281. /* If we have more than one inbound queue, then turn on RSS in the
  3282. * routing block.
  3283. */
  3284. if (qdev->rss_ring_count > 1) {
  3285. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  3286. RT_IDX_RSS_MATCH, 1);
  3287. if (status) {
  3288. netif_err(qdev, ifup, qdev->ndev,
  3289. "Failed to init routing register for MATCH RSS packets.\n");
  3290. goto exit;
  3291. }
  3292. }
  3293. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  3294. RT_IDX_CAM_HIT, 1);
  3295. if (status)
  3296. netif_err(qdev, ifup, qdev->ndev,
  3297. "Failed to init routing register for CAM packets.\n");
  3298. exit:
  3299. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3300. return status;
  3301. }
  3302. int ql_cam_route_initialize(struct ql_adapter *qdev)
  3303. {
  3304. int status, set;
  3305. /* If check if the link is up and use to
  3306. * determine if we are setting or clearing
  3307. * the MAC address in the CAM.
  3308. */
  3309. set = ql_read32(qdev, STS);
  3310. set &= qdev->port_link_up;
  3311. status = ql_set_mac_addr(qdev, set);
  3312. if (status) {
  3313. netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
  3314. return status;
  3315. }
  3316. status = ql_route_initialize(qdev);
  3317. if (status)
  3318. netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
  3319. return status;
  3320. }
  3321. static int ql_adapter_initialize(struct ql_adapter *qdev)
  3322. {
  3323. u32 value, mask;
  3324. int i;
  3325. int status = 0;
  3326. /*
  3327. * Set up the System register to halt on errors.
  3328. */
  3329. value = SYS_EFE | SYS_FAE;
  3330. mask = value << 16;
  3331. ql_write32(qdev, SYS, mask | value);
  3332. /* Set the default queue, and VLAN behavior. */
  3333. value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
  3334. mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
  3335. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  3336. /* Set the MPI interrupt to enabled. */
  3337. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  3338. /* Enable the function, set pagesize, enable error checking. */
  3339. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  3340. FSC_EC | FSC_VM_PAGE_4K;
  3341. value |= SPLT_SETTING;
  3342. /* Set/clear header splitting. */
  3343. mask = FSC_VM_PAGESIZE_MASK |
  3344. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  3345. ql_write32(qdev, FSC, mask | value);
  3346. ql_write32(qdev, SPLT_HDR, SPLT_LEN);
  3347. /* Set RX packet routing to use port/pci function on which the
  3348. * packet arrived on in addition to usual frame routing.
  3349. * This is helpful on bonding where both interfaces can have
  3350. * the same MAC address.
  3351. */
  3352. ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
  3353. /* Reroute all packets to our Interface.
  3354. * They may have been routed to MPI firmware
  3355. * due to WOL.
  3356. */
  3357. value = ql_read32(qdev, MGMT_RCV_CFG);
  3358. value &= ~MGMT_RCV_CFG_RM;
  3359. mask = 0xffff0000;
  3360. /* Sticky reg needs clearing due to WOL. */
  3361. ql_write32(qdev, MGMT_RCV_CFG, mask);
  3362. ql_write32(qdev, MGMT_RCV_CFG, mask | value);
  3363. /* Default WOL is enable on Mezz cards */
  3364. if (qdev->pdev->subsystem_device == 0x0068 ||
  3365. qdev->pdev->subsystem_device == 0x0180)
  3366. qdev->wol = WAKE_MAGIC;
  3367. /* Start up the rx queues. */
  3368. for (i = 0; i < qdev->rx_ring_count; i++) {
  3369. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  3370. if (status) {
  3371. netif_err(qdev, ifup, qdev->ndev,
  3372. "Failed to start rx ring[%d].\n", i);
  3373. return status;
  3374. }
  3375. }
  3376. /* If there is more than one inbound completion queue
  3377. * then download a RICB to configure RSS.
  3378. */
  3379. if (qdev->rss_ring_count > 1) {
  3380. status = ql_start_rss(qdev);
  3381. if (status) {
  3382. netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
  3383. return status;
  3384. }
  3385. }
  3386. /* Start up the tx queues. */
  3387. for (i = 0; i < qdev->tx_ring_count; i++) {
  3388. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  3389. if (status) {
  3390. netif_err(qdev, ifup, qdev->ndev,
  3391. "Failed to start tx ring[%d].\n", i);
  3392. return status;
  3393. }
  3394. }
  3395. /* Initialize the port and set the max framesize. */
  3396. status = qdev->nic_ops->port_initialize(qdev);
  3397. if (status)
  3398. netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
  3399. /* Set up the MAC address and frame routing filter. */
  3400. status = ql_cam_route_initialize(qdev);
  3401. if (status) {
  3402. netif_err(qdev, ifup, qdev->ndev,
  3403. "Failed to init CAM/Routing tables.\n");
  3404. return status;
  3405. }
  3406. /* Start NAPI for the RSS queues. */
  3407. for (i = 0; i < qdev->rss_ring_count; i++)
  3408. napi_enable(&qdev->rx_ring[i].napi);
  3409. return status;
  3410. }
  3411. /* Issue soft reset to chip. */
  3412. static int ql_adapter_reset(struct ql_adapter *qdev)
  3413. {
  3414. u32 value;
  3415. int status = 0;
  3416. unsigned long end_jiffies;
  3417. /* Clear all the entries in the routing table. */
  3418. status = ql_clear_routing_entries(qdev);
  3419. if (status) {
  3420. netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
  3421. return status;
  3422. }
  3423. end_jiffies = jiffies +
  3424. max((unsigned long)1, usecs_to_jiffies(30));
  3425. /* Check if bit is set then skip the mailbox command and
  3426. * clear the bit, else we are in normal reset process.
  3427. */
  3428. if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
  3429. /* Stop management traffic. */
  3430. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
  3431. /* Wait for the NIC and MGMNT FIFOs to empty. */
  3432. ql_wait_fifo_empty(qdev);
  3433. } else
  3434. clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
  3435. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  3436. do {
  3437. value = ql_read32(qdev, RST_FO);
  3438. if ((value & RST_FO_FR) == 0)
  3439. break;
  3440. cpu_relax();
  3441. } while (time_before(jiffies, end_jiffies));
  3442. if (value & RST_FO_FR) {
  3443. netif_err(qdev, ifdown, qdev->ndev,
  3444. "ETIMEDOUT!!! errored out of resetting the chip!\n");
  3445. status = -ETIMEDOUT;
  3446. }
  3447. /* Resume management traffic. */
  3448. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
  3449. return status;
  3450. }
  3451. static void ql_display_dev_info(struct net_device *ndev)
  3452. {
  3453. struct ql_adapter *qdev = netdev_priv(ndev);
  3454. netif_info(qdev, probe, qdev->ndev,
  3455. "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
  3456. "XG Roll = %d, XG Rev = %d.\n",
  3457. qdev->func,
  3458. qdev->port,
  3459. qdev->chip_rev_id & 0x0000000f,
  3460. qdev->chip_rev_id >> 4 & 0x0000000f,
  3461. qdev->chip_rev_id >> 8 & 0x0000000f,
  3462. qdev->chip_rev_id >> 12 & 0x0000000f);
  3463. netif_info(qdev, probe, qdev->ndev,
  3464. "MAC address %pM\n", ndev->dev_addr);
  3465. }
  3466. static int ql_wol(struct ql_adapter *qdev)
  3467. {
  3468. int status = 0;
  3469. u32 wol = MB_WOL_DISABLE;
  3470. /* The CAM is still intact after a reset, but if we
  3471. * are doing WOL, then we may need to program the
  3472. * routing regs. We would also need to issue the mailbox
  3473. * commands to instruct the MPI what to do per the ethtool
  3474. * settings.
  3475. */
  3476. if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
  3477. WAKE_MCAST | WAKE_BCAST)) {
  3478. netif_err(qdev, ifdown, qdev->ndev,
  3479. "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
  3480. qdev->wol);
  3481. return -EINVAL;
  3482. }
  3483. if (qdev->wol & WAKE_MAGIC) {
  3484. status = ql_mb_wol_set_magic(qdev, 1);
  3485. if (status) {
  3486. netif_err(qdev, ifdown, qdev->ndev,
  3487. "Failed to set magic packet on %s.\n",
  3488. qdev->ndev->name);
  3489. return status;
  3490. } else
  3491. netif_info(qdev, drv, qdev->ndev,
  3492. "Enabled magic packet successfully on %s.\n",
  3493. qdev->ndev->name);
  3494. wol |= MB_WOL_MAGIC_PKT;
  3495. }
  3496. if (qdev->wol) {
  3497. wol |= MB_WOL_MODE_ON;
  3498. status = ql_mb_wol_mode(qdev, wol);
  3499. netif_err(qdev, drv, qdev->ndev,
  3500. "WOL %s (wol code 0x%x) on %s\n",
  3501. (status == 0) ? "Successfully set" : "Failed",
  3502. wol, qdev->ndev->name);
  3503. }
  3504. return status;
  3505. }
  3506. static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
  3507. {
  3508. /* Don't kill the reset worker thread if we
  3509. * are in the process of recovery.
  3510. */
  3511. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  3512. cancel_delayed_work_sync(&qdev->asic_reset_work);
  3513. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  3514. cancel_delayed_work_sync(&qdev->mpi_work);
  3515. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  3516. cancel_delayed_work_sync(&qdev->mpi_core_to_log);
  3517. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  3518. }
  3519. static int ql_adapter_down(struct ql_adapter *qdev)
  3520. {
  3521. int i, status = 0;
  3522. ql_link_off(qdev);
  3523. ql_cancel_all_work_sync(qdev);
  3524. for (i = 0; i < qdev->rss_ring_count; i++)
  3525. napi_disable(&qdev->rx_ring[i].napi);
  3526. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  3527. ql_disable_interrupts(qdev);
  3528. ql_tx_ring_clean(qdev);
  3529. /* Call netif_napi_del() from common point.
  3530. */
  3531. for (i = 0; i < qdev->rss_ring_count; i++)
  3532. netif_napi_del(&qdev->rx_ring[i].napi);
  3533. status = ql_adapter_reset(qdev);
  3534. if (status)
  3535. netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
  3536. qdev->func);
  3537. ql_free_rx_buffers(qdev);
  3538. return status;
  3539. }
  3540. static int ql_adapter_up(struct ql_adapter *qdev)
  3541. {
  3542. int err = 0;
  3543. err = ql_adapter_initialize(qdev);
  3544. if (err) {
  3545. netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
  3546. goto err_init;
  3547. }
  3548. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3549. ql_alloc_rx_buffers(qdev);
  3550. /* If the port is initialized and the
  3551. * link is up the turn on the carrier.
  3552. */
  3553. if ((ql_read32(qdev, STS) & qdev->port_init) &&
  3554. (ql_read32(qdev, STS) & qdev->port_link_up))
  3555. ql_link_on(qdev);
  3556. /* Restore rx mode. */
  3557. clear_bit(QL_ALLMULTI, &qdev->flags);
  3558. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3559. qlge_set_multicast_list(qdev->ndev);
  3560. /* Restore vlan setting. */
  3561. qlge_restore_vlan(qdev);
  3562. ql_enable_interrupts(qdev);
  3563. ql_enable_all_completion_interrupts(qdev);
  3564. netif_tx_start_all_queues(qdev->ndev);
  3565. return 0;
  3566. err_init:
  3567. ql_adapter_reset(qdev);
  3568. return err;
  3569. }
  3570. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  3571. {
  3572. ql_free_mem_resources(qdev);
  3573. ql_free_irq(qdev);
  3574. }
  3575. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  3576. {
  3577. int status = 0;
  3578. if (ql_alloc_mem_resources(qdev)) {
  3579. netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
  3580. return -ENOMEM;
  3581. }
  3582. status = ql_request_irq(qdev);
  3583. return status;
  3584. }
  3585. static int qlge_close(struct net_device *ndev)
  3586. {
  3587. struct ql_adapter *qdev = netdev_priv(ndev);
  3588. /* If we hit pci_channel_io_perm_failure
  3589. * failure condition, then we already
  3590. * brought the adapter down.
  3591. */
  3592. if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
  3593. netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
  3594. clear_bit(QL_EEH_FATAL, &qdev->flags);
  3595. return 0;
  3596. }
  3597. /*
  3598. * Wait for device to recover from a reset.
  3599. * (Rarely happens, but possible.)
  3600. */
  3601. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  3602. msleep(1);
  3603. ql_adapter_down(qdev);
  3604. ql_release_adapter_resources(qdev);
  3605. return 0;
  3606. }
  3607. static int ql_configure_rings(struct ql_adapter *qdev)
  3608. {
  3609. int i;
  3610. struct rx_ring *rx_ring;
  3611. struct tx_ring *tx_ring;
  3612. int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
  3613. unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3614. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3615. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3616. /* In a perfect world we have one RSS ring for each CPU
  3617. * and each has it's own vector. To do that we ask for
  3618. * cpu_cnt vectors. ql_enable_msix() will adjust the
  3619. * vector count to what we actually get. We then
  3620. * allocate an RSS ring for each.
  3621. * Essentially, we are doing min(cpu_count, msix_vector_count).
  3622. */
  3623. qdev->intr_count = cpu_cnt;
  3624. ql_enable_msix(qdev);
  3625. /* Adjust the RSS ring count to the actual vector count. */
  3626. qdev->rss_ring_count = qdev->intr_count;
  3627. qdev->tx_ring_count = cpu_cnt;
  3628. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
  3629. for (i = 0; i < qdev->tx_ring_count; i++) {
  3630. tx_ring = &qdev->tx_ring[i];
  3631. memset((void *)tx_ring, 0, sizeof(*tx_ring));
  3632. tx_ring->qdev = qdev;
  3633. tx_ring->wq_id = i;
  3634. tx_ring->wq_len = qdev->tx_ring_size;
  3635. tx_ring->wq_size =
  3636. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3637. /*
  3638. * The completion queue ID for the tx rings start
  3639. * immediately after the rss rings.
  3640. */
  3641. tx_ring->cq_id = qdev->rss_ring_count + i;
  3642. }
  3643. for (i = 0; i < qdev->rx_ring_count; i++) {
  3644. rx_ring = &qdev->rx_ring[i];
  3645. memset((void *)rx_ring, 0, sizeof(*rx_ring));
  3646. rx_ring->qdev = qdev;
  3647. rx_ring->cq_id = i;
  3648. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3649. if (i < qdev->rss_ring_count) {
  3650. /*
  3651. * Inbound (RSS) queues.
  3652. */
  3653. rx_ring->cq_len = qdev->rx_ring_size;
  3654. rx_ring->cq_size =
  3655. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3656. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3657. rx_ring->lbq_size =
  3658. rx_ring->lbq_len * sizeof(__le64);
  3659. rx_ring->lbq_buf_size = (u16)lbq_buf_len;
  3660. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3661. rx_ring->sbq_size =
  3662. rx_ring->sbq_len * sizeof(__le64);
  3663. rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
  3664. rx_ring->type = RX_Q;
  3665. } else {
  3666. /*
  3667. * Outbound queue handles outbound completions only.
  3668. */
  3669. /* outbound cq is same size as tx_ring it services. */
  3670. rx_ring->cq_len = qdev->tx_ring_size;
  3671. rx_ring->cq_size =
  3672. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3673. rx_ring->lbq_len = 0;
  3674. rx_ring->lbq_size = 0;
  3675. rx_ring->lbq_buf_size = 0;
  3676. rx_ring->sbq_len = 0;
  3677. rx_ring->sbq_size = 0;
  3678. rx_ring->sbq_buf_size = 0;
  3679. rx_ring->type = TX_Q;
  3680. }
  3681. }
  3682. return 0;
  3683. }
  3684. static int qlge_open(struct net_device *ndev)
  3685. {
  3686. int err = 0;
  3687. struct ql_adapter *qdev = netdev_priv(ndev);
  3688. err = ql_adapter_reset(qdev);
  3689. if (err)
  3690. return err;
  3691. err = ql_configure_rings(qdev);
  3692. if (err)
  3693. return err;
  3694. err = ql_get_adapter_resources(qdev);
  3695. if (err)
  3696. goto error_up;
  3697. err = ql_adapter_up(qdev);
  3698. if (err)
  3699. goto error_up;
  3700. return err;
  3701. error_up:
  3702. ql_release_adapter_resources(qdev);
  3703. return err;
  3704. }
  3705. static int ql_change_rx_buffers(struct ql_adapter *qdev)
  3706. {
  3707. struct rx_ring *rx_ring;
  3708. int i, status;
  3709. u32 lbq_buf_len;
  3710. /* Wait for an outstanding reset to complete. */
  3711. if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3712. int i = 3;
  3713. while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3714. netif_err(qdev, ifup, qdev->ndev,
  3715. "Waiting for adapter UP...\n");
  3716. ssleep(1);
  3717. }
  3718. if (!i) {
  3719. netif_err(qdev, ifup, qdev->ndev,
  3720. "Timed out waiting for adapter UP\n");
  3721. return -ETIMEDOUT;
  3722. }
  3723. }
  3724. status = ql_adapter_down(qdev);
  3725. if (status)
  3726. goto error;
  3727. /* Get the new rx buffer size. */
  3728. lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3729. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3730. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3731. for (i = 0; i < qdev->rss_ring_count; i++) {
  3732. rx_ring = &qdev->rx_ring[i];
  3733. /* Set the new size. */
  3734. rx_ring->lbq_buf_size = lbq_buf_len;
  3735. }
  3736. status = ql_adapter_up(qdev);
  3737. if (status)
  3738. goto error;
  3739. return status;
  3740. error:
  3741. netif_alert(qdev, ifup, qdev->ndev,
  3742. "Driver up/down cycle failed, closing device.\n");
  3743. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3744. dev_close(qdev->ndev);
  3745. return status;
  3746. }
  3747. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3748. {
  3749. struct ql_adapter *qdev = netdev_priv(ndev);
  3750. int status;
  3751. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3752. netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
  3753. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3754. netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
  3755. } else
  3756. return -EINVAL;
  3757. queue_delayed_work(qdev->workqueue,
  3758. &qdev->mpi_port_cfg_work, 3*HZ);
  3759. ndev->mtu = new_mtu;
  3760. if (!netif_running(qdev->ndev)) {
  3761. return 0;
  3762. }
  3763. status = ql_change_rx_buffers(qdev);
  3764. if (status) {
  3765. netif_err(qdev, ifup, qdev->ndev,
  3766. "Changing MTU failed.\n");
  3767. }
  3768. return status;
  3769. }
  3770. static struct net_device_stats *qlge_get_stats(struct net_device
  3771. *ndev)
  3772. {
  3773. struct ql_adapter *qdev = netdev_priv(ndev);
  3774. struct rx_ring *rx_ring = &qdev->rx_ring[0];
  3775. struct tx_ring *tx_ring = &qdev->tx_ring[0];
  3776. unsigned long pkts, mcast, dropped, errors, bytes;
  3777. int i;
  3778. /* Get RX stats. */
  3779. pkts = mcast = dropped = errors = bytes = 0;
  3780. for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
  3781. pkts += rx_ring->rx_packets;
  3782. bytes += rx_ring->rx_bytes;
  3783. dropped += rx_ring->rx_dropped;
  3784. errors += rx_ring->rx_errors;
  3785. mcast += rx_ring->rx_multicast;
  3786. }
  3787. ndev->stats.rx_packets = pkts;
  3788. ndev->stats.rx_bytes = bytes;
  3789. ndev->stats.rx_dropped = dropped;
  3790. ndev->stats.rx_errors = errors;
  3791. ndev->stats.multicast = mcast;
  3792. /* Get TX stats. */
  3793. pkts = errors = bytes = 0;
  3794. for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
  3795. pkts += tx_ring->tx_packets;
  3796. bytes += tx_ring->tx_bytes;
  3797. errors += tx_ring->tx_errors;
  3798. }
  3799. ndev->stats.tx_packets = pkts;
  3800. ndev->stats.tx_bytes = bytes;
  3801. ndev->stats.tx_errors = errors;
  3802. return &ndev->stats;
  3803. }
  3804. static void qlge_set_multicast_list(struct net_device *ndev)
  3805. {
  3806. struct ql_adapter *qdev = netdev_priv(ndev);
  3807. struct netdev_hw_addr *ha;
  3808. int i, status;
  3809. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3810. if (status)
  3811. return;
  3812. /*
  3813. * Set or clear promiscuous mode if a
  3814. * transition is taking place.
  3815. */
  3816. if (ndev->flags & IFF_PROMISC) {
  3817. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3818. if (ql_set_routing_reg
  3819. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3820. netif_err(qdev, hw, qdev->ndev,
  3821. "Failed to set promiscuous mode.\n");
  3822. } else {
  3823. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3824. }
  3825. }
  3826. } else {
  3827. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3828. if (ql_set_routing_reg
  3829. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3830. netif_err(qdev, hw, qdev->ndev,
  3831. "Failed to clear promiscuous mode.\n");
  3832. } else {
  3833. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3834. }
  3835. }
  3836. }
  3837. /*
  3838. * Set or clear all multicast mode if a
  3839. * transition is taking place.
  3840. */
  3841. if ((ndev->flags & IFF_ALLMULTI) ||
  3842. (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
  3843. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3844. if (ql_set_routing_reg
  3845. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3846. netif_err(qdev, hw, qdev->ndev,
  3847. "Failed to set all-multi mode.\n");
  3848. } else {
  3849. set_bit(QL_ALLMULTI, &qdev->flags);
  3850. }
  3851. }
  3852. } else {
  3853. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3854. if (ql_set_routing_reg
  3855. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3856. netif_err(qdev, hw, qdev->ndev,
  3857. "Failed to clear all-multi mode.\n");
  3858. } else {
  3859. clear_bit(QL_ALLMULTI, &qdev->flags);
  3860. }
  3861. }
  3862. }
  3863. if (!netdev_mc_empty(ndev)) {
  3864. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3865. if (status)
  3866. goto exit;
  3867. i = 0;
  3868. netdev_for_each_mc_addr(ha, ndev) {
  3869. if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
  3870. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3871. netif_err(qdev, hw, qdev->ndev,
  3872. "Failed to loadmulticast address.\n");
  3873. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3874. goto exit;
  3875. }
  3876. i++;
  3877. }
  3878. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3879. if (ql_set_routing_reg
  3880. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3881. netif_err(qdev, hw, qdev->ndev,
  3882. "Failed to set multicast match mode.\n");
  3883. } else {
  3884. set_bit(QL_ALLMULTI, &qdev->flags);
  3885. }
  3886. }
  3887. exit:
  3888. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3889. }
  3890. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3891. {
  3892. struct ql_adapter *qdev = netdev_priv(ndev);
  3893. struct sockaddr *addr = p;
  3894. int status;
  3895. if (!is_valid_ether_addr(addr->sa_data))
  3896. return -EADDRNOTAVAIL;
  3897. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3898. /* Update local copy of current mac address. */
  3899. memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
  3900. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3901. if (status)
  3902. return status;
  3903. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3904. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3905. if (status)
  3906. netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
  3907. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3908. return status;
  3909. }
  3910. static void qlge_tx_timeout(struct net_device *ndev)
  3911. {
  3912. struct ql_adapter *qdev = netdev_priv(ndev);
  3913. ql_queue_asic_error(qdev);
  3914. }
  3915. static void ql_asic_reset_work(struct work_struct *work)
  3916. {
  3917. struct ql_adapter *qdev =
  3918. container_of(work, struct ql_adapter, asic_reset_work.work);
  3919. int status;
  3920. rtnl_lock();
  3921. status = ql_adapter_down(qdev);
  3922. if (status)
  3923. goto error;
  3924. status = ql_adapter_up(qdev);
  3925. if (status)
  3926. goto error;
  3927. /* Restore rx mode. */
  3928. clear_bit(QL_ALLMULTI, &qdev->flags);
  3929. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3930. qlge_set_multicast_list(qdev->ndev);
  3931. rtnl_unlock();
  3932. return;
  3933. error:
  3934. netif_alert(qdev, ifup, qdev->ndev,
  3935. "Driver up/down cycle failed, closing device\n");
  3936. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3937. dev_close(qdev->ndev);
  3938. rtnl_unlock();
  3939. }
  3940. static const struct nic_operations qla8012_nic_ops = {
  3941. .get_flash = ql_get_8012_flash_params,
  3942. .port_initialize = ql_8012_port_initialize,
  3943. };
  3944. static const struct nic_operations qla8000_nic_ops = {
  3945. .get_flash = ql_get_8000_flash_params,
  3946. .port_initialize = ql_8000_port_initialize,
  3947. };
  3948. /* Find the pcie function number for the other NIC
  3949. * on this chip. Since both NIC functions share a
  3950. * common firmware we have the lowest enabled function
  3951. * do any common work. Examples would be resetting
  3952. * after a fatal firmware error, or doing a firmware
  3953. * coredump.
  3954. */
  3955. static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
  3956. {
  3957. int status = 0;
  3958. u32 temp;
  3959. u32 nic_func1, nic_func2;
  3960. status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
  3961. &temp);
  3962. if (status)
  3963. return status;
  3964. nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
  3965. MPI_TEST_NIC_FUNC_MASK);
  3966. nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
  3967. MPI_TEST_NIC_FUNC_MASK);
  3968. if (qdev->func == nic_func1)
  3969. qdev->alt_func = nic_func2;
  3970. else if (qdev->func == nic_func2)
  3971. qdev->alt_func = nic_func1;
  3972. else
  3973. status = -EIO;
  3974. return status;
  3975. }
  3976. static int ql_get_board_info(struct ql_adapter *qdev)
  3977. {
  3978. int status;
  3979. qdev->func =
  3980. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3981. if (qdev->func > 3)
  3982. return -EIO;
  3983. status = ql_get_alt_pcie_func(qdev);
  3984. if (status)
  3985. return status;
  3986. qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
  3987. if (qdev->port) {
  3988. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3989. qdev->port_link_up = STS_PL1;
  3990. qdev->port_init = STS_PI1;
  3991. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3992. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3993. } else {
  3994. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3995. qdev->port_link_up = STS_PL0;
  3996. qdev->port_init = STS_PI0;
  3997. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3998. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3999. }
  4000. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  4001. qdev->device_id = qdev->pdev->device;
  4002. if (qdev->device_id == QLGE_DEVICE_ID_8012)
  4003. qdev->nic_ops = &qla8012_nic_ops;
  4004. else if (qdev->device_id == QLGE_DEVICE_ID_8000)
  4005. qdev->nic_ops = &qla8000_nic_ops;
  4006. return status;
  4007. }
  4008. static void ql_release_all(struct pci_dev *pdev)
  4009. {
  4010. struct net_device *ndev = pci_get_drvdata(pdev);
  4011. struct ql_adapter *qdev = netdev_priv(ndev);
  4012. if (qdev->workqueue) {
  4013. destroy_workqueue(qdev->workqueue);
  4014. qdev->workqueue = NULL;
  4015. }
  4016. if (qdev->reg_base)
  4017. iounmap(qdev->reg_base);
  4018. if (qdev->doorbell_area)
  4019. iounmap(qdev->doorbell_area);
  4020. vfree(qdev->mpi_coredump);
  4021. pci_release_regions(pdev);
  4022. pci_set_drvdata(pdev, NULL);
  4023. }
  4024. static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
  4025. int cards_found)
  4026. {
  4027. struct ql_adapter *qdev = netdev_priv(ndev);
  4028. int err = 0;
  4029. memset((void *)qdev, 0, sizeof(*qdev));
  4030. err = pci_enable_device(pdev);
  4031. if (err) {
  4032. dev_err(&pdev->dev, "PCI device enable failed.\n");
  4033. return err;
  4034. }
  4035. qdev->ndev = ndev;
  4036. qdev->pdev = pdev;
  4037. pci_set_drvdata(pdev, ndev);
  4038. /* Set PCIe read request size */
  4039. err = pcie_set_readrq(pdev, 4096);
  4040. if (err) {
  4041. dev_err(&pdev->dev, "Set readrq failed.\n");
  4042. goto err_out1;
  4043. }
  4044. err = pci_request_regions(pdev, DRV_NAME);
  4045. if (err) {
  4046. dev_err(&pdev->dev, "PCI region request failed.\n");
  4047. return err;
  4048. }
  4049. pci_set_master(pdev);
  4050. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  4051. set_bit(QL_DMA64, &qdev->flags);
  4052. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  4053. } else {
  4054. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  4055. if (!err)
  4056. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  4057. }
  4058. if (err) {
  4059. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  4060. goto err_out2;
  4061. }
  4062. /* Set PCIe reset type for EEH to fundamental. */
  4063. pdev->needs_freset = 1;
  4064. pci_save_state(pdev);
  4065. qdev->reg_base =
  4066. ioremap_nocache(pci_resource_start(pdev, 1),
  4067. pci_resource_len(pdev, 1));
  4068. if (!qdev->reg_base) {
  4069. dev_err(&pdev->dev, "Register mapping failed.\n");
  4070. err = -ENOMEM;
  4071. goto err_out2;
  4072. }
  4073. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  4074. qdev->doorbell_area =
  4075. ioremap_nocache(pci_resource_start(pdev, 3),
  4076. pci_resource_len(pdev, 3));
  4077. if (!qdev->doorbell_area) {
  4078. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  4079. err = -ENOMEM;
  4080. goto err_out2;
  4081. }
  4082. err = ql_get_board_info(qdev);
  4083. if (err) {
  4084. dev_err(&pdev->dev, "Register access failed.\n");
  4085. err = -EIO;
  4086. goto err_out2;
  4087. }
  4088. qdev->msg_enable = netif_msg_init(debug, default_msg);
  4089. spin_lock_init(&qdev->hw_lock);
  4090. spin_lock_init(&qdev->stats_lock);
  4091. if (qlge_mpi_coredump) {
  4092. qdev->mpi_coredump =
  4093. vmalloc(sizeof(struct ql_mpi_coredump));
  4094. if (qdev->mpi_coredump == NULL) {
  4095. dev_err(&pdev->dev, "Coredump alloc failed.\n");
  4096. err = -ENOMEM;
  4097. goto err_out2;
  4098. }
  4099. if (qlge_force_coredump)
  4100. set_bit(QL_FRC_COREDUMP, &qdev->flags);
  4101. }
  4102. /* make sure the EEPROM is good */
  4103. err = qdev->nic_ops->get_flash(qdev);
  4104. if (err) {
  4105. dev_err(&pdev->dev, "Invalid FLASH.\n");
  4106. goto err_out2;
  4107. }
  4108. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  4109. /* Keep local copy of current mac address. */
  4110. memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
  4111. /* Set up the default ring sizes. */
  4112. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  4113. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  4114. /* Set up the coalescing parameters. */
  4115. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4116. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4117. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4118. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4119. /*
  4120. * Set up the operating parameters.
  4121. */
  4122. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  4123. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  4124. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  4125. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  4126. INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
  4127. INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
  4128. INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
  4129. init_completion(&qdev->ide_completion);
  4130. mutex_init(&qdev->mpi_mutex);
  4131. if (!cards_found) {
  4132. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  4133. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  4134. DRV_NAME, DRV_VERSION);
  4135. }
  4136. return 0;
  4137. err_out2:
  4138. ql_release_all(pdev);
  4139. err_out1:
  4140. pci_disable_device(pdev);
  4141. return err;
  4142. }
  4143. static const struct net_device_ops qlge_netdev_ops = {
  4144. .ndo_open = qlge_open,
  4145. .ndo_stop = qlge_close,
  4146. .ndo_start_xmit = qlge_send,
  4147. .ndo_change_mtu = qlge_change_mtu,
  4148. .ndo_get_stats = qlge_get_stats,
  4149. .ndo_set_rx_mode = qlge_set_multicast_list,
  4150. .ndo_set_mac_address = qlge_set_mac_address,
  4151. .ndo_validate_addr = eth_validate_addr,
  4152. .ndo_tx_timeout = qlge_tx_timeout,
  4153. .ndo_fix_features = qlge_fix_features,
  4154. .ndo_set_features = qlge_set_features,
  4155. .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
  4156. .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
  4157. };
  4158. static void ql_timer(unsigned long data)
  4159. {
  4160. struct ql_adapter *qdev = (struct ql_adapter *)data;
  4161. u32 var = 0;
  4162. var = ql_read32(qdev, STS);
  4163. if (pci_channel_offline(qdev->pdev)) {
  4164. netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
  4165. return;
  4166. }
  4167. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4168. }
  4169. static int qlge_probe(struct pci_dev *pdev,
  4170. const struct pci_device_id *pci_entry)
  4171. {
  4172. struct net_device *ndev = NULL;
  4173. struct ql_adapter *qdev = NULL;
  4174. static int cards_found = 0;
  4175. int err = 0;
  4176. ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
  4177. min(MAX_CPUS, netif_get_num_default_rss_queues()));
  4178. if (!ndev)
  4179. return -ENOMEM;
  4180. err = ql_init_device(pdev, ndev, cards_found);
  4181. if (err < 0) {
  4182. free_netdev(ndev);
  4183. return err;
  4184. }
  4185. qdev = netdev_priv(ndev);
  4186. SET_NETDEV_DEV(ndev, &pdev->dev);
  4187. ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
  4188. NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN |
  4189. NETIF_F_HW_VLAN_TX | NETIF_F_RXCSUM;
  4190. ndev->features = ndev->hw_features |
  4191. NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
  4192. ndev->vlan_features = ndev->hw_features;
  4193. if (test_bit(QL_DMA64, &qdev->flags))
  4194. ndev->features |= NETIF_F_HIGHDMA;
  4195. /*
  4196. * Set up net_device structure.
  4197. */
  4198. ndev->tx_queue_len = qdev->tx_ring_size;
  4199. ndev->irq = pdev->irq;
  4200. ndev->netdev_ops = &qlge_netdev_ops;
  4201. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  4202. ndev->watchdog_timeo = 10 * HZ;
  4203. err = register_netdev(ndev);
  4204. if (err) {
  4205. dev_err(&pdev->dev, "net device registration failed.\n");
  4206. ql_release_all(pdev);
  4207. pci_disable_device(pdev);
  4208. return err;
  4209. }
  4210. /* Start up the timer to trigger EEH if
  4211. * the bus goes dead
  4212. */
  4213. init_timer_deferrable(&qdev->timer);
  4214. qdev->timer.data = (unsigned long)qdev;
  4215. qdev->timer.function = ql_timer;
  4216. qdev->timer.expires = jiffies + (5*HZ);
  4217. add_timer(&qdev->timer);
  4218. ql_link_off(qdev);
  4219. ql_display_dev_info(ndev);
  4220. atomic_set(&qdev->lb_count, 0);
  4221. cards_found++;
  4222. return 0;
  4223. }
  4224. netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
  4225. {
  4226. return qlge_send(skb, ndev);
  4227. }
  4228. int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
  4229. {
  4230. return ql_clean_inbound_rx_ring(rx_ring, budget);
  4231. }
  4232. static void qlge_remove(struct pci_dev *pdev)
  4233. {
  4234. struct net_device *ndev = pci_get_drvdata(pdev);
  4235. struct ql_adapter *qdev = netdev_priv(ndev);
  4236. del_timer_sync(&qdev->timer);
  4237. ql_cancel_all_work_sync(qdev);
  4238. unregister_netdev(ndev);
  4239. ql_release_all(pdev);
  4240. pci_disable_device(pdev);
  4241. free_netdev(ndev);
  4242. }
  4243. /* Clean up resources without touching hardware. */
  4244. static void ql_eeh_close(struct net_device *ndev)
  4245. {
  4246. int i;
  4247. struct ql_adapter *qdev = netdev_priv(ndev);
  4248. if (netif_carrier_ok(ndev)) {
  4249. netif_carrier_off(ndev);
  4250. netif_stop_queue(ndev);
  4251. }
  4252. /* Disabling the timer */
  4253. del_timer_sync(&qdev->timer);
  4254. ql_cancel_all_work_sync(qdev);
  4255. for (i = 0; i < qdev->rss_ring_count; i++)
  4256. netif_napi_del(&qdev->rx_ring[i].napi);
  4257. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  4258. ql_tx_ring_clean(qdev);
  4259. ql_free_rx_buffers(qdev);
  4260. ql_release_adapter_resources(qdev);
  4261. }
  4262. /*
  4263. * This callback is called by the PCI subsystem whenever
  4264. * a PCI bus error is detected.
  4265. */
  4266. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  4267. enum pci_channel_state state)
  4268. {
  4269. struct net_device *ndev = pci_get_drvdata(pdev);
  4270. struct ql_adapter *qdev = netdev_priv(ndev);
  4271. switch (state) {
  4272. case pci_channel_io_normal:
  4273. return PCI_ERS_RESULT_CAN_RECOVER;
  4274. case pci_channel_io_frozen:
  4275. netif_device_detach(ndev);
  4276. if (netif_running(ndev))
  4277. ql_eeh_close(ndev);
  4278. pci_disable_device(pdev);
  4279. return PCI_ERS_RESULT_NEED_RESET;
  4280. case pci_channel_io_perm_failure:
  4281. dev_err(&pdev->dev,
  4282. "%s: pci_channel_io_perm_failure.\n", __func__);
  4283. ql_eeh_close(ndev);
  4284. set_bit(QL_EEH_FATAL, &qdev->flags);
  4285. return PCI_ERS_RESULT_DISCONNECT;
  4286. }
  4287. /* Request a slot reset. */
  4288. return PCI_ERS_RESULT_NEED_RESET;
  4289. }
  4290. /*
  4291. * This callback is called after the PCI buss has been reset.
  4292. * Basically, this tries to restart the card from scratch.
  4293. * This is a shortened version of the device probe/discovery code,
  4294. * it resembles the first-half of the () routine.
  4295. */
  4296. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  4297. {
  4298. struct net_device *ndev = pci_get_drvdata(pdev);
  4299. struct ql_adapter *qdev = netdev_priv(ndev);
  4300. pdev->error_state = pci_channel_io_normal;
  4301. pci_restore_state(pdev);
  4302. if (pci_enable_device(pdev)) {
  4303. netif_err(qdev, ifup, qdev->ndev,
  4304. "Cannot re-enable PCI device after reset.\n");
  4305. return PCI_ERS_RESULT_DISCONNECT;
  4306. }
  4307. pci_set_master(pdev);
  4308. if (ql_adapter_reset(qdev)) {
  4309. netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
  4310. set_bit(QL_EEH_FATAL, &qdev->flags);
  4311. return PCI_ERS_RESULT_DISCONNECT;
  4312. }
  4313. return PCI_ERS_RESULT_RECOVERED;
  4314. }
  4315. static void qlge_io_resume(struct pci_dev *pdev)
  4316. {
  4317. struct net_device *ndev = pci_get_drvdata(pdev);
  4318. struct ql_adapter *qdev = netdev_priv(ndev);
  4319. int err = 0;
  4320. if (netif_running(ndev)) {
  4321. err = qlge_open(ndev);
  4322. if (err) {
  4323. netif_err(qdev, ifup, qdev->ndev,
  4324. "Device initialization failed after reset.\n");
  4325. return;
  4326. }
  4327. } else {
  4328. netif_err(qdev, ifup, qdev->ndev,
  4329. "Device was not running prior to EEH.\n");
  4330. }
  4331. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4332. netif_device_attach(ndev);
  4333. }
  4334. static const struct pci_error_handlers qlge_err_handler = {
  4335. .error_detected = qlge_io_error_detected,
  4336. .slot_reset = qlge_io_slot_reset,
  4337. .resume = qlge_io_resume,
  4338. };
  4339. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  4340. {
  4341. struct net_device *ndev = pci_get_drvdata(pdev);
  4342. struct ql_adapter *qdev = netdev_priv(ndev);
  4343. int err;
  4344. netif_device_detach(ndev);
  4345. del_timer_sync(&qdev->timer);
  4346. if (netif_running(ndev)) {
  4347. err = ql_adapter_down(qdev);
  4348. if (!err)
  4349. return err;
  4350. }
  4351. ql_wol(qdev);
  4352. err = pci_save_state(pdev);
  4353. if (err)
  4354. return err;
  4355. pci_disable_device(pdev);
  4356. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4357. return 0;
  4358. }
  4359. #ifdef CONFIG_PM
  4360. static int qlge_resume(struct pci_dev *pdev)
  4361. {
  4362. struct net_device *ndev = pci_get_drvdata(pdev);
  4363. struct ql_adapter *qdev = netdev_priv(ndev);
  4364. int err;
  4365. pci_set_power_state(pdev, PCI_D0);
  4366. pci_restore_state(pdev);
  4367. err = pci_enable_device(pdev);
  4368. if (err) {
  4369. netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
  4370. return err;
  4371. }
  4372. pci_set_master(pdev);
  4373. pci_enable_wake(pdev, PCI_D3hot, 0);
  4374. pci_enable_wake(pdev, PCI_D3cold, 0);
  4375. if (netif_running(ndev)) {
  4376. err = ql_adapter_up(qdev);
  4377. if (err)
  4378. return err;
  4379. }
  4380. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4381. netif_device_attach(ndev);
  4382. return 0;
  4383. }
  4384. #endif /* CONFIG_PM */
  4385. static void qlge_shutdown(struct pci_dev *pdev)
  4386. {
  4387. qlge_suspend(pdev, PMSG_SUSPEND);
  4388. }
  4389. static struct pci_driver qlge_driver = {
  4390. .name = DRV_NAME,
  4391. .id_table = qlge_pci_tbl,
  4392. .probe = qlge_probe,
  4393. .remove = qlge_remove,
  4394. #ifdef CONFIG_PM
  4395. .suspend = qlge_suspend,
  4396. .resume = qlge_resume,
  4397. #endif
  4398. .shutdown = qlge_shutdown,
  4399. .err_handler = &qlge_err_handler
  4400. };
  4401. static int __init qlge_init_module(void)
  4402. {
  4403. return pci_register_driver(&qlge_driver);
  4404. }
  4405. static void __exit qlge_exit(void)
  4406. {
  4407. pci_unregister_driver(&qlge_driver);
  4408. }
  4409. module_init(qlge_init_module);
  4410. module_exit(qlge_exit);