mvneta.c 75 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847
  1. /*
  2. * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
  3. *
  4. * Copyright (C) 2012 Marvell
  5. *
  6. * Rami Rosen <rosenr@marvell.com>
  7. * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
  8. *
  9. * This file is licensed under the terms of the GNU General Public
  10. * License version 2. This program is licensed "as is" without any
  11. * warranty of any kind, whether express or implied.
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/version.h>
  15. #include <linux/netdevice.h>
  16. #include <linux/etherdevice.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/skbuff.h>
  19. #include <linux/inetdevice.h>
  20. #include <linux/mbus.h>
  21. #include <linux/module.h>
  22. #include <linux/interrupt.h>
  23. #include <net/ip.h>
  24. #include <net/ipv6.h>
  25. #include <linux/of.h>
  26. #include <linux/of_irq.h>
  27. #include <linux/of_mdio.h>
  28. #include <linux/of_net.h>
  29. #include <linux/of_address.h>
  30. #include <linux/phy.h>
  31. #include <linux/clk.h>
  32. /* Registers */
  33. #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
  34. #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1)
  35. #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
  36. #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
  37. #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
  38. #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
  39. #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
  40. #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
  41. #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
  42. #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
  43. #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
  44. #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
  45. #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
  46. #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
  47. #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
  48. #define MVNETA_PORT_RX_RESET 0x1cc0
  49. #define MVNETA_PORT_RX_DMA_RESET BIT(0)
  50. #define MVNETA_PHY_ADDR 0x2000
  51. #define MVNETA_PHY_ADDR_MASK 0x1f
  52. #define MVNETA_MBUS_RETRY 0x2010
  53. #define MVNETA_UNIT_INTR_CAUSE 0x2080
  54. #define MVNETA_UNIT_CONTROL 0x20B0
  55. #define MVNETA_PHY_POLLING_ENABLE BIT(1)
  56. #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
  57. #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
  58. #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
  59. #define MVNETA_BASE_ADDR_ENABLE 0x2290
  60. #define MVNETA_PORT_CONFIG 0x2400
  61. #define MVNETA_UNI_PROMISC_MODE BIT(0)
  62. #define MVNETA_DEF_RXQ(q) ((q) << 1)
  63. #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
  64. #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
  65. #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
  66. #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
  67. #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
  68. #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
  69. #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
  70. MVNETA_DEF_RXQ_ARP(q) | \
  71. MVNETA_DEF_RXQ_TCP(q) | \
  72. MVNETA_DEF_RXQ_UDP(q) | \
  73. MVNETA_DEF_RXQ_BPDU(q) | \
  74. MVNETA_TX_UNSET_ERR_SUM | \
  75. MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
  76. #define MVNETA_PORT_CONFIG_EXTEND 0x2404
  77. #define MVNETA_MAC_ADDR_LOW 0x2414
  78. #define MVNETA_MAC_ADDR_HIGH 0x2418
  79. #define MVNETA_SDMA_CONFIG 0x241c
  80. #define MVNETA_SDMA_BRST_SIZE_16 4
  81. #define MVNETA_NO_DESC_SWAP 0x0
  82. #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
  83. #define MVNETA_RX_NO_DATA_SWAP BIT(4)
  84. #define MVNETA_TX_NO_DATA_SWAP BIT(5)
  85. #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
  86. #define MVNETA_PORT_STATUS 0x2444
  87. #define MVNETA_TX_IN_PRGRS BIT(1)
  88. #define MVNETA_TX_FIFO_EMPTY BIT(8)
  89. #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
  90. #define MVNETA_TYPE_PRIO 0x24bc
  91. #define MVNETA_FORCE_UNI BIT(21)
  92. #define MVNETA_TXQ_CMD_1 0x24e4
  93. #define MVNETA_TXQ_CMD 0x2448
  94. #define MVNETA_TXQ_DISABLE_SHIFT 8
  95. #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
  96. #define MVNETA_ACC_MODE 0x2500
  97. #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
  98. #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
  99. #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
  100. #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
  101. #define MVNETA_INTR_NEW_CAUSE 0x25a0
  102. #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
  103. #define MVNETA_INTR_NEW_MASK 0x25a4
  104. #define MVNETA_INTR_OLD_CAUSE 0x25a8
  105. #define MVNETA_INTR_OLD_MASK 0x25ac
  106. #define MVNETA_INTR_MISC_CAUSE 0x25b0
  107. #define MVNETA_INTR_MISC_MASK 0x25b4
  108. #define MVNETA_INTR_ENABLE 0x25b8
  109. #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
  110. #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0xff000000
  111. #define MVNETA_RXQ_CMD 0x2680
  112. #define MVNETA_RXQ_DISABLE_SHIFT 8
  113. #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
  114. #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
  115. #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
  116. #define MVNETA_GMAC_CTRL_0 0x2c00
  117. #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
  118. #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
  119. #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
  120. #define MVNETA_GMAC_CTRL_2 0x2c08
  121. #define MVNETA_GMAC2_PSC_ENABLE BIT(3)
  122. #define MVNETA_GMAC2_PORT_RGMII BIT(4)
  123. #define MVNETA_GMAC2_PORT_RESET BIT(6)
  124. #define MVNETA_GMAC_STATUS 0x2c10
  125. #define MVNETA_GMAC_LINK_UP BIT(0)
  126. #define MVNETA_GMAC_SPEED_1000 BIT(1)
  127. #define MVNETA_GMAC_SPEED_100 BIT(2)
  128. #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
  129. #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
  130. #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
  131. #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
  132. #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
  133. #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
  134. #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
  135. #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
  136. #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
  137. #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
  138. #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
  139. #define MVNETA_MIB_COUNTERS_BASE 0x3080
  140. #define MVNETA_MIB_LATE_COLLISION 0x7c
  141. #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
  142. #define MVNETA_DA_FILT_OTH_MCAST 0x3500
  143. #define MVNETA_DA_FILT_UCAST_BASE 0x3600
  144. #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
  145. #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
  146. #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
  147. #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
  148. #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
  149. #define MVNETA_TXQ_DEC_SENT_SHIFT 16
  150. #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
  151. #define MVNETA_TXQ_SENT_DESC_SHIFT 16
  152. #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
  153. #define MVNETA_PORT_TX_RESET 0x3cf0
  154. #define MVNETA_PORT_TX_DMA_RESET BIT(0)
  155. #define MVNETA_TX_MTU 0x3e0c
  156. #define MVNETA_TX_TOKEN_SIZE 0x3e14
  157. #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
  158. #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
  159. #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
  160. #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
  161. /* Descriptor ring Macros */
  162. #define MVNETA_QUEUE_NEXT_DESC(q, index) \
  163. (((index) < (q)->last_desc) ? ((index) + 1) : 0)
  164. /* Various constants */
  165. /* Coalescing */
  166. #define MVNETA_TXDONE_COAL_PKTS 16
  167. #define MVNETA_RX_COAL_PKTS 32
  168. #define MVNETA_RX_COAL_USEC 100
  169. /* Timer */
  170. #define MVNETA_TX_DONE_TIMER_PERIOD 10
  171. /* Napi polling weight */
  172. #define MVNETA_RX_POLL_WEIGHT 64
  173. /* The two bytes Marvell header. Either contains a special value used
  174. * by Marvell switches when a specific hardware mode is enabled (not
  175. * supported by this driver) or is filled automatically by zeroes on
  176. * the RX side. Those two bytes being at the front of the Ethernet
  177. * header, they allow to have the IP header aligned on a 4 bytes
  178. * boundary automatically: the hardware skips those two bytes on its
  179. * own.
  180. */
  181. #define MVNETA_MH_SIZE 2
  182. #define MVNETA_VLAN_TAG_LEN 4
  183. #define MVNETA_CPU_D_CACHE_LINE_SIZE 32
  184. #define MVNETA_TX_CSUM_MAX_SIZE 9800
  185. #define MVNETA_ACC_MODE_EXT 1
  186. /* Timeout constants */
  187. #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
  188. #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
  189. #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
  190. #define MVNETA_TX_MTU_MAX 0x3ffff
  191. /* Max number of Rx descriptors */
  192. #define MVNETA_MAX_RXD 128
  193. /* Max number of Tx descriptors */
  194. #define MVNETA_MAX_TXD 532
  195. /* descriptor aligned size */
  196. #define MVNETA_DESC_ALIGNED_SIZE 32
  197. #define MVNETA_RX_PKT_SIZE(mtu) \
  198. ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
  199. ETH_HLEN + ETH_FCS_LEN, \
  200. MVNETA_CPU_D_CACHE_LINE_SIZE)
  201. #define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
  202. struct mvneta_stats {
  203. struct u64_stats_sync syncp;
  204. u64 packets;
  205. u64 bytes;
  206. };
  207. struct mvneta_port {
  208. int pkt_size;
  209. void __iomem *base;
  210. struct mvneta_rx_queue *rxqs;
  211. struct mvneta_tx_queue *txqs;
  212. struct timer_list tx_done_timer;
  213. struct net_device *dev;
  214. u32 cause_rx_tx;
  215. struct napi_struct napi;
  216. /* Flags */
  217. unsigned long flags;
  218. #define MVNETA_F_TX_DONE_TIMER_BIT 0
  219. /* Napi weight */
  220. int weight;
  221. /* Core clock */
  222. struct clk *clk;
  223. u8 mcast_count[256];
  224. u16 tx_ring_size;
  225. u16 rx_ring_size;
  226. struct mvneta_stats tx_stats;
  227. struct mvneta_stats rx_stats;
  228. struct mii_bus *mii_bus;
  229. struct phy_device *phy_dev;
  230. phy_interface_t phy_interface;
  231. struct device_node *phy_node;
  232. unsigned int link;
  233. unsigned int duplex;
  234. unsigned int speed;
  235. };
  236. /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
  237. * layout of the transmit and reception DMA descriptors, and their
  238. * layout is therefore defined by the hardware design
  239. */
  240. struct mvneta_tx_desc {
  241. u32 command; /* Options used by HW for packet transmitting.*/
  242. #define MVNETA_TX_L3_OFF_SHIFT 0
  243. #define MVNETA_TX_IP_HLEN_SHIFT 8
  244. #define MVNETA_TX_L4_UDP BIT(16)
  245. #define MVNETA_TX_L3_IP6 BIT(17)
  246. #define MVNETA_TXD_IP_CSUM BIT(18)
  247. #define MVNETA_TXD_Z_PAD BIT(19)
  248. #define MVNETA_TXD_L_DESC BIT(20)
  249. #define MVNETA_TXD_F_DESC BIT(21)
  250. #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
  251. MVNETA_TXD_L_DESC | \
  252. MVNETA_TXD_F_DESC)
  253. #define MVNETA_TX_L4_CSUM_FULL BIT(30)
  254. #define MVNETA_TX_L4_CSUM_NOT BIT(31)
  255. u16 reserverd1; /* csum_l4 (for future use) */
  256. u16 data_size; /* Data size of transmitted packet in bytes */
  257. u32 buf_phys_addr; /* Physical addr of transmitted buffer */
  258. u32 reserved2; /* hw_cmd - (for future use, PMT) */
  259. u32 reserved3[4]; /* Reserved - (for future use) */
  260. };
  261. struct mvneta_rx_desc {
  262. u32 status; /* Info about received packet */
  263. #define MVNETA_RXD_ERR_CRC 0x0
  264. #define MVNETA_RXD_ERR_SUMMARY BIT(16)
  265. #define MVNETA_RXD_ERR_OVERRUN BIT(17)
  266. #define MVNETA_RXD_ERR_LEN BIT(18)
  267. #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
  268. #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
  269. #define MVNETA_RXD_L3_IP4 BIT(25)
  270. #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
  271. #define MVNETA_RXD_L4_CSUM_OK BIT(30)
  272. u16 reserved1; /* pnc_info - (for future use, PnC) */
  273. u16 data_size; /* Size of received packet in bytes */
  274. u32 buf_phys_addr; /* Physical address of the buffer */
  275. u32 reserved2; /* pnc_flow_id (for future use, PnC) */
  276. u32 buf_cookie; /* cookie for access to RX buffer in rx path */
  277. u16 reserved3; /* prefetch_cmd, for future use */
  278. u16 reserved4; /* csum_l4 - (for future use, PnC) */
  279. u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
  280. u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
  281. };
  282. struct mvneta_tx_queue {
  283. /* Number of this TX queue, in the range 0-7 */
  284. u8 id;
  285. /* Number of TX DMA descriptors in the descriptor ring */
  286. int size;
  287. /* Number of currently used TX DMA descriptor in the
  288. * descriptor ring
  289. */
  290. int count;
  291. /* Array of transmitted skb */
  292. struct sk_buff **tx_skb;
  293. /* Index of last TX DMA descriptor that was inserted */
  294. int txq_put_index;
  295. /* Index of the TX DMA descriptor to be cleaned up */
  296. int txq_get_index;
  297. u32 done_pkts_coal;
  298. /* Virtual address of the TX DMA descriptors array */
  299. struct mvneta_tx_desc *descs;
  300. /* DMA address of the TX DMA descriptors array */
  301. dma_addr_t descs_phys;
  302. /* Index of the last TX DMA descriptor */
  303. int last_desc;
  304. /* Index of the next TX DMA descriptor to process */
  305. int next_desc_to_proc;
  306. };
  307. struct mvneta_rx_queue {
  308. /* rx queue number, in the range 0-7 */
  309. u8 id;
  310. /* num of rx descriptors in the rx descriptor ring */
  311. int size;
  312. /* counter of times when mvneta_refill() failed */
  313. int missed;
  314. u32 pkts_coal;
  315. u32 time_coal;
  316. /* Virtual address of the RX DMA descriptors array */
  317. struct mvneta_rx_desc *descs;
  318. /* DMA address of the RX DMA descriptors array */
  319. dma_addr_t descs_phys;
  320. /* Index of the last RX DMA descriptor */
  321. int last_desc;
  322. /* Index of the next RX DMA descriptor to process */
  323. int next_desc_to_proc;
  324. };
  325. static int rxq_number = 8;
  326. static int txq_number = 8;
  327. static int rxq_def;
  328. static int txq_def;
  329. #define MVNETA_DRIVER_NAME "mvneta"
  330. #define MVNETA_DRIVER_VERSION "1.0"
  331. /* Utility/helper methods */
  332. /* Write helper method */
  333. static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
  334. {
  335. writel(data, pp->base + offset);
  336. }
  337. /* Read helper method */
  338. static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
  339. {
  340. return readl(pp->base + offset);
  341. }
  342. /* Increment txq get counter */
  343. static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
  344. {
  345. txq->txq_get_index++;
  346. if (txq->txq_get_index == txq->size)
  347. txq->txq_get_index = 0;
  348. }
  349. /* Increment txq put counter */
  350. static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
  351. {
  352. txq->txq_put_index++;
  353. if (txq->txq_put_index == txq->size)
  354. txq->txq_put_index = 0;
  355. }
  356. /* Clear all MIB counters */
  357. static void mvneta_mib_counters_clear(struct mvneta_port *pp)
  358. {
  359. int i;
  360. u32 dummy;
  361. /* Perform dummy reads from MIB counters */
  362. for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
  363. dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
  364. }
  365. /* Get System Network Statistics */
  366. struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
  367. struct rtnl_link_stats64 *stats)
  368. {
  369. struct mvneta_port *pp = netdev_priv(dev);
  370. unsigned int start;
  371. memset(stats, 0, sizeof(struct rtnl_link_stats64));
  372. do {
  373. start = u64_stats_fetch_begin_bh(&pp->rx_stats.syncp);
  374. stats->rx_packets = pp->rx_stats.packets;
  375. stats->rx_bytes = pp->rx_stats.bytes;
  376. } while (u64_stats_fetch_retry_bh(&pp->rx_stats.syncp, start));
  377. do {
  378. start = u64_stats_fetch_begin_bh(&pp->tx_stats.syncp);
  379. stats->tx_packets = pp->tx_stats.packets;
  380. stats->tx_bytes = pp->tx_stats.bytes;
  381. } while (u64_stats_fetch_retry_bh(&pp->tx_stats.syncp, start));
  382. stats->rx_errors = dev->stats.rx_errors;
  383. stats->rx_dropped = dev->stats.rx_dropped;
  384. stats->tx_dropped = dev->stats.tx_dropped;
  385. return stats;
  386. }
  387. /* Rx descriptors helper methods */
  388. /* Checks whether the given RX descriptor is both the first and the
  389. * last descriptor for the RX packet. Each RX packet is currently
  390. * received through a single RX descriptor, so not having each RX
  391. * descriptor with its first and last bits set is an error
  392. */
  393. static int mvneta_rxq_desc_is_first_last(struct mvneta_rx_desc *desc)
  394. {
  395. return (desc->status & MVNETA_RXD_FIRST_LAST_DESC) ==
  396. MVNETA_RXD_FIRST_LAST_DESC;
  397. }
  398. /* Add number of descriptors ready to receive new packets */
  399. static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
  400. struct mvneta_rx_queue *rxq,
  401. int ndescs)
  402. {
  403. /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
  404. * be added at once
  405. */
  406. while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
  407. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
  408. (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
  409. MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
  410. ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
  411. }
  412. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
  413. (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
  414. }
  415. /* Get number of RX descriptors occupied by received packets */
  416. static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
  417. struct mvneta_rx_queue *rxq)
  418. {
  419. u32 val;
  420. val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
  421. return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
  422. }
  423. /* Update num of rx desc called upon return from rx path or
  424. * from mvneta_rxq_drop_pkts().
  425. */
  426. static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
  427. struct mvneta_rx_queue *rxq,
  428. int rx_done, int rx_filled)
  429. {
  430. u32 val;
  431. if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
  432. val = rx_done |
  433. (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
  434. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
  435. return;
  436. }
  437. /* Only 255 descriptors can be added at once */
  438. while ((rx_done > 0) || (rx_filled > 0)) {
  439. if (rx_done <= 0xff) {
  440. val = rx_done;
  441. rx_done = 0;
  442. } else {
  443. val = 0xff;
  444. rx_done -= 0xff;
  445. }
  446. if (rx_filled <= 0xff) {
  447. val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
  448. rx_filled = 0;
  449. } else {
  450. val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
  451. rx_filled -= 0xff;
  452. }
  453. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
  454. }
  455. }
  456. /* Get pointer to next RX descriptor to be processed by SW */
  457. static struct mvneta_rx_desc *
  458. mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
  459. {
  460. int rx_desc = rxq->next_desc_to_proc;
  461. rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
  462. return rxq->descs + rx_desc;
  463. }
  464. /* Change maximum receive size of the port. */
  465. static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
  466. {
  467. u32 val;
  468. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  469. val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
  470. val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
  471. MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
  472. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  473. }
  474. /* Set rx queue offset */
  475. static void mvneta_rxq_offset_set(struct mvneta_port *pp,
  476. struct mvneta_rx_queue *rxq,
  477. int offset)
  478. {
  479. u32 val;
  480. val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
  481. val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
  482. /* Offset is in */
  483. val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
  484. mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
  485. }
  486. /* Tx descriptors helper methods */
  487. /* Update HW with number of TX descriptors to be sent */
  488. static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
  489. struct mvneta_tx_queue *txq,
  490. int pend_desc)
  491. {
  492. u32 val;
  493. /* Only 255 descriptors can be added at once ; Assume caller
  494. * process TX desriptors in quanta less than 256
  495. */
  496. val = pend_desc;
  497. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  498. }
  499. /* Get pointer to next TX descriptor to be processed (send) by HW */
  500. static struct mvneta_tx_desc *
  501. mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
  502. {
  503. int tx_desc = txq->next_desc_to_proc;
  504. txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
  505. return txq->descs + tx_desc;
  506. }
  507. /* Release the last allocated TX descriptor. Useful to handle DMA
  508. * mapping failures in the TX path.
  509. */
  510. static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
  511. {
  512. if (txq->next_desc_to_proc == 0)
  513. txq->next_desc_to_proc = txq->last_desc - 1;
  514. else
  515. txq->next_desc_to_proc--;
  516. }
  517. /* Set rxq buf size */
  518. static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
  519. struct mvneta_rx_queue *rxq,
  520. int buf_size)
  521. {
  522. u32 val;
  523. val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
  524. val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
  525. val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
  526. mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
  527. }
  528. /* Disable buffer management (BM) */
  529. static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
  530. struct mvneta_rx_queue *rxq)
  531. {
  532. u32 val;
  533. val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
  534. val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
  535. mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
  536. }
  537. /* Sets the RGMII Enable bit (RGMIIEn) in port MAC control register */
  538. static void mvneta_gmac_rgmii_set(struct mvneta_port *pp, int enable)
  539. {
  540. u32 val;
  541. val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
  542. if (enable)
  543. val |= MVNETA_GMAC2_PORT_RGMII;
  544. else
  545. val &= ~MVNETA_GMAC2_PORT_RGMII;
  546. mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
  547. }
  548. /* Config SGMII port */
  549. static void mvneta_port_sgmii_config(struct mvneta_port *pp)
  550. {
  551. u32 val;
  552. val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
  553. val |= MVNETA_GMAC2_PSC_ENABLE;
  554. mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
  555. }
  556. /* Start the Ethernet port RX and TX activity */
  557. static void mvneta_port_up(struct mvneta_port *pp)
  558. {
  559. int queue;
  560. u32 q_map;
  561. /* Enable all initialized TXs. */
  562. mvneta_mib_counters_clear(pp);
  563. q_map = 0;
  564. for (queue = 0; queue < txq_number; queue++) {
  565. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  566. if (txq->descs != NULL)
  567. q_map |= (1 << queue);
  568. }
  569. mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
  570. /* Enable all initialized RXQs. */
  571. q_map = 0;
  572. for (queue = 0; queue < rxq_number; queue++) {
  573. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  574. if (rxq->descs != NULL)
  575. q_map |= (1 << queue);
  576. }
  577. mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
  578. }
  579. /* Stop the Ethernet port activity */
  580. static void mvneta_port_down(struct mvneta_port *pp)
  581. {
  582. u32 val;
  583. int count;
  584. /* Stop Rx port activity. Check port Rx activity. */
  585. val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
  586. /* Issue stop command for active channels only */
  587. if (val != 0)
  588. mvreg_write(pp, MVNETA_RXQ_CMD,
  589. val << MVNETA_RXQ_DISABLE_SHIFT);
  590. /* Wait for all Rx activity to terminate. */
  591. count = 0;
  592. do {
  593. if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
  594. netdev_warn(pp->dev,
  595. "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
  596. val);
  597. break;
  598. }
  599. mdelay(1);
  600. val = mvreg_read(pp, MVNETA_RXQ_CMD);
  601. } while (val & 0xff);
  602. /* Stop Tx port activity. Check port Tx activity. Issue stop
  603. * command for active channels only
  604. */
  605. val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
  606. if (val != 0)
  607. mvreg_write(pp, MVNETA_TXQ_CMD,
  608. (val << MVNETA_TXQ_DISABLE_SHIFT));
  609. /* Wait for all Tx activity to terminate. */
  610. count = 0;
  611. do {
  612. if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
  613. netdev_warn(pp->dev,
  614. "TIMEOUT for TX stopped status=0x%08x\n",
  615. val);
  616. break;
  617. }
  618. mdelay(1);
  619. /* Check TX Command reg that all Txqs are stopped */
  620. val = mvreg_read(pp, MVNETA_TXQ_CMD);
  621. } while (val & 0xff);
  622. /* Double check to verify that TX FIFO is empty */
  623. count = 0;
  624. do {
  625. if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
  626. netdev_warn(pp->dev,
  627. "TX FIFO empty timeout status=0x08%x\n",
  628. val);
  629. break;
  630. }
  631. mdelay(1);
  632. val = mvreg_read(pp, MVNETA_PORT_STATUS);
  633. } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
  634. (val & MVNETA_TX_IN_PRGRS));
  635. udelay(200);
  636. }
  637. /* Enable the port by setting the port enable bit of the MAC control register */
  638. static void mvneta_port_enable(struct mvneta_port *pp)
  639. {
  640. u32 val;
  641. /* Enable port */
  642. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  643. val |= MVNETA_GMAC0_PORT_ENABLE;
  644. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  645. }
  646. /* Disable the port and wait for about 200 usec before retuning */
  647. static void mvneta_port_disable(struct mvneta_port *pp)
  648. {
  649. u32 val;
  650. /* Reset the Enable bit in the Serial Control Register */
  651. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  652. val &= ~MVNETA_GMAC0_PORT_ENABLE;
  653. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  654. udelay(200);
  655. }
  656. /* Multicast tables methods */
  657. /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
  658. static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
  659. {
  660. int offset;
  661. u32 val;
  662. if (queue == -1) {
  663. val = 0;
  664. } else {
  665. val = 0x1 | (queue << 1);
  666. val |= (val << 24) | (val << 16) | (val << 8);
  667. }
  668. for (offset = 0; offset <= 0xc; offset += 4)
  669. mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
  670. }
  671. /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
  672. static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
  673. {
  674. int offset;
  675. u32 val;
  676. if (queue == -1) {
  677. val = 0;
  678. } else {
  679. val = 0x1 | (queue << 1);
  680. val |= (val << 24) | (val << 16) | (val << 8);
  681. }
  682. for (offset = 0; offset <= 0xfc; offset += 4)
  683. mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
  684. }
  685. /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
  686. static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
  687. {
  688. int offset;
  689. u32 val;
  690. if (queue == -1) {
  691. memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
  692. val = 0;
  693. } else {
  694. memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
  695. val = 0x1 | (queue << 1);
  696. val |= (val << 24) | (val << 16) | (val << 8);
  697. }
  698. for (offset = 0; offset <= 0xfc; offset += 4)
  699. mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
  700. }
  701. /* This method sets defaults to the NETA port:
  702. * Clears interrupt Cause and Mask registers.
  703. * Clears all MAC tables.
  704. * Sets defaults to all registers.
  705. * Resets RX and TX descriptor rings.
  706. * Resets PHY.
  707. * This method can be called after mvneta_port_down() to return the port
  708. * settings to defaults.
  709. */
  710. static void mvneta_defaults_set(struct mvneta_port *pp)
  711. {
  712. int cpu;
  713. int queue;
  714. u32 val;
  715. /* Clear all Cause registers */
  716. mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
  717. mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
  718. mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
  719. /* Mask all interrupts */
  720. mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
  721. mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
  722. mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
  723. mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
  724. /* Enable MBUS Retry bit16 */
  725. mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
  726. /* Set CPU queue access map - all CPUs have access to all RX
  727. * queues and to all TX queues
  728. */
  729. for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
  730. mvreg_write(pp, MVNETA_CPU_MAP(cpu),
  731. (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
  732. MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
  733. /* Reset RX and TX DMAs */
  734. mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
  735. mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
  736. /* Disable Legacy WRR, Disable EJP, Release from reset */
  737. mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
  738. for (queue = 0; queue < txq_number; queue++) {
  739. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
  740. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
  741. }
  742. mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
  743. mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
  744. /* Set Port Acceleration Mode */
  745. val = MVNETA_ACC_MODE_EXT;
  746. mvreg_write(pp, MVNETA_ACC_MODE, val);
  747. /* Update val of portCfg register accordingly with all RxQueue types */
  748. val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
  749. mvreg_write(pp, MVNETA_PORT_CONFIG, val);
  750. val = 0;
  751. mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
  752. mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
  753. /* Build PORT_SDMA_CONFIG_REG */
  754. val = 0;
  755. /* Default burst size */
  756. val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
  757. val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
  758. val |= (MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP |
  759. MVNETA_NO_DESC_SWAP);
  760. /* Assign port SDMA configuration */
  761. mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
  762. mvneta_set_ucast_table(pp, -1);
  763. mvneta_set_special_mcast_table(pp, -1);
  764. mvneta_set_other_mcast_table(pp, -1);
  765. /* Set port interrupt enable register - default enable all */
  766. mvreg_write(pp, MVNETA_INTR_ENABLE,
  767. (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
  768. | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
  769. }
  770. /* Set max sizes for tx queues */
  771. static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
  772. {
  773. u32 val, size, mtu;
  774. int queue;
  775. mtu = max_tx_size * 8;
  776. if (mtu > MVNETA_TX_MTU_MAX)
  777. mtu = MVNETA_TX_MTU_MAX;
  778. /* Set MTU */
  779. val = mvreg_read(pp, MVNETA_TX_MTU);
  780. val &= ~MVNETA_TX_MTU_MAX;
  781. val |= mtu;
  782. mvreg_write(pp, MVNETA_TX_MTU, val);
  783. /* TX token size and all TXQs token size must be larger that MTU */
  784. val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
  785. size = val & MVNETA_TX_TOKEN_SIZE_MAX;
  786. if (size < mtu) {
  787. size = mtu;
  788. val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
  789. val |= size;
  790. mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
  791. }
  792. for (queue = 0; queue < txq_number; queue++) {
  793. val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
  794. size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
  795. if (size < mtu) {
  796. size = mtu;
  797. val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
  798. val |= size;
  799. mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
  800. }
  801. }
  802. }
  803. /* Set unicast address */
  804. static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
  805. int queue)
  806. {
  807. unsigned int unicast_reg;
  808. unsigned int tbl_offset;
  809. unsigned int reg_offset;
  810. /* Locate the Unicast table entry */
  811. last_nibble = (0xf & last_nibble);
  812. /* offset from unicast tbl base */
  813. tbl_offset = (last_nibble / 4) * 4;
  814. /* offset within the above reg */
  815. reg_offset = last_nibble % 4;
  816. unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
  817. if (queue == -1) {
  818. /* Clear accepts frame bit at specified unicast DA tbl entry */
  819. unicast_reg &= ~(0xff << (8 * reg_offset));
  820. } else {
  821. unicast_reg &= ~(0xff << (8 * reg_offset));
  822. unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
  823. }
  824. mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
  825. }
  826. /* Set mac address */
  827. static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
  828. int queue)
  829. {
  830. unsigned int mac_h;
  831. unsigned int mac_l;
  832. if (queue != -1) {
  833. mac_l = (addr[4] << 8) | (addr[5]);
  834. mac_h = (addr[0] << 24) | (addr[1] << 16) |
  835. (addr[2] << 8) | (addr[3] << 0);
  836. mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
  837. mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
  838. }
  839. /* Accept frames of this address */
  840. mvneta_set_ucast_addr(pp, addr[5], queue);
  841. }
  842. /* Set the number of packets that will be received before RX interrupt
  843. * will be generated by HW.
  844. */
  845. static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
  846. struct mvneta_rx_queue *rxq, u32 value)
  847. {
  848. mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
  849. value | MVNETA_RXQ_NON_OCCUPIED(0));
  850. rxq->pkts_coal = value;
  851. }
  852. /* Set the time delay in usec before RX interrupt will be generated by
  853. * HW.
  854. */
  855. static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
  856. struct mvneta_rx_queue *rxq, u32 value)
  857. {
  858. u32 val;
  859. unsigned long clk_rate;
  860. clk_rate = clk_get_rate(pp->clk);
  861. val = (clk_rate / 1000000) * value;
  862. mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
  863. rxq->time_coal = value;
  864. }
  865. /* Set threshold for TX_DONE pkts coalescing */
  866. static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
  867. struct mvneta_tx_queue *txq, u32 value)
  868. {
  869. u32 val;
  870. val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
  871. val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
  872. val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
  873. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
  874. txq->done_pkts_coal = value;
  875. }
  876. /* Trigger tx done timer in MVNETA_TX_DONE_TIMER_PERIOD msecs */
  877. static void mvneta_add_tx_done_timer(struct mvneta_port *pp)
  878. {
  879. if (test_and_set_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags) == 0) {
  880. pp->tx_done_timer.expires = jiffies +
  881. msecs_to_jiffies(MVNETA_TX_DONE_TIMER_PERIOD);
  882. add_timer(&pp->tx_done_timer);
  883. }
  884. }
  885. /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
  886. static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
  887. u32 phys_addr, u32 cookie)
  888. {
  889. rx_desc->buf_cookie = cookie;
  890. rx_desc->buf_phys_addr = phys_addr;
  891. }
  892. /* Decrement sent descriptors counter */
  893. static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
  894. struct mvneta_tx_queue *txq,
  895. int sent_desc)
  896. {
  897. u32 val;
  898. /* Only 255 TX descriptors can be updated at once */
  899. while (sent_desc > 0xff) {
  900. val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
  901. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  902. sent_desc = sent_desc - 0xff;
  903. }
  904. val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
  905. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  906. }
  907. /* Get number of TX descriptors already sent by HW */
  908. static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
  909. struct mvneta_tx_queue *txq)
  910. {
  911. u32 val;
  912. int sent_desc;
  913. val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
  914. sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
  915. MVNETA_TXQ_SENT_DESC_SHIFT;
  916. return sent_desc;
  917. }
  918. /* Get number of sent descriptors and decrement counter.
  919. * The number of sent descriptors is returned.
  920. */
  921. static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
  922. struct mvneta_tx_queue *txq)
  923. {
  924. int sent_desc;
  925. /* Get number of sent descriptors */
  926. sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
  927. /* Decrement sent descriptors counter */
  928. if (sent_desc)
  929. mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
  930. return sent_desc;
  931. }
  932. /* Set TXQ descriptors fields relevant for CSUM calculation */
  933. static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
  934. int ip_hdr_len, int l4_proto)
  935. {
  936. u32 command;
  937. /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
  938. * G_L4_chk, L4_type; required only for checksum
  939. * calculation
  940. */
  941. command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
  942. command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
  943. if (l3_proto == swab16(ETH_P_IP))
  944. command |= MVNETA_TXD_IP_CSUM;
  945. else
  946. command |= MVNETA_TX_L3_IP6;
  947. if (l4_proto == IPPROTO_TCP)
  948. command |= MVNETA_TX_L4_CSUM_FULL;
  949. else if (l4_proto == IPPROTO_UDP)
  950. command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
  951. else
  952. command |= MVNETA_TX_L4_CSUM_NOT;
  953. return command;
  954. }
  955. /* Display more error info */
  956. static void mvneta_rx_error(struct mvneta_port *pp,
  957. struct mvneta_rx_desc *rx_desc)
  958. {
  959. u32 status = rx_desc->status;
  960. if (!mvneta_rxq_desc_is_first_last(rx_desc)) {
  961. netdev_err(pp->dev,
  962. "bad rx status %08x (buffer oversize), size=%d\n",
  963. rx_desc->status, rx_desc->data_size);
  964. return;
  965. }
  966. switch (status & MVNETA_RXD_ERR_CODE_MASK) {
  967. case MVNETA_RXD_ERR_CRC:
  968. netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
  969. status, rx_desc->data_size);
  970. break;
  971. case MVNETA_RXD_ERR_OVERRUN:
  972. netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
  973. status, rx_desc->data_size);
  974. break;
  975. case MVNETA_RXD_ERR_LEN:
  976. netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
  977. status, rx_desc->data_size);
  978. break;
  979. case MVNETA_RXD_ERR_RESOURCE:
  980. netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
  981. status, rx_desc->data_size);
  982. break;
  983. }
  984. }
  985. /* Handle RX checksum offload */
  986. static void mvneta_rx_csum(struct mvneta_port *pp,
  987. struct mvneta_rx_desc *rx_desc,
  988. struct sk_buff *skb)
  989. {
  990. if ((rx_desc->status & MVNETA_RXD_L3_IP4) &&
  991. (rx_desc->status & MVNETA_RXD_L4_CSUM_OK)) {
  992. skb->csum = 0;
  993. skb->ip_summed = CHECKSUM_UNNECESSARY;
  994. return;
  995. }
  996. skb->ip_summed = CHECKSUM_NONE;
  997. }
  998. /* Return tx queue pointer (find last set bit) according to causeTxDone reg */
  999. static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
  1000. u32 cause)
  1001. {
  1002. int queue = fls(cause) - 1;
  1003. return (queue < 0 || queue >= txq_number) ? NULL : &pp->txqs[queue];
  1004. }
  1005. /* Free tx queue skbuffs */
  1006. static void mvneta_txq_bufs_free(struct mvneta_port *pp,
  1007. struct mvneta_tx_queue *txq, int num)
  1008. {
  1009. int i;
  1010. for (i = 0; i < num; i++) {
  1011. struct mvneta_tx_desc *tx_desc = txq->descs +
  1012. txq->txq_get_index;
  1013. struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
  1014. mvneta_txq_inc_get(txq);
  1015. if (!skb)
  1016. continue;
  1017. dma_unmap_single(pp->dev->dev.parent, tx_desc->buf_phys_addr,
  1018. tx_desc->data_size, DMA_TO_DEVICE);
  1019. dev_kfree_skb_any(skb);
  1020. }
  1021. }
  1022. /* Handle end of transmission */
  1023. static int mvneta_txq_done(struct mvneta_port *pp,
  1024. struct mvneta_tx_queue *txq)
  1025. {
  1026. struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
  1027. int tx_done;
  1028. tx_done = mvneta_txq_sent_desc_proc(pp, txq);
  1029. if (tx_done == 0)
  1030. return tx_done;
  1031. mvneta_txq_bufs_free(pp, txq, tx_done);
  1032. txq->count -= tx_done;
  1033. if (netif_tx_queue_stopped(nq)) {
  1034. if (txq->size - txq->count >= MAX_SKB_FRAGS + 1)
  1035. netif_tx_wake_queue(nq);
  1036. }
  1037. return tx_done;
  1038. }
  1039. /* Refill processing */
  1040. static int mvneta_rx_refill(struct mvneta_port *pp,
  1041. struct mvneta_rx_desc *rx_desc)
  1042. {
  1043. dma_addr_t phys_addr;
  1044. struct sk_buff *skb;
  1045. skb = netdev_alloc_skb(pp->dev, pp->pkt_size);
  1046. if (!skb)
  1047. return -ENOMEM;
  1048. phys_addr = dma_map_single(pp->dev->dev.parent, skb->head,
  1049. MVNETA_RX_BUF_SIZE(pp->pkt_size),
  1050. DMA_FROM_DEVICE);
  1051. if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
  1052. dev_kfree_skb(skb);
  1053. return -ENOMEM;
  1054. }
  1055. mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb);
  1056. return 0;
  1057. }
  1058. /* Handle tx checksum */
  1059. static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
  1060. {
  1061. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  1062. int ip_hdr_len = 0;
  1063. u8 l4_proto;
  1064. if (skb->protocol == htons(ETH_P_IP)) {
  1065. struct iphdr *ip4h = ip_hdr(skb);
  1066. /* Calculate IPv4 checksum and L4 checksum */
  1067. ip_hdr_len = ip4h->ihl;
  1068. l4_proto = ip4h->protocol;
  1069. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  1070. struct ipv6hdr *ip6h = ipv6_hdr(skb);
  1071. /* Read l4_protocol from one of IPv6 extra headers */
  1072. if (skb_network_header_len(skb) > 0)
  1073. ip_hdr_len = (skb_network_header_len(skb) >> 2);
  1074. l4_proto = ip6h->nexthdr;
  1075. } else
  1076. return MVNETA_TX_L4_CSUM_NOT;
  1077. return mvneta_txq_desc_csum(skb_network_offset(skb),
  1078. skb->protocol, ip_hdr_len, l4_proto);
  1079. }
  1080. return MVNETA_TX_L4_CSUM_NOT;
  1081. }
  1082. /* Returns rx queue pointer (find last set bit) according to causeRxTx
  1083. * value
  1084. */
  1085. static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
  1086. u32 cause)
  1087. {
  1088. int queue = fls(cause >> 8) - 1;
  1089. return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
  1090. }
  1091. /* Drop packets received by the RXQ and free buffers */
  1092. static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
  1093. struct mvneta_rx_queue *rxq)
  1094. {
  1095. int rx_done, i;
  1096. rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
  1097. for (i = 0; i < rxq->size; i++) {
  1098. struct mvneta_rx_desc *rx_desc = rxq->descs + i;
  1099. struct sk_buff *skb = (struct sk_buff *)rx_desc->buf_cookie;
  1100. dev_kfree_skb_any(skb);
  1101. dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
  1102. rx_desc->data_size, DMA_FROM_DEVICE);
  1103. }
  1104. if (rx_done)
  1105. mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
  1106. }
  1107. /* Main rx processing */
  1108. static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
  1109. struct mvneta_rx_queue *rxq)
  1110. {
  1111. struct net_device *dev = pp->dev;
  1112. int rx_done, rx_filled;
  1113. /* Get number of received packets */
  1114. rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
  1115. if (rx_todo > rx_done)
  1116. rx_todo = rx_done;
  1117. rx_done = 0;
  1118. rx_filled = 0;
  1119. /* Fairness NAPI loop */
  1120. while (rx_done < rx_todo) {
  1121. struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
  1122. struct sk_buff *skb;
  1123. u32 rx_status;
  1124. int rx_bytes, err;
  1125. prefetch(rx_desc);
  1126. rx_done++;
  1127. rx_filled++;
  1128. rx_status = rx_desc->status;
  1129. skb = (struct sk_buff *)rx_desc->buf_cookie;
  1130. if (!mvneta_rxq_desc_is_first_last(rx_desc) ||
  1131. (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
  1132. dev->stats.rx_errors++;
  1133. mvneta_rx_error(pp, rx_desc);
  1134. mvneta_rx_desc_fill(rx_desc, rx_desc->buf_phys_addr,
  1135. (u32)skb);
  1136. continue;
  1137. }
  1138. dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
  1139. rx_desc->data_size, DMA_FROM_DEVICE);
  1140. rx_bytes = rx_desc->data_size -
  1141. (ETH_FCS_LEN + MVNETA_MH_SIZE);
  1142. u64_stats_update_begin(&pp->rx_stats.syncp);
  1143. pp->rx_stats.packets++;
  1144. pp->rx_stats.bytes += rx_bytes;
  1145. u64_stats_update_end(&pp->rx_stats.syncp);
  1146. /* Linux processing */
  1147. skb_reserve(skb, MVNETA_MH_SIZE);
  1148. skb_put(skb, rx_bytes);
  1149. skb->protocol = eth_type_trans(skb, dev);
  1150. mvneta_rx_csum(pp, rx_desc, skb);
  1151. napi_gro_receive(&pp->napi, skb);
  1152. /* Refill processing */
  1153. err = mvneta_rx_refill(pp, rx_desc);
  1154. if (err) {
  1155. netdev_err(pp->dev, "Linux processing - Can't refill\n");
  1156. rxq->missed++;
  1157. rx_filled--;
  1158. }
  1159. }
  1160. /* Update rxq management counters */
  1161. mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled);
  1162. return rx_done;
  1163. }
  1164. /* Handle tx fragmentation processing */
  1165. static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
  1166. struct mvneta_tx_queue *txq)
  1167. {
  1168. struct mvneta_tx_desc *tx_desc;
  1169. int i;
  1170. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1171. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1172. void *addr = page_address(frag->page.p) + frag->page_offset;
  1173. tx_desc = mvneta_txq_next_desc_get(txq);
  1174. tx_desc->data_size = frag->size;
  1175. tx_desc->buf_phys_addr =
  1176. dma_map_single(pp->dev->dev.parent, addr,
  1177. tx_desc->data_size, DMA_TO_DEVICE);
  1178. if (dma_mapping_error(pp->dev->dev.parent,
  1179. tx_desc->buf_phys_addr)) {
  1180. mvneta_txq_desc_put(txq);
  1181. goto error;
  1182. }
  1183. if (i == (skb_shinfo(skb)->nr_frags - 1)) {
  1184. /* Last descriptor */
  1185. tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
  1186. txq->tx_skb[txq->txq_put_index] = skb;
  1187. mvneta_txq_inc_put(txq);
  1188. } else {
  1189. /* Descriptor in the middle: Not First, Not Last */
  1190. tx_desc->command = 0;
  1191. txq->tx_skb[txq->txq_put_index] = NULL;
  1192. mvneta_txq_inc_put(txq);
  1193. }
  1194. }
  1195. return 0;
  1196. error:
  1197. /* Release all descriptors that were used to map fragments of
  1198. * this packet, as well as the corresponding DMA mappings
  1199. */
  1200. for (i = i - 1; i >= 0; i--) {
  1201. tx_desc = txq->descs + i;
  1202. dma_unmap_single(pp->dev->dev.parent,
  1203. tx_desc->buf_phys_addr,
  1204. tx_desc->data_size,
  1205. DMA_TO_DEVICE);
  1206. mvneta_txq_desc_put(txq);
  1207. }
  1208. return -ENOMEM;
  1209. }
  1210. /* Main tx processing */
  1211. static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
  1212. {
  1213. struct mvneta_port *pp = netdev_priv(dev);
  1214. struct mvneta_tx_queue *txq = &pp->txqs[txq_def];
  1215. struct mvneta_tx_desc *tx_desc;
  1216. struct netdev_queue *nq;
  1217. int frags = 0;
  1218. u32 tx_cmd;
  1219. if (!netif_running(dev))
  1220. goto out;
  1221. frags = skb_shinfo(skb)->nr_frags + 1;
  1222. nq = netdev_get_tx_queue(dev, txq_def);
  1223. /* Get a descriptor for the first part of the packet */
  1224. tx_desc = mvneta_txq_next_desc_get(txq);
  1225. tx_cmd = mvneta_skb_tx_csum(pp, skb);
  1226. tx_desc->data_size = skb_headlen(skb);
  1227. tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
  1228. tx_desc->data_size,
  1229. DMA_TO_DEVICE);
  1230. if (unlikely(dma_mapping_error(dev->dev.parent,
  1231. tx_desc->buf_phys_addr))) {
  1232. mvneta_txq_desc_put(txq);
  1233. frags = 0;
  1234. goto out;
  1235. }
  1236. if (frags == 1) {
  1237. /* First and Last descriptor */
  1238. tx_cmd |= MVNETA_TXD_FLZ_DESC;
  1239. tx_desc->command = tx_cmd;
  1240. txq->tx_skb[txq->txq_put_index] = skb;
  1241. mvneta_txq_inc_put(txq);
  1242. } else {
  1243. /* First but not Last */
  1244. tx_cmd |= MVNETA_TXD_F_DESC;
  1245. txq->tx_skb[txq->txq_put_index] = NULL;
  1246. mvneta_txq_inc_put(txq);
  1247. tx_desc->command = tx_cmd;
  1248. /* Continue with other skb fragments */
  1249. if (mvneta_tx_frag_process(pp, skb, txq)) {
  1250. dma_unmap_single(dev->dev.parent,
  1251. tx_desc->buf_phys_addr,
  1252. tx_desc->data_size,
  1253. DMA_TO_DEVICE);
  1254. mvneta_txq_desc_put(txq);
  1255. frags = 0;
  1256. goto out;
  1257. }
  1258. }
  1259. txq->count += frags;
  1260. mvneta_txq_pend_desc_add(pp, txq, frags);
  1261. if (txq->size - txq->count < MAX_SKB_FRAGS + 1)
  1262. netif_tx_stop_queue(nq);
  1263. out:
  1264. if (frags > 0) {
  1265. u64_stats_update_begin(&pp->tx_stats.syncp);
  1266. pp->tx_stats.packets++;
  1267. pp->tx_stats.bytes += skb->len;
  1268. u64_stats_update_end(&pp->tx_stats.syncp);
  1269. } else {
  1270. dev->stats.tx_dropped++;
  1271. dev_kfree_skb_any(skb);
  1272. }
  1273. if (txq->count >= MVNETA_TXDONE_COAL_PKTS)
  1274. mvneta_txq_done(pp, txq);
  1275. /* If after calling mvneta_txq_done, count equals
  1276. * frags, we need to set the timer
  1277. */
  1278. if (txq->count == frags && frags > 0)
  1279. mvneta_add_tx_done_timer(pp);
  1280. return NETDEV_TX_OK;
  1281. }
  1282. /* Free tx resources, when resetting a port */
  1283. static void mvneta_txq_done_force(struct mvneta_port *pp,
  1284. struct mvneta_tx_queue *txq)
  1285. {
  1286. int tx_done = txq->count;
  1287. mvneta_txq_bufs_free(pp, txq, tx_done);
  1288. /* reset txq */
  1289. txq->count = 0;
  1290. txq->txq_put_index = 0;
  1291. txq->txq_get_index = 0;
  1292. }
  1293. /* handle tx done - called from tx done timer callback */
  1294. static u32 mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done,
  1295. int *tx_todo)
  1296. {
  1297. struct mvneta_tx_queue *txq;
  1298. u32 tx_done = 0;
  1299. struct netdev_queue *nq;
  1300. *tx_todo = 0;
  1301. while (cause_tx_done != 0) {
  1302. txq = mvneta_tx_done_policy(pp, cause_tx_done);
  1303. if (!txq)
  1304. break;
  1305. nq = netdev_get_tx_queue(pp->dev, txq->id);
  1306. __netif_tx_lock(nq, smp_processor_id());
  1307. if (txq->count) {
  1308. tx_done += mvneta_txq_done(pp, txq);
  1309. *tx_todo += txq->count;
  1310. }
  1311. __netif_tx_unlock(nq);
  1312. cause_tx_done &= ~((1 << txq->id));
  1313. }
  1314. return tx_done;
  1315. }
  1316. /* Compute crc8 of the specified address, using a unique algorithm ,
  1317. * according to hw spec, different than generic crc8 algorithm
  1318. */
  1319. static int mvneta_addr_crc(unsigned char *addr)
  1320. {
  1321. int crc = 0;
  1322. int i;
  1323. for (i = 0; i < ETH_ALEN; i++) {
  1324. int j;
  1325. crc = (crc ^ addr[i]) << 8;
  1326. for (j = 7; j >= 0; j--) {
  1327. if (crc & (0x100 << j))
  1328. crc ^= 0x107 << j;
  1329. }
  1330. }
  1331. return crc;
  1332. }
  1333. /* This method controls the net device special MAC multicast support.
  1334. * The Special Multicast Table for MAC addresses supports MAC of the form
  1335. * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
  1336. * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
  1337. * Table entries in the DA-Filter table. This method set the Special
  1338. * Multicast Table appropriate entry.
  1339. */
  1340. static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
  1341. unsigned char last_byte,
  1342. int queue)
  1343. {
  1344. unsigned int smc_table_reg;
  1345. unsigned int tbl_offset;
  1346. unsigned int reg_offset;
  1347. /* Register offset from SMC table base */
  1348. tbl_offset = (last_byte / 4);
  1349. /* Entry offset within the above reg */
  1350. reg_offset = last_byte % 4;
  1351. smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
  1352. + tbl_offset * 4));
  1353. if (queue == -1)
  1354. smc_table_reg &= ~(0xff << (8 * reg_offset));
  1355. else {
  1356. smc_table_reg &= ~(0xff << (8 * reg_offset));
  1357. smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
  1358. }
  1359. mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
  1360. smc_table_reg);
  1361. }
  1362. /* This method controls the network device Other MAC multicast support.
  1363. * The Other Multicast Table is used for multicast of another type.
  1364. * A CRC-8 is used as an index to the Other Multicast Table entries
  1365. * in the DA-Filter table.
  1366. * The method gets the CRC-8 value from the calling routine and
  1367. * sets the Other Multicast Table appropriate entry according to the
  1368. * specified CRC-8 .
  1369. */
  1370. static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
  1371. unsigned char crc8,
  1372. int queue)
  1373. {
  1374. unsigned int omc_table_reg;
  1375. unsigned int tbl_offset;
  1376. unsigned int reg_offset;
  1377. tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
  1378. reg_offset = crc8 % 4; /* Entry offset within the above reg */
  1379. omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
  1380. if (queue == -1) {
  1381. /* Clear accepts frame bit at specified Other DA table entry */
  1382. omc_table_reg &= ~(0xff << (8 * reg_offset));
  1383. } else {
  1384. omc_table_reg &= ~(0xff << (8 * reg_offset));
  1385. omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
  1386. }
  1387. mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
  1388. }
  1389. /* The network device supports multicast using two tables:
  1390. * 1) Special Multicast Table for MAC addresses of the form
  1391. * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
  1392. * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
  1393. * Table entries in the DA-Filter table.
  1394. * 2) Other Multicast Table for multicast of another type. A CRC-8 value
  1395. * is used as an index to the Other Multicast Table entries in the
  1396. * DA-Filter table.
  1397. */
  1398. static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
  1399. int queue)
  1400. {
  1401. unsigned char crc_result = 0;
  1402. if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
  1403. mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
  1404. return 0;
  1405. }
  1406. crc_result = mvneta_addr_crc(p_addr);
  1407. if (queue == -1) {
  1408. if (pp->mcast_count[crc_result] == 0) {
  1409. netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
  1410. crc_result);
  1411. return -EINVAL;
  1412. }
  1413. pp->mcast_count[crc_result]--;
  1414. if (pp->mcast_count[crc_result] != 0) {
  1415. netdev_info(pp->dev,
  1416. "After delete there are %d valid Mcast for crc8=0x%02x\n",
  1417. pp->mcast_count[crc_result], crc_result);
  1418. return -EINVAL;
  1419. }
  1420. } else
  1421. pp->mcast_count[crc_result]++;
  1422. mvneta_set_other_mcast_addr(pp, crc_result, queue);
  1423. return 0;
  1424. }
  1425. /* Configure Fitering mode of Ethernet port */
  1426. static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
  1427. int is_promisc)
  1428. {
  1429. u32 port_cfg_reg, val;
  1430. port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
  1431. val = mvreg_read(pp, MVNETA_TYPE_PRIO);
  1432. /* Set / Clear UPM bit in port configuration register */
  1433. if (is_promisc) {
  1434. /* Accept all Unicast addresses */
  1435. port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
  1436. val |= MVNETA_FORCE_UNI;
  1437. mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
  1438. mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
  1439. } else {
  1440. /* Reject all Unicast addresses */
  1441. port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
  1442. val &= ~MVNETA_FORCE_UNI;
  1443. }
  1444. mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
  1445. mvreg_write(pp, MVNETA_TYPE_PRIO, val);
  1446. }
  1447. /* register unicast and multicast addresses */
  1448. static void mvneta_set_rx_mode(struct net_device *dev)
  1449. {
  1450. struct mvneta_port *pp = netdev_priv(dev);
  1451. struct netdev_hw_addr *ha;
  1452. if (dev->flags & IFF_PROMISC) {
  1453. /* Accept all: Multicast + Unicast */
  1454. mvneta_rx_unicast_promisc_set(pp, 1);
  1455. mvneta_set_ucast_table(pp, rxq_def);
  1456. mvneta_set_special_mcast_table(pp, rxq_def);
  1457. mvneta_set_other_mcast_table(pp, rxq_def);
  1458. } else {
  1459. /* Accept single Unicast */
  1460. mvneta_rx_unicast_promisc_set(pp, 0);
  1461. mvneta_set_ucast_table(pp, -1);
  1462. mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
  1463. if (dev->flags & IFF_ALLMULTI) {
  1464. /* Accept all multicast */
  1465. mvneta_set_special_mcast_table(pp, rxq_def);
  1466. mvneta_set_other_mcast_table(pp, rxq_def);
  1467. } else {
  1468. /* Accept only initialized multicast */
  1469. mvneta_set_special_mcast_table(pp, -1);
  1470. mvneta_set_other_mcast_table(pp, -1);
  1471. if (!netdev_mc_empty(dev)) {
  1472. netdev_for_each_mc_addr(ha, dev) {
  1473. mvneta_mcast_addr_set(pp, ha->addr,
  1474. rxq_def);
  1475. }
  1476. }
  1477. }
  1478. }
  1479. }
  1480. /* Interrupt handling - the callback for request_irq() */
  1481. static irqreturn_t mvneta_isr(int irq, void *dev_id)
  1482. {
  1483. struct mvneta_port *pp = (struct mvneta_port *)dev_id;
  1484. /* Mask all interrupts */
  1485. mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
  1486. napi_schedule(&pp->napi);
  1487. return IRQ_HANDLED;
  1488. }
  1489. /* NAPI handler
  1490. * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
  1491. * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
  1492. * Bits 8 -15 of the cause Rx Tx register indicate that are received
  1493. * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
  1494. * Each CPU has its own causeRxTx register
  1495. */
  1496. static int mvneta_poll(struct napi_struct *napi, int budget)
  1497. {
  1498. int rx_done = 0;
  1499. u32 cause_rx_tx;
  1500. unsigned long flags;
  1501. struct mvneta_port *pp = netdev_priv(napi->dev);
  1502. if (!netif_running(pp->dev)) {
  1503. napi_complete(napi);
  1504. return rx_done;
  1505. }
  1506. /* Read cause register */
  1507. cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE) &
  1508. MVNETA_RX_INTR_MASK(rxq_number);
  1509. /* For the case where the last mvneta_poll did not process all
  1510. * RX packets
  1511. */
  1512. cause_rx_tx |= pp->cause_rx_tx;
  1513. if (rxq_number > 1) {
  1514. while ((cause_rx_tx != 0) && (budget > 0)) {
  1515. int count;
  1516. struct mvneta_rx_queue *rxq;
  1517. /* get rx queue number from cause_rx_tx */
  1518. rxq = mvneta_rx_policy(pp, cause_rx_tx);
  1519. if (!rxq)
  1520. break;
  1521. /* process the packet in that rx queue */
  1522. count = mvneta_rx(pp, budget, rxq);
  1523. rx_done += count;
  1524. budget -= count;
  1525. if (budget > 0) {
  1526. /* set off the rx bit of the
  1527. * corresponding bit in the cause rx
  1528. * tx register, so that next iteration
  1529. * will find the next rx queue where
  1530. * packets are received on
  1531. */
  1532. cause_rx_tx &= ~((1 << rxq->id) << 8);
  1533. }
  1534. }
  1535. } else {
  1536. rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
  1537. budget -= rx_done;
  1538. }
  1539. if (budget > 0) {
  1540. cause_rx_tx = 0;
  1541. napi_complete(napi);
  1542. local_irq_save(flags);
  1543. mvreg_write(pp, MVNETA_INTR_NEW_MASK,
  1544. MVNETA_RX_INTR_MASK(rxq_number));
  1545. local_irq_restore(flags);
  1546. }
  1547. pp->cause_rx_tx = cause_rx_tx;
  1548. return rx_done;
  1549. }
  1550. /* tx done timer callback */
  1551. static void mvneta_tx_done_timer_callback(unsigned long data)
  1552. {
  1553. struct net_device *dev = (struct net_device *)data;
  1554. struct mvneta_port *pp = netdev_priv(dev);
  1555. int tx_done = 0, tx_todo = 0;
  1556. if (!netif_running(dev))
  1557. return ;
  1558. clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
  1559. tx_done = mvneta_tx_done_gbe(pp,
  1560. (((1 << txq_number) - 1) &
  1561. MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK),
  1562. &tx_todo);
  1563. if (tx_todo > 0)
  1564. mvneta_add_tx_done_timer(pp);
  1565. }
  1566. /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
  1567. static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
  1568. int num)
  1569. {
  1570. struct net_device *dev = pp->dev;
  1571. int i;
  1572. for (i = 0; i < num; i++) {
  1573. struct sk_buff *skb;
  1574. struct mvneta_rx_desc *rx_desc;
  1575. unsigned long phys_addr;
  1576. skb = dev_alloc_skb(pp->pkt_size);
  1577. if (!skb) {
  1578. netdev_err(dev, "%s:rxq %d, %d of %d buffs filled\n",
  1579. __func__, rxq->id, i, num);
  1580. break;
  1581. }
  1582. rx_desc = rxq->descs + i;
  1583. memset(rx_desc, 0, sizeof(struct mvneta_rx_desc));
  1584. phys_addr = dma_map_single(dev->dev.parent, skb->head,
  1585. MVNETA_RX_BUF_SIZE(pp->pkt_size),
  1586. DMA_FROM_DEVICE);
  1587. if (unlikely(dma_mapping_error(dev->dev.parent, phys_addr))) {
  1588. dev_kfree_skb(skb);
  1589. break;
  1590. }
  1591. mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb);
  1592. }
  1593. /* Add this number of RX descriptors as non occupied (ready to
  1594. * get packets)
  1595. */
  1596. mvneta_rxq_non_occup_desc_add(pp, rxq, i);
  1597. return i;
  1598. }
  1599. /* Free all packets pending transmit from all TXQs and reset TX port */
  1600. static void mvneta_tx_reset(struct mvneta_port *pp)
  1601. {
  1602. int queue;
  1603. /* free the skb's in the hal tx ring */
  1604. for (queue = 0; queue < txq_number; queue++)
  1605. mvneta_txq_done_force(pp, &pp->txqs[queue]);
  1606. mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
  1607. mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
  1608. }
  1609. static void mvneta_rx_reset(struct mvneta_port *pp)
  1610. {
  1611. mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
  1612. mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
  1613. }
  1614. /* Rx/Tx queue initialization/cleanup methods */
  1615. /* Create a specified RX queue */
  1616. static int mvneta_rxq_init(struct mvneta_port *pp,
  1617. struct mvneta_rx_queue *rxq)
  1618. {
  1619. rxq->size = pp->rx_ring_size;
  1620. /* Allocate memory for RX descriptors */
  1621. rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
  1622. rxq->size * MVNETA_DESC_ALIGNED_SIZE,
  1623. &rxq->descs_phys, GFP_KERNEL);
  1624. if (rxq->descs == NULL) {
  1625. netdev_err(pp->dev,
  1626. "rxq=%d: Can't allocate %d bytes for %d RX descr\n",
  1627. rxq->id, rxq->size * MVNETA_DESC_ALIGNED_SIZE,
  1628. rxq->size);
  1629. return -ENOMEM;
  1630. }
  1631. BUG_ON(rxq->descs !=
  1632. PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
  1633. rxq->last_desc = rxq->size - 1;
  1634. /* Set Rx descriptors queue starting address */
  1635. mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
  1636. mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
  1637. /* Set Offset */
  1638. mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
  1639. /* Set coalescing pkts and time */
  1640. mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
  1641. mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
  1642. /* Fill RXQ with buffers from RX pool */
  1643. mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
  1644. mvneta_rxq_bm_disable(pp, rxq);
  1645. mvneta_rxq_fill(pp, rxq, rxq->size);
  1646. return 0;
  1647. }
  1648. /* Cleanup Rx queue */
  1649. static void mvneta_rxq_deinit(struct mvneta_port *pp,
  1650. struct mvneta_rx_queue *rxq)
  1651. {
  1652. mvneta_rxq_drop_pkts(pp, rxq);
  1653. if (rxq->descs)
  1654. dma_free_coherent(pp->dev->dev.parent,
  1655. rxq->size * MVNETA_DESC_ALIGNED_SIZE,
  1656. rxq->descs,
  1657. rxq->descs_phys);
  1658. rxq->descs = NULL;
  1659. rxq->last_desc = 0;
  1660. rxq->next_desc_to_proc = 0;
  1661. rxq->descs_phys = 0;
  1662. }
  1663. /* Create and initialize a tx queue */
  1664. static int mvneta_txq_init(struct mvneta_port *pp,
  1665. struct mvneta_tx_queue *txq)
  1666. {
  1667. txq->size = pp->tx_ring_size;
  1668. /* Allocate memory for TX descriptors */
  1669. txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
  1670. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1671. &txq->descs_phys, GFP_KERNEL);
  1672. if (txq->descs == NULL) {
  1673. netdev_err(pp->dev,
  1674. "txQ=%d: Can't allocate %d bytes for %d TX descr\n",
  1675. txq->id, txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1676. txq->size);
  1677. return -ENOMEM;
  1678. }
  1679. /* Make sure descriptor address is cache line size aligned */
  1680. BUG_ON(txq->descs !=
  1681. PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
  1682. txq->last_desc = txq->size - 1;
  1683. /* Set maximum bandwidth for enabled TXQs */
  1684. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
  1685. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
  1686. /* Set Tx descriptors queue starting address */
  1687. mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
  1688. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
  1689. txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
  1690. if (txq->tx_skb == NULL) {
  1691. dma_free_coherent(pp->dev->dev.parent,
  1692. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1693. txq->descs, txq->descs_phys);
  1694. return -ENOMEM;
  1695. }
  1696. mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
  1697. return 0;
  1698. }
  1699. /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
  1700. static void mvneta_txq_deinit(struct mvneta_port *pp,
  1701. struct mvneta_tx_queue *txq)
  1702. {
  1703. kfree(txq->tx_skb);
  1704. if (txq->descs)
  1705. dma_free_coherent(pp->dev->dev.parent,
  1706. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1707. txq->descs, txq->descs_phys);
  1708. txq->descs = NULL;
  1709. txq->last_desc = 0;
  1710. txq->next_desc_to_proc = 0;
  1711. txq->descs_phys = 0;
  1712. /* Set minimum bandwidth for disabled TXQs */
  1713. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
  1714. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
  1715. /* Set Tx descriptors queue starting address and size */
  1716. mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
  1717. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
  1718. }
  1719. /* Cleanup all Tx queues */
  1720. static void mvneta_cleanup_txqs(struct mvneta_port *pp)
  1721. {
  1722. int queue;
  1723. for (queue = 0; queue < txq_number; queue++)
  1724. mvneta_txq_deinit(pp, &pp->txqs[queue]);
  1725. }
  1726. /* Cleanup all Rx queues */
  1727. static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
  1728. {
  1729. int queue;
  1730. for (queue = 0; queue < rxq_number; queue++)
  1731. mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
  1732. }
  1733. /* Init all Rx queues */
  1734. static int mvneta_setup_rxqs(struct mvneta_port *pp)
  1735. {
  1736. int queue;
  1737. for (queue = 0; queue < rxq_number; queue++) {
  1738. int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
  1739. if (err) {
  1740. netdev_err(pp->dev, "%s: can't create rxq=%d\n",
  1741. __func__, queue);
  1742. mvneta_cleanup_rxqs(pp);
  1743. return err;
  1744. }
  1745. }
  1746. return 0;
  1747. }
  1748. /* Init all tx queues */
  1749. static int mvneta_setup_txqs(struct mvneta_port *pp)
  1750. {
  1751. int queue;
  1752. for (queue = 0; queue < txq_number; queue++) {
  1753. int err = mvneta_txq_init(pp, &pp->txqs[queue]);
  1754. if (err) {
  1755. netdev_err(pp->dev, "%s: can't create txq=%d\n",
  1756. __func__, queue);
  1757. mvneta_cleanup_txqs(pp);
  1758. return err;
  1759. }
  1760. }
  1761. return 0;
  1762. }
  1763. static void mvneta_start_dev(struct mvneta_port *pp)
  1764. {
  1765. mvneta_max_rx_size_set(pp, pp->pkt_size);
  1766. mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
  1767. /* start the Rx/Tx activity */
  1768. mvneta_port_enable(pp);
  1769. /* Enable polling on the port */
  1770. napi_enable(&pp->napi);
  1771. /* Unmask interrupts */
  1772. mvreg_write(pp, MVNETA_INTR_NEW_MASK,
  1773. MVNETA_RX_INTR_MASK(rxq_number));
  1774. phy_start(pp->phy_dev);
  1775. netif_tx_start_all_queues(pp->dev);
  1776. }
  1777. static void mvneta_stop_dev(struct mvneta_port *pp)
  1778. {
  1779. phy_stop(pp->phy_dev);
  1780. napi_disable(&pp->napi);
  1781. netif_carrier_off(pp->dev);
  1782. mvneta_port_down(pp);
  1783. netif_tx_stop_all_queues(pp->dev);
  1784. /* Stop the port activity */
  1785. mvneta_port_disable(pp);
  1786. /* Clear all ethernet port interrupts */
  1787. mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
  1788. mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
  1789. /* Mask all ethernet port interrupts */
  1790. mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
  1791. mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
  1792. mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
  1793. mvneta_tx_reset(pp);
  1794. mvneta_rx_reset(pp);
  1795. }
  1796. /* tx timeout callback - display a message and stop/start the network device */
  1797. static void mvneta_tx_timeout(struct net_device *dev)
  1798. {
  1799. struct mvneta_port *pp = netdev_priv(dev);
  1800. netdev_info(dev, "tx timeout\n");
  1801. mvneta_stop_dev(pp);
  1802. mvneta_start_dev(pp);
  1803. }
  1804. /* Return positive if MTU is valid */
  1805. static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
  1806. {
  1807. if (mtu < 68) {
  1808. netdev_err(dev, "cannot change mtu to less than 68\n");
  1809. return -EINVAL;
  1810. }
  1811. /* 9676 == 9700 - 20 and rounding to 8 */
  1812. if (mtu > 9676) {
  1813. netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
  1814. mtu = 9676;
  1815. }
  1816. if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
  1817. netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
  1818. mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
  1819. mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
  1820. }
  1821. return mtu;
  1822. }
  1823. /* Change the device mtu */
  1824. static int mvneta_change_mtu(struct net_device *dev, int mtu)
  1825. {
  1826. struct mvneta_port *pp = netdev_priv(dev);
  1827. int ret;
  1828. mtu = mvneta_check_mtu_valid(dev, mtu);
  1829. if (mtu < 0)
  1830. return -EINVAL;
  1831. dev->mtu = mtu;
  1832. if (!netif_running(dev))
  1833. return 0;
  1834. /* The interface is running, so we have to force a
  1835. * reallocation of the RXQs
  1836. */
  1837. mvneta_stop_dev(pp);
  1838. mvneta_cleanup_txqs(pp);
  1839. mvneta_cleanup_rxqs(pp);
  1840. pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
  1841. ret = mvneta_setup_rxqs(pp);
  1842. if (ret) {
  1843. netdev_err(pp->dev, "unable to setup rxqs after MTU change\n");
  1844. return ret;
  1845. }
  1846. mvneta_setup_txqs(pp);
  1847. mvneta_start_dev(pp);
  1848. mvneta_port_up(pp);
  1849. return 0;
  1850. }
  1851. /* Handle setting mac address */
  1852. static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
  1853. {
  1854. struct mvneta_port *pp = netdev_priv(dev);
  1855. u8 *mac = addr + 2;
  1856. int i;
  1857. if (netif_running(dev))
  1858. return -EBUSY;
  1859. /* Remove previous address table entry */
  1860. mvneta_mac_addr_set(pp, dev->dev_addr, -1);
  1861. /* Set new addr in hw */
  1862. mvneta_mac_addr_set(pp, mac, rxq_def);
  1863. /* Set addr in the device */
  1864. for (i = 0; i < ETH_ALEN; i++)
  1865. dev->dev_addr[i] = mac[i];
  1866. return 0;
  1867. }
  1868. static void mvneta_adjust_link(struct net_device *ndev)
  1869. {
  1870. struct mvneta_port *pp = netdev_priv(ndev);
  1871. struct phy_device *phydev = pp->phy_dev;
  1872. int status_change = 0;
  1873. if (phydev->link) {
  1874. if ((pp->speed != phydev->speed) ||
  1875. (pp->duplex != phydev->duplex)) {
  1876. u32 val;
  1877. val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
  1878. val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
  1879. MVNETA_GMAC_CONFIG_GMII_SPEED |
  1880. MVNETA_GMAC_CONFIG_FULL_DUPLEX);
  1881. if (phydev->duplex)
  1882. val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
  1883. if (phydev->speed == SPEED_1000)
  1884. val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
  1885. else
  1886. val |= MVNETA_GMAC_CONFIG_MII_SPEED;
  1887. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
  1888. pp->duplex = phydev->duplex;
  1889. pp->speed = phydev->speed;
  1890. }
  1891. }
  1892. if (phydev->link != pp->link) {
  1893. if (!phydev->link) {
  1894. pp->duplex = -1;
  1895. pp->speed = 0;
  1896. }
  1897. pp->link = phydev->link;
  1898. status_change = 1;
  1899. }
  1900. if (status_change) {
  1901. if (phydev->link) {
  1902. u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
  1903. val |= (MVNETA_GMAC_FORCE_LINK_PASS |
  1904. MVNETA_GMAC_FORCE_LINK_DOWN);
  1905. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
  1906. mvneta_port_up(pp);
  1907. netdev_info(pp->dev, "link up\n");
  1908. } else {
  1909. mvneta_port_down(pp);
  1910. netdev_info(pp->dev, "link down\n");
  1911. }
  1912. }
  1913. }
  1914. static int mvneta_mdio_probe(struct mvneta_port *pp)
  1915. {
  1916. struct phy_device *phy_dev;
  1917. phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
  1918. pp->phy_interface);
  1919. if (!phy_dev) {
  1920. netdev_err(pp->dev, "could not find the PHY\n");
  1921. return -ENODEV;
  1922. }
  1923. phy_dev->supported &= PHY_GBIT_FEATURES;
  1924. phy_dev->advertising = phy_dev->supported;
  1925. pp->phy_dev = phy_dev;
  1926. pp->link = 0;
  1927. pp->duplex = 0;
  1928. pp->speed = 0;
  1929. return 0;
  1930. }
  1931. static void mvneta_mdio_remove(struct mvneta_port *pp)
  1932. {
  1933. phy_disconnect(pp->phy_dev);
  1934. pp->phy_dev = NULL;
  1935. }
  1936. static int mvneta_open(struct net_device *dev)
  1937. {
  1938. struct mvneta_port *pp = netdev_priv(dev);
  1939. int ret;
  1940. mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
  1941. pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
  1942. ret = mvneta_setup_rxqs(pp);
  1943. if (ret)
  1944. return ret;
  1945. ret = mvneta_setup_txqs(pp);
  1946. if (ret)
  1947. goto err_cleanup_rxqs;
  1948. /* Connect to port interrupt line */
  1949. ret = request_irq(pp->dev->irq, mvneta_isr, 0,
  1950. MVNETA_DRIVER_NAME, pp);
  1951. if (ret) {
  1952. netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
  1953. goto err_cleanup_txqs;
  1954. }
  1955. /* In default link is down */
  1956. netif_carrier_off(pp->dev);
  1957. ret = mvneta_mdio_probe(pp);
  1958. if (ret < 0) {
  1959. netdev_err(dev, "cannot probe MDIO bus\n");
  1960. goto err_free_irq;
  1961. }
  1962. mvneta_start_dev(pp);
  1963. return 0;
  1964. err_free_irq:
  1965. free_irq(pp->dev->irq, pp);
  1966. err_cleanup_txqs:
  1967. mvneta_cleanup_txqs(pp);
  1968. err_cleanup_rxqs:
  1969. mvneta_cleanup_rxqs(pp);
  1970. return ret;
  1971. }
  1972. /* Stop the port, free port interrupt line */
  1973. static int mvneta_stop(struct net_device *dev)
  1974. {
  1975. struct mvneta_port *pp = netdev_priv(dev);
  1976. mvneta_stop_dev(pp);
  1977. mvneta_mdio_remove(pp);
  1978. free_irq(dev->irq, pp);
  1979. mvneta_cleanup_rxqs(pp);
  1980. mvneta_cleanup_txqs(pp);
  1981. del_timer(&pp->tx_done_timer);
  1982. clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
  1983. return 0;
  1984. }
  1985. /* Ethtool methods */
  1986. /* Get settings (phy address, speed) for ethtools */
  1987. int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  1988. {
  1989. struct mvneta_port *pp = netdev_priv(dev);
  1990. if (!pp->phy_dev)
  1991. return -ENODEV;
  1992. return phy_ethtool_gset(pp->phy_dev, cmd);
  1993. }
  1994. /* Set settings (phy address, speed) for ethtools */
  1995. int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  1996. {
  1997. struct mvneta_port *pp = netdev_priv(dev);
  1998. if (!pp->phy_dev)
  1999. return -ENODEV;
  2000. return phy_ethtool_sset(pp->phy_dev, cmd);
  2001. }
  2002. /* Set interrupt coalescing for ethtools */
  2003. static int mvneta_ethtool_set_coalesce(struct net_device *dev,
  2004. struct ethtool_coalesce *c)
  2005. {
  2006. struct mvneta_port *pp = netdev_priv(dev);
  2007. int queue;
  2008. for (queue = 0; queue < rxq_number; queue++) {
  2009. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  2010. rxq->time_coal = c->rx_coalesce_usecs;
  2011. rxq->pkts_coal = c->rx_max_coalesced_frames;
  2012. mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
  2013. mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
  2014. }
  2015. for (queue = 0; queue < txq_number; queue++) {
  2016. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  2017. txq->done_pkts_coal = c->tx_max_coalesced_frames;
  2018. mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
  2019. }
  2020. return 0;
  2021. }
  2022. /* get coalescing for ethtools */
  2023. static int mvneta_ethtool_get_coalesce(struct net_device *dev,
  2024. struct ethtool_coalesce *c)
  2025. {
  2026. struct mvneta_port *pp = netdev_priv(dev);
  2027. c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
  2028. c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
  2029. c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
  2030. return 0;
  2031. }
  2032. static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
  2033. struct ethtool_drvinfo *drvinfo)
  2034. {
  2035. strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
  2036. sizeof(drvinfo->driver));
  2037. strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
  2038. sizeof(drvinfo->version));
  2039. strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
  2040. sizeof(drvinfo->bus_info));
  2041. }
  2042. static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
  2043. struct ethtool_ringparam *ring)
  2044. {
  2045. struct mvneta_port *pp = netdev_priv(netdev);
  2046. ring->rx_max_pending = MVNETA_MAX_RXD;
  2047. ring->tx_max_pending = MVNETA_MAX_TXD;
  2048. ring->rx_pending = pp->rx_ring_size;
  2049. ring->tx_pending = pp->tx_ring_size;
  2050. }
  2051. static int mvneta_ethtool_set_ringparam(struct net_device *dev,
  2052. struct ethtool_ringparam *ring)
  2053. {
  2054. struct mvneta_port *pp = netdev_priv(dev);
  2055. if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
  2056. return -EINVAL;
  2057. pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
  2058. ring->rx_pending : MVNETA_MAX_RXD;
  2059. pp->tx_ring_size = ring->tx_pending < MVNETA_MAX_TXD ?
  2060. ring->tx_pending : MVNETA_MAX_TXD;
  2061. if (netif_running(dev)) {
  2062. mvneta_stop(dev);
  2063. if (mvneta_open(dev)) {
  2064. netdev_err(dev,
  2065. "error on opening device after ring param change\n");
  2066. return -ENOMEM;
  2067. }
  2068. }
  2069. return 0;
  2070. }
  2071. static const struct net_device_ops mvneta_netdev_ops = {
  2072. .ndo_open = mvneta_open,
  2073. .ndo_stop = mvneta_stop,
  2074. .ndo_start_xmit = mvneta_tx,
  2075. .ndo_set_rx_mode = mvneta_set_rx_mode,
  2076. .ndo_set_mac_address = mvneta_set_mac_addr,
  2077. .ndo_change_mtu = mvneta_change_mtu,
  2078. .ndo_tx_timeout = mvneta_tx_timeout,
  2079. .ndo_get_stats64 = mvneta_get_stats64,
  2080. };
  2081. const struct ethtool_ops mvneta_eth_tool_ops = {
  2082. .get_link = ethtool_op_get_link,
  2083. .get_settings = mvneta_ethtool_get_settings,
  2084. .set_settings = mvneta_ethtool_set_settings,
  2085. .set_coalesce = mvneta_ethtool_set_coalesce,
  2086. .get_coalesce = mvneta_ethtool_get_coalesce,
  2087. .get_drvinfo = mvneta_ethtool_get_drvinfo,
  2088. .get_ringparam = mvneta_ethtool_get_ringparam,
  2089. .set_ringparam = mvneta_ethtool_set_ringparam,
  2090. };
  2091. /* Initialize hw */
  2092. static int mvneta_init(struct mvneta_port *pp, int phy_addr)
  2093. {
  2094. int queue;
  2095. /* Disable port */
  2096. mvneta_port_disable(pp);
  2097. /* Set port default values */
  2098. mvneta_defaults_set(pp);
  2099. pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
  2100. GFP_KERNEL);
  2101. if (!pp->txqs)
  2102. return -ENOMEM;
  2103. /* Initialize TX descriptor rings */
  2104. for (queue = 0; queue < txq_number; queue++) {
  2105. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  2106. txq->id = queue;
  2107. txq->size = pp->tx_ring_size;
  2108. txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
  2109. }
  2110. pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
  2111. GFP_KERNEL);
  2112. if (!pp->rxqs) {
  2113. kfree(pp->txqs);
  2114. return -ENOMEM;
  2115. }
  2116. /* Create Rx descriptor rings */
  2117. for (queue = 0; queue < rxq_number; queue++) {
  2118. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  2119. rxq->id = queue;
  2120. rxq->size = pp->rx_ring_size;
  2121. rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
  2122. rxq->time_coal = MVNETA_RX_COAL_USEC;
  2123. }
  2124. return 0;
  2125. }
  2126. static void mvneta_deinit(struct mvneta_port *pp)
  2127. {
  2128. kfree(pp->txqs);
  2129. kfree(pp->rxqs);
  2130. }
  2131. /* platform glue : initialize decoding windows */
  2132. static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
  2133. const struct mbus_dram_target_info *dram)
  2134. {
  2135. u32 win_enable;
  2136. u32 win_protect;
  2137. int i;
  2138. for (i = 0; i < 6; i++) {
  2139. mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
  2140. mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
  2141. if (i < 4)
  2142. mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
  2143. }
  2144. win_enable = 0x3f;
  2145. win_protect = 0;
  2146. for (i = 0; i < dram->num_cs; i++) {
  2147. const struct mbus_dram_window *cs = dram->cs + i;
  2148. mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
  2149. (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
  2150. mvreg_write(pp, MVNETA_WIN_SIZE(i),
  2151. (cs->size - 1) & 0xffff0000);
  2152. win_enable &= ~(1 << i);
  2153. win_protect |= 3 << (2 * i);
  2154. }
  2155. mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
  2156. }
  2157. /* Power up the port */
  2158. static void mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
  2159. {
  2160. u32 val;
  2161. /* MAC Cause register should be cleared */
  2162. mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
  2163. if (phy_mode == PHY_INTERFACE_MODE_SGMII)
  2164. mvneta_port_sgmii_config(pp);
  2165. mvneta_gmac_rgmii_set(pp, 1);
  2166. /* Cancel Port Reset */
  2167. val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
  2168. val &= ~MVNETA_GMAC2_PORT_RESET;
  2169. mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
  2170. while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
  2171. MVNETA_GMAC2_PORT_RESET) != 0)
  2172. continue;
  2173. }
  2174. /* Device initialization routine */
  2175. static int mvneta_probe(struct platform_device *pdev)
  2176. {
  2177. const struct mbus_dram_target_info *dram_target_info;
  2178. struct device_node *dn = pdev->dev.of_node;
  2179. struct device_node *phy_node;
  2180. u32 phy_addr;
  2181. struct mvneta_port *pp;
  2182. struct net_device *dev;
  2183. const char *mac_addr;
  2184. int phy_mode;
  2185. int err;
  2186. /* Our multiqueue support is not complete, so for now, only
  2187. * allow the usage of the first RX queue
  2188. */
  2189. if (rxq_def != 0) {
  2190. dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
  2191. return -EINVAL;
  2192. }
  2193. dev = alloc_etherdev_mq(sizeof(struct mvneta_port), 8);
  2194. if (!dev)
  2195. return -ENOMEM;
  2196. dev->irq = irq_of_parse_and_map(dn, 0);
  2197. if (dev->irq == 0) {
  2198. err = -EINVAL;
  2199. goto err_free_netdev;
  2200. }
  2201. phy_node = of_parse_phandle(dn, "phy", 0);
  2202. if (!phy_node) {
  2203. dev_err(&pdev->dev, "no associated PHY\n");
  2204. err = -ENODEV;
  2205. goto err_free_irq;
  2206. }
  2207. phy_mode = of_get_phy_mode(dn);
  2208. if (phy_mode < 0) {
  2209. dev_err(&pdev->dev, "incorrect phy-mode\n");
  2210. err = -EINVAL;
  2211. goto err_free_irq;
  2212. }
  2213. mac_addr = of_get_mac_address(dn);
  2214. if (!mac_addr || !is_valid_ether_addr(mac_addr))
  2215. eth_hw_addr_random(dev);
  2216. else
  2217. memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
  2218. dev->tx_queue_len = MVNETA_MAX_TXD;
  2219. dev->watchdog_timeo = 5 * HZ;
  2220. dev->netdev_ops = &mvneta_netdev_ops;
  2221. SET_ETHTOOL_OPS(dev, &mvneta_eth_tool_ops);
  2222. pp = netdev_priv(dev);
  2223. pp->tx_done_timer.function = mvneta_tx_done_timer_callback;
  2224. init_timer(&pp->tx_done_timer);
  2225. clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
  2226. pp->weight = MVNETA_RX_POLL_WEIGHT;
  2227. pp->phy_node = phy_node;
  2228. pp->phy_interface = phy_mode;
  2229. pp->base = of_iomap(dn, 0);
  2230. if (pp->base == NULL) {
  2231. err = -ENOMEM;
  2232. goto err_free_irq;
  2233. }
  2234. pp->clk = devm_clk_get(&pdev->dev, NULL);
  2235. if (IS_ERR(pp->clk)) {
  2236. err = PTR_ERR(pp->clk);
  2237. goto err_unmap;
  2238. }
  2239. clk_prepare_enable(pp->clk);
  2240. pp->tx_done_timer.data = (unsigned long)dev;
  2241. pp->tx_ring_size = MVNETA_MAX_TXD;
  2242. pp->rx_ring_size = MVNETA_MAX_RXD;
  2243. pp->dev = dev;
  2244. SET_NETDEV_DEV(dev, &pdev->dev);
  2245. err = mvneta_init(pp, phy_addr);
  2246. if (err < 0) {
  2247. dev_err(&pdev->dev, "can't init eth hal\n");
  2248. goto err_clk;
  2249. }
  2250. mvneta_port_power_up(pp, phy_mode);
  2251. dram_target_info = mv_mbus_dram_info();
  2252. if (dram_target_info)
  2253. mvneta_conf_mbus_windows(pp, dram_target_info);
  2254. netif_napi_add(dev, &pp->napi, mvneta_poll, pp->weight);
  2255. err = register_netdev(dev);
  2256. if (err < 0) {
  2257. dev_err(&pdev->dev, "failed to register\n");
  2258. goto err_deinit;
  2259. }
  2260. dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
  2261. dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM;
  2262. dev->priv_flags |= IFF_UNICAST_FLT;
  2263. netdev_info(dev, "mac: %pM\n", dev->dev_addr);
  2264. platform_set_drvdata(pdev, pp->dev);
  2265. return 0;
  2266. err_deinit:
  2267. mvneta_deinit(pp);
  2268. err_clk:
  2269. clk_disable_unprepare(pp->clk);
  2270. err_unmap:
  2271. iounmap(pp->base);
  2272. err_free_irq:
  2273. irq_dispose_mapping(dev->irq);
  2274. err_free_netdev:
  2275. free_netdev(dev);
  2276. return err;
  2277. }
  2278. /* Device removal routine */
  2279. static int mvneta_remove(struct platform_device *pdev)
  2280. {
  2281. struct net_device *dev = platform_get_drvdata(pdev);
  2282. struct mvneta_port *pp = netdev_priv(dev);
  2283. unregister_netdev(dev);
  2284. mvneta_deinit(pp);
  2285. clk_disable_unprepare(pp->clk);
  2286. iounmap(pp->base);
  2287. irq_dispose_mapping(dev->irq);
  2288. free_netdev(dev);
  2289. platform_set_drvdata(pdev, NULL);
  2290. return 0;
  2291. }
  2292. static const struct of_device_id mvneta_match[] = {
  2293. { .compatible = "marvell,armada-370-neta" },
  2294. { }
  2295. };
  2296. MODULE_DEVICE_TABLE(of, mvneta_match);
  2297. static struct platform_driver mvneta_driver = {
  2298. .probe = mvneta_probe,
  2299. .remove = mvneta_remove,
  2300. .driver = {
  2301. .name = MVNETA_DRIVER_NAME,
  2302. .of_match_table = mvneta_match,
  2303. },
  2304. };
  2305. module_platform_driver(mvneta_driver);
  2306. MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
  2307. MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
  2308. MODULE_LICENSE("GPL");
  2309. module_param(rxq_number, int, S_IRUGO);
  2310. module_param(txq_number, int, S_IRUGO);
  2311. module_param(rxq_def, int, S_IRUGO);
  2312. module_param(txq_def, int, S_IRUGO);