db8500-prcmu.c 80 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178
  1. /*
  2. * Copyright (C) STMicroelectronics 2009
  3. * Copyright (C) ST-Ericsson SA 2010
  4. *
  5. * License Terms: GNU General Public License v2
  6. * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
  7. * Author: Sundar Iyer <sundar.iyer@stericsson.com>
  8. * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
  9. *
  10. * U8500 PRCM Unit interface driver
  11. *
  12. */
  13. #include <linux/module.h>
  14. #include <linux/kernel.h>
  15. #include <linux/delay.h>
  16. #include <linux/errno.h>
  17. #include <linux/err.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/io.h>
  20. #include <linux/slab.h>
  21. #include <linux/mutex.h>
  22. #include <linux/completion.h>
  23. #include <linux/irq.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/bitops.h>
  26. #include <linux/fs.h>
  27. #include <linux/platform_device.h>
  28. #include <linux/uaccess.h>
  29. #include <linux/mfd/core.h>
  30. #include <linux/mfd/dbx500-prcmu.h>
  31. #include <linux/mfd/abx500/ab8500.h>
  32. #include <linux/regulator/db8500-prcmu.h>
  33. #include <linux/regulator/machine.h>
  34. #include <linux/cpufreq.h>
  35. #include <asm/hardware/gic.h>
  36. #include <mach/hardware.h>
  37. #include <mach/irqs.h>
  38. #include <mach/db8500-regs.h>
  39. #include <mach/id.h>
  40. #include "dbx500-prcmu-regs.h"
  41. /* Offset for the firmware version within the TCPM */
  42. #define PRCMU_FW_VERSION_OFFSET 0xA4
  43. /* Index of different voltages to be used when accessing AVSData */
  44. #define PRCM_AVS_BASE 0x2FC
  45. #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
  46. #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
  47. #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
  48. #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
  49. #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
  50. #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
  51. #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
  52. #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
  53. #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
  54. #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
  55. #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
  56. #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
  57. #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
  58. #define PRCM_AVS_VOLTAGE 0
  59. #define PRCM_AVS_VOLTAGE_MASK 0x3f
  60. #define PRCM_AVS_ISSLOWSTARTUP 6
  61. #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
  62. #define PRCM_AVS_ISMODEENABLE 7
  63. #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
  64. #define PRCM_BOOT_STATUS 0xFFF
  65. #define PRCM_ROMCODE_A2P 0xFFE
  66. #define PRCM_ROMCODE_P2A 0xFFD
  67. #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
  68. #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  69. #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
  70. #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
  71. #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
  72. #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
  73. #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
  74. #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
  75. #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
  76. #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
  77. /* Req Mailboxes */
  78. #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
  79. #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
  80. #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
  81. #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
  82. #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
  83. #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
  84. /* Ack Mailboxes */
  85. #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
  86. #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  87. #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  88. #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  89. #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  90. #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  91. /* Mailbox 0 headers */
  92. #define MB0H_POWER_STATE_TRANS 0
  93. #define MB0H_CONFIG_WAKEUPS_EXE 1
  94. #define MB0H_READ_WAKEUP_ACK 3
  95. #define MB0H_CONFIG_WAKEUPS_SLEEP 4
  96. #define MB0H_WAKEUP_EXE 2
  97. #define MB0H_WAKEUP_SLEEP 5
  98. /* Mailbox 0 REQs */
  99. #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
  100. #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
  101. #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
  102. #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
  103. #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
  104. #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
  105. /* Mailbox 0 ACKs */
  106. #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
  107. #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
  108. #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
  109. #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
  110. #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
  111. #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
  112. #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
  113. /* Mailbox 1 headers */
  114. #define MB1H_ARM_APE_OPP 0x0
  115. #define MB1H_RESET_MODEM 0x2
  116. #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
  117. #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
  118. #define MB1H_RELEASE_USB_WAKEUP 0x5
  119. #define MB1H_PLL_ON_OFF 0x6
  120. /* Mailbox 1 Requests */
  121. #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
  122. #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
  123. #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
  124. #define PLL_SOC0_OFF 0x1
  125. #define PLL_SOC0_ON 0x2
  126. #define PLL_SOC1_OFF 0x4
  127. #define PLL_SOC1_ON 0x8
  128. /* Mailbox 1 ACKs */
  129. #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
  130. #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
  131. #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
  132. #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
  133. /* Mailbox 2 headers */
  134. #define MB2H_DPS 0x0
  135. #define MB2H_AUTO_PWR 0x1
  136. /* Mailbox 2 REQs */
  137. #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
  138. #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
  139. #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
  140. #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
  141. #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
  142. #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
  143. #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
  144. #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
  145. #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
  146. #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
  147. /* Mailbox 2 ACKs */
  148. #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
  149. #define HWACC_PWR_ST_OK 0xFE
  150. /* Mailbox 3 headers */
  151. #define MB3H_ANC 0x0
  152. #define MB3H_SIDETONE 0x1
  153. #define MB3H_SYSCLK 0xE
  154. /* Mailbox 3 Requests */
  155. #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
  156. #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
  157. #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
  158. #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
  159. #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
  160. #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
  161. #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
  162. /* Mailbox 4 headers */
  163. #define MB4H_DDR_INIT 0x0
  164. #define MB4H_MEM_ST 0x1
  165. #define MB4H_HOTDOG 0x12
  166. #define MB4H_HOTMON 0x13
  167. #define MB4H_HOT_PERIOD 0x14
  168. #define MB4H_A9WDOG_CONF 0x16
  169. #define MB4H_A9WDOG_EN 0x17
  170. #define MB4H_A9WDOG_DIS 0x18
  171. #define MB4H_A9WDOG_LOAD 0x19
  172. #define MB4H_A9WDOG_KICK 0x20
  173. /* Mailbox 4 Requests */
  174. #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
  175. #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
  176. #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
  177. #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
  178. #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
  179. #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
  180. #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
  181. #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
  182. #define HOTMON_CONFIG_LOW BIT(0)
  183. #define HOTMON_CONFIG_HIGH BIT(1)
  184. #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
  185. #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
  186. #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
  187. #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
  188. #define A9WDOG_AUTO_OFF_EN BIT(7)
  189. #define A9WDOG_AUTO_OFF_DIS 0
  190. #define A9WDOG_ID_MASK 0xf
  191. /* Mailbox 5 Requests */
  192. #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
  193. #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
  194. #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
  195. #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
  196. #define PRCMU_I2C_WRITE(slave) \
  197. (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
  198. #define PRCMU_I2C_READ(slave) \
  199. (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
  200. #define PRCMU_I2C_STOP_EN BIT(3)
  201. /* Mailbox 5 ACKs */
  202. #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
  203. #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
  204. #define I2C_WR_OK 0x1
  205. #define I2C_RD_OK 0x2
  206. #define NUM_MB 8
  207. #define MBOX_BIT BIT
  208. #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
  209. /*
  210. * Wakeups/IRQs
  211. */
  212. #define WAKEUP_BIT_RTC BIT(0)
  213. #define WAKEUP_BIT_RTT0 BIT(1)
  214. #define WAKEUP_BIT_RTT1 BIT(2)
  215. #define WAKEUP_BIT_HSI0 BIT(3)
  216. #define WAKEUP_BIT_HSI1 BIT(4)
  217. #define WAKEUP_BIT_CA_WAKE BIT(5)
  218. #define WAKEUP_BIT_USB BIT(6)
  219. #define WAKEUP_BIT_ABB BIT(7)
  220. #define WAKEUP_BIT_ABB_FIFO BIT(8)
  221. #define WAKEUP_BIT_SYSCLK_OK BIT(9)
  222. #define WAKEUP_BIT_CA_SLEEP BIT(10)
  223. #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
  224. #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
  225. #define WAKEUP_BIT_ANC_OK BIT(13)
  226. #define WAKEUP_BIT_SW_ERROR BIT(14)
  227. #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
  228. #define WAKEUP_BIT_ARM BIT(17)
  229. #define WAKEUP_BIT_HOTMON_LOW BIT(18)
  230. #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
  231. #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
  232. #define WAKEUP_BIT_GPIO0 BIT(23)
  233. #define WAKEUP_BIT_GPIO1 BIT(24)
  234. #define WAKEUP_BIT_GPIO2 BIT(25)
  235. #define WAKEUP_BIT_GPIO3 BIT(26)
  236. #define WAKEUP_BIT_GPIO4 BIT(27)
  237. #define WAKEUP_BIT_GPIO5 BIT(28)
  238. #define WAKEUP_BIT_GPIO6 BIT(29)
  239. #define WAKEUP_BIT_GPIO7 BIT(30)
  240. #define WAKEUP_BIT_GPIO8 BIT(31)
  241. static struct {
  242. bool valid;
  243. struct prcmu_fw_version version;
  244. } fw_info;
  245. static struct irq_domain *db8500_irq_domain;
  246. /*
  247. * This vector maps irq numbers to the bits in the bit field used in
  248. * communication with the PRCMU firmware.
  249. *
  250. * The reason for having this is to keep the irq numbers contiguous even though
  251. * the bits in the bit field are not. (The bits also have a tendency to move
  252. * around, to further complicate matters.)
  253. */
  254. #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
  255. #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
  256. static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
  257. IRQ_ENTRY(RTC),
  258. IRQ_ENTRY(RTT0),
  259. IRQ_ENTRY(RTT1),
  260. IRQ_ENTRY(HSI0),
  261. IRQ_ENTRY(HSI1),
  262. IRQ_ENTRY(CA_WAKE),
  263. IRQ_ENTRY(USB),
  264. IRQ_ENTRY(ABB),
  265. IRQ_ENTRY(ABB_FIFO),
  266. IRQ_ENTRY(CA_SLEEP),
  267. IRQ_ENTRY(ARM),
  268. IRQ_ENTRY(HOTMON_LOW),
  269. IRQ_ENTRY(HOTMON_HIGH),
  270. IRQ_ENTRY(MODEM_SW_RESET_REQ),
  271. IRQ_ENTRY(GPIO0),
  272. IRQ_ENTRY(GPIO1),
  273. IRQ_ENTRY(GPIO2),
  274. IRQ_ENTRY(GPIO3),
  275. IRQ_ENTRY(GPIO4),
  276. IRQ_ENTRY(GPIO5),
  277. IRQ_ENTRY(GPIO6),
  278. IRQ_ENTRY(GPIO7),
  279. IRQ_ENTRY(GPIO8)
  280. };
  281. #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
  282. #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
  283. static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
  284. WAKEUP_ENTRY(RTC),
  285. WAKEUP_ENTRY(RTT0),
  286. WAKEUP_ENTRY(RTT1),
  287. WAKEUP_ENTRY(HSI0),
  288. WAKEUP_ENTRY(HSI1),
  289. WAKEUP_ENTRY(USB),
  290. WAKEUP_ENTRY(ABB),
  291. WAKEUP_ENTRY(ABB_FIFO),
  292. WAKEUP_ENTRY(ARM)
  293. };
  294. /*
  295. * mb0_transfer - state needed for mailbox 0 communication.
  296. * @lock: The transaction lock.
  297. * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
  298. * the request data.
  299. * @mask_work: Work structure used for (un)masking wakeup interrupts.
  300. * @req: Request data that need to persist between requests.
  301. */
  302. static struct {
  303. spinlock_t lock;
  304. spinlock_t dbb_irqs_lock;
  305. struct work_struct mask_work;
  306. struct mutex ac_wake_lock;
  307. struct completion ac_wake_work;
  308. struct {
  309. u32 dbb_irqs;
  310. u32 dbb_wakeups;
  311. u32 abb_events;
  312. } req;
  313. } mb0_transfer;
  314. /*
  315. * mb1_transfer - state needed for mailbox 1 communication.
  316. * @lock: The transaction lock.
  317. * @work: The transaction completion structure.
  318. * @ape_opp: The current APE OPP.
  319. * @ack: Reply ("acknowledge") data.
  320. */
  321. static struct {
  322. struct mutex lock;
  323. struct completion work;
  324. u8 ape_opp;
  325. struct {
  326. u8 header;
  327. u8 arm_opp;
  328. u8 ape_opp;
  329. u8 ape_voltage_status;
  330. } ack;
  331. } mb1_transfer;
  332. /*
  333. * mb2_transfer - state needed for mailbox 2 communication.
  334. * @lock: The transaction lock.
  335. * @work: The transaction completion structure.
  336. * @auto_pm_lock: The autonomous power management configuration lock.
  337. * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
  338. * @req: Request data that need to persist between requests.
  339. * @ack: Reply ("acknowledge") data.
  340. */
  341. static struct {
  342. struct mutex lock;
  343. struct completion work;
  344. spinlock_t auto_pm_lock;
  345. bool auto_pm_enabled;
  346. struct {
  347. u8 status;
  348. } ack;
  349. } mb2_transfer;
  350. /*
  351. * mb3_transfer - state needed for mailbox 3 communication.
  352. * @lock: The request lock.
  353. * @sysclk_lock: A lock used to handle concurrent sysclk requests.
  354. * @sysclk_work: Work structure used for sysclk requests.
  355. */
  356. static struct {
  357. spinlock_t lock;
  358. struct mutex sysclk_lock;
  359. struct completion sysclk_work;
  360. } mb3_transfer;
  361. /*
  362. * mb4_transfer - state needed for mailbox 4 communication.
  363. * @lock: The transaction lock.
  364. * @work: The transaction completion structure.
  365. */
  366. static struct {
  367. struct mutex lock;
  368. struct completion work;
  369. } mb4_transfer;
  370. /*
  371. * mb5_transfer - state needed for mailbox 5 communication.
  372. * @lock: The transaction lock.
  373. * @work: The transaction completion structure.
  374. * @ack: Reply ("acknowledge") data.
  375. */
  376. static struct {
  377. struct mutex lock;
  378. struct completion work;
  379. struct {
  380. u8 status;
  381. u8 value;
  382. } ack;
  383. } mb5_transfer;
  384. static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
  385. /* Spinlocks */
  386. static DEFINE_SPINLOCK(prcmu_lock);
  387. static DEFINE_SPINLOCK(clkout_lock);
  388. /* Global var to runtime determine TCDM base for v2 or v1 */
  389. static __iomem void *tcdm_base;
  390. struct clk_mgt {
  391. void __iomem *reg;
  392. u32 pllsw;
  393. int branch;
  394. bool clk38div;
  395. };
  396. enum {
  397. PLL_RAW,
  398. PLL_FIX,
  399. PLL_DIV
  400. };
  401. static DEFINE_SPINLOCK(clk_mgt_lock);
  402. #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
  403. { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
  404. struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
  405. CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
  406. CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
  407. CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
  408. CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
  409. CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
  410. CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
  411. CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
  412. CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
  413. CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
  414. CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
  415. CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
  416. CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
  417. CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
  418. CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
  419. CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
  420. CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
  421. CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
  422. CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
  423. CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
  424. CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
  425. CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
  426. CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
  427. CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
  428. CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
  429. CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
  430. CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
  431. CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
  432. CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
  433. CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
  434. };
  435. struct dsiclk {
  436. u32 divsel_mask;
  437. u32 divsel_shift;
  438. u32 divsel;
  439. };
  440. static struct dsiclk dsiclk[2] = {
  441. {
  442. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
  443. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
  444. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  445. },
  446. {
  447. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
  448. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
  449. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  450. }
  451. };
  452. struct dsiescclk {
  453. u32 en;
  454. u32 div_mask;
  455. u32 div_shift;
  456. };
  457. static struct dsiescclk dsiescclk[3] = {
  458. {
  459. .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
  460. .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
  461. .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
  462. },
  463. {
  464. .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
  465. .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
  466. .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
  467. },
  468. {
  469. .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
  470. .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
  471. .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
  472. }
  473. };
  474. /*
  475. * Used by MCDE to setup all necessary PRCMU registers
  476. */
  477. #define PRCMU_RESET_DSIPLL 0x00004000
  478. #define PRCMU_UNCLAMP_DSIPLL 0x00400800
  479. #define PRCMU_CLK_PLL_DIV_SHIFT 0
  480. #define PRCMU_CLK_PLL_SW_SHIFT 5
  481. #define PRCMU_CLK_38 (1 << 9)
  482. #define PRCMU_CLK_38_SRC (1 << 10)
  483. #define PRCMU_CLK_38_DIV (1 << 11)
  484. /* PLLDIV=12, PLLSW=4 (PLLDDR) */
  485. #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
  486. /* DPI 50000000 Hz */
  487. #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
  488. (16 << PRCMU_CLK_PLL_DIV_SHIFT))
  489. #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
  490. /* D=101, N=1, R=4, SELDIV2=0 */
  491. #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
  492. #define PRCMU_ENABLE_PLLDSI 0x00000001
  493. #define PRCMU_DISABLE_PLLDSI 0x00000000
  494. #define PRCMU_RELEASE_RESET_DSS 0x0000400C
  495. #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
  496. /* ESC clk, div0=1, div1=1, div2=3 */
  497. #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
  498. #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
  499. #define PRCMU_DSI_RESET_SW 0x00000007
  500. #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
  501. int db8500_prcmu_enable_dsipll(void)
  502. {
  503. int i;
  504. /* Clear DSIPLL_RESETN */
  505. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
  506. /* Unclamp DSIPLL in/out */
  507. writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
  508. /* Set DSI PLL FREQ */
  509. writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
  510. writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
  511. /* Enable Escape clocks */
  512. writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  513. /* Start DSI PLL */
  514. writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  515. /* Reset DSI PLL */
  516. writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
  517. for (i = 0; i < 10; i++) {
  518. if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
  519. == PRCMU_PLLDSI_LOCKP_LOCKED)
  520. break;
  521. udelay(100);
  522. }
  523. /* Set DSIPLL_RESETN */
  524. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
  525. return 0;
  526. }
  527. int db8500_prcmu_disable_dsipll(void)
  528. {
  529. /* Disable dsi pll */
  530. writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  531. /* Disable escapeclock */
  532. writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  533. return 0;
  534. }
  535. int db8500_prcmu_set_display_clocks(void)
  536. {
  537. unsigned long flags;
  538. spin_lock_irqsave(&clk_mgt_lock, flags);
  539. /* Grab the HW semaphore. */
  540. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  541. cpu_relax();
  542. writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
  543. writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
  544. writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
  545. /* Release the HW semaphore. */
  546. writel(0, PRCM_SEM);
  547. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  548. return 0;
  549. }
  550. u32 db8500_prcmu_read(unsigned int reg)
  551. {
  552. return readl(_PRCMU_BASE + reg);
  553. }
  554. void db8500_prcmu_write(unsigned int reg, u32 value)
  555. {
  556. unsigned long flags;
  557. spin_lock_irqsave(&prcmu_lock, flags);
  558. writel(value, (_PRCMU_BASE + reg));
  559. spin_unlock_irqrestore(&prcmu_lock, flags);
  560. }
  561. void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
  562. {
  563. u32 val;
  564. unsigned long flags;
  565. spin_lock_irqsave(&prcmu_lock, flags);
  566. val = readl(_PRCMU_BASE + reg);
  567. val = ((val & ~mask) | (value & mask));
  568. writel(val, (_PRCMU_BASE + reg));
  569. spin_unlock_irqrestore(&prcmu_lock, flags);
  570. }
  571. struct prcmu_fw_version *prcmu_get_fw_version(void)
  572. {
  573. return fw_info.valid ? &fw_info.version : NULL;
  574. }
  575. bool prcmu_has_arm_maxopp(void)
  576. {
  577. return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
  578. PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
  579. }
  580. /**
  581. * prcmu_get_boot_status - PRCMU boot status checking
  582. * Returns: the current PRCMU boot status
  583. */
  584. int prcmu_get_boot_status(void)
  585. {
  586. return readb(tcdm_base + PRCM_BOOT_STATUS);
  587. }
  588. /**
  589. * prcmu_set_rc_a2p - This function is used to run few power state sequences
  590. * @val: Value to be set, i.e. transition requested
  591. * Returns: 0 on success, -EINVAL on invalid argument
  592. *
  593. * This function is used to run the following power state sequences -
  594. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  595. */
  596. int prcmu_set_rc_a2p(enum romcode_write val)
  597. {
  598. if (val < RDY_2_DS || val > RDY_2_XP70_RST)
  599. return -EINVAL;
  600. writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
  601. return 0;
  602. }
  603. /**
  604. * prcmu_get_rc_p2a - This function is used to get power state sequences
  605. * Returns: the power transition that has last happened
  606. *
  607. * This function can return the following transitions-
  608. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  609. */
  610. enum romcode_read prcmu_get_rc_p2a(void)
  611. {
  612. return readb(tcdm_base + PRCM_ROMCODE_P2A);
  613. }
  614. /**
  615. * prcmu_get_current_mode - Return the current XP70 power mode
  616. * Returns: Returns the current AP(ARM) power mode: init,
  617. * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
  618. */
  619. enum ap_pwrst prcmu_get_xp70_current_state(void)
  620. {
  621. return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
  622. }
  623. /**
  624. * prcmu_config_clkout - Configure one of the programmable clock outputs.
  625. * @clkout: The CLKOUT number (0 or 1).
  626. * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
  627. * @div: The divider to be applied.
  628. *
  629. * Configures one of the programmable clock outputs (CLKOUTs).
  630. * @div should be in the range [1,63] to request a configuration, or 0 to
  631. * inform that the configuration is no longer requested.
  632. */
  633. int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
  634. {
  635. static int requests[2];
  636. int r = 0;
  637. unsigned long flags;
  638. u32 val;
  639. u32 bits;
  640. u32 mask;
  641. u32 div_mask;
  642. BUG_ON(clkout > 1);
  643. BUG_ON(div > 63);
  644. BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
  645. if (!div && !requests[clkout])
  646. return -EINVAL;
  647. switch (clkout) {
  648. case 0:
  649. div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
  650. mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
  651. bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
  652. (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
  653. break;
  654. case 1:
  655. div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
  656. mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
  657. PRCM_CLKOCR_CLK1TYPE);
  658. bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
  659. (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
  660. break;
  661. }
  662. bits &= mask;
  663. spin_lock_irqsave(&clkout_lock, flags);
  664. val = readl(PRCM_CLKOCR);
  665. if (val & div_mask) {
  666. if (div) {
  667. if ((val & mask) != bits) {
  668. r = -EBUSY;
  669. goto unlock_and_return;
  670. }
  671. } else {
  672. if ((val & mask & ~div_mask) != bits) {
  673. r = -EINVAL;
  674. goto unlock_and_return;
  675. }
  676. }
  677. }
  678. writel((bits | (val & ~mask)), PRCM_CLKOCR);
  679. requests[clkout] += (div ? 1 : -1);
  680. unlock_and_return:
  681. spin_unlock_irqrestore(&clkout_lock, flags);
  682. return r;
  683. }
  684. int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
  685. {
  686. unsigned long flags;
  687. BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
  688. spin_lock_irqsave(&mb0_transfer.lock, flags);
  689. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  690. cpu_relax();
  691. writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  692. writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
  693. writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
  694. writeb((keep_ulp_clk ? 1 : 0),
  695. (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
  696. writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
  697. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  698. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  699. return 0;
  700. }
  701. u8 db8500_prcmu_get_power_state_result(void)
  702. {
  703. return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
  704. }
  705. /* This function decouple the gic from the prcmu */
  706. int db8500_prcmu_gic_decouple(void)
  707. {
  708. u32 val = readl(PRCM_A9_MASK_REQ);
  709. /* Set bit 0 register value to 1 */
  710. writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
  711. PRCM_A9_MASK_REQ);
  712. /* Make sure the register is updated */
  713. readl(PRCM_A9_MASK_REQ);
  714. /* Wait a few cycles for the gic mask completion */
  715. udelay(1);
  716. return 0;
  717. }
  718. /* This function recouple the gic with the prcmu */
  719. int db8500_prcmu_gic_recouple(void)
  720. {
  721. u32 val = readl(PRCM_A9_MASK_REQ);
  722. /* Set bit 0 register value to 0 */
  723. writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
  724. return 0;
  725. }
  726. #define PRCMU_GIC_NUMBER_REGS 5
  727. /*
  728. * This function checks if there are pending irq on the gic. It only
  729. * makes sense if the gic has been decoupled before with the
  730. * db8500_prcmu_gic_decouple function. Disabling an interrupt only
  731. * disables the forwarding of the interrupt to any CPU interface. It
  732. * does not prevent the interrupt from changing state, for example
  733. * becoming pending, or active and pending if it is already
  734. * active. Hence, we have to check the interrupt is pending *and* is
  735. * active.
  736. */
  737. bool db8500_prcmu_gic_pending_irq(void)
  738. {
  739. u32 pr; /* Pending register */
  740. u32 er; /* Enable register */
  741. void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
  742. int i;
  743. /* 5 registers. STI & PPI not skipped */
  744. for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
  745. pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
  746. er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
  747. if (pr & er)
  748. return true; /* There is a pending interrupt */
  749. }
  750. return false;
  751. }
  752. /*
  753. * This function checks if there are pending interrupt on the
  754. * prcmu which has been delegated to monitor the irqs with the
  755. * db8500_prcmu_copy_gic_settings function.
  756. */
  757. bool db8500_prcmu_pending_irq(void)
  758. {
  759. u32 it, im;
  760. int i;
  761. for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
  762. it = readl(PRCM_ARMITVAL31TO0 + i * 4);
  763. im = readl(PRCM_ARMITMSK31TO0 + i * 4);
  764. if (it & im)
  765. return true; /* There is a pending interrupt */
  766. }
  767. return false;
  768. }
  769. /*
  770. * This function checks if the specified cpu is in in WFI. It's usage
  771. * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
  772. * function. Of course passing smp_processor_id() to this function will
  773. * always return false...
  774. */
  775. bool db8500_prcmu_is_cpu_in_wfi(int cpu)
  776. {
  777. return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
  778. PRCM_ARM_WFI_STANDBY_WFI0;
  779. }
  780. /*
  781. * This function copies the gic SPI settings to the prcmu in order to
  782. * monitor them and abort/finish the retention/off sequence or state.
  783. */
  784. int db8500_prcmu_copy_gic_settings(void)
  785. {
  786. u32 er; /* Enable register */
  787. void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
  788. int i;
  789. /* We skip the STI and PPI */
  790. for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
  791. er = readl_relaxed(dist_base +
  792. GIC_DIST_ENABLE_SET + (i + 1) * 4);
  793. writel(er, PRCM_ARMITMSK31TO0 + i * 4);
  794. }
  795. return 0;
  796. }
  797. /* This function should only be called while mb0_transfer.lock is held. */
  798. static void config_wakeups(void)
  799. {
  800. const u8 header[2] = {
  801. MB0H_CONFIG_WAKEUPS_EXE,
  802. MB0H_CONFIG_WAKEUPS_SLEEP
  803. };
  804. static u32 last_dbb_events;
  805. static u32 last_abb_events;
  806. u32 dbb_events;
  807. u32 abb_events;
  808. unsigned int i;
  809. dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
  810. dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
  811. abb_events = mb0_transfer.req.abb_events;
  812. if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
  813. return;
  814. for (i = 0; i < 2; i++) {
  815. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  816. cpu_relax();
  817. writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
  818. writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
  819. writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  820. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  821. }
  822. last_dbb_events = dbb_events;
  823. last_abb_events = abb_events;
  824. }
  825. void db8500_prcmu_enable_wakeups(u32 wakeups)
  826. {
  827. unsigned long flags;
  828. u32 bits;
  829. int i;
  830. BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
  831. for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
  832. if (wakeups & BIT(i))
  833. bits |= prcmu_wakeup_bit[i];
  834. }
  835. spin_lock_irqsave(&mb0_transfer.lock, flags);
  836. mb0_transfer.req.dbb_wakeups = bits;
  837. config_wakeups();
  838. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  839. }
  840. void db8500_prcmu_config_abb_event_readout(u32 abb_events)
  841. {
  842. unsigned long flags;
  843. spin_lock_irqsave(&mb0_transfer.lock, flags);
  844. mb0_transfer.req.abb_events = abb_events;
  845. config_wakeups();
  846. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  847. }
  848. void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
  849. {
  850. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  851. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
  852. else
  853. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
  854. }
  855. /**
  856. * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
  857. * @opp: The new ARM operating point to which transition is to be made
  858. * Returns: 0 on success, non-zero on failure
  859. *
  860. * This function sets the the operating point of the ARM.
  861. */
  862. int db8500_prcmu_set_arm_opp(u8 opp)
  863. {
  864. int r;
  865. if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
  866. return -EINVAL;
  867. r = 0;
  868. mutex_lock(&mb1_transfer.lock);
  869. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  870. cpu_relax();
  871. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  872. writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  873. writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  874. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  875. wait_for_completion(&mb1_transfer.work);
  876. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  877. (mb1_transfer.ack.arm_opp != opp))
  878. r = -EIO;
  879. mutex_unlock(&mb1_transfer.lock);
  880. return r;
  881. }
  882. /**
  883. * db8500_prcmu_get_arm_opp - get the current ARM OPP
  884. *
  885. * Returns: the current ARM OPP
  886. */
  887. int db8500_prcmu_get_arm_opp(void)
  888. {
  889. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
  890. }
  891. /**
  892. * db8500_prcmu_get_ddr_opp - get the current DDR OPP
  893. *
  894. * Returns: the current DDR OPP
  895. */
  896. int db8500_prcmu_get_ddr_opp(void)
  897. {
  898. return readb(PRCM_DDR_SUBSYS_APE_MINBW);
  899. }
  900. /**
  901. * db8500_set_ddr_opp - set the appropriate DDR OPP
  902. * @opp: The new DDR operating point to which transition is to be made
  903. * Returns: 0 on success, non-zero on failure
  904. *
  905. * This function sets the operating point of the DDR.
  906. */
  907. int db8500_prcmu_set_ddr_opp(u8 opp)
  908. {
  909. if (opp < DDR_100_OPP || opp > DDR_25_OPP)
  910. return -EINVAL;
  911. /* Changing the DDR OPP can hang the hardware pre-v21 */
  912. if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
  913. writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
  914. return 0;
  915. }
  916. /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
  917. static void request_even_slower_clocks(bool enable)
  918. {
  919. void __iomem *clock_reg[] = {
  920. PRCM_ACLK_MGT,
  921. PRCM_DMACLK_MGT
  922. };
  923. unsigned long flags;
  924. unsigned int i;
  925. spin_lock_irqsave(&clk_mgt_lock, flags);
  926. /* Grab the HW semaphore. */
  927. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  928. cpu_relax();
  929. for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
  930. u32 val;
  931. u32 div;
  932. val = readl(clock_reg[i]);
  933. div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
  934. if (enable) {
  935. if ((div <= 1) || (div > 15)) {
  936. pr_err("prcmu: Bad clock divider %d in %s\n",
  937. div, __func__);
  938. goto unlock_and_return;
  939. }
  940. div <<= 1;
  941. } else {
  942. if (div <= 2)
  943. goto unlock_and_return;
  944. div >>= 1;
  945. }
  946. val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
  947. (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
  948. writel(val, clock_reg[i]);
  949. }
  950. unlock_and_return:
  951. /* Release the HW semaphore. */
  952. writel(0, PRCM_SEM);
  953. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  954. }
  955. /**
  956. * db8500_set_ape_opp - set the appropriate APE OPP
  957. * @opp: The new APE operating point to which transition is to be made
  958. * Returns: 0 on success, non-zero on failure
  959. *
  960. * This function sets the operating point of the APE.
  961. */
  962. int db8500_prcmu_set_ape_opp(u8 opp)
  963. {
  964. int r = 0;
  965. if (opp == mb1_transfer.ape_opp)
  966. return 0;
  967. mutex_lock(&mb1_transfer.lock);
  968. if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
  969. request_even_slower_clocks(false);
  970. if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
  971. goto skip_message;
  972. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  973. cpu_relax();
  974. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  975. writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  976. writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
  977. (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  978. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  979. wait_for_completion(&mb1_transfer.work);
  980. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  981. (mb1_transfer.ack.ape_opp != opp))
  982. r = -EIO;
  983. skip_message:
  984. if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
  985. (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
  986. request_even_slower_clocks(true);
  987. if (!r)
  988. mb1_transfer.ape_opp = opp;
  989. mutex_unlock(&mb1_transfer.lock);
  990. return r;
  991. }
  992. /**
  993. * db8500_prcmu_get_ape_opp - get the current APE OPP
  994. *
  995. * Returns: the current APE OPP
  996. */
  997. int db8500_prcmu_get_ape_opp(void)
  998. {
  999. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
  1000. }
  1001. /**
  1002. * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
  1003. * @enable: true to request the higher voltage, false to drop a request.
  1004. *
  1005. * Calls to this function to enable and disable requests must be balanced.
  1006. */
  1007. int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
  1008. {
  1009. int r = 0;
  1010. u8 header;
  1011. static unsigned int requests;
  1012. mutex_lock(&mb1_transfer.lock);
  1013. if (enable) {
  1014. if (0 != requests++)
  1015. goto unlock_and_return;
  1016. header = MB1H_REQUEST_APE_OPP_100_VOLT;
  1017. } else {
  1018. if (requests == 0) {
  1019. r = -EIO;
  1020. goto unlock_and_return;
  1021. } else if (1 != requests--) {
  1022. goto unlock_and_return;
  1023. }
  1024. header = MB1H_RELEASE_APE_OPP_100_VOLT;
  1025. }
  1026. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1027. cpu_relax();
  1028. writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1029. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1030. wait_for_completion(&mb1_transfer.work);
  1031. if ((mb1_transfer.ack.header != header) ||
  1032. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  1033. r = -EIO;
  1034. unlock_and_return:
  1035. mutex_unlock(&mb1_transfer.lock);
  1036. return r;
  1037. }
  1038. /**
  1039. * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
  1040. *
  1041. * This function releases the power state requirements of a USB wakeup.
  1042. */
  1043. int prcmu_release_usb_wakeup_state(void)
  1044. {
  1045. int r = 0;
  1046. mutex_lock(&mb1_transfer.lock);
  1047. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1048. cpu_relax();
  1049. writeb(MB1H_RELEASE_USB_WAKEUP,
  1050. (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1051. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1052. wait_for_completion(&mb1_transfer.work);
  1053. if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
  1054. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  1055. r = -EIO;
  1056. mutex_unlock(&mb1_transfer.lock);
  1057. return r;
  1058. }
  1059. static int request_pll(u8 clock, bool enable)
  1060. {
  1061. int r = 0;
  1062. if (clock == PRCMU_PLLSOC0)
  1063. clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
  1064. else if (clock == PRCMU_PLLSOC1)
  1065. clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
  1066. else
  1067. return -EINVAL;
  1068. mutex_lock(&mb1_transfer.lock);
  1069. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1070. cpu_relax();
  1071. writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1072. writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
  1073. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1074. wait_for_completion(&mb1_transfer.work);
  1075. if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
  1076. r = -EIO;
  1077. mutex_unlock(&mb1_transfer.lock);
  1078. return r;
  1079. }
  1080. /**
  1081. * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
  1082. * @epod_id: The EPOD to set
  1083. * @epod_state: The new EPOD state
  1084. *
  1085. * This function sets the state of a EPOD (power domain). It may not be called
  1086. * from interrupt context.
  1087. */
  1088. int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
  1089. {
  1090. int r = 0;
  1091. bool ram_retention = false;
  1092. int i;
  1093. /* check argument */
  1094. BUG_ON(epod_id >= NUM_EPOD_ID);
  1095. /* set flag if retention is possible */
  1096. switch (epod_id) {
  1097. case EPOD_ID_SVAMMDSP:
  1098. case EPOD_ID_SIAMMDSP:
  1099. case EPOD_ID_ESRAM12:
  1100. case EPOD_ID_ESRAM34:
  1101. ram_retention = true;
  1102. break;
  1103. }
  1104. /* check argument */
  1105. BUG_ON(epod_state > EPOD_STATE_ON);
  1106. BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
  1107. /* get lock */
  1108. mutex_lock(&mb2_transfer.lock);
  1109. /* wait for mailbox */
  1110. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
  1111. cpu_relax();
  1112. /* fill in mailbox */
  1113. for (i = 0; i < NUM_EPOD_ID; i++)
  1114. writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
  1115. writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
  1116. writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
  1117. writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
  1118. /*
  1119. * The current firmware version does not handle errors correctly,
  1120. * and we cannot recover if there is an error.
  1121. * This is expected to change when the firmware is updated.
  1122. */
  1123. if (!wait_for_completion_timeout(&mb2_transfer.work,
  1124. msecs_to_jiffies(20000))) {
  1125. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1126. __func__);
  1127. r = -EIO;
  1128. goto unlock_and_return;
  1129. }
  1130. if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
  1131. r = -EIO;
  1132. unlock_and_return:
  1133. mutex_unlock(&mb2_transfer.lock);
  1134. return r;
  1135. }
  1136. /**
  1137. * prcmu_configure_auto_pm - Configure autonomous power management.
  1138. * @sleep: Configuration for ApSleep.
  1139. * @idle: Configuration for ApIdle.
  1140. */
  1141. void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
  1142. struct prcmu_auto_pm_config *idle)
  1143. {
  1144. u32 sleep_cfg;
  1145. u32 idle_cfg;
  1146. unsigned long flags;
  1147. BUG_ON((sleep == NULL) || (idle == NULL));
  1148. sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
  1149. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
  1150. sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
  1151. sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
  1152. sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
  1153. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
  1154. idle_cfg = (idle->sva_auto_pm_enable & 0xF);
  1155. idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
  1156. idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
  1157. idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
  1158. idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
  1159. idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
  1160. spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
  1161. /*
  1162. * The autonomous power management configuration is done through
  1163. * fields in mailbox 2, but these fields are only used as shared
  1164. * variables - i.e. there is no need to send a message.
  1165. */
  1166. writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
  1167. writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
  1168. mb2_transfer.auto_pm_enabled =
  1169. ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1170. (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1171. (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1172. (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
  1173. spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
  1174. }
  1175. EXPORT_SYMBOL(prcmu_configure_auto_pm);
  1176. bool prcmu_is_auto_pm_enabled(void)
  1177. {
  1178. return mb2_transfer.auto_pm_enabled;
  1179. }
  1180. static int request_sysclk(bool enable)
  1181. {
  1182. int r;
  1183. unsigned long flags;
  1184. r = 0;
  1185. mutex_lock(&mb3_transfer.sysclk_lock);
  1186. spin_lock_irqsave(&mb3_transfer.lock, flags);
  1187. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
  1188. cpu_relax();
  1189. writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
  1190. writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
  1191. writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
  1192. spin_unlock_irqrestore(&mb3_transfer.lock, flags);
  1193. /*
  1194. * The firmware only sends an ACK if we want to enable the
  1195. * SysClk, and it succeeds.
  1196. */
  1197. if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
  1198. msecs_to_jiffies(20000))) {
  1199. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1200. __func__);
  1201. r = -EIO;
  1202. }
  1203. mutex_unlock(&mb3_transfer.sysclk_lock);
  1204. return r;
  1205. }
  1206. static int request_timclk(bool enable)
  1207. {
  1208. u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
  1209. if (!enable)
  1210. val |= PRCM_TCR_STOP_TIMERS;
  1211. writel(val, PRCM_TCR);
  1212. return 0;
  1213. }
  1214. static int request_clock(u8 clock, bool enable)
  1215. {
  1216. u32 val;
  1217. unsigned long flags;
  1218. spin_lock_irqsave(&clk_mgt_lock, flags);
  1219. /* Grab the HW semaphore. */
  1220. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1221. cpu_relax();
  1222. val = readl(clk_mgt[clock].reg);
  1223. if (enable) {
  1224. val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
  1225. } else {
  1226. clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1227. val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
  1228. }
  1229. writel(val, clk_mgt[clock].reg);
  1230. /* Release the HW semaphore. */
  1231. writel(0, PRCM_SEM);
  1232. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1233. return 0;
  1234. }
  1235. static int request_sga_clock(u8 clock, bool enable)
  1236. {
  1237. u32 val;
  1238. int ret;
  1239. if (enable) {
  1240. val = readl(PRCM_CGATING_BYPASS);
  1241. writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1242. }
  1243. ret = request_clock(clock, enable);
  1244. if (!ret && !enable) {
  1245. val = readl(PRCM_CGATING_BYPASS);
  1246. writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1247. }
  1248. return ret;
  1249. }
  1250. static inline bool plldsi_locked(void)
  1251. {
  1252. return (readl(PRCM_PLLDSI_LOCKP) &
  1253. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1254. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
  1255. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1256. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
  1257. }
  1258. static int request_plldsi(bool enable)
  1259. {
  1260. int r = 0;
  1261. u32 val;
  1262. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1263. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
  1264. PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
  1265. val = readl(PRCM_PLLDSI_ENABLE);
  1266. if (enable)
  1267. val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1268. else
  1269. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1270. writel(val, PRCM_PLLDSI_ENABLE);
  1271. if (enable) {
  1272. unsigned int i;
  1273. bool locked = plldsi_locked();
  1274. for (i = 10; !locked && (i > 0); --i) {
  1275. udelay(100);
  1276. locked = plldsi_locked();
  1277. }
  1278. if (locked) {
  1279. writel(PRCM_APE_RESETN_DSIPLL_RESETN,
  1280. PRCM_APE_RESETN_SET);
  1281. } else {
  1282. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1283. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
  1284. PRCM_MMIP_LS_CLAMP_SET);
  1285. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1286. writel(val, PRCM_PLLDSI_ENABLE);
  1287. r = -EAGAIN;
  1288. }
  1289. } else {
  1290. writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
  1291. }
  1292. return r;
  1293. }
  1294. static int request_dsiclk(u8 n, bool enable)
  1295. {
  1296. u32 val;
  1297. val = readl(PRCM_DSI_PLLOUT_SEL);
  1298. val &= ~dsiclk[n].divsel_mask;
  1299. val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
  1300. dsiclk[n].divsel_shift);
  1301. writel(val, PRCM_DSI_PLLOUT_SEL);
  1302. return 0;
  1303. }
  1304. static int request_dsiescclk(u8 n, bool enable)
  1305. {
  1306. u32 val;
  1307. val = readl(PRCM_DSITVCLK_DIV);
  1308. enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
  1309. writel(val, PRCM_DSITVCLK_DIV);
  1310. return 0;
  1311. }
  1312. /**
  1313. * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
  1314. * @clock: The clock for which the request is made.
  1315. * @enable: Whether the clock should be enabled (true) or disabled (false).
  1316. *
  1317. * This function should only be used by the clock implementation.
  1318. * Do not use it from any other place!
  1319. */
  1320. int db8500_prcmu_request_clock(u8 clock, bool enable)
  1321. {
  1322. if (clock == PRCMU_SGACLK)
  1323. return request_sga_clock(clock, enable);
  1324. else if (clock < PRCMU_NUM_REG_CLOCKS)
  1325. return request_clock(clock, enable);
  1326. else if (clock == PRCMU_TIMCLK)
  1327. return request_timclk(enable);
  1328. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1329. return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
  1330. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1331. return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
  1332. else if (clock == PRCMU_PLLDSI)
  1333. return request_plldsi(enable);
  1334. else if (clock == PRCMU_SYSCLK)
  1335. return request_sysclk(enable);
  1336. else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
  1337. return request_pll(clock, enable);
  1338. else
  1339. return -EINVAL;
  1340. }
  1341. static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
  1342. int branch)
  1343. {
  1344. u64 rate;
  1345. u32 val;
  1346. u32 d;
  1347. u32 div = 1;
  1348. val = readl(reg);
  1349. rate = src_rate;
  1350. rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
  1351. d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
  1352. if (d > 1)
  1353. div *= d;
  1354. d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
  1355. if (d > 1)
  1356. div *= d;
  1357. if (val & PRCM_PLL_FREQ_SELDIV2)
  1358. div *= 2;
  1359. if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
  1360. (val & PRCM_PLL_FREQ_DIV2EN) &&
  1361. ((reg == PRCM_PLLSOC0_FREQ) ||
  1362. (reg == PRCM_PLLARM_FREQ) ||
  1363. (reg == PRCM_PLLDDR_FREQ))))
  1364. div *= 2;
  1365. (void)do_div(rate, div);
  1366. return (unsigned long)rate;
  1367. }
  1368. #define ROOT_CLOCK_RATE 38400000
  1369. static unsigned long clock_rate(u8 clock)
  1370. {
  1371. u32 val;
  1372. u32 pllsw;
  1373. unsigned long rate = ROOT_CLOCK_RATE;
  1374. val = readl(clk_mgt[clock].reg);
  1375. if (val & PRCM_CLK_MGT_CLK38) {
  1376. if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
  1377. rate /= 2;
  1378. return rate;
  1379. }
  1380. val |= clk_mgt[clock].pllsw;
  1381. pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1382. if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1383. rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
  1384. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1385. rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
  1386. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1387. rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
  1388. else
  1389. return 0;
  1390. if ((clock == PRCMU_SGACLK) &&
  1391. (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
  1392. u64 r = (rate * 10);
  1393. (void)do_div(r, 25);
  1394. return (unsigned long)r;
  1395. }
  1396. val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1397. if (val)
  1398. return rate / val;
  1399. else
  1400. return 0;
  1401. }
  1402. static unsigned long armss_rate(void)
  1403. {
  1404. u32 r;
  1405. unsigned long rate;
  1406. r = readl(PRCM_ARM_CHGCLKREQ);
  1407. if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
  1408. /* External ARMCLKFIX clock */
  1409. rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
  1410. /* Check PRCM_ARM_CHGCLKREQ divider */
  1411. if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
  1412. rate /= 2;
  1413. /* Check PRCM_ARMCLKFIX_MGT divider */
  1414. r = readl(PRCM_ARMCLKFIX_MGT);
  1415. r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1416. rate /= r;
  1417. } else {/* ARM PLL */
  1418. rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
  1419. }
  1420. return rate;
  1421. }
  1422. static unsigned long dsiclk_rate(u8 n)
  1423. {
  1424. u32 divsel;
  1425. u32 div = 1;
  1426. divsel = readl(PRCM_DSI_PLLOUT_SEL);
  1427. divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
  1428. if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
  1429. divsel = dsiclk[n].divsel;
  1430. switch (divsel) {
  1431. case PRCM_DSI_PLLOUT_SEL_PHI_4:
  1432. div *= 2;
  1433. case PRCM_DSI_PLLOUT_SEL_PHI_2:
  1434. div *= 2;
  1435. case PRCM_DSI_PLLOUT_SEL_PHI:
  1436. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1437. PLL_RAW) / div;
  1438. default:
  1439. return 0;
  1440. }
  1441. }
  1442. static unsigned long dsiescclk_rate(u8 n)
  1443. {
  1444. u32 div;
  1445. div = readl(PRCM_DSITVCLK_DIV);
  1446. div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
  1447. return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
  1448. }
  1449. unsigned long prcmu_clock_rate(u8 clock)
  1450. {
  1451. if (clock < PRCMU_NUM_REG_CLOCKS)
  1452. return clock_rate(clock);
  1453. else if (clock == PRCMU_TIMCLK)
  1454. return ROOT_CLOCK_RATE / 16;
  1455. else if (clock == PRCMU_SYSCLK)
  1456. return ROOT_CLOCK_RATE;
  1457. else if (clock == PRCMU_PLLSOC0)
  1458. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1459. else if (clock == PRCMU_PLLSOC1)
  1460. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1461. else if (clock == PRCMU_ARMSS)
  1462. return armss_rate();
  1463. else if (clock == PRCMU_PLLDDR)
  1464. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1465. else if (clock == PRCMU_PLLDSI)
  1466. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1467. PLL_RAW);
  1468. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1469. return dsiclk_rate(clock - PRCMU_DSI0CLK);
  1470. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1471. return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
  1472. else
  1473. return 0;
  1474. }
  1475. static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
  1476. {
  1477. if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
  1478. return ROOT_CLOCK_RATE;
  1479. clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
  1480. if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1481. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
  1482. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1483. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
  1484. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1485. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
  1486. else
  1487. return 0;
  1488. }
  1489. static u32 clock_divider(unsigned long src_rate, unsigned long rate)
  1490. {
  1491. u32 div;
  1492. div = (src_rate / rate);
  1493. if (div == 0)
  1494. return 1;
  1495. if (rate < (src_rate / div))
  1496. div++;
  1497. return div;
  1498. }
  1499. static long round_clock_rate(u8 clock, unsigned long rate)
  1500. {
  1501. u32 val;
  1502. u32 div;
  1503. unsigned long src_rate;
  1504. long rounded_rate;
  1505. val = readl(clk_mgt[clock].reg);
  1506. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1507. clk_mgt[clock].branch);
  1508. div = clock_divider(src_rate, rate);
  1509. if (val & PRCM_CLK_MGT_CLK38) {
  1510. if (clk_mgt[clock].clk38div) {
  1511. if (div > 2)
  1512. div = 2;
  1513. } else {
  1514. div = 1;
  1515. }
  1516. } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
  1517. u64 r = (src_rate * 10);
  1518. (void)do_div(r, 25);
  1519. if (r <= rate)
  1520. return (unsigned long)r;
  1521. }
  1522. rounded_rate = (src_rate / min(div, (u32)31));
  1523. return rounded_rate;
  1524. }
  1525. /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
  1526. static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
  1527. { .frequency = 200000, .index = ARM_EXTCLK,},
  1528. { .frequency = 400000, .index = ARM_50_OPP,},
  1529. { .frequency = 800000, .index = ARM_100_OPP,},
  1530. { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
  1531. { .frequency = CPUFREQ_TABLE_END,},
  1532. };
  1533. static long round_armss_rate(unsigned long rate)
  1534. {
  1535. long freq = 0;
  1536. int i = 0;
  1537. /* cpufreq table frequencies is in KHz. */
  1538. rate = rate / 1000;
  1539. /* Find the corresponding arm opp from the cpufreq table. */
  1540. while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
  1541. freq = db8500_cpufreq_table[i].frequency;
  1542. if (freq == rate)
  1543. break;
  1544. i++;
  1545. }
  1546. /* Return the last valid value, even if a match was not found. */
  1547. return freq * 1000;
  1548. }
  1549. #define MIN_PLL_VCO_RATE 600000000ULL
  1550. #define MAX_PLL_VCO_RATE 1680640000ULL
  1551. static long round_plldsi_rate(unsigned long rate)
  1552. {
  1553. long rounded_rate = 0;
  1554. unsigned long src_rate;
  1555. unsigned long rem;
  1556. u32 r;
  1557. src_rate = clock_rate(PRCMU_HDMICLK);
  1558. rem = rate;
  1559. for (r = 7; (rem > 0) && (r > 0); r--) {
  1560. u64 d;
  1561. d = (r * rate);
  1562. (void)do_div(d, src_rate);
  1563. if (d < 6)
  1564. d = 6;
  1565. else if (d > 255)
  1566. d = 255;
  1567. d *= src_rate;
  1568. if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
  1569. ((r * MAX_PLL_VCO_RATE) < (2 * d)))
  1570. continue;
  1571. (void)do_div(d, r);
  1572. if (rate < d) {
  1573. if (rounded_rate == 0)
  1574. rounded_rate = (long)d;
  1575. break;
  1576. }
  1577. if ((rate - d) < rem) {
  1578. rem = (rate - d);
  1579. rounded_rate = (long)d;
  1580. }
  1581. }
  1582. return rounded_rate;
  1583. }
  1584. static long round_dsiclk_rate(unsigned long rate)
  1585. {
  1586. u32 div;
  1587. unsigned long src_rate;
  1588. long rounded_rate;
  1589. src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1590. PLL_RAW);
  1591. div = clock_divider(src_rate, rate);
  1592. rounded_rate = (src_rate / ((div > 2) ? 4 : div));
  1593. return rounded_rate;
  1594. }
  1595. static long round_dsiescclk_rate(unsigned long rate)
  1596. {
  1597. u32 div;
  1598. unsigned long src_rate;
  1599. long rounded_rate;
  1600. src_rate = clock_rate(PRCMU_TVCLK);
  1601. div = clock_divider(src_rate, rate);
  1602. rounded_rate = (src_rate / min(div, (u32)255));
  1603. return rounded_rate;
  1604. }
  1605. long prcmu_round_clock_rate(u8 clock, unsigned long rate)
  1606. {
  1607. if (clock < PRCMU_NUM_REG_CLOCKS)
  1608. return round_clock_rate(clock, rate);
  1609. else if (clock == PRCMU_ARMSS)
  1610. return round_armss_rate(rate);
  1611. else if (clock == PRCMU_PLLDSI)
  1612. return round_plldsi_rate(rate);
  1613. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1614. return round_dsiclk_rate(rate);
  1615. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1616. return round_dsiescclk_rate(rate);
  1617. else
  1618. return (long)prcmu_clock_rate(clock);
  1619. }
  1620. static void set_clock_rate(u8 clock, unsigned long rate)
  1621. {
  1622. u32 val;
  1623. u32 div;
  1624. unsigned long src_rate;
  1625. unsigned long flags;
  1626. spin_lock_irqsave(&clk_mgt_lock, flags);
  1627. /* Grab the HW semaphore. */
  1628. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1629. cpu_relax();
  1630. val = readl(clk_mgt[clock].reg);
  1631. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1632. clk_mgt[clock].branch);
  1633. div = clock_divider(src_rate, rate);
  1634. if (val & PRCM_CLK_MGT_CLK38) {
  1635. if (clk_mgt[clock].clk38div) {
  1636. if (div > 1)
  1637. val |= PRCM_CLK_MGT_CLK38DIV;
  1638. else
  1639. val &= ~PRCM_CLK_MGT_CLK38DIV;
  1640. }
  1641. } else if (clock == PRCMU_SGACLK) {
  1642. val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
  1643. PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
  1644. if (div == 3) {
  1645. u64 r = (src_rate * 10);
  1646. (void)do_div(r, 25);
  1647. if (r <= rate) {
  1648. val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
  1649. div = 0;
  1650. }
  1651. }
  1652. val |= min(div, (u32)31);
  1653. } else {
  1654. val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1655. val |= min(div, (u32)31);
  1656. }
  1657. writel(val, clk_mgt[clock].reg);
  1658. /* Release the HW semaphore. */
  1659. writel(0, PRCM_SEM);
  1660. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1661. }
  1662. static int set_armss_rate(unsigned long rate)
  1663. {
  1664. int i = 0;
  1665. /* cpufreq table frequencies is in KHz. */
  1666. rate = rate / 1000;
  1667. /* Find the corresponding arm opp from the cpufreq table. */
  1668. while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
  1669. if (db8500_cpufreq_table[i].frequency == rate)
  1670. break;
  1671. i++;
  1672. }
  1673. if (db8500_cpufreq_table[i].frequency != rate)
  1674. return -EINVAL;
  1675. /* Set the new arm opp. */
  1676. return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].index);
  1677. }
  1678. static int set_plldsi_rate(unsigned long rate)
  1679. {
  1680. unsigned long src_rate;
  1681. unsigned long rem;
  1682. u32 pll_freq = 0;
  1683. u32 r;
  1684. src_rate = clock_rate(PRCMU_HDMICLK);
  1685. rem = rate;
  1686. for (r = 7; (rem > 0) && (r > 0); r--) {
  1687. u64 d;
  1688. u64 hwrate;
  1689. d = (r * rate);
  1690. (void)do_div(d, src_rate);
  1691. if (d < 6)
  1692. d = 6;
  1693. else if (d > 255)
  1694. d = 255;
  1695. hwrate = (d * src_rate);
  1696. if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
  1697. ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
  1698. continue;
  1699. (void)do_div(hwrate, r);
  1700. if (rate < hwrate) {
  1701. if (pll_freq == 0)
  1702. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1703. (r << PRCM_PLL_FREQ_R_SHIFT));
  1704. break;
  1705. }
  1706. if ((rate - hwrate) < rem) {
  1707. rem = (rate - hwrate);
  1708. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1709. (r << PRCM_PLL_FREQ_R_SHIFT));
  1710. }
  1711. }
  1712. if (pll_freq == 0)
  1713. return -EINVAL;
  1714. pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
  1715. writel(pll_freq, PRCM_PLLDSI_FREQ);
  1716. return 0;
  1717. }
  1718. static void set_dsiclk_rate(u8 n, unsigned long rate)
  1719. {
  1720. u32 val;
  1721. u32 div;
  1722. div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
  1723. clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
  1724. dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
  1725. (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
  1726. /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
  1727. val = readl(PRCM_DSI_PLLOUT_SEL);
  1728. val &= ~dsiclk[n].divsel_mask;
  1729. val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
  1730. writel(val, PRCM_DSI_PLLOUT_SEL);
  1731. }
  1732. static void set_dsiescclk_rate(u8 n, unsigned long rate)
  1733. {
  1734. u32 val;
  1735. u32 div;
  1736. div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
  1737. val = readl(PRCM_DSITVCLK_DIV);
  1738. val &= ~dsiescclk[n].div_mask;
  1739. val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
  1740. writel(val, PRCM_DSITVCLK_DIV);
  1741. }
  1742. int prcmu_set_clock_rate(u8 clock, unsigned long rate)
  1743. {
  1744. if (clock < PRCMU_NUM_REG_CLOCKS)
  1745. set_clock_rate(clock, rate);
  1746. else if (clock == PRCMU_ARMSS)
  1747. return set_armss_rate(rate);
  1748. else if (clock == PRCMU_PLLDSI)
  1749. return set_plldsi_rate(rate);
  1750. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1751. set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
  1752. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1753. set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
  1754. return 0;
  1755. }
  1756. int db8500_prcmu_config_esram0_deep_sleep(u8 state)
  1757. {
  1758. if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
  1759. (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
  1760. return -EINVAL;
  1761. mutex_lock(&mb4_transfer.lock);
  1762. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1763. cpu_relax();
  1764. writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1765. writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
  1766. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
  1767. writeb(DDR_PWR_STATE_ON,
  1768. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
  1769. writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
  1770. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1771. wait_for_completion(&mb4_transfer.work);
  1772. mutex_unlock(&mb4_transfer.lock);
  1773. return 0;
  1774. }
  1775. int db8500_prcmu_config_hotdog(u8 threshold)
  1776. {
  1777. mutex_lock(&mb4_transfer.lock);
  1778. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1779. cpu_relax();
  1780. writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
  1781. writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1782. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1783. wait_for_completion(&mb4_transfer.work);
  1784. mutex_unlock(&mb4_transfer.lock);
  1785. return 0;
  1786. }
  1787. int db8500_prcmu_config_hotmon(u8 low, u8 high)
  1788. {
  1789. mutex_lock(&mb4_transfer.lock);
  1790. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1791. cpu_relax();
  1792. writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
  1793. writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
  1794. writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
  1795. (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
  1796. writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1797. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1798. wait_for_completion(&mb4_transfer.work);
  1799. mutex_unlock(&mb4_transfer.lock);
  1800. return 0;
  1801. }
  1802. static int config_hot_period(u16 val)
  1803. {
  1804. mutex_lock(&mb4_transfer.lock);
  1805. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1806. cpu_relax();
  1807. writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
  1808. writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1809. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1810. wait_for_completion(&mb4_transfer.work);
  1811. mutex_unlock(&mb4_transfer.lock);
  1812. return 0;
  1813. }
  1814. int db8500_prcmu_start_temp_sense(u16 cycles32k)
  1815. {
  1816. if (cycles32k == 0xFFFF)
  1817. return -EINVAL;
  1818. return config_hot_period(cycles32k);
  1819. }
  1820. int db8500_prcmu_stop_temp_sense(void)
  1821. {
  1822. return config_hot_period(0xFFFF);
  1823. }
  1824. static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
  1825. {
  1826. mutex_lock(&mb4_transfer.lock);
  1827. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1828. cpu_relax();
  1829. writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
  1830. writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
  1831. writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
  1832. writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
  1833. writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1834. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1835. wait_for_completion(&mb4_transfer.work);
  1836. mutex_unlock(&mb4_transfer.lock);
  1837. return 0;
  1838. }
  1839. int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
  1840. {
  1841. BUG_ON(num == 0 || num > 0xf);
  1842. return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
  1843. sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
  1844. A9WDOG_AUTO_OFF_DIS);
  1845. }
  1846. int db8500_prcmu_enable_a9wdog(u8 id)
  1847. {
  1848. return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
  1849. }
  1850. int db8500_prcmu_disable_a9wdog(u8 id)
  1851. {
  1852. return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
  1853. }
  1854. int db8500_prcmu_kick_a9wdog(u8 id)
  1855. {
  1856. return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
  1857. }
  1858. /*
  1859. * timeout is 28 bit, in ms.
  1860. */
  1861. int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
  1862. {
  1863. return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
  1864. (id & A9WDOG_ID_MASK) |
  1865. /*
  1866. * Put the lowest 28 bits of timeout at
  1867. * offset 4. Four first bits are used for id.
  1868. */
  1869. (u8)((timeout << 4) & 0xf0),
  1870. (u8)((timeout >> 4) & 0xff),
  1871. (u8)((timeout >> 12) & 0xff),
  1872. (u8)((timeout >> 20) & 0xff));
  1873. }
  1874. /**
  1875. * prcmu_abb_read() - Read register value(s) from the ABB.
  1876. * @slave: The I2C slave address.
  1877. * @reg: The (start) register address.
  1878. * @value: The read out value(s).
  1879. * @size: The number of registers to read.
  1880. *
  1881. * Reads register value(s) from the ABB.
  1882. * @size has to be 1 for the current firmware version.
  1883. */
  1884. int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
  1885. {
  1886. int r;
  1887. if (size != 1)
  1888. return -EINVAL;
  1889. mutex_lock(&mb5_transfer.lock);
  1890. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1891. cpu_relax();
  1892. writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
  1893. writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1894. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1895. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1896. writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1897. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1898. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1899. msecs_to_jiffies(20000))) {
  1900. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1901. __func__);
  1902. r = -EIO;
  1903. } else {
  1904. r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
  1905. }
  1906. if (!r)
  1907. *value = mb5_transfer.ack.value;
  1908. mutex_unlock(&mb5_transfer.lock);
  1909. return r;
  1910. }
  1911. /**
  1912. * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
  1913. * @slave: The I2C slave address.
  1914. * @reg: The (start) register address.
  1915. * @value: The value(s) to write.
  1916. * @mask: The mask(s) to use.
  1917. * @size: The number of registers to write.
  1918. *
  1919. * Writes masked register value(s) to the ABB.
  1920. * For each @value, only the bits set to 1 in the corresponding @mask
  1921. * will be written. The other bits are not changed.
  1922. * @size has to be 1 for the current firmware version.
  1923. */
  1924. int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
  1925. {
  1926. int r;
  1927. if (size != 1)
  1928. return -EINVAL;
  1929. mutex_lock(&mb5_transfer.lock);
  1930. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1931. cpu_relax();
  1932. writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
  1933. writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1934. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1935. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1936. writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1937. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1938. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1939. msecs_to_jiffies(20000))) {
  1940. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1941. __func__);
  1942. r = -EIO;
  1943. } else {
  1944. r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
  1945. }
  1946. mutex_unlock(&mb5_transfer.lock);
  1947. return r;
  1948. }
  1949. /**
  1950. * prcmu_abb_write() - Write register value(s) to the ABB.
  1951. * @slave: The I2C slave address.
  1952. * @reg: The (start) register address.
  1953. * @value: The value(s) to write.
  1954. * @size: The number of registers to write.
  1955. *
  1956. * Writes register value(s) to the ABB.
  1957. * @size has to be 1 for the current firmware version.
  1958. */
  1959. int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
  1960. {
  1961. u8 mask = ~0;
  1962. return prcmu_abb_write_masked(slave, reg, value, &mask, size);
  1963. }
  1964. /**
  1965. * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
  1966. */
  1967. int prcmu_ac_wake_req(void)
  1968. {
  1969. u32 val;
  1970. int ret = 0;
  1971. mutex_lock(&mb0_transfer.ac_wake_lock);
  1972. val = readl(PRCM_HOSTACCESS_REQ);
  1973. if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
  1974. goto unlock_and_return;
  1975. atomic_set(&ac_wake_req_state, 1);
  1976. /*
  1977. * Force Modem Wake-up before hostaccess_req ping-pong.
  1978. * It prevents Modem to enter in Sleep while acking the hostaccess
  1979. * request. The 31us delay has been calculated by HWI.
  1980. */
  1981. val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
  1982. writel(val, PRCM_HOSTACCESS_REQ);
  1983. udelay(31);
  1984. val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
  1985. writel(val, PRCM_HOSTACCESS_REQ);
  1986. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1987. msecs_to_jiffies(5000))) {
  1988. #if defined(CONFIG_DBX500_PRCMU_DEBUG)
  1989. db8500_prcmu_debug_dump(__func__, true, true);
  1990. #endif
  1991. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  1992. __func__);
  1993. ret = -EFAULT;
  1994. }
  1995. unlock_and_return:
  1996. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1997. return ret;
  1998. }
  1999. /**
  2000. * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
  2001. */
  2002. void prcmu_ac_sleep_req()
  2003. {
  2004. u32 val;
  2005. mutex_lock(&mb0_transfer.ac_wake_lock);
  2006. val = readl(PRCM_HOSTACCESS_REQ);
  2007. if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
  2008. goto unlock_and_return;
  2009. writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
  2010. PRCM_HOSTACCESS_REQ);
  2011. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  2012. msecs_to_jiffies(5000))) {
  2013. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  2014. __func__);
  2015. }
  2016. atomic_set(&ac_wake_req_state, 0);
  2017. unlock_and_return:
  2018. mutex_unlock(&mb0_transfer.ac_wake_lock);
  2019. }
  2020. bool db8500_prcmu_is_ac_wake_requested(void)
  2021. {
  2022. return (atomic_read(&ac_wake_req_state) != 0);
  2023. }
  2024. /**
  2025. * db8500_prcmu_system_reset - System reset
  2026. *
  2027. * Saves the reset reason code and then sets the APE_SOFTRST register which
  2028. * fires interrupt to fw
  2029. */
  2030. void db8500_prcmu_system_reset(u16 reset_code)
  2031. {
  2032. writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
  2033. writel(1, PRCM_APE_SOFTRST);
  2034. }
  2035. /**
  2036. * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
  2037. *
  2038. * Retrieves the reset reason code stored by prcmu_system_reset() before
  2039. * last restart.
  2040. */
  2041. u16 db8500_prcmu_get_reset_code(void)
  2042. {
  2043. return readw(tcdm_base + PRCM_SW_RST_REASON);
  2044. }
  2045. /**
  2046. * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
  2047. */
  2048. void db8500_prcmu_modem_reset(void)
  2049. {
  2050. mutex_lock(&mb1_transfer.lock);
  2051. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  2052. cpu_relax();
  2053. writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  2054. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  2055. wait_for_completion(&mb1_transfer.work);
  2056. /*
  2057. * No need to check return from PRCMU as modem should go in reset state
  2058. * This state is already managed by upper layer
  2059. */
  2060. mutex_unlock(&mb1_transfer.lock);
  2061. }
  2062. static void ack_dbb_wakeup(void)
  2063. {
  2064. unsigned long flags;
  2065. spin_lock_irqsave(&mb0_transfer.lock, flags);
  2066. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  2067. cpu_relax();
  2068. writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  2069. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  2070. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  2071. }
  2072. static inline void print_unknown_header_warning(u8 n, u8 header)
  2073. {
  2074. pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
  2075. header, n);
  2076. }
  2077. static bool read_mailbox_0(void)
  2078. {
  2079. bool r;
  2080. u32 ev;
  2081. unsigned int n;
  2082. u8 header;
  2083. header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
  2084. switch (header) {
  2085. case MB0H_WAKEUP_EXE:
  2086. case MB0H_WAKEUP_SLEEP:
  2087. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  2088. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
  2089. else
  2090. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
  2091. if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
  2092. complete(&mb0_transfer.ac_wake_work);
  2093. if (ev & WAKEUP_BIT_SYSCLK_OK)
  2094. complete(&mb3_transfer.sysclk_work);
  2095. ev &= mb0_transfer.req.dbb_irqs;
  2096. for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
  2097. if (ev & prcmu_irq_bit[n])
  2098. generic_handle_irq(IRQ_PRCMU_BASE + n);
  2099. }
  2100. r = true;
  2101. break;
  2102. default:
  2103. print_unknown_header_warning(0, header);
  2104. r = false;
  2105. break;
  2106. }
  2107. writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
  2108. return r;
  2109. }
  2110. static bool read_mailbox_1(void)
  2111. {
  2112. mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
  2113. mb1_transfer.ack.arm_opp = readb(tcdm_base +
  2114. PRCM_ACK_MB1_CURRENT_ARM_OPP);
  2115. mb1_transfer.ack.ape_opp = readb(tcdm_base +
  2116. PRCM_ACK_MB1_CURRENT_APE_OPP);
  2117. mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
  2118. PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
  2119. writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
  2120. complete(&mb1_transfer.work);
  2121. return false;
  2122. }
  2123. static bool read_mailbox_2(void)
  2124. {
  2125. mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
  2126. writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
  2127. complete(&mb2_transfer.work);
  2128. return false;
  2129. }
  2130. static bool read_mailbox_3(void)
  2131. {
  2132. writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
  2133. return false;
  2134. }
  2135. static bool read_mailbox_4(void)
  2136. {
  2137. u8 header;
  2138. bool do_complete = true;
  2139. header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
  2140. switch (header) {
  2141. case MB4H_MEM_ST:
  2142. case MB4H_HOTDOG:
  2143. case MB4H_HOTMON:
  2144. case MB4H_HOT_PERIOD:
  2145. case MB4H_A9WDOG_CONF:
  2146. case MB4H_A9WDOG_EN:
  2147. case MB4H_A9WDOG_DIS:
  2148. case MB4H_A9WDOG_LOAD:
  2149. case MB4H_A9WDOG_KICK:
  2150. break;
  2151. default:
  2152. print_unknown_header_warning(4, header);
  2153. do_complete = false;
  2154. break;
  2155. }
  2156. writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
  2157. if (do_complete)
  2158. complete(&mb4_transfer.work);
  2159. return false;
  2160. }
  2161. static bool read_mailbox_5(void)
  2162. {
  2163. mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
  2164. mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
  2165. writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
  2166. complete(&mb5_transfer.work);
  2167. return false;
  2168. }
  2169. static bool read_mailbox_6(void)
  2170. {
  2171. writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
  2172. return false;
  2173. }
  2174. static bool read_mailbox_7(void)
  2175. {
  2176. writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
  2177. return false;
  2178. }
  2179. static bool (* const read_mailbox[NUM_MB])(void) = {
  2180. read_mailbox_0,
  2181. read_mailbox_1,
  2182. read_mailbox_2,
  2183. read_mailbox_3,
  2184. read_mailbox_4,
  2185. read_mailbox_5,
  2186. read_mailbox_6,
  2187. read_mailbox_7
  2188. };
  2189. static irqreturn_t prcmu_irq_handler(int irq, void *data)
  2190. {
  2191. u32 bits;
  2192. u8 n;
  2193. irqreturn_t r;
  2194. bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
  2195. if (unlikely(!bits))
  2196. return IRQ_NONE;
  2197. r = IRQ_HANDLED;
  2198. for (n = 0; bits; n++) {
  2199. if (bits & MBOX_BIT(n)) {
  2200. bits -= MBOX_BIT(n);
  2201. if (read_mailbox[n]())
  2202. r = IRQ_WAKE_THREAD;
  2203. }
  2204. }
  2205. return r;
  2206. }
  2207. static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
  2208. {
  2209. ack_dbb_wakeup();
  2210. return IRQ_HANDLED;
  2211. }
  2212. static void prcmu_mask_work(struct work_struct *work)
  2213. {
  2214. unsigned long flags;
  2215. spin_lock_irqsave(&mb0_transfer.lock, flags);
  2216. config_wakeups();
  2217. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  2218. }
  2219. static void prcmu_irq_mask(struct irq_data *d)
  2220. {
  2221. unsigned long flags;
  2222. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2223. mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
  2224. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2225. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2226. schedule_work(&mb0_transfer.mask_work);
  2227. }
  2228. static void prcmu_irq_unmask(struct irq_data *d)
  2229. {
  2230. unsigned long flags;
  2231. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2232. mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
  2233. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2234. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2235. schedule_work(&mb0_transfer.mask_work);
  2236. }
  2237. static void noop(struct irq_data *d)
  2238. {
  2239. }
  2240. static struct irq_chip prcmu_irq_chip = {
  2241. .name = "prcmu",
  2242. .irq_disable = prcmu_irq_mask,
  2243. .irq_ack = noop,
  2244. .irq_mask = prcmu_irq_mask,
  2245. .irq_unmask = prcmu_irq_unmask,
  2246. };
  2247. static char *fw_project_name(u8 project)
  2248. {
  2249. switch (project) {
  2250. case PRCMU_FW_PROJECT_U8500:
  2251. return "U8500";
  2252. case PRCMU_FW_PROJECT_U8500_C2:
  2253. return "U8500 C2";
  2254. case PRCMU_FW_PROJECT_U9500:
  2255. return "U9500";
  2256. case PRCMU_FW_PROJECT_U9500_C2:
  2257. return "U9500 C2";
  2258. case PRCMU_FW_PROJECT_U8520:
  2259. return "U8520";
  2260. case PRCMU_FW_PROJECT_U8420:
  2261. return "U8420";
  2262. default:
  2263. return "Unknown";
  2264. }
  2265. }
  2266. static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
  2267. irq_hw_number_t hwirq)
  2268. {
  2269. irq_set_chip_and_handler(virq, &prcmu_irq_chip,
  2270. handle_simple_irq);
  2271. set_irq_flags(virq, IRQF_VALID);
  2272. return 0;
  2273. }
  2274. static struct irq_domain_ops db8500_irq_ops = {
  2275. .map = db8500_irq_map,
  2276. .xlate = irq_domain_xlate_twocell,
  2277. };
  2278. static int db8500_irq_init(struct device_node *np)
  2279. {
  2280. int irq_base = -1;
  2281. /* In the device tree case, just take some IRQs */
  2282. if (!np)
  2283. irq_base = IRQ_PRCMU_BASE;
  2284. db8500_irq_domain = irq_domain_add_simple(
  2285. np, NUM_PRCMU_WAKEUPS, irq_base,
  2286. &db8500_irq_ops, NULL);
  2287. if (!db8500_irq_domain) {
  2288. pr_err("Failed to create irqdomain\n");
  2289. return -ENOSYS;
  2290. }
  2291. return 0;
  2292. }
  2293. void __init db8500_prcmu_early_init(void)
  2294. {
  2295. if (cpu_is_u8500v2() || cpu_is_u9540()) {
  2296. void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
  2297. if (tcpm_base != NULL) {
  2298. u32 version;
  2299. version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
  2300. fw_info.version.project = version & 0xFF;
  2301. fw_info.version.api_version = (version >> 8) & 0xFF;
  2302. fw_info.version.func_version = (version >> 16) & 0xFF;
  2303. fw_info.version.errata = (version >> 24) & 0xFF;
  2304. fw_info.valid = true;
  2305. pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
  2306. fw_project_name(fw_info.version.project),
  2307. (version >> 8) & 0xFF, (version >> 16) & 0xFF,
  2308. (version >> 24) & 0xFF);
  2309. iounmap(tcpm_base);
  2310. }
  2311. if (cpu_is_u9540())
  2312. tcdm_base = ioremap_nocache(U8500_PRCMU_TCDM_BASE,
  2313. SZ_4K + SZ_8K) + SZ_8K;
  2314. else
  2315. tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
  2316. } else {
  2317. pr_err("prcmu: Unsupported chip version\n");
  2318. BUG();
  2319. }
  2320. spin_lock_init(&mb0_transfer.lock);
  2321. spin_lock_init(&mb0_transfer.dbb_irqs_lock);
  2322. mutex_init(&mb0_transfer.ac_wake_lock);
  2323. init_completion(&mb0_transfer.ac_wake_work);
  2324. mutex_init(&mb1_transfer.lock);
  2325. init_completion(&mb1_transfer.work);
  2326. mb1_transfer.ape_opp = APE_NO_CHANGE;
  2327. mutex_init(&mb2_transfer.lock);
  2328. init_completion(&mb2_transfer.work);
  2329. spin_lock_init(&mb2_transfer.auto_pm_lock);
  2330. spin_lock_init(&mb3_transfer.lock);
  2331. mutex_init(&mb3_transfer.sysclk_lock);
  2332. init_completion(&mb3_transfer.sysclk_work);
  2333. mutex_init(&mb4_transfer.lock);
  2334. init_completion(&mb4_transfer.work);
  2335. mutex_init(&mb5_transfer.lock);
  2336. init_completion(&mb5_transfer.work);
  2337. INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
  2338. }
  2339. static void __init init_prcm_registers(void)
  2340. {
  2341. u32 val;
  2342. val = readl(PRCM_A9PL_FORCE_CLKEN);
  2343. val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
  2344. PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
  2345. writel(val, (PRCM_A9PL_FORCE_CLKEN));
  2346. }
  2347. /*
  2348. * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
  2349. */
  2350. static struct regulator_consumer_supply db8500_vape_consumers[] = {
  2351. REGULATOR_SUPPLY("v-ape", NULL),
  2352. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
  2353. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
  2354. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
  2355. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
  2356. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
  2357. /* "v-mmc" changed to "vcore" in the mainline kernel */
  2358. REGULATOR_SUPPLY("vcore", "sdi0"),
  2359. REGULATOR_SUPPLY("vcore", "sdi1"),
  2360. REGULATOR_SUPPLY("vcore", "sdi2"),
  2361. REGULATOR_SUPPLY("vcore", "sdi3"),
  2362. REGULATOR_SUPPLY("vcore", "sdi4"),
  2363. REGULATOR_SUPPLY("v-dma", "dma40.0"),
  2364. REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
  2365. /* "v-uart" changed to "vcore" in the mainline kernel */
  2366. REGULATOR_SUPPLY("vcore", "uart0"),
  2367. REGULATOR_SUPPLY("vcore", "uart1"),
  2368. REGULATOR_SUPPLY("vcore", "uart2"),
  2369. REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
  2370. REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
  2371. REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
  2372. };
  2373. static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
  2374. REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
  2375. /* AV8100 regulator */
  2376. REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
  2377. };
  2378. static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
  2379. REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
  2380. REGULATOR_SUPPLY("vsupply", "mcde"),
  2381. };
  2382. /* SVA MMDSP regulator switch */
  2383. static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
  2384. REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
  2385. };
  2386. /* SVA pipe regulator switch */
  2387. static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
  2388. REGULATOR_SUPPLY("sva-pipe", "cm_control"),
  2389. };
  2390. /* SIA MMDSP regulator switch */
  2391. static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
  2392. REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
  2393. };
  2394. /* SIA pipe regulator switch */
  2395. static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
  2396. REGULATOR_SUPPLY("sia-pipe", "cm_control"),
  2397. };
  2398. static struct regulator_consumer_supply db8500_sga_consumers[] = {
  2399. REGULATOR_SUPPLY("v-mali", NULL),
  2400. };
  2401. /* ESRAM1 and 2 regulator switch */
  2402. static struct regulator_consumer_supply db8500_esram12_consumers[] = {
  2403. REGULATOR_SUPPLY("esram12", "cm_control"),
  2404. };
  2405. /* ESRAM3 and 4 regulator switch */
  2406. static struct regulator_consumer_supply db8500_esram34_consumers[] = {
  2407. REGULATOR_SUPPLY("v-esram34", "mcde"),
  2408. REGULATOR_SUPPLY("esram34", "cm_control"),
  2409. REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
  2410. };
  2411. static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
  2412. [DB8500_REGULATOR_VAPE] = {
  2413. .constraints = {
  2414. .name = "db8500-vape",
  2415. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2416. .always_on = true,
  2417. },
  2418. .consumer_supplies = db8500_vape_consumers,
  2419. .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
  2420. },
  2421. [DB8500_REGULATOR_VARM] = {
  2422. .constraints = {
  2423. .name = "db8500-varm",
  2424. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2425. },
  2426. },
  2427. [DB8500_REGULATOR_VMODEM] = {
  2428. .constraints = {
  2429. .name = "db8500-vmodem",
  2430. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2431. },
  2432. },
  2433. [DB8500_REGULATOR_VPLL] = {
  2434. .constraints = {
  2435. .name = "db8500-vpll",
  2436. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2437. },
  2438. },
  2439. [DB8500_REGULATOR_VSMPS1] = {
  2440. .constraints = {
  2441. .name = "db8500-vsmps1",
  2442. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2443. },
  2444. },
  2445. [DB8500_REGULATOR_VSMPS2] = {
  2446. .constraints = {
  2447. .name = "db8500-vsmps2",
  2448. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2449. },
  2450. .consumer_supplies = db8500_vsmps2_consumers,
  2451. .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
  2452. },
  2453. [DB8500_REGULATOR_VSMPS3] = {
  2454. .constraints = {
  2455. .name = "db8500-vsmps3",
  2456. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2457. },
  2458. },
  2459. [DB8500_REGULATOR_VRF1] = {
  2460. .constraints = {
  2461. .name = "db8500-vrf1",
  2462. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2463. },
  2464. },
  2465. [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
  2466. /* dependency to u8500-vape is handled outside regulator framework */
  2467. .constraints = {
  2468. .name = "db8500-sva-mmdsp",
  2469. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2470. },
  2471. .consumer_supplies = db8500_svammdsp_consumers,
  2472. .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
  2473. },
  2474. [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
  2475. .constraints = {
  2476. /* "ret" means "retention" */
  2477. .name = "db8500-sva-mmdsp-ret",
  2478. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2479. },
  2480. },
  2481. [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
  2482. /* dependency to u8500-vape is handled outside regulator framework */
  2483. .constraints = {
  2484. .name = "db8500-sva-pipe",
  2485. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2486. },
  2487. .consumer_supplies = db8500_svapipe_consumers,
  2488. .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
  2489. },
  2490. [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
  2491. /* dependency to u8500-vape is handled outside regulator framework */
  2492. .constraints = {
  2493. .name = "db8500-sia-mmdsp",
  2494. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2495. },
  2496. .consumer_supplies = db8500_siammdsp_consumers,
  2497. .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
  2498. },
  2499. [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
  2500. .constraints = {
  2501. .name = "db8500-sia-mmdsp-ret",
  2502. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2503. },
  2504. },
  2505. [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
  2506. /* dependency to u8500-vape is handled outside regulator framework */
  2507. .constraints = {
  2508. .name = "db8500-sia-pipe",
  2509. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2510. },
  2511. .consumer_supplies = db8500_siapipe_consumers,
  2512. .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
  2513. },
  2514. [DB8500_REGULATOR_SWITCH_SGA] = {
  2515. .supply_regulator = "db8500-vape",
  2516. .constraints = {
  2517. .name = "db8500-sga",
  2518. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2519. },
  2520. .consumer_supplies = db8500_sga_consumers,
  2521. .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
  2522. },
  2523. [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
  2524. .supply_regulator = "db8500-vape",
  2525. .constraints = {
  2526. .name = "db8500-b2r2-mcde",
  2527. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2528. },
  2529. .consumer_supplies = db8500_b2r2_mcde_consumers,
  2530. .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
  2531. },
  2532. [DB8500_REGULATOR_SWITCH_ESRAM12] = {
  2533. /*
  2534. * esram12 is set in retention and supplied by Vsafe when Vape is off,
  2535. * no need to hold Vape
  2536. */
  2537. .constraints = {
  2538. .name = "db8500-esram12",
  2539. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2540. },
  2541. .consumer_supplies = db8500_esram12_consumers,
  2542. .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
  2543. },
  2544. [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
  2545. .constraints = {
  2546. .name = "db8500-esram12-ret",
  2547. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2548. },
  2549. },
  2550. [DB8500_REGULATOR_SWITCH_ESRAM34] = {
  2551. /*
  2552. * esram34 is set in retention and supplied by Vsafe when Vape is off,
  2553. * no need to hold Vape
  2554. */
  2555. .constraints = {
  2556. .name = "db8500-esram34",
  2557. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2558. },
  2559. .consumer_supplies = db8500_esram34_consumers,
  2560. .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
  2561. },
  2562. [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
  2563. .constraints = {
  2564. .name = "db8500-esram34-ret",
  2565. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2566. },
  2567. },
  2568. };
  2569. static struct resource ab8500_resources[] = {
  2570. [0] = {
  2571. .start = IRQ_DB8500_AB8500,
  2572. .end = IRQ_DB8500_AB8500,
  2573. .flags = IORESOURCE_IRQ
  2574. }
  2575. };
  2576. static struct mfd_cell db8500_prcmu_devs[] = {
  2577. {
  2578. .name = "db8500-prcmu-regulators",
  2579. .of_compatible = "stericsson,db8500-prcmu-regulator",
  2580. .platform_data = &db8500_regulators,
  2581. .pdata_size = sizeof(db8500_regulators),
  2582. },
  2583. {
  2584. .name = "cpufreq-u8500",
  2585. .of_compatible = "stericsson,cpufreq-u8500",
  2586. .platform_data = &db8500_cpufreq_table,
  2587. .pdata_size = sizeof(db8500_cpufreq_table),
  2588. },
  2589. {
  2590. .name = "ab8500-core",
  2591. .of_compatible = "stericsson,ab8500",
  2592. .num_resources = ARRAY_SIZE(ab8500_resources),
  2593. .resources = ab8500_resources,
  2594. .id = AB8500_VERSION_AB8500,
  2595. },
  2596. };
  2597. static void db8500_prcmu_update_cpufreq(void)
  2598. {
  2599. if (prcmu_has_arm_maxopp()) {
  2600. db8500_cpufreq_table[3].frequency = 1000000;
  2601. db8500_cpufreq_table[3].index = ARM_MAX_OPP;
  2602. }
  2603. }
  2604. /**
  2605. * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
  2606. *
  2607. */
  2608. static int db8500_prcmu_probe(struct platform_device *pdev)
  2609. {
  2610. struct ab8500_platform_data *ab8500_platdata = pdev->dev.platform_data;
  2611. struct device_node *np = pdev->dev.of_node;
  2612. int irq = 0, err = 0, i;
  2613. if (ux500_is_svp())
  2614. return -ENODEV;
  2615. init_prcm_registers();
  2616. /* Clean up the mailbox interrupts after pre-kernel code. */
  2617. writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
  2618. if (np)
  2619. irq = platform_get_irq(pdev, 0);
  2620. if (!np || irq <= 0)
  2621. irq = IRQ_DB8500_PRCMU1;
  2622. err = request_threaded_irq(irq, prcmu_irq_handler,
  2623. prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
  2624. if (err < 0) {
  2625. pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
  2626. err = -EBUSY;
  2627. goto no_irq_return;
  2628. }
  2629. db8500_irq_init(np);
  2630. for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) {
  2631. if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) {
  2632. db8500_prcmu_devs[i].platform_data = ab8500_platdata;
  2633. db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data);
  2634. }
  2635. }
  2636. if (cpu_is_u8500v20_or_later())
  2637. prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
  2638. db8500_prcmu_update_cpufreq();
  2639. err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
  2640. ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL);
  2641. if (err) {
  2642. pr_err("prcmu: Failed to add subdevices\n");
  2643. return err;
  2644. }
  2645. pr_info("DB8500 PRCMU initialized\n");
  2646. no_irq_return:
  2647. return err;
  2648. }
  2649. static const struct of_device_id db8500_prcmu_match[] = {
  2650. { .compatible = "stericsson,db8500-prcmu"},
  2651. { },
  2652. };
  2653. static struct platform_driver db8500_prcmu_driver = {
  2654. .driver = {
  2655. .name = "db8500-prcmu",
  2656. .owner = THIS_MODULE,
  2657. .of_match_table = db8500_prcmu_match,
  2658. },
  2659. .probe = db8500_prcmu_probe,
  2660. };
  2661. static int __init db8500_prcmu_init(void)
  2662. {
  2663. return platform_driver_register(&db8500_prcmu_driver);
  2664. }
  2665. core_initcall(db8500_prcmu_init);
  2666. MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
  2667. MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
  2668. MODULE_LICENSE("GPL v2");