e4000.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409
  1. /*
  2. * Elonics E4000 silicon tuner driver
  3. *
  4. * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License along
  17. * with this program; if not, write to the Free Software Foundation, Inc.,
  18. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  19. */
  20. #include "e4000_priv.h"
  21. /* write multiple registers */
  22. static int e4000_wr_regs(struct e4000_priv *priv, u8 reg, u8 *val, int len)
  23. {
  24. int ret;
  25. u8 buf[1 + len];
  26. struct i2c_msg msg[1] = {
  27. {
  28. .addr = priv->cfg->i2c_addr,
  29. .flags = 0,
  30. .len = sizeof(buf),
  31. .buf = buf,
  32. }
  33. };
  34. buf[0] = reg;
  35. memcpy(&buf[1], val, len);
  36. ret = i2c_transfer(priv->i2c, msg, 1);
  37. if (ret == 1) {
  38. ret = 0;
  39. } else {
  40. dev_warn(&priv->i2c->dev, "%s: i2c wr failed=%d reg=%02x " \
  41. "len=%d\n", KBUILD_MODNAME, ret, reg, len);
  42. ret = -EREMOTEIO;
  43. }
  44. return ret;
  45. }
  46. /* read multiple registers */
  47. static int e4000_rd_regs(struct e4000_priv *priv, u8 reg, u8 *val, int len)
  48. {
  49. int ret;
  50. u8 buf[len];
  51. struct i2c_msg msg[2] = {
  52. {
  53. .addr = priv->cfg->i2c_addr,
  54. .flags = 0,
  55. .len = 1,
  56. .buf = &reg,
  57. }, {
  58. .addr = priv->cfg->i2c_addr,
  59. .flags = I2C_M_RD,
  60. .len = sizeof(buf),
  61. .buf = buf,
  62. }
  63. };
  64. ret = i2c_transfer(priv->i2c, msg, 2);
  65. if (ret == 2) {
  66. memcpy(val, buf, len);
  67. ret = 0;
  68. } else {
  69. dev_warn(&priv->i2c->dev, "%s: i2c rd failed=%d reg=%02x " \
  70. "len=%d\n", KBUILD_MODNAME, ret, reg, len);
  71. ret = -EREMOTEIO;
  72. }
  73. return ret;
  74. }
  75. /* write single register */
  76. static int e4000_wr_reg(struct e4000_priv *priv, u8 reg, u8 val)
  77. {
  78. return e4000_wr_regs(priv, reg, &val, 1);
  79. }
  80. /* read single register */
  81. static int e4000_rd_reg(struct e4000_priv *priv, u8 reg, u8 *val)
  82. {
  83. return e4000_rd_regs(priv, reg, val, 1);
  84. }
  85. static int e4000_init(struct dvb_frontend *fe)
  86. {
  87. struct e4000_priv *priv = fe->tuner_priv;
  88. int ret;
  89. dev_dbg(&priv->i2c->dev, "%s:\n", __func__);
  90. if (fe->ops.i2c_gate_ctrl)
  91. fe->ops.i2c_gate_ctrl(fe, 1);
  92. /* dummy I2C to ensure I2C wakes up */
  93. ret = e4000_wr_reg(priv, 0x02, 0x40);
  94. /* reset */
  95. ret = e4000_wr_reg(priv, 0x00, 0x01);
  96. if (ret < 0)
  97. goto err;
  98. /* disable output clock */
  99. ret = e4000_wr_reg(priv, 0x06, 0x00);
  100. if (ret < 0)
  101. goto err;
  102. ret = e4000_wr_reg(priv, 0x7a, 0x96);
  103. if (ret < 0)
  104. goto err;
  105. /* configure gains */
  106. ret = e4000_wr_regs(priv, 0x7e, "\x01\xfe", 2);
  107. if (ret < 0)
  108. goto err;
  109. ret = e4000_wr_reg(priv, 0x82, 0x00);
  110. if (ret < 0)
  111. goto err;
  112. ret = e4000_wr_reg(priv, 0x24, 0x05);
  113. if (ret < 0)
  114. goto err;
  115. ret = e4000_wr_regs(priv, 0x87, "\x20\x01", 2);
  116. if (ret < 0)
  117. goto err;
  118. ret = e4000_wr_regs(priv, 0x9f, "\x7f\x07", 2);
  119. if (ret < 0)
  120. goto err;
  121. /*
  122. * TODO: Implement DC offset control correctly.
  123. * DC offsets has quite much effect for received signal quality in case
  124. * of direct conversion tuners (Zero-IF). Surely we will now lose few
  125. * decimals or even decibels from SNR...
  126. */
  127. /* DC offset control */
  128. ret = e4000_wr_reg(priv, 0x2d, 0x0c);
  129. if (ret < 0)
  130. goto err;
  131. /* gain control */
  132. ret = e4000_wr_reg(priv, 0x1a, 0x17);
  133. if (ret < 0)
  134. goto err;
  135. ret = e4000_wr_reg(priv, 0x1f, 0x1a);
  136. if (ret < 0)
  137. goto err;
  138. if (fe->ops.i2c_gate_ctrl)
  139. fe->ops.i2c_gate_ctrl(fe, 0);
  140. return 0;
  141. err:
  142. if (fe->ops.i2c_gate_ctrl)
  143. fe->ops.i2c_gate_ctrl(fe, 0);
  144. dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret);
  145. return ret;
  146. }
  147. static int e4000_sleep(struct dvb_frontend *fe)
  148. {
  149. struct e4000_priv *priv = fe->tuner_priv;
  150. int ret;
  151. dev_dbg(&priv->i2c->dev, "%s:\n", __func__);
  152. if (fe->ops.i2c_gate_ctrl)
  153. fe->ops.i2c_gate_ctrl(fe, 1);
  154. ret = e4000_wr_reg(priv, 0x00, 0x00);
  155. if (ret < 0)
  156. goto err;
  157. if (fe->ops.i2c_gate_ctrl)
  158. fe->ops.i2c_gate_ctrl(fe, 0);
  159. return 0;
  160. err:
  161. if (fe->ops.i2c_gate_ctrl)
  162. fe->ops.i2c_gate_ctrl(fe, 0);
  163. dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret);
  164. return ret;
  165. }
  166. static int e4000_set_params(struct dvb_frontend *fe)
  167. {
  168. struct e4000_priv *priv = fe->tuner_priv;
  169. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  170. int ret, i, sigma_delta;
  171. unsigned int f_VCO;
  172. u8 buf[5];
  173. dev_dbg(&priv->i2c->dev, "%s: delivery_system=%d frequency=%d " \
  174. "bandwidth_hz=%d\n", __func__,
  175. c->delivery_system, c->frequency, c->bandwidth_hz);
  176. if (fe->ops.i2c_gate_ctrl)
  177. fe->ops.i2c_gate_ctrl(fe, 1);
  178. /* gain control manual */
  179. ret = e4000_wr_reg(priv, 0x1a, 0x00);
  180. if (ret < 0)
  181. goto err;
  182. /* PLL */
  183. for (i = 0; i < ARRAY_SIZE(e4000_pll_lut); i++) {
  184. if (c->frequency <= e4000_pll_lut[i].freq)
  185. break;
  186. }
  187. if (i == ARRAY_SIZE(e4000_pll_lut))
  188. goto err;
  189. /*
  190. * Note: Currently f_VCO overflows when c->frequency is 1 073 741 824 Hz
  191. * or more.
  192. */
  193. f_VCO = c->frequency * e4000_pll_lut[i].mul;
  194. sigma_delta = 0x10000UL * (f_VCO % priv->cfg->clock) / priv->cfg->clock;
  195. buf[0] = f_VCO / priv->cfg->clock;
  196. buf[1] = (sigma_delta >> 0) & 0xff;
  197. buf[2] = (sigma_delta >> 8) & 0xff;
  198. buf[3] = 0x00;
  199. buf[4] = e4000_pll_lut[i].div;
  200. dev_dbg(&priv->i2c->dev, "%s: f_VCO=%u pll div=%d sigma_delta=%04x\n",
  201. __func__, f_VCO, buf[0], sigma_delta);
  202. ret = e4000_wr_regs(priv, 0x09, buf, 5);
  203. if (ret < 0)
  204. goto err;
  205. /* LNA filter (RF filter) */
  206. for (i = 0; i < ARRAY_SIZE(e400_lna_filter_lut); i++) {
  207. if (c->frequency <= e400_lna_filter_lut[i].freq)
  208. break;
  209. }
  210. if (i == ARRAY_SIZE(e400_lna_filter_lut))
  211. goto err;
  212. ret = e4000_wr_reg(priv, 0x10, e400_lna_filter_lut[i].val);
  213. if (ret < 0)
  214. goto err;
  215. /* IF filters */
  216. for (i = 0; i < ARRAY_SIZE(e4000_if_filter_lut); i++) {
  217. if (c->bandwidth_hz <= e4000_if_filter_lut[i].freq)
  218. break;
  219. }
  220. if (i == ARRAY_SIZE(e4000_if_filter_lut))
  221. goto err;
  222. buf[0] = e4000_if_filter_lut[i].reg11_val;
  223. buf[1] = e4000_if_filter_lut[i].reg12_val;
  224. ret = e4000_wr_regs(priv, 0x11, buf, 2);
  225. if (ret < 0)
  226. goto err;
  227. /* frequency band */
  228. for (i = 0; i < ARRAY_SIZE(e4000_band_lut); i++) {
  229. if (c->frequency <= e4000_band_lut[i].freq)
  230. break;
  231. }
  232. if (i == ARRAY_SIZE(e4000_band_lut))
  233. goto err;
  234. ret = e4000_wr_reg(priv, 0x07, e4000_band_lut[i].reg07_val);
  235. if (ret < 0)
  236. goto err;
  237. ret = e4000_wr_reg(priv, 0x78, e4000_band_lut[i].reg78_val);
  238. if (ret < 0)
  239. goto err;
  240. /* gain control auto */
  241. ret = e4000_wr_reg(priv, 0x1a, 0x17);
  242. if (ret < 0)
  243. goto err;
  244. if (fe->ops.i2c_gate_ctrl)
  245. fe->ops.i2c_gate_ctrl(fe, 0);
  246. return 0;
  247. err:
  248. if (fe->ops.i2c_gate_ctrl)
  249. fe->ops.i2c_gate_ctrl(fe, 0);
  250. dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret);
  251. return ret;
  252. }
  253. static int e4000_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
  254. {
  255. struct e4000_priv *priv = fe->tuner_priv;
  256. dev_dbg(&priv->i2c->dev, "%s:\n", __func__);
  257. *frequency = 0; /* Zero-IF */
  258. return 0;
  259. }
  260. static int e4000_release(struct dvb_frontend *fe)
  261. {
  262. struct e4000_priv *priv = fe->tuner_priv;
  263. dev_dbg(&priv->i2c->dev, "%s:\n", __func__);
  264. kfree(fe->tuner_priv);
  265. return 0;
  266. }
  267. static const struct dvb_tuner_ops e4000_tuner_ops = {
  268. .info = {
  269. .name = "Elonics E4000",
  270. .frequency_min = 174000000,
  271. .frequency_max = 862000000,
  272. },
  273. .release = e4000_release,
  274. .init = e4000_init,
  275. .sleep = e4000_sleep,
  276. .set_params = e4000_set_params,
  277. .get_if_frequency = e4000_get_if_frequency,
  278. };
  279. struct dvb_frontend *e4000_attach(struct dvb_frontend *fe,
  280. struct i2c_adapter *i2c, const struct e4000_config *cfg)
  281. {
  282. struct e4000_priv *priv;
  283. int ret;
  284. u8 chip_id;
  285. if (fe->ops.i2c_gate_ctrl)
  286. fe->ops.i2c_gate_ctrl(fe, 1);
  287. priv = kzalloc(sizeof(struct e4000_priv), GFP_KERNEL);
  288. if (!priv) {
  289. ret = -ENOMEM;
  290. dev_err(&i2c->dev, "%s: kzalloc() failed\n", KBUILD_MODNAME);
  291. goto err;
  292. }
  293. priv->cfg = cfg;
  294. priv->i2c = i2c;
  295. /* check if the tuner is there */
  296. ret = e4000_rd_reg(priv, 0x02, &chip_id);
  297. if (ret < 0)
  298. goto err;
  299. dev_dbg(&priv->i2c->dev, "%s: chip_id=%02x\n", __func__, chip_id);
  300. if (chip_id != 0x40)
  301. goto err;
  302. /* put sleep as chip seems to be in normal mode by default */
  303. ret = e4000_wr_reg(priv, 0x00, 0x00);
  304. if (ret < 0)
  305. goto err;
  306. dev_info(&priv->i2c->dev,
  307. "%s: Elonics E4000 successfully identified\n",
  308. KBUILD_MODNAME);
  309. fe->tuner_priv = priv;
  310. memcpy(&fe->ops.tuner_ops, &e4000_tuner_ops,
  311. sizeof(struct dvb_tuner_ops));
  312. if (fe->ops.i2c_gate_ctrl)
  313. fe->ops.i2c_gate_ctrl(fe, 0);
  314. return fe;
  315. err:
  316. if (fe->ops.i2c_gate_ctrl)
  317. fe->ops.i2c_gate_ctrl(fe, 0);
  318. dev_dbg(&i2c->dev, "%s: failed=%d\n", __func__, ret);
  319. kfree(priv);
  320. return NULL;
  321. }
  322. EXPORT_SYMBOL(e4000_attach);
  323. MODULE_DESCRIPTION("Elonics E4000 silicon tuner driver");
  324. MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
  325. MODULE_LICENSE("GPL");