cdv_intel_dp.c 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include <drm/drmP.h>
  30. #include <drm/drm_crtc.h>
  31. #include <drm/drm_crtc_helper.h>
  32. #include "psb_drv.h"
  33. #include "psb_intel_drv.h"
  34. #include "psb_intel_reg.h"
  35. #include <drm/drm_dp_helper.h>
  36. #define _wait_for(COND, MS, W) ({ \
  37. unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \
  38. int ret__ = 0; \
  39. while (! (COND)) { \
  40. if (time_after(jiffies, timeout__)) { \
  41. ret__ = -ETIMEDOUT; \
  42. break; \
  43. } \
  44. if (W && !in_dbg_master()) msleep(W); \
  45. } \
  46. ret__; \
  47. })
  48. #define wait_for(COND, MS) _wait_for(COND, MS, 1)
  49. #define DP_LINK_STATUS_SIZE 6
  50. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  51. #define DP_LINK_CONFIGURATION_SIZE 9
  52. #define CDV_FAST_LINK_TRAIN 1
  53. struct cdv_intel_dp {
  54. uint32_t output_reg;
  55. uint32_t DP;
  56. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  57. bool has_audio;
  58. int force_audio;
  59. uint32_t color_range;
  60. uint8_t link_bw;
  61. uint8_t lane_count;
  62. uint8_t dpcd[4];
  63. struct psb_intel_encoder *encoder;
  64. struct i2c_adapter adapter;
  65. struct i2c_algo_dp_aux_data algo;
  66. uint8_t train_set[4];
  67. uint8_t link_status[DP_LINK_STATUS_SIZE];
  68. int panel_power_up_delay;
  69. int panel_power_down_delay;
  70. int panel_power_cycle_delay;
  71. int backlight_on_delay;
  72. int backlight_off_delay;
  73. struct drm_display_mode *panel_fixed_mode; /* for eDP */
  74. bool panel_on;
  75. };
  76. struct ddi_regoff {
  77. uint32_t PreEmph1;
  78. uint32_t PreEmph2;
  79. uint32_t VSwing1;
  80. uint32_t VSwing2;
  81. uint32_t VSwing3;
  82. uint32_t VSwing4;
  83. uint32_t VSwing5;
  84. };
  85. static struct ddi_regoff ddi_DP_train_table[] = {
  86. {.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
  87. .VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
  88. .VSwing5 = 0x8158,},
  89. {.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
  90. .VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
  91. .VSwing5 = 0x8258,},
  92. };
  93. static uint32_t dp_vswing_premph_table[] = {
  94. 0x55338954, 0x4000,
  95. 0x554d8954, 0x2000,
  96. 0x55668954, 0,
  97. 0x559ac0d4, 0x6000,
  98. };
  99. /**
  100. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  101. * @intel_dp: DP struct
  102. *
  103. * If a CPU or PCH DP output is attached to an eDP panel, this function
  104. * will return true, and false otherwise.
  105. */
  106. static bool is_edp(struct psb_intel_encoder *encoder)
  107. {
  108. return encoder->type == INTEL_OUTPUT_EDP;
  109. }
  110. static void cdv_intel_dp_start_link_train(struct psb_intel_encoder *encoder);
  111. static void cdv_intel_dp_complete_link_train(struct psb_intel_encoder *encoder);
  112. static void cdv_intel_dp_link_down(struct psb_intel_encoder *encoder);
  113. static int
  114. cdv_intel_dp_max_lane_count(struct psb_intel_encoder *encoder)
  115. {
  116. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  117. int max_lane_count = 4;
  118. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
  119. max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
  120. switch (max_lane_count) {
  121. case 1: case 2: case 4:
  122. break;
  123. default:
  124. max_lane_count = 4;
  125. }
  126. }
  127. return max_lane_count;
  128. }
  129. static int
  130. cdv_intel_dp_max_link_bw(struct psb_intel_encoder *encoder)
  131. {
  132. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  133. int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
  134. switch (max_link_bw) {
  135. case DP_LINK_BW_1_62:
  136. case DP_LINK_BW_2_7:
  137. break;
  138. default:
  139. max_link_bw = DP_LINK_BW_1_62;
  140. break;
  141. }
  142. return max_link_bw;
  143. }
  144. static int
  145. cdv_intel_dp_link_clock(uint8_t link_bw)
  146. {
  147. if (link_bw == DP_LINK_BW_2_7)
  148. return 270000;
  149. else
  150. return 162000;
  151. }
  152. static int
  153. cdv_intel_dp_link_required(int pixel_clock, int bpp)
  154. {
  155. return (pixel_clock * bpp + 7) / 8;
  156. }
  157. static int
  158. cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  159. {
  160. return (max_link_clock * max_lanes * 19) / 20;
  161. }
  162. static void cdv_intel_edp_panel_vdd_on(struct psb_intel_encoder *intel_encoder)
  163. {
  164. struct drm_device *dev = intel_encoder->base.dev;
  165. struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
  166. u32 pp;
  167. if (intel_dp->panel_on) {
  168. DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
  169. return;
  170. }
  171. DRM_DEBUG_KMS("\n");
  172. pp = REG_READ(PP_CONTROL);
  173. pp |= EDP_FORCE_VDD;
  174. REG_WRITE(PP_CONTROL, pp);
  175. REG_READ(PP_CONTROL);
  176. msleep(intel_dp->panel_power_up_delay);
  177. }
  178. static void cdv_intel_edp_panel_vdd_off(struct psb_intel_encoder *intel_encoder)
  179. {
  180. struct drm_device *dev = intel_encoder->base.dev;
  181. u32 pp;
  182. DRM_DEBUG_KMS("\n");
  183. pp = REG_READ(PP_CONTROL);
  184. pp &= ~EDP_FORCE_VDD;
  185. REG_WRITE(PP_CONTROL, pp);
  186. REG_READ(PP_CONTROL);
  187. }
  188. /* Returns true if the panel was already on when called */
  189. static bool cdv_intel_edp_panel_on(struct psb_intel_encoder *intel_encoder)
  190. {
  191. struct drm_device *dev = intel_encoder->base.dev;
  192. struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
  193. u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
  194. if (intel_dp->panel_on)
  195. return true;
  196. DRM_DEBUG_KMS("\n");
  197. pp = REG_READ(PP_CONTROL);
  198. pp &= ~PANEL_UNLOCK_MASK;
  199. pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
  200. REG_WRITE(PP_CONTROL, pp);
  201. REG_READ(PP_CONTROL);
  202. if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
  203. DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
  204. intel_dp->panel_on = false;
  205. } else
  206. intel_dp->panel_on = true;
  207. msleep(intel_dp->panel_power_up_delay);
  208. return false;
  209. }
  210. static void cdv_intel_edp_panel_off (struct psb_intel_encoder *intel_encoder)
  211. {
  212. struct drm_device *dev = intel_encoder->base.dev;
  213. u32 pp, idle_off_mask = PP_ON ;
  214. struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
  215. DRM_DEBUG_KMS("\n");
  216. pp = REG_READ(PP_CONTROL);
  217. if ((pp & POWER_TARGET_ON) == 0)
  218. return;
  219. intel_dp->panel_on = false;
  220. pp &= ~PANEL_UNLOCK_MASK;
  221. /* ILK workaround: disable reset around power sequence */
  222. pp &= ~POWER_TARGET_ON;
  223. pp &= ~EDP_FORCE_VDD;
  224. pp &= ~EDP_BLC_ENABLE;
  225. REG_WRITE(PP_CONTROL, pp);
  226. REG_READ(PP_CONTROL);
  227. DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
  228. if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
  229. DRM_DEBUG_KMS("Error in turning off Panel\n");
  230. }
  231. msleep(intel_dp->panel_power_cycle_delay);
  232. DRM_DEBUG_KMS("Over\n");
  233. }
  234. static void cdv_intel_edp_backlight_on (struct psb_intel_encoder *intel_encoder)
  235. {
  236. struct drm_device *dev = intel_encoder->base.dev;
  237. u32 pp;
  238. DRM_DEBUG_KMS("\n");
  239. /*
  240. * If we enable the backlight right away following a panel power
  241. * on, we may see slight flicker as the panel syncs with the eDP
  242. * link. So delay a bit to make sure the image is solid before
  243. * allowing it to appear.
  244. */
  245. msleep(300);
  246. pp = REG_READ(PP_CONTROL);
  247. pp |= EDP_BLC_ENABLE;
  248. REG_WRITE(PP_CONTROL, pp);
  249. gma_backlight_enable(dev);
  250. }
  251. static void cdv_intel_edp_backlight_off (struct psb_intel_encoder *intel_encoder)
  252. {
  253. struct drm_device *dev = intel_encoder->base.dev;
  254. struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
  255. u32 pp;
  256. DRM_DEBUG_KMS("\n");
  257. gma_backlight_disable(dev);
  258. msleep(10);
  259. pp = REG_READ(PP_CONTROL);
  260. pp &= ~EDP_BLC_ENABLE;
  261. REG_WRITE(PP_CONTROL, pp);
  262. msleep(intel_dp->backlight_off_delay);
  263. }
  264. static int
  265. cdv_intel_dp_mode_valid(struct drm_connector *connector,
  266. struct drm_display_mode *mode)
  267. {
  268. struct psb_intel_encoder *encoder = psb_intel_attached_encoder(connector);
  269. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  270. int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
  271. int max_lanes = cdv_intel_dp_max_lane_count(encoder);
  272. struct drm_psb_private *dev_priv = connector->dev->dev_private;
  273. if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
  274. if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
  275. return MODE_PANEL;
  276. if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
  277. return MODE_PANEL;
  278. }
  279. /* only refuse the mode on non eDP since we have seen some weird eDP panels
  280. which are outside spec tolerances but somehow work by magic */
  281. if (!is_edp(encoder) &&
  282. (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
  283. > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
  284. return MODE_CLOCK_HIGH;
  285. if (is_edp(encoder)) {
  286. if (cdv_intel_dp_link_required(mode->clock, 24)
  287. > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
  288. return MODE_CLOCK_HIGH;
  289. }
  290. if (mode->clock < 10000)
  291. return MODE_CLOCK_LOW;
  292. return MODE_OK;
  293. }
  294. static uint32_t
  295. pack_aux(uint8_t *src, int src_bytes)
  296. {
  297. int i;
  298. uint32_t v = 0;
  299. if (src_bytes > 4)
  300. src_bytes = 4;
  301. for (i = 0; i < src_bytes; i++)
  302. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  303. return v;
  304. }
  305. static void
  306. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  307. {
  308. int i;
  309. if (dst_bytes > 4)
  310. dst_bytes = 4;
  311. for (i = 0; i < dst_bytes; i++)
  312. dst[i] = src >> ((3-i) * 8);
  313. }
  314. static int
  315. cdv_intel_dp_aux_ch(struct psb_intel_encoder *encoder,
  316. uint8_t *send, int send_bytes,
  317. uint8_t *recv, int recv_size)
  318. {
  319. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  320. uint32_t output_reg = intel_dp->output_reg;
  321. struct drm_device *dev = encoder->base.dev;
  322. uint32_t ch_ctl = output_reg + 0x10;
  323. uint32_t ch_data = ch_ctl + 4;
  324. int i;
  325. int recv_bytes;
  326. uint32_t status;
  327. uint32_t aux_clock_divider;
  328. int try, precharge;
  329. /* The clock divider is based off the hrawclk,
  330. * and would like to run at 2MHz. So, take the
  331. * hrawclk value and divide by 2 and use that
  332. * On CDV platform it uses 200MHz as hrawclk.
  333. *
  334. */
  335. aux_clock_divider = 200 / 2;
  336. precharge = 4;
  337. if (is_edp(encoder))
  338. precharge = 10;
  339. if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
  340. DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
  341. REG_READ(ch_ctl));
  342. return -EBUSY;
  343. }
  344. /* Must try at least 3 times according to DP spec */
  345. for (try = 0; try < 5; try++) {
  346. /* Load the send data into the aux channel data registers */
  347. for (i = 0; i < send_bytes; i += 4)
  348. REG_WRITE(ch_data + i,
  349. pack_aux(send + i, send_bytes - i));
  350. /* Send the command and wait for it to complete */
  351. REG_WRITE(ch_ctl,
  352. DP_AUX_CH_CTL_SEND_BUSY |
  353. DP_AUX_CH_CTL_TIME_OUT_400us |
  354. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  355. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  356. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  357. DP_AUX_CH_CTL_DONE |
  358. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  359. DP_AUX_CH_CTL_RECEIVE_ERROR);
  360. for (;;) {
  361. status = REG_READ(ch_ctl);
  362. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  363. break;
  364. udelay(100);
  365. }
  366. /* Clear done status and any errors */
  367. REG_WRITE(ch_ctl,
  368. status |
  369. DP_AUX_CH_CTL_DONE |
  370. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  371. DP_AUX_CH_CTL_RECEIVE_ERROR);
  372. if (status & DP_AUX_CH_CTL_DONE)
  373. break;
  374. }
  375. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  376. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  377. return -EBUSY;
  378. }
  379. /* Check for timeout or receive error.
  380. * Timeouts occur when the sink is not connected
  381. */
  382. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  383. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  384. return -EIO;
  385. }
  386. /* Timeouts occur when the device isn't connected, so they're
  387. * "normal" -- don't fill the kernel log with these */
  388. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  389. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  390. return -ETIMEDOUT;
  391. }
  392. /* Unload any bytes sent back from the other side */
  393. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  394. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  395. if (recv_bytes > recv_size)
  396. recv_bytes = recv_size;
  397. for (i = 0; i < recv_bytes; i += 4)
  398. unpack_aux(REG_READ(ch_data + i),
  399. recv + i, recv_bytes - i);
  400. return recv_bytes;
  401. }
  402. /* Write data to the aux channel in native mode */
  403. static int
  404. cdv_intel_dp_aux_native_write(struct psb_intel_encoder *encoder,
  405. uint16_t address, uint8_t *send, int send_bytes)
  406. {
  407. int ret;
  408. uint8_t msg[20];
  409. int msg_bytes;
  410. uint8_t ack;
  411. if (send_bytes > 16)
  412. return -1;
  413. msg[0] = AUX_NATIVE_WRITE << 4;
  414. msg[1] = address >> 8;
  415. msg[2] = address & 0xff;
  416. msg[3] = send_bytes - 1;
  417. memcpy(&msg[4], send, send_bytes);
  418. msg_bytes = send_bytes + 4;
  419. for (;;) {
  420. ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
  421. if (ret < 0)
  422. return ret;
  423. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  424. break;
  425. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  426. udelay(100);
  427. else
  428. return -EIO;
  429. }
  430. return send_bytes;
  431. }
  432. /* Write a single byte to the aux channel in native mode */
  433. static int
  434. cdv_intel_dp_aux_native_write_1(struct psb_intel_encoder *encoder,
  435. uint16_t address, uint8_t byte)
  436. {
  437. return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
  438. }
  439. /* read bytes from a native aux channel */
  440. static int
  441. cdv_intel_dp_aux_native_read(struct psb_intel_encoder *encoder,
  442. uint16_t address, uint8_t *recv, int recv_bytes)
  443. {
  444. uint8_t msg[4];
  445. int msg_bytes;
  446. uint8_t reply[20];
  447. int reply_bytes;
  448. uint8_t ack;
  449. int ret;
  450. msg[0] = AUX_NATIVE_READ << 4;
  451. msg[1] = address >> 8;
  452. msg[2] = address & 0xff;
  453. msg[3] = recv_bytes - 1;
  454. msg_bytes = 4;
  455. reply_bytes = recv_bytes + 1;
  456. for (;;) {
  457. ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
  458. reply, reply_bytes);
  459. if (ret == 0)
  460. return -EPROTO;
  461. if (ret < 0)
  462. return ret;
  463. ack = reply[0];
  464. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  465. memcpy(recv, reply + 1, ret - 1);
  466. return ret - 1;
  467. }
  468. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  469. udelay(100);
  470. else
  471. return -EIO;
  472. }
  473. }
  474. static int
  475. cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  476. uint8_t write_byte, uint8_t *read_byte)
  477. {
  478. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  479. struct cdv_intel_dp *intel_dp = container_of(adapter,
  480. struct cdv_intel_dp,
  481. adapter);
  482. struct psb_intel_encoder *encoder = intel_dp->encoder;
  483. uint16_t address = algo_data->address;
  484. uint8_t msg[5];
  485. uint8_t reply[2];
  486. unsigned retry;
  487. int msg_bytes;
  488. int reply_bytes;
  489. int ret;
  490. /* Set up the command byte */
  491. if (mode & MODE_I2C_READ)
  492. msg[0] = AUX_I2C_READ << 4;
  493. else
  494. msg[0] = AUX_I2C_WRITE << 4;
  495. if (!(mode & MODE_I2C_STOP))
  496. msg[0] |= AUX_I2C_MOT << 4;
  497. msg[1] = address >> 8;
  498. msg[2] = address;
  499. switch (mode) {
  500. case MODE_I2C_WRITE:
  501. msg[3] = 0;
  502. msg[4] = write_byte;
  503. msg_bytes = 5;
  504. reply_bytes = 1;
  505. break;
  506. case MODE_I2C_READ:
  507. msg[3] = 0;
  508. msg_bytes = 4;
  509. reply_bytes = 2;
  510. break;
  511. default:
  512. msg_bytes = 3;
  513. reply_bytes = 1;
  514. break;
  515. }
  516. for (retry = 0; retry < 5; retry++) {
  517. ret = cdv_intel_dp_aux_ch(encoder,
  518. msg, msg_bytes,
  519. reply, reply_bytes);
  520. if (ret < 0) {
  521. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  522. return ret;
  523. }
  524. switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
  525. case AUX_NATIVE_REPLY_ACK:
  526. /* I2C-over-AUX Reply field is only valid
  527. * when paired with AUX ACK.
  528. */
  529. break;
  530. case AUX_NATIVE_REPLY_NACK:
  531. DRM_DEBUG_KMS("aux_ch native nack\n");
  532. return -EREMOTEIO;
  533. case AUX_NATIVE_REPLY_DEFER:
  534. udelay(100);
  535. continue;
  536. default:
  537. DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
  538. reply[0]);
  539. return -EREMOTEIO;
  540. }
  541. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  542. case AUX_I2C_REPLY_ACK:
  543. if (mode == MODE_I2C_READ) {
  544. *read_byte = reply[1];
  545. }
  546. return reply_bytes - 1;
  547. case AUX_I2C_REPLY_NACK:
  548. DRM_DEBUG_KMS("aux_i2c nack\n");
  549. return -EREMOTEIO;
  550. case AUX_I2C_REPLY_DEFER:
  551. DRM_DEBUG_KMS("aux_i2c defer\n");
  552. udelay(100);
  553. break;
  554. default:
  555. DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
  556. return -EREMOTEIO;
  557. }
  558. }
  559. DRM_ERROR("too many retries, giving up\n");
  560. return -EREMOTEIO;
  561. }
  562. static int
  563. cdv_intel_dp_i2c_init(struct psb_intel_connector *connector, struct psb_intel_encoder *encoder, const char *name)
  564. {
  565. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  566. int ret;
  567. DRM_DEBUG_KMS("i2c_init %s\n", name);
  568. intel_dp->algo.running = false;
  569. intel_dp->algo.address = 0;
  570. intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
  571. memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
  572. intel_dp->adapter.owner = THIS_MODULE;
  573. intel_dp->adapter.class = I2C_CLASS_DDC;
  574. strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  575. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  576. intel_dp->adapter.algo_data = &intel_dp->algo;
  577. intel_dp->adapter.dev.parent = &connector->base.kdev;
  578. if (is_edp(encoder))
  579. cdv_intel_edp_panel_vdd_on(encoder);
  580. ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
  581. if (is_edp(encoder))
  582. cdv_intel_edp_panel_vdd_off(encoder);
  583. return ret;
  584. }
  585. void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
  586. struct drm_display_mode *adjusted_mode)
  587. {
  588. adjusted_mode->hdisplay = fixed_mode->hdisplay;
  589. adjusted_mode->hsync_start = fixed_mode->hsync_start;
  590. adjusted_mode->hsync_end = fixed_mode->hsync_end;
  591. adjusted_mode->htotal = fixed_mode->htotal;
  592. adjusted_mode->vdisplay = fixed_mode->vdisplay;
  593. adjusted_mode->vsync_start = fixed_mode->vsync_start;
  594. adjusted_mode->vsync_end = fixed_mode->vsync_end;
  595. adjusted_mode->vtotal = fixed_mode->vtotal;
  596. adjusted_mode->clock = fixed_mode->clock;
  597. drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
  598. }
  599. static bool
  600. cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
  601. struct drm_display_mode *adjusted_mode)
  602. {
  603. struct drm_psb_private *dev_priv = encoder->dev->dev_private;
  604. struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
  605. struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
  606. int lane_count, clock;
  607. int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
  608. int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
  609. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  610. int refclock = mode->clock;
  611. int bpp = 24;
  612. if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
  613. cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
  614. refclock = intel_dp->panel_fixed_mode->clock;
  615. bpp = dev_priv->edp.bpp;
  616. }
  617. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  618. for (clock = max_clock; clock >= 0; clock--) {
  619. int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
  620. if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
  621. intel_dp->link_bw = bws[clock];
  622. intel_dp->lane_count = lane_count;
  623. adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
  624. DRM_DEBUG_KMS("Display port link bw %02x lane "
  625. "count %d clock %d\n",
  626. intel_dp->link_bw, intel_dp->lane_count,
  627. adjusted_mode->clock);
  628. return true;
  629. }
  630. }
  631. }
  632. if (is_edp(intel_encoder)) {
  633. /* okay we failed just pick the highest */
  634. intel_dp->lane_count = max_lane_count;
  635. intel_dp->link_bw = bws[max_clock];
  636. adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
  637. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  638. "count %d clock %d\n",
  639. intel_dp->link_bw, intel_dp->lane_count,
  640. adjusted_mode->clock);
  641. return true;
  642. }
  643. return false;
  644. }
  645. struct cdv_intel_dp_m_n {
  646. uint32_t tu;
  647. uint32_t gmch_m;
  648. uint32_t gmch_n;
  649. uint32_t link_m;
  650. uint32_t link_n;
  651. };
  652. static void
  653. cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
  654. {
  655. /*
  656. while (*num > 0xffffff || *den > 0xffffff) {
  657. *num >>= 1;
  658. *den >>= 1;
  659. }*/
  660. uint64_t value, m;
  661. m = *num;
  662. value = m * (0x800000);
  663. m = do_div(value, *den);
  664. *num = value;
  665. *den = 0x800000;
  666. }
  667. static void
  668. cdv_intel_dp_compute_m_n(int bpp,
  669. int nlanes,
  670. int pixel_clock,
  671. int link_clock,
  672. struct cdv_intel_dp_m_n *m_n)
  673. {
  674. m_n->tu = 64;
  675. m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
  676. m_n->gmch_n = link_clock * nlanes;
  677. cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  678. m_n->link_m = pixel_clock;
  679. m_n->link_n = link_clock;
  680. cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  681. }
  682. void
  683. cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  684. struct drm_display_mode *adjusted_mode)
  685. {
  686. struct drm_device *dev = crtc->dev;
  687. struct drm_psb_private *dev_priv = dev->dev_private;
  688. struct drm_mode_config *mode_config = &dev->mode_config;
  689. struct drm_encoder *encoder;
  690. struct psb_intel_crtc *intel_crtc = to_psb_intel_crtc(crtc);
  691. int lane_count = 4, bpp = 24;
  692. struct cdv_intel_dp_m_n m_n;
  693. int pipe = intel_crtc->pipe;
  694. /*
  695. * Find the lane count in the intel_encoder private
  696. */
  697. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  698. struct psb_intel_encoder *intel_encoder;
  699. struct cdv_intel_dp *intel_dp;
  700. if (encoder->crtc != crtc)
  701. continue;
  702. intel_encoder = to_psb_intel_encoder(encoder);
  703. intel_dp = intel_encoder->dev_priv;
  704. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
  705. lane_count = intel_dp->lane_count;
  706. break;
  707. } else if (is_edp(intel_encoder)) {
  708. lane_count = intel_dp->lane_count;
  709. bpp = dev_priv->edp.bpp;
  710. break;
  711. }
  712. }
  713. /*
  714. * Compute the GMCH and Link ratios. The '3' here is
  715. * the number of bytes_per_pixel post-LUT, which we always
  716. * set up for 8-bits of R/G/B, or 3 bytes total.
  717. */
  718. cdv_intel_dp_compute_m_n(bpp, lane_count,
  719. mode->clock, adjusted_mode->clock, &m_n);
  720. {
  721. REG_WRITE(PIPE_GMCH_DATA_M(pipe),
  722. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  723. m_n.gmch_m);
  724. REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
  725. REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
  726. REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
  727. }
  728. }
  729. static void
  730. cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  731. struct drm_display_mode *adjusted_mode)
  732. {
  733. struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
  734. struct drm_crtc *crtc = encoder->crtc;
  735. struct psb_intel_crtc *intel_crtc = to_psb_intel_crtc(crtc);
  736. struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
  737. struct drm_device *dev = encoder->dev;
  738. intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  739. intel_dp->DP |= intel_dp->color_range;
  740. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  741. intel_dp->DP |= DP_SYNC_HS_HIGH;
  742. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  743. intel_dp->DP |= DP_SYNC_VS_HIGH;
  744. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  745. switch (intel_dp->lane_count) {
  746. case 1:
  747. intel_dp->DP |= DP_PORT_WIDTH_1;
  748. break;
  749. case 2:
  750. intel_dp->DP |= DP_PORT_WIDTH_2;
  751. break;
  752. case 4:
  753. intel_dp->DP |= DP_PORT_WIDTH_4;
  754. break;
  755. }
  756. if (intel_dp->has_audio)
  757. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  758. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  759. intel_dp->link_configuration[0] = intel_dp->link_bw;
  760. intel_dp->link_configuration[1] = intel_dp->lane_count;
  761. /*
  762. * Check for DPCD version > 1.1 and enhanced framing support
  763. */
  764. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  765. (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
  766. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  767. intel_dp->DP |= DP_ENHANCED_FRAMING;
  768. }
  769. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  770. if (intel_crtc->pipe == 1)
  771. intel_dp->DP |= DP_PIPEB_SELECT;
  772. REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
  773. DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
  774. if (is_edp(intel_encoder)) {
  775. uint32_t pfit_control;
  776. cdv_intel_edp_panel_on(intel_encoder);
  777. if (mode->hdisplay != adjusted_mode->hdisplay ||
  778. mode->vdisplay != adjusted_mode->vdisplay)
  779. pfit_control = PFIT_ENABLE;
  780. else
  781. pfit_control = 0;
  782. pfit_control |= intel_crtc->pipe << PFIT_PIPE_SHIFT;
  783. REG_WRITE(PFIT_CONTROL, pfit_control);
  784. }
  785. }
  786. /* If the sink supports it, try to set the power state appropriately */
  787. static void cdv_intel_dp_sink_dpms(struct psb_intel_encoder *encoder, int mode)
  788. {
  789. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  790. int ret, i;
  791. /* Should have a valid DPCD by this point */
  792. if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
  793. return;
  794. if (mode != DRM_MODE_DPMS_ON) {
  795. ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
  796. DP_SET_POWER_D3);
  797. if (ret != 1)
  798. DRM_DEBUG_DRIVER("failed to write sink power state\n");
  799. } else {
  800. /*
  801. * When turning on, we need to retry for 1ms to give the sink
  802. * time to wake up.
  803. */
  804. for (i = 0; i < 3; i++) {
  805. ret = cdv_intel_dp_aux_native_write_1(encoder,
  806. DP_SET_POWER,
  807. DP_SET_POWER_D0);
  808. if (ret == 1)
  809. break;
  810. udelay(1000);
  811. }
  812. }
  813. }
  814. static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
  815. {
  816. struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
  817. int edp = is_edp(intel_encoder);
  818. if (edp) {
  819. cdv_intel_edp_backlight_off(intel_encoder);
  820. cdv_intel_edp_panel_off(intel_encoder);
  821. cdv_intel_edp_panel_vdd_on(intel_encoder);
  822. }
  823. /* Wake up the sink first */
  824. cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
  825. cdv_intel_dp_link_down(intel_encoder);
  826. if (edp)
  827. cdv_intel_edp_panel_vdd_off(intel_encoder);
  828. }
  829. static void cdv_intel_dp_commit(struct drm_encoder *encoder)
  830. {
  831. struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
  832. int edp = is_edp(intel_encoder);
  833. if (edp)
  834. cdv_intel_edp_panel_on(intel_encoder);
  835. cdv_intel_dp_start_link_train(intel_encoder);
  836. cdv_intel_dp_complete_link_train(intel_encoder);
  837. if (edp)
  838. cdv_intel_edp_backlight_on(intel_encoder);
  839. }
  840. static void
  841. cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
  842. {
  843. struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
  844. struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
  845. struct drm_device *dev = encoder->dev;
  846. uint32_t dp_reg = REG_READ(intel_dp->output_reg);
  847. int edp = is_edp(intel_encoder);
  848. if (mode != DRM_MODE_DPMS_ON) {
  849. if (edp) {
  850. cdv_intel_edp_backlight_off(intel_encoder);
  851. cdv_intel_edp_panel_vdd_on(intel_encoder);
  852. }
  853. cdv_intel_dp_sink_dpms(intel_encoder, mode);
  854. cdv_intel_dp_link_down(intel_encoder);
  855. if (edp) {
  856. cdv_intel_edp_panel_vdd_off(intel_encoder);
  857. cdv_intel_edp_panel_off(intel_encoder);
  858. }
  859. } else {
  860. if (edp)
  861. cdv_intel_edp_panel_on(intel_encoder);
  862. cdv_intel_dp_sink_dpms(intel_encoder, mode);
  863. if (!(dp_reg & DP_PORT_EN)) {
  864. cdv_intel_dp_start_link_train(intel_encoder);
  865. cdv_intel_dp_complete_link_train(intel_encoder);
  866. }
  867. if (edp)
  868. cdv_intel_edp_backlight_on(intel_encoder);
  869. }
  870. }
  871. /*
  872. * Native read with retry for link status and receiver capability reads for
  873. * cases where the sink may still be asleep.
  874. */
  875. static bool
  876. cdv_intel_dp_aux_native_read_retry(struct psb_intel_encoder *encoder, uint16_t address,
  877. uint8_t *recv, int recv_bytes)
  878. {
  879. int ret, i;
  880. /*
  881. * Sinks are *supposed* to come up within 1ms from an off state,
  882. * but we're also supposed to retry 3 times per the spec.
  883. */
  884. for (i = 0; i < 3; i++) {
  885. ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
  886. recv_bytes);
  887. if (ret == recv_bytes)
  888. return true;
  889. udelay(1000);
  890. }
  891. return false;
  892. }
  893. /*
  894. * Fetch AUX CH registers 0x202 - 0x207 which contain
  895. * link status information
  896. */
  897. static bool
  898. cdv_intel_dp_get_link_status(struct psb_intel_encoder *encoder)
  899. {
  900. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  901. return cdv_intel_dp_aux_native_read_retry(encoder,
  902. DP_LANE0_1_STATUS,
  903. intel_dp->link_status,
  904. DP_LINK_STATUS_SIZE);
  905. }
  906. static uint8_t
  907. cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  908. int r)
  909. {
  910. return link_status[r - DP_LANE0_1_STATUS];
  911. }
  912. static uint8_t
  913. cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  914. int lane)
  915. {
  916. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  917. int s = ((lane & 1) ?
  918. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  919. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  920. uint8_t l = cdv_intel_dp_link_status(link_status, i);
  921. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  922. }
  923. static uint8_t
  924. cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  925. int lane)
  926. {
  927. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  928. int s = ((lane & 1) ?
  929. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  930. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  931. uint8_t l = cdv_intel_dp_link_status(link_status, i);
  932. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  933. }
  934. #if 0
  935. static char *voltage_names[] = {
  936. "0.4V", "0.6V", "0.8V", "1.2V"
  937. };
  938. static char *pre_emph_names[] = {
  939. "0dB", "3.5dB", "6dB", "9.5dB"
  940. };
  941. static char *link_train_names[] = {
  942. "pattern 1", "pattern 2", "idle", "off"
  943. };
  944. #endif
  945. #define CDV_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_1200
  946. /*
  947. static uint8_t
  948. cdv_intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  949. {
  950. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  951. case DP_TRAIN_VOLTAGE_SWING_400:
  952. return DP_TRAIN_PRE_EMPHASIS_6;
  953. case DP_TRAIN_VOLTAGE_SWING_600:
  954. return DP_TRAIN_PRE_EMPHASIS_6;
  955. case DP_TRAIN_VOLTAGE_SWING_800:
  956. return DP_TRAIN_PRE_EMPHASIS_3_5;
  957. case DP_TRAIN_VOLTAGE_SWING_1200:
  958. default:
  959. return DP_TRAIN_PRE_EMPHASIS_0;
  960. }
  961. }
  962. */
  963. static void
  964. cdv_intel_get_adjust_train(struct psb_intel_encoder *encoder)
  965. {
  966. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  967. uint8_t v = 0;
  968. uint8_t p = 0;
  969. int lane;
  970. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  971. uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
  972. uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
  973. if (this_v > v)
  974. v = this_v;
  975. if (this_p > p)
  976. p = this_p;
  977. }
  978. if (v >= CDV_DP_VOLTAGE_MAX)
  979. v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  980. if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
  981. p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  982. for (lane = 0; lane < 4; lane++)
  983. intel_dp->train_set[lane] = v | p;
  984. }
  985. static uint8_t
  986. cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  987. int lane)
  988. {
  989. int i = DP_LANE0_1_STATUS + (lane >> 1);
  990. int s = (lane & 1) * 4;
  991. uint8_t l = cdv_intel_dp_link_status(link_status, i);
  992. return (l >> s) & 0xf;
  993. }
  994. /* Check for clock recovery is done on all channels */
  995. static bool
  996. cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  997. {
  998. int lane;
  999. uint8_t lane_status;
  1000. for (lane = 0; lane < lane_count; lane++) {
  1001. lane_status = cdv_intel_get_lane_status(link_status, lane);
  1002. if ((lane_status & DP_LANE_CR_DONE) == 0)
  1003. return false;
  1004. }
  1005. return true;
  1006. }
  1007. /* Check to see if channel eq is done on all channels */
  1008. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  1009. DP_LANE_CHANNEL_EQ_DONE|\
  1010. DP_LANE_SYMBOL_LOCKED)
  1011. static bool
  1012. cdv_intel_channel_eq_ok(struct psb_intel_encoder *encoder)
  1013. {
  1014. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  1015. uint8_t lane_align;
  1016. uint8_t lane_status;
  1017. int lane;
  1018. lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
  1019. DP_LANE_ALIGN_STATUS_UPDATED);
  1020. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  1021. return false;
  1022. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1023. lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
  1024. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  1025. return false;
  1026. }
  1027. return true;
  1028. }
  1029. static bool
  1030. cdv_intel_dp_set_link_train(struct psb_intel_encoder *encoder,
  1031. uint32_t dp_reg_value,
  1032. uint8_t dp_train_pat)
  1033. {
  1034. struct drm_device *dev = encoder->base.dev;
  1035. int ret;
  1036. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  1037. REG_WRITE(intel_dp->output_reg, dp_reg_value);
  1038. REG_READ(intel_dp->output_reg);
  1039. ret = cdv_intel_dp_aux_native_write_1(encoder,
  1040. DP_TRAINING_PATTERN_SET,
  1041. dp_train_pat);
  1042. if (ret != 1) {
  1043. DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
  1044. dp_train_pat);
  1045. return false;
  1046. }
  1047. return true;
  1048. }
  1049. static bool
  1050. cdv_intel_dplink_set_level(struct psb_intel_encoder *encoder,
  1051. uint8_t dp_train_pat)
  1052. {
  1053. int ret;
  1054. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  1055. ret = cdv_intel_dp_aux_native_write(encoder,
  1056. DP_TRAINING_LANE0_SET,
  1057. intel_dp->train_set,
  1058. intel_dp->lane_count);
  1059. if (ret != intel_dp->lane_count) {
  1060. DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
  1061. intel_dp->train_set[0], intel_dp->lane_count);
  1062. return false;
  1063. }
  1064. return true;
  1065. }
  1066. static void
  1067. cdv_intel_dp_set_vswing_premph(struct psb_intel_encoder *encoder, uint8_t signal_level)
  1068. {
  1069. struct drm_device *dev = encoder->base.dev;
  1070. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  1071. struct ddi_regoff *ddi_reg;
  1072. int vswing, premph, index;
  1073. if (intel_dp->output_reg == DP_B)
  1074. ddi_reg = &ddi_DP_train_table[0];
  1075. else
  1076. ddi_reg = &ddi_DP_train_table[1];
  1077. vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
  1078. premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
  1079. DP_TRAIN_PRE_EMPHASIS_SHIFT;
  1080. if (vswing + premph > 3)
  1081. return;
  1082. #ifdef CDV_FAST_LINK_TRAIN
  1083. return;
  1084. #endif
  1085. DRM_DEBUG_KMS("Test2\n");
  1086. //return ;
  1087. cdv_sb_reset(dev);
  1088. /* ;Swing voltage programming
  1089. ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
  1090. cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
  1091. /* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
  1092. cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
  1093. /* ;gfx_dpio_set_reg(0x8148, 0x55338954)
  1094. * The VSwing_PreEmph table is also considered based on the vswing/premp
  1095. */
  1096. index = (vswing + premph) * 2;
  1097. if (premph == 1 && vswing == 1) {
  1098. cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
  1099. } else
  1100. cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
  1101. /* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
  1102. if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_1200)
  1103. cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
  1104. else
  1105. cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
  1106. /* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
  1107. /* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
  1108. /* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
  1109. cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
  1110. /* ;Pre emphasis programming
  1111. * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
  1112. */
  1113. cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
  1114. /* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
  1115. index = 2 * premph + 1;
  1116. cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
  1117. return;
  1118. }
  1119. /* Enable corresponding port and start training pattern 1 */
  1120. static void
  1121. cdv_intel_dp_start_link_train(struct psb_intel_encoder *encoder)
  1122. {
  1123. struct drm_device *dev = encoder->base.dev;
  1124. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  1125. int i;
  1126. uint8_t voltage;
  1127. bool clock_recovery = false;
  1128. int tries;
  1129. u32 reg;
  1130. uint32_t DP = intel_dp->DP;
  1131. DP |= DP_PORT_EN;
  1132. DP &= ~DP_LINK_TRAIN_MASK;
  1133. reg = DP;
  1134. reg |= DP_LINK_TRAIN_PAT_1;
  1135. /* Enable output, wait for it to become active */
  1136. REG_WRITE(intel_dp->output_reg, reg);
  1137. REG_READ(intel_dp->output_reg);
  1138. psb_intel_wait_for_vblank(dev);
  1139. DRM_DEBUG_KMS("Link config\n");
  1140. /* Write the link configuration data */
  1141. cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
  1142. intel_dp->link_configuration,
  1143. 2);
  1144. memset(intel_dp->train_set, 0, 4);
  1145. voltage = 0;
  1146. tries = 0;
  1147. clock_recovery = false;
  1148. DRM_DEBUG_KMS("Start train\n");
  1149. reg = DP | DP_LINK_TRAIN_PAT_1;
  1150. for (;;) {
  1151. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1152. DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
  1153. intel_dp->train_set[0],
  1154. intel_dp->link_configuration[0],
  1155. intel_dp->link_configuration[1]);
  1156. if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
  1157. DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
  1158. }
  1159. cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
  1160. /* Set training pattern 1 */
  1161. cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
  1162. udelay(200);
  1163. if (!cdv_intel_dp_get_link_status(encoder))
  1164. break;
  1165. DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
  1166. intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
  1167. intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
  1168. if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1169. DRM_DEBUG_KMS("PT1 train is done\n");
  1170. clock_recovery = true;
  1171. break;
  1172. }
  1173. /* Check to see if we've tried the max voltage */
  1174. for (i = 0; i < intel_dp->lane_count; i++)
  1175. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1176. break;
  1177. if (i == intel_dp->lane_count)
  1178. break;
  1179. /* Check to see if we've tried the same voltage 5 times */
  1180. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1181. ++tries;
  1182. if (tries == 5)
  1183. break;
  1184. } else
  1185. tries = 0;
  1186. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1187. /* Compute new intel_dp->train_set as requested by target */
  1188. cdv_intel_get_adjust_train(encoder);
  1189. }
  1190. if (!clock_recovery) {
  1191. DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
  1192. }
  1193. intel_dp->DP = DP;
  1194. }
  1195. static void
  1196. cdv_intel_dp_complete_link_train(struct psb_intel_encoder *encoder)
  1197. {
  1198. struct drm_device *dev = encoder->base.dev;
  1199. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  1200. bool channel_eq = false;
  1201. int tries, cr_tries;
  1202. u32 reg;
  1203. uint32_t DP = intel_dp->DP;
  1204. /* channel equalization */
  1205. tries = 0;
  1206. cr_tries = 0;
  1207. channel_eq = false;
  1208. DRM_DEBUG_KMS("\n");
  1209. reg = DP | DP_LINK_TRAIN_PAT_2;
  1210. for (;;) {
  1211. DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
  1212. intel_dp->train_set[0],
  1213. intel_dp->link_configuration[0],
  1214. intel_dp->link_configuration[1]);
  1215. /* channel eq pattern */
  1216. if (!cdv_intel_dp_set_link_train(encoder, reg,
  1217. DP_TRAINING_PATTERN_2)) {
  1218. DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
  1219. }
  1220. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1221. if (cr_tries > 5) {
  1222. DRM_ERROR("failed to train DP, aborting\n");
  1223. cdv_intel_dp_link_down(encoder);
  1224. break;
  1225. }
  1226. cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
  1227. cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
  1228. udelay(1000);
  1229. if (!cdv_intel_dp_get_link_status(encoder))
  1230. break;
  1231. DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
  1232. intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
  1233. intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
  1234. /* Make sure clock is still ok */
  1235. if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1236. cdv_intel_dp_start_link_train(encoder);
  1237. cr_tries++;
  1238. continue;
  1239. }
  1240. if (cdv_intel_channel_eq_ok(encoder)) {
  1241. DRM_DEBUG_KMS("PT2 train is done\n");
  1242. channel_eq = true;
  1243. break;
  1244. }
  1245. /* Try 5 times, then try clock recovery if that fails */
  1246. if (tries > 5) {
  1247. cdv_intel_dp_link_down(encoder);
  1248. cdv_intel_dp_start_link_train(encoder);
  1249. tries = 0;
  1250. cr_tries++;
  1251. continue;
  1252. }
  1253. /* Compute new intel_dp->train_set as requested by target */
  1254. cdv_intel_get_adjust_train(encoder);
  1255. ++tries;
  1256. }
  1257. reg = DP | DP_LINK_TRAIN_OFF;
  1258. REG_WRITE(intel_dp->output_reg, reg);
  1259. REG_READ(intel_dp->output_reg);
  1260. cdv_intel_dp_aux_native_write_1(encoder,
  1261. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1262. }
  1263. static void
  1264. cdv_intel_dp_link_down(struct psb_intel_encoder *encoder)
  1265. {
  1266. struct drm_device *dev = encoder->base.dev;
  1267. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  1268. uint32_t DP = intel_dp->DP;
  1269. if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
  1270. return;
  1271. DRM_DEBUG_KMS("\n");
  1272. {
  1273. DP &= ~DP_LINK_TRAIN_MASK;
  1274. REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1275. }
  1276. REG_READ(intel_dp->output_reg);
  1277. msleep(17);
  1278. REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1279. REG_READ(intel_dp->output_reg);
  1280. }
  1281. static enum drm_connector_status
  1282. cdv_dp_detect(struct psb_intel_encoder *encoder)
  1283. {
  1284. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  1285. enum drm_connector_status status;
  1286. status = connector_status_disconnected;
  1287. if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
  1288. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1289. {
  1290. if (intel_dp->dpcd[DP_DPCD_REV] != 0)
  1291. status = connector_status_connected;
  1292. }
  1293. if (status == connector_status_connected)
  1294. DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
  1295. intel_dp->dpcd[0], intel_dp->dpcd[1],
  1296. intel_dp->dpcd[2], intel_dp->dpcd[3]);
  1297. return status;
  1298. }
  1299. /**
  1300. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1301. *
  1302. * \return true if DP port is connected.
  1303. * \return false if DP port is disconnected.
  1304. */
  1305. static enum drm_connector_status
  1306. cdv_intel_dp_detect(struct drm_connector *connector, bool force)
  1307. {
  1308. struct psb_intel_encoder *encoder = psb_intel_attached_encoder(connector);
  1309. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  1310. enum drm_connector_status status;
  1311. struct edid *edid = NULL;
  1312. int edp = is_edp(encoder);
  1313. intel_dp->has_audio = false;
  1314. if (edp)
  1315. cdv_intel_edp_panel_vdd_on(encoder);
  1316. status = cdv_dp_detect(encoder);
  1317. if (status != connector_status_connected) {
  1318. if (edp)
  1319. cdv_intel_edp_panel_vdd_off(encoder);
  1320. return status;
  1321. }
  1322. if (intel_dp->force_audio) {
  1323. intel_dp->has_audio = intel_dp->force_audio > 0;
  1324. } else {
  1325. edid = drm_get_edid(connector, &intel_dp->adapter);
  1326. if (edid) {
  1327. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  1328. kfree(edid);
  1329. }
  1330. }
  1331. if (edp)
  1332. cdv_intel_edp_panel_vdd_off(encoder);
  1333. return connector_status_connected;
  1334. }
  1335. static int cdv_intel_dp_get_modes(struct drm_connector *connector)
  1336. {
  1337. struct psb_intel_encoder *intel_encoder = psb_intel_attached_encoder(connector);
  1338. struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
  1339. struct edid *edid = NULL;
  1340. int ret = 0;
  1341. int edp = is_edp(intel_encoder);
  1342. edid = drm_get_edid(connector, &intel_dp->adapter);
  1343. if (edid) {
  1344. drm_mode_connector_update_edid_property(connector, edid);
  1345. ret = drm_add_edid_modes(connector, edid);
  1346. kfree(edid);
  1347. }
  1348. if (is_edp(intel_encoder)) {
  1349. struct drm_device *dev = connector->dev;
  1350. struct drm_psb_private *dev_priv = dev->dev_private;
  1351. cdv_intel_edp_panel_vdd_off(intel_encoder);
  1352. if (ret) {
  1353. if (edp && !intel_dp->panel_fixed_mode) {
  1354. struct drm_display_mode *newmode;
  1355. list_for_each_entry(newmode, &connector->probed_modes,
  1356. head) {
  1357. if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
  1358. intel_dp->panel_fixed_mode =
  1359. drm_mode_duplicate(dev, newmode);
  1360. break;
  1361. }
  1362. }
  1363. }
  1364. return ret;
  1365. }
  1366. if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
  1367. intel_dp->panel_fixed_mode =
  1368. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1369. if (intel_dp->panel_fixed_mode) {
  1370. intel_dp->panel_fixed_mode->type |=
  1371. DRM_MODE_TYPE_PREFERRED;
  1372. }
  1373. }
  1374. if (intel_dp->panel_fixed_mode != NULL) {
  1375. struct drm_display_mode *mode;
  1376. mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
  1377. drm_mode_probed_add(connector, mode);
  1378. return 1;
  1379. }
  1380. }
  1381. return ret;
  1382. }
  1383. static bool
  1384. cdv_intel_dp_detect_audio(struct drm_connector *connector)
  1385. {
  1386. struct psb_intel_encoder *encoder = psb_intel_attached_encoder(connector);
  1387. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  1388. struct edid *edid;
  1389. bool has_audio = false;
  1390. int edp = is_edp(encoder);
  1391. if (edp)
  1392. cdv_intel_edp_panel_vdd_on(encoder);
  1393. edid = drm_get_edid(connector, &intel_dp->adapter);
  1394. if (edid) {
  1395. has_audio = drm_detect_monitor_audio(edid);
  1396. kfree(edid);
  1397. }
  1398. if (edp)
  1399. cdv_intel_edp_panel_vdd_off(encoder);
  1400. return has_audio;
  1401. }
  1402. static int
  1403. cdv_intel_dp_set_property(struct drm_connector *connector,
  1404. struct drm_property *property,
  1405. uint64_t val)
  1406. {
  1407. struct drm_psb_private *dev_priv = connector->dev->dev_private;
  1408. struct psb_intel_encoder *encoder = psb_intel_attached_encoder(connector);
  1409. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  1410. int ret;
  1411. ret = drm_object_property_set_value(&connector->base, property, val);
  1412. if (ret)
  1413. return ret;
  1414. if (property == dev_priv->force_audio_property) {
  1415. int i = val;
  1416. bool has_audio;
  1417. if (i == intel_dp->force_audio)
  1418. return 0;
  1419. intel_dp->force_audio = i;
  1420. if (i == 0)
  1421. has_audio = cdv_intel_dp_detect_audio(connector);
  1422. else
  1423. has_audio = i > 0;
  1424. if (has_audio == intel_dp->has_audio)
  1425. return 0;
  1426. intel_dp->has_audio = has_audio;
  1427. goto done;
  1428. }
  1429. if (property == dev_priv->broadcast_rgb_property) {
  1430. if (val == !!intel_dp->color_range)
  1431. return 0;
  1432. intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
  1433. goto done;
  1434. }
  1435. return -EINVAL;
  1436. done:
  1437. if (encoder->base.crtc) {
  1438. struct drm_crtc *crtc = encoder->base.crtc;
  1439. drm_crtc_helper_set_mode(crtc, &crtc->mode,
  1440. crtc->x, crtc->y,
  1441. crtc->fb);
  1442. }
  1443. return 0;
  1444. }
  1445. static void
  1446. cdv_intel_dp_destroy(struct drm_connector *connector)
  1447. {
  1448. struct psb_intel_encoder *psb_intel_encoder =
  1449. psb_intel_attached_encoder(connector);
  1450. struct cdv_intel_dp *intel_dp = psb_intel_encoder->dev_priv;
  1451. if (is_edp(psb_intel_encoder)) {
  1452. /* cdv_intel_panel_destroy_backlight(connector->dev); */
  1453. if (intel_dp->panel_fixed_mode) {
  1454. kfree(intel_dp->panel_fixed_mode);
  1455. intel_dp->panel_fixed_mode = NULL;
  1456. }
  1457. }
  1458. i2c_del_adapter(&intel_dp->adapter);
  1459. drm_sysfs_connector_remove(connector);
  1460. drm_connector_cleanup(connector);
  1461. kfree(connector);
  1462. }
  1463. static void cdv_intel_dp_encoder_destroy(struct drm_encoder *encoder)
  1464. {
  1465. drm_encoder_cleanup(encoder);
  1466. }
  1467. static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
  1468. .dpms = cdv_intel_dp_dpms,
  1469. .mode_fixup = cdv_intel_dp_mode_fixup,
  1470. .prepare = cdv_intel_dp_prepare,
  1471. .mode_set = cdv_intel_dp_mode_set,
  1472. .commit = cdv_intel_dp_commit,
  1473. };
  1474. static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
  1475. .dpms = drm_helper_connector_dpms,
  1476. .detect = cdv_intel_dp_detect,
  1477. .fill_modes = drm_helper_probe_single_connector_modes,
  1478. .set_property = cdv_intel_dp_set_property,
  1479. .destroy = cdv_intel_dp_destroy,
  1480. };
  1481. static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
  1482. .get_modes = cdv_intel_dp_get_modes,
  1483. .mode_valid = cdv_intel_dp_mode_valid,
  1484. .best_encoder = psb_intel_best_encoder,
  1485. };
  1486. static const struct drm_encoder_funcs cdv_intel_dp_enc_funcs = {
  1487. .destroy = cdv_intel_dp_encoder_destroy,
  1488. };
  1489. static void cdv_intel_dp_add_properties(struct drm_connector *connector)
  1490. {
  1491. cdv_intel_attach_force_audio_property(connector);
  1492. cdv_intel_attach_broadcast_rgb_property(connector);
  1493. }
  1494. /* check the VBT to see whether the eDP is on DP-D port */
  1495. static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
  1496. {
  1497. struct drm_psb_private *dev_priv = dev->dev_private;
  1498. struct child_device_config *p_child;
  1499. int i;
  1500. if (!dev_priv->child_dev_num)
  1501. return false;
  1502. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1503. p_child = dev_priv->child_dev + i;
  1504. if (p_child->dvo_port == PORT_IDPC &&
  1505. p_child->device_type == DEVICE_TYPE_eDP)
  1506. return true;
  1507. }
  1508. return false;
  1509. }
  1510. /* Cedarview display clock gating
  1511. We need this disable dot get correct behaviour while enabling
  1512. DP/eDP. TODO - investigate if we can turn it back to normality
  1513. after enabling */
  1514. static void cdv_disable_intel_clock_gating(struct drm_device *dev)
  1515. {
  1516. u32 reg_value;
  1517. reg_value = REG_READ(DSPCLK_GATE_D);
  1518. reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
  1519. DPUNIT_PIPEA_GATE_DISABLE |
  1520. DPCUNIT_CLOCK_GATE_DISABLE |
  1521. DPLSUNIT_CLOCK_GATE_DISABLE |
  1522. DPOUNIT_CLOCK_GATE_DISABLE |
  1523. DPIOUNIT_CLOCK_GATE_DISABLE);
  1524. REG_WRITE(DSPCLK_GATE_D, reg_value);
  1525. udelay(500);
  1526. }
  1527. void
  1528. cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
  1529. {
  1530. struct psb_intel_encoder *psb_intel_encoder;
  1531. struct psb_intel_connector *psb_intel_connector;
  1532. struct drm_connector *connector;
  1533. struct drm_encoder *encoder;
  1534. struct cdv_intel_dp *intel_dp;
  1535. const char *name = NULL;
  1536. int type = DRM_MODE_CONNECTOR_DisplayPort;
  1537. psb_intel_encoder = kzalloc(sizeof(struct psb_intel_encoder), GFP_KERNEL);
  1538. if (!psb_intel_encoder)
  1539. return;
  1540. psb_intel_connector = kzalloc(sizeof(struct psb_intel_connector), GFP_KERNEL);
  1541. if (!psb_intel_connector)
  1542. goto err_connector;
  1543. intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
  1544. if (!intel_dp)
  1545. goto err_priv;
  1546. if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
  1547. type = DRM_MODE_CONNECTOR_eDP;
  1548. connector = &psb_intel_connector->base;
  1549. encoder = &psb_intel_encoder->base;
  1550. drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
  1551. drm_encoder_init(dev, encoder, &cdv_intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS);
  1552. psb_intel_connector_attach_encoder(psb_intel_connector, psb_intel_encoder);
  1553. if (type == DRM_MODE_CONNECTOR_DisplayPort)
  1554. psb_intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1555. else
  1556. psb_intel_encoder->type = INTEL_OUTPUT_EDP;
  1557. psb_intel_encoder->dev_priv=intel_dp;
  1558. intel_dp->encoder = psb_intel_encoder;
  1559. intel_dp->output_reg = output_reg;
  1560. drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
  1561. drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
  1562. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1563. connector->interlace_allowed = false;
  1564. connector->doublescan_allowed = false;
  1565. drm_sysfs_connector_add(connector);
  1566. /* Set up the DDC bus. */
  1567. switch (output_reg) {
  1568. case DP_B:
  1569. name = "DPDDC-B";
  1570. psb_intel_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
  1571. break;
  1572. case DP_C:
  1573. name = "DPDDC-C";
  1574. psb_intel_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
  1575. break;
  1576. }
  1577. cdv_disable_intel_clock_gating(dev);
  1578. cdv_intel_dp_i2c_init(psb_intel_connector, psb_intel_encoder, name);
  1579. /* FIXME:fail check */
  1580. cdv_intel_dp_add_properties(connector);
  1581. if (is_edp(psb_intel_encoder)) {
  1582. int ret;
  1583. struct edp_power_seq cur;
  1584. u32 pp_on, pp_off, pp_div;
  1585. u32 pwm_ctrl;
  1586. pp_on = REG_READ(PP_CONTROL);
  1587. pp_on &= ~PANEL_UNLOCK_MASK;
  1588. pp_on |= PANEL_UNLOCK_REGS;
  1589. REG_WRITE(PP_CONTROL, pp_on);
  1590. pwm_ctrl = REG_READ(BLC_PWM_CTL2);
  1591. pwm_ctrl |= PWM_PIPE_B;
  1592. REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
  1593. pp_on = REG_READ(PP_ON_DELAYS);
  1594. pp_off = REG_READ(PP_OFF_DELAYS);
  1595. pp_div = REG_READ(PP_DIVISOR);
  1596. /* Pull timing values out of registers */
  1597. cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
  1598. PANEL_POWER_UP_DELAY_SHIFT;
  1599. cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
  1600. PANEL_LIGHT_ON_DELAY_SHIFT;
  1601. cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
  1602. PANEL_LIGHT_OFF_DELAY_SHIFT;
  1603. cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
  1604. PANEL_POWER_DOWN_DELAY_SHIFT;
  1605. cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
  1606. PANEL_POWER_CYCLE_DELAY_SHIFT);
  1607. DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  1608. cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
  1609. intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
  1610. intel_dp->backlight_on_delay = cur.t8 / 10;
  1611. intel_dp->backlight_off_delay = cur.t9 / 10;
  1612. intel_dp->panel_power_down_delay = cur.t10 / 10;
  1613. intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
  1614. DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
  1615. intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
  1616. intel_dp->panel_power_cycle_delay);
  1617. DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
  1618. intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
  1619. cdv_intel_edp_panel_vdd_on(psb_intel_encoder);
  1620. ret = cdv_intel_dp_aux_native_read(psb_intel_encoder, DP_DPCD_REV,
  1621. intel_dp->dpcd,
  1622. sizeof(intel_dp->dpcd));
  1623. cdv_intel_edp_panel_vdd_off(psb_intel_encoder);
  1624. if (ret == 0) {
  1625. /* if this fails, presume the device is a ghost */
  1626. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  1627. cdv_intel_dp_encoder_destroy(encoder);
  1628. cdv_intel_dp_destroy(connector);
  1629. goto err_priv;
  1630. } else {
  1631. DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
  1632. intel_dp->dpcd[0], intel_dp->dpcd[1],
  1633. intel_dp->dpcd[2], intel_dp->dpcd[3]);
  1634. }
  1635. /* The CDV reference driver moves pnale backlight setup into the displays that
  1636. have a backlight: this is a good idea and one we should probably adopt, however
  1637. we need to migrate all the drivers before we can do that */
  1638. /*cdv_intel_panel_setup_backlight(dev); */
  1639. }
  1640. return;
  1641. err_priv:
  1642. kfree(psb_intel_connector);
  1643. err_connector:
  1644. kfree(psb_intel_encoder);
  1645. }