amd64_edac.c 71 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795
  1. #include "amd64_edac.h"
  2. #include <asm/amd_nb.h>
  3. static struct edac_pci_ctl_info *amd64_ctl_pci;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. static struct msr __percpu *msrs;
  13. /*
  14. * count successfully initialized driver instances for setup_pci_device()
  15. */
  16. static atomic_t drv_instances = ATOMIC_INIT(0);
  17. /* Per-node driver instances */
  18. static struct mem_ctl_info **mcis;
  19. static struct ecc_settings **ecc_stngs;
  20. /*
  21. * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
  22. * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
  23. * or higher value'.
  24. *
  25. *FIXME: Produce a better mapping/linearisation.
  26. */
  27. struct scrubrate {
  28. u32 scrubval; /* bit pattern for scrub rate */
  29. u32 bandwidth; /* bandwidth consumed (bytes/sec) */
  30. } scrubrates[] = {
  31. { 0x01, 1600000000UL},
  32. { 0x02, 800000000UL},
  33. { 0x03, 400000000UL},
  34. { 0x04, 200000000UL},
  35. { 0x05, 100000000UL},
  36. { 0x06, 50000000UL},
  37. { 0x07, 25000000UL},
  38. { 0x08, 12284069UL},
  39. { 0x09, 6274509UL},
  40. { 0x0A, 3121951UL},
  41. { 0x0B, 1560975UL},
  42. { 0x0C, 781440UL},
  43. { 0x0D, 390720UL},
  44. { 0x0E, 195300UL},
  45. { 0x0F, 97650UL},
  46. { 0x10, 48854UL},
  47. { 0x11, 24427UL},
  48. { 0x12, 12213UL},
  49. { 0x13, 6101UL},
  50. { 0x14, 3051UL},
  51. { 0x15, 1523UL},
  52. { 0x16, 761UL},
  53. { 0x00, 0UL}, /* scrubbing off */
  54. };
  55. int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
  56. u32 *val, const char *func)
  57. {
  58. int err = 0;
  59. err = pci_read_config_dword(pdev, offset, val);
  60. if (err)
  61. amd64_warn("%s: error reading F%dx%03x.\n",
  62. func, PCI_FUNC(pdev->devfn), offset);
  63. return err;
  64. }
  65. int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
  66. u32 val, const char *func)
  67. {
  68. int err = 0;
  69. err = pci_write_config_dword(pdev, offset, val);
  70. if (err)
  71. amd64_warn("%s: error writing to F%dx%03x.\n",
  72. func, PCI_FUNC(pdev->devfn), offset);
  73. return err;
  74. }
  75. /*
  76. *
  77. * Depending on the family, F2 DCT reads need special handling:
  78. *
  79. * K8: has a single DCT only
  80. *
  81. * F10h: each DCT has its own set of regs
  82. * DCT0 -> F2x040..
  83. * DCT1 -> F2x140..
  84. *
  85. * F15h: we select which DCT we access using F1x10C[DctCfgSel]
  86. *
  87. */
  88. static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  89. const char *func)
  90. {
  91. if (addr >= 0x100)
  92. return -EINVAL;
  93. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  94. }
  95. static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  96. const char *func)
  97. {
  98. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  99. }
  100. /*
  101. * Select DCT to which PCI cfg accesses are routed
  102. */
  103. static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
  104. {
  105. u32 reg = 0;
  106. amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
  107. reg &= 0xfffffffe;
  108. reg |= dct;
  109. amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
  110. }
  111. static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  112. const char *func)
  113. {
  114. u8 dct = 0;
  115. if (addr >= 0x140 && addr <= 0x1a0) {
  116. dct = 1;
  117. addr -= 0x100;
  118. }
  119. f15h_select_dct(pvt, dct);
  120. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  121. }
  122. /*
  123. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  124. * hardware and can involve L2 cache, dcache as well as the main memory. With
  125. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  126. * functionality.
  127. *
  128. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  129. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  130. * bytes/sec for the setting.
  131. *
  132. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  133. * other archs, we might not have access to the caches directly.
  134. */
  135. /*
  136. * scan the scrub rate mapping table for a close or matching bandwidth value to
  137. * issue. If requested is too big, then use last maximum value found.
  138. */
  139. static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
  140. {
  141. u32 scrubval;
  142. int i;
  143. /*
  144. * map the configured rate (new_bw) to a value specific to the AMD64
  145. * memory controller and apply to register. Search for the first
  146. * bandwidth entry that is greater or equal than the setting requested
  147. * and program that. If at last entry, turn off DRAM scrubbing.
  148. *
  149. * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
  150. * by falling back to the last element in scrubrates[].
  151. */
  152. for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
  153. /*
  154. * skip scrub rates which aren't recommended
  155. * (see F10 BKDG, F3x58)
  156. */
  157. if (scrubrates[i].scrubval < min_rate)
  158. continue;
  159. if (scrubrates[i].bandwidth <= new_bw)
  160. break;
  161. }
  162. scrubval = scrubrates[i].scrubval;
  163. pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
  164. if (scrubval)
  165. return scrubrates[i].bandwidth;
  166. return 0;
  167. }
  168. static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
  169. {
  170. struct amd64_pvt *pvt = mci->pvt_info;
  171. u32 min_scrubrate = 0x5;
  172. if (boot_cpu_data.x86 == 0xf)
  173. min_scrubrate = 0x0;
  174. /* F15h Erratum #505 */
  175. if (boot_cpu_data.x86 == 0x15)
  176. f15h_select_dct(pvt, 0);
  177. return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
  178. }
  179. static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
  180. {
  181. struct amd64_pvt *pvt = mci->pvt_info;
  182. u32 scrubval = 0;
  183. int i, retval = -EINVAL;
  184. /* F15h Erratum #505 */
  185. if (boot_cpu_data.x86 == 0x15)
  186. f15h_select_dct(pvt, 0);
  187. amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
  188. scrubval = scrubval & 0x001F;
  189. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  190. if (scrubrates[i].scrubval == scrubval) {
  191. retval = scrubrates[i].bandwidth;
  192. break;
  193. }
  194. }
  195. return retval;
  196. }
  197. /*
  198. * returns true if the SysAddr given by sys_addr matches the
  199. * DRAM base/limit associated with node_id
  200. */
  201. static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
  202. unsigned nid)
  203. {
  204. u64 addr;
  205. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  206. * all ones if the most significant implemented address bit is 1.
  207. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  208. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  209. * Application Programming.
  210. */
  211. addr = sys_addr & 0x000000ffffffffffull;
  212. return ((addr >= get_dram_base(pvt, nid)) &&
  213. (addr <= get_dram_limit(pvt, nid)));
  214. }
  215. /*
  216. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  217. * mem_ctl_info structure for the node that the SysAddr maps to.
  218. *
  219. * On failure, return NULL.
  220. */
  221. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  222. u64 sys_addr)
  223. {
  224. struct amd64_pvt *pvt;
  225. unsigned node_id;
  226. u32 intlv_en, bits;
  227. /*
  228. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  229. * 3.4.4.2) registers to map the SysAddr to a node ID.
  230. */
  231. pvt = mci->pvt_info;
  232. /*
  233. * The value of this field should be the same for all DRAM Base
  234. * registers. Therefore we arbitrarily choose to read it from the
  235. * register for node 0.
  236. */
  237. intlv_en = dram_intlv_en(pvt, 0);
  238. if (intlv_en == 0) {
  239. for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
  240. if (amd64_base_limit_match(pvt, sys_addr, node_id))
  241. goto found;
  242. }
  243. goto err_no_match;
  244. }
  245. if (unlikely((intlv_en != 0x01) &&
  246. (intlv_en != 0x03) &&
  247. (intlv_en != 0x07))) {
  248. amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
  249. return NULL;
  250. }
  251. bits = (((u32) sys_addr) >> 12) & intlv_en;
  252. for (node_id = 0; ; ) {
  253. if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
  254. break; /* intlv_sel field matches */
  255. if (++node_id >= DRAM_RANGES)
  256. goto err_no_match;
  257. }
  258. /* sanity test for sys_addr */
  259. if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
  260. amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
  261. "range for node %d with node interleaving enabled.\n",
  262. __func__, sys_addr, node_id);
  263. return NULL;
  264. }
  265. found:
  266. return edac_mc_find((int)node_id);
  267. err_no_match:
  268. edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
  269. (unsigned long)sys_addr);
  270. return NULL;
  271. }
  272. /*
  273. * compute the CS base address of the @csrow on the DRAM controller @dct.
  274. * For details see F2x[5C:40] in the processor's BKDG
  275. */
  276. static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
  277. u64 *base, u64 *mask)
  278. {
  279. u64 csbase, csmask, base_bits, mask_bits;
  280. u8 addr_shift;
  281. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
  282. csbase = pvt->csels[dct].csbases[csrow];
  283. csmask = pvt->csels[dct].csmasks[csrow];
  284. base_bits = GENMASK(21, 31) | GENMASK(9, 15);
  285. mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
  286. addr_shift = 4;
  287. } else {
  288. csbase = pvt->csels[dct].csbases[csrow];
  289. csmask = pvt->csels[dct].csmasks[csrow >> 1];
  290. addr_shift = 8;
  291. if (boot_cpu_data.x86 == 0x15)
  292. base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
  293. else
  294. base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
  295. }
  296. *base = (csbase & base_bits) << addr_shift;
  297. *mask = ~0ULL;
  298. /* poke holes for the csmask */
  299. *mask &= ~(mask_bits << addr_shift);
  300. /* OR them in */
  301. *mask |= (csmask & mask_bits) << addr_shift;
  302. }
  303. #define for_each_chip_select(i, dct, pvt) \
  304. for (i = 0; i < pvt->csels[dct].b_cnt; i++)
  305. #define chip_select_base(i, dct, pvt) \
  306. pvt->csels[dct].csbases[i]
  307. #define for_each_chip_select_mask(i, dct, pvt) \
  308. for (i = 0; i < pvt->csels[dct].m_cnt; i++)
  309. /*
  310. * @input_addr is an InputAddr associated with the node given by mci. Return the
  311. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  312. */
  313. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  314. {
  315. struct amd64_pvt *pvt;
  316. int csrow;
  317. u64 base, mask;
  318. pvt = mci->pvt_info;
  319. for_each_chip_select(csrow, 0, pvt) {
  320. if (!csrow_enabled(csrow, 0, pvt))
  321. continue;
  322. get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
  323. mask = ~mask;
  324. if ((input_addr & mask) == (base & mask)) {
  325. edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
  326. (unsigned long)input_addr, csrow,
  327. pvt->mc_node_id);
  328. return csrow;
  329. }
  330. }
  331. edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  332. (unsigned long)input_addr, pvt->mc_node_id);
  333. return -1;
  334. }
  335. /*
  336. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  337. * for the node represented by mci. Info is passed back in *hole_base,
  338. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  339. * info is invalid. Info may be invalid for either of the following reasons:
  340. *
  341. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  342. * Address Register does not exist.
  343. *
  344. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  345. * indicating that its contents are not valid.
  346. *
  347. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  348. * complete 32-bit values despite the fact that the bitfields in the DHAR
  349. * only represent bits 31-24 of the base and offset values.
  350. */
  351. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  352. u64 *hole_offset, u64 *hole_size)
  353. {
  354. struct amd64_pvt *pvt = mci->pvt_info;
  355. /* only revE and later have the DRAM Hole Address Register */
  356. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
  357. edac_dbg(1, " revision %d for node %d does not support DHAR\n",
  358. pvt->ext_model, pvt->mc_node_id);
  359. return 1;
  360. }
  361. /* valid for Fam10h and above */
  362. if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
  363. edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
  364. return 1;
  365. }
  366. if (!dhar_valid(pvt)) {
  367. edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
  368. pvt->mc_node_id);
  369. return 1;
  370. }
  371. /* This node has Memory Hoisting */
  372. /* +------------------+--------------------+--------------------+-----
  373. * | memory | DRAM hole | relocated |
  374. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  375. * | | | DRAM hole |
  376. * | | | [0x100000000, |
  377. * | | | (0x100000000+ |
  378. * | | | (0xffffffff-x))] |
  379. * +------------------+--------------------+--------------------+-----
  380. *
  381. * Above is a diagram of physical memory showing the DRAM hole and the
  382. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  383. * starts at address x (the base address) and extends through address
  384. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  385. * addresses in the hole so that they start at 0x100000000.
  386. */
  387. *hole_base = dhar_base(pvt);
  388. *hole_size = (1ULL << 32) - *hole_base;
  389. if (boot_cpu_data.x86 > 0xf)
  390. *hole_offset = f10_dhar_offset(pvt);
  391. else
  392. *hole_offset = k8_dhar_offset(pvt);
  393. edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  394. pvt->mc_node_id, (unsigned long)*hole_base,
  395. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  396. return 0;
  397. }
  398. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  399. /*
  400. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  401. * assumed that sys_addr maps to the node given by mci.
  402. *
  403. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  404. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  405. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  406. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  407. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  408. * These parts of the documentation are unclear. I interpret them as follows:
  409. *
  410. * When node n receives a SysAddr, it processes the SysAddr as follows:
  411. *
  412. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  413. * Limit registers for node n. If the SysAddr is not within the range
  414. * specified by the base and limit values, then node n ignores the Sysaddr
  415. * (since it does not map to node n). Otherwise continue to step 2 below.
  416. *
  417. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  418. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  419. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  420. * hole. If not, skip to step 3 below. Else get the value of the
  421. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  422. * offset defined by this value from the SysAddr.
  423. *
  424. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  425. * Base register for node n. To obtain the DramAddr, subtract the base
  426. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  427. */
  428. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  429. {
  430. struct amd64_pvt *pvt = mci->pvt_info;
  431. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  432. int ret;
  433. dram_base = get_dram_base(pvt, pvt->mc_node_id);
  434. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  435. &hole_size);
  436. if (!ret) {
  437. if ((sys_addr >= (1ULL << 32)) &&
  438. (sys_addr < ((1ULL << 32) + hole_size))) {
  439. /* use DHAR to translate SysAddr to DramAddr */
  440. dram_addr = sys_addr - hole_offset;
  441. edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
  442. (unsigned long)sys_addr,
  443. (unsigned long)dram_addr);
  444. return dram_addr;
  445. }
  446. }
  447. /*
  448. * Translate the SysAddr to a DramAddr as shown near the start of
  449. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  450. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  451. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  452. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  453. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  454. * Programmer's Manual Volume 1 Application Programming.
  455. */
  456. dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
  457. edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
  458. (unsigned long)sys_addr, (unsigned long)dram_addr);
  459. return dram_addr;
  460. }
  461. /*
  462. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  463. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  464. * for node interleaving.
  465. */
  466. static int num_node_interleave_bits(unsigned intlv_en)
  467. {
  468. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  469. int n;
  470. BUG_ON(intlv_en > 7);
  471. n = intlv_shift_table[intlv_en];
  472. return n;
  473. }
  474. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  475. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  476. {
  477. struct amd64_pvt *pvt;
  478. int intlv_shift;
  479. u64 input_addr;
  480. pvt = mci->pvt_info;
  481. /*
  482. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  483. * concerning translating a DramAddr to an InputAddr.
  484. */
  485. intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
  486. input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
  487. (dram_addr & 0xfff);
  488. edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  489. intlv_shift, (unsigned long)dram_addr,
  490. (unsigned long)input_addr);
  491. return input_addr;
  492. }
  493. /*
  494. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  495. * assumed that @sys_addr maps to the node given by mci.
  496. */
  497. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  498. {
  499. u64 input_addr;
  500. input_addr =
  501. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  502. edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
  503. (unsigned long)sys_addr, (unsigned long)input_addr);
  504. return input_addr;
  505. }
  506. /*
  507. * @input_addr is an InputAddr associated with the node represented by mci.
  508. * Translate @input_addr to a DramAddr and return the result.
  509. */
  510. static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
  511. {
  512. struct amd64_pvt *pvt;
  513. unsigned node_id, intlv_shift;
  514. u64 bits, dram_addr;
  515. u32 intlv_sel;
  516. /*
  517. * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  518. * shows how to translate a DramAddr to an InputAddr. Here we reverse
  519. * this procedure. When translating from a DramAddr to an InputAddr, the
  520. * bits used for node interleaving are discarded. Here we recover these
  521. * bits from the IntlvSel field of the DRAM Limit register (section
  522. * 3.4.4.2) for the node that input_addr is associated with.
  523. */
  524. pvt = mci->pvt_info;
  525. node_id = pvt->mc_node_id;
  526. BUG_ON(node_id > 7);
  527. intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
  528. if (intlv_shift == 0) {
  529. edac_dbg(1, " InputAddr 0x%lx translates to DramAddr of same value\n",
  530. (unsigned long)input_addr);
  531. return input_addr;
  532. }
  533. bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
  534. (input_addr & 0xfff);
  535. intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
  536. dram_addr = bits + (intlv_sel << 12);
  537. edac_dbg(1, "InputAddr 0x%lx translates to DramAddr 0x%lx (%d node interleave bits)\n",
  538. (unsigned long)input_addr,
  539. (unsigned long)dram_addr, intlv_shift);
  540. return dram_addr;
  541. }
  542. /*
  543. * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
  544. * @dram_addr to a SysAddr.
  545. */
  546. static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
  547. {
  548. struct amd64_pvt *pvt = mci->pvt_info;
  549. u64 hole_base, hole_offset, hole_size, base, sys_addr;
  550. int ret = 0;
  551. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  552. &hole_size);
  553. if (!ret) {
  554. if ((dram_addr >= hole_base) &&
  555. (dram_addr < (hole_base + hole_size))) {
  556. sys_addr = dram_addr + hole_offset;
  557. edac_dbg(1, "using DHAR to translate DramAddr 0x%lx to SysAddr 0x%lx\n",
  558. (unsigned long)dram_addr,
  559. (unsigned long)sys_addr);
  560. return sys_addr;
  561. }
  562. }
  563. base = get_dram_base(pvt, pvt->mc_node_id);
  564. sys_addr = dram_addr + base;
  565. /*
  566. * The sys_addr we have computed up to this point is a 40-bit value
  567. * because the k8 deals with 40-bit values. However, the value we are
  568. * supposed to return is a full 64-bit physical address. The AMD
  569. * x86-64 architecture specifies that the most significant implemented
  570. * address bit through bit 63 of a physical address must be either all
  571. * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
  572. * 64-bit value below. See section 3.4.2 of AMD publication 24592:
  573. * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
  574. * Programming.
  575. */
  576. sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
  577. edac_dbg(1, " Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
  578. pvt->mc_node_id, (unsigned long)dram_addr,
  579. (unsigned long)sys_addr);
  580. return sys_addr;
  581. }
  582. /*
  583. * @input_addr is an InputAddr associated with the node given by mci. Translate
  584. * @input_addr to a SysAddr.
  585. */
  586. static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
  587. u64 input_addr)
  588. {
  589. return dram_addr_to_sys_addr(mci,
  590. input_addr_to_dram_addr(mci, input_addr));
  591. }
  592. /* Map the Error address to a PAGE and PAGE OFFSET. */
  593. static inline void error_address_to_page_and_offset(u64 error_address,
  594. struct err_info *err)
  595. {
  596. err->page = (u32) (error_address >> PAGE_SHIFT);
  597. err->offset = ((u32) error_address) & ~PAGE_MASK;
  598. }
  599. /*
  600. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  601. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  602. * of a node that detected an ECC memory error. mci represents the node that
  603. * the error address maps to (possibly different from the node that detected
  604. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  605. * error.
  606. */
  607. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  608. {
  609. int csrow;
  610. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  611. if (csrow == -1)
  612. amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
  613. "address 0x%lx\n", (unsigned long)sys_addr);
  614. return csrow;
  615. }
  616. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
  617. /*
  618. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  619. * are ECC capable.
  620. */
  621. static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
  622. {
  623. u8 bit;
  624. unsigned long edac_cap = EDAC_FLAG_NONE;
  625. bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
  626. ? 19
  627. : 17;
  628. if (pvt->dclr0 & BIT(bit))
  629. edac_cap = EDAC_FLAG_SECDED;
  630. return edac_cap;
  631. }
  632. static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
  633. static void amd64_dump_dramcfg_low(u32 dclr, int chan)
  634. {
  635. edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
  636. edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
  637. (dclr & BIT(16)) ? "un" : "",
  638. (dclr & BIT(19)) ? "yes" : "no");
  639. edac_dbg(1, " PAR/ERR parity: %s\n",
  640. (dclr & BIT(8)) ? "enabled" : "disabled");
  641. if (boot_cpu_data.x86 == 0x10)
  642. edac_dbg(1, " DCT 128bit mode width: %s\n",
  643. (dclr & BIT(11)) ? "128b" : "64b");
  644. edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
  645. (dclr & BIT(12)) ? "yes" : "no",
  646. (dclr & BIT(13)) ? "yes" : "no",
  647. (dclr & BIT(14)) ? "yes" : "no",
  648. (dclr & BIT(15)) ? "yes" : "no");
  649. }
  650. /* Display and decode various NB registers for debug purposes. */
  651. static void dump_misc_regs(struct amd64_pvt *pvt)
  652. {
  653. edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
  654. edac_dbg(1, " NB two channel DRAM capable: %s\n",
  655. (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
  656. edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
  657. (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
  658. (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
  659. amd64_dump_dramcfg_low(pvt->dclr0, 0);
  660. edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
  661. edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
  662. pvt->dhar, dhar_base(pvt),
  663. (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
  664. : f10_dhar_offset(pvt));
  665. edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
  666. amd64_debug_display_dimm_sizes(pvt, 0);
  667. /* everything below this point is Fam10h and above */
  668. if (boot_cpu_data.x86 == 0xf)
  669. return;
  670. amd64_debug_display_dimm_sizes(pvt, 1);
  671. amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
  672. /* Only if NOT ganged does dclr1 have valid info */
  673. if (!dct_ganging_enabled(pvt))
  674. amd64_dump_dramcfg_low(pvt->dclr1, 1);
  675. }
  676. /*
  677. * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
  678. */
  679. static void prep_chip_selects(struct amd64_pvt *pvt)
  680. {
  681. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
  682. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  683. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
  684. } else {
  685. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  686. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
  687. }
  688. }
  689. /*
  690. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
  691. */
  692. static void read_dct_base_mask(struct amd64_pvt *pvt)
  693. {
  694. int cs;
  695. prep_chip_selects(pvt);
  696. for_each_chip_select(cs, 0, pvt) {
  697. int reg0 = DCSB0 + (cs * 4);
  698. int reg1 = DCSB1 + (cs * 4);
  699. u32 *base0 = &pvt->csels[0].csbases[cs];
  700. u32 *base1 = &pvt->csels[1].csbases[cs];
  701. if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
  702. edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
  703. cs, *base0, reg0);
  704. if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
  705. continue;
  706. if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
  707. edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
  708. cs, *base1, reg1);
  709. }
  710. for_each_chip_select_mask(cs, 0, pvt) {
  711. int reg0 = DCSM0 + (cs * 4);
  712. int reg1 = DCSM1 + (cs * 4);
  713. u32 *mask0 = &pvt->csels[0].csmasks[cs];
  714. u32 *mask1 = &pvt->csels[1].csmasks[cs];
  715. if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
  716. edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
  717. cs, *mask0, reg0);
  718. if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
  719. continue;
  720. if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
  721. edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
  722. cs, *mask1, reg1);
  723. }
  724. }
  725. static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
  726. {
  727. enum mem_type type;
  728. /* F15h supports only DDR3 */
  729. if (boot_cpu_data.x86 >= 0x15)
  730. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  731. else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
  732. if (pvt->dchr0 & DDR3_MODE)
  733. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  734. else
  735. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  736. } else {
  737. type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  738. }
  739. amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
  740. return type;
  741. }
  742. /* Get the number of DCT channels the memory controller is using. */
  743. static int k8_early_channel_count(struct amd64_pvt *pvt)
  744. {
  745. int flag;
  746. if (pvt->ext_model >= K8_REV_F)
  747. /* RevF (NPT) and later */
  748. flag = pvt->dclr0 & WIDTH_128;
  749. else
  750. /* RevE and earlier */
  751. flag = pvt->dclr0 & REVE_WIDTH_128;
  752. /* not used */
  753. pvt->dclr1 = 0;
  754. return (flag) ? 2 : 1;
  755. }
  756. /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
  757. static u64 get_error_address(struct mce *m)
  758. {
  759. struct cpuinfo_x86 *c = &boot_cpu_data;
  760. u64 addr;
  761. u8 start_bit = 1;
  762. u8 end_bit = 47;
  763. if (c->x86 == 0xf) {
  764. start_bit = 3;
  765. end_bit = 39;
  766. }
  767. addr = m->addr & GENMASK(start_bit, end_bit);
  768. /*
  769. * Erratum 637 workaround
  770. */
  771. if (c->x86 == 0x15) {
  772. struct amd64_pvt *pvt;
  773. u64 cc6_base, tmp_addr;
  774. u32 tmp;
  775. u8 mce_nid, intlv_en;
  776. if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
  777. return addr;
  778. mce_nid = amd_get_nb_id(m->extcpu);
  779. pvt = mcis[mce_nid]->pvt_info;
  780. amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
  781. intlv_en = tmp >> 21 & 0x7;
  782. /* add [47:27] + 3 trailing bits */
  783. cc6_base = (tmp & GENMASK(0, 20)) << 3;
  784. /* reverse and add DramIntlvEn */
  785. cc6_base |= intlv_en ^ 0x7;
  786. /* pin at [47:24] */
  787. cc6_base <<= 24;
  788. if (!intlv_en)
  789. return cc6_base | (addr & GENMASK(0, 23));
  790. amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
  791. /* faster log2 */
  792. tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
  793. /* OR DramIntlvSel into bits [14:12] */
  794. tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
  795. /* add remaining [11:0] bits from original MC4_ADDR */
  796. tmp_addr |= addr & GENMASK(0, 11);
  797. return cc6_base | tmp_addr;
  798. }
  799. return addr;
  800. }
  801. static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
  802. {
  803. struct cpuinfo_x86 *c = &boot_cpu_data;
  804. int off = range << 3;
  805. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
  806. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
  807. if (c->x86 == 0xf)
  808. return;
  809. if (!dram_rw(pvt, range))
  810. return;
  811. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
  812. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
  813. /* Factor in CC6 save area by reading dst node's limit reg */
  814. if (c->x86 == 0x15) {
  815. struct pci_dev *f1 = NULL;
  816. u8 nid = dram_dst_node(pvt, range);
  817. u32 llim;
  818. f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
  819. if (WARN_ON(!f1))
  820. return;
  821. amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
  822. pvt->ranges[range].lim.lo &= GENMASK(0, 15);
  823. /* {[39:27],111b} */
  824. pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
  825. pvt->ranges[range].lim.hi &= GENMASK(0, 7);
  826. /* [47:40] */
  827. pvt->ranges[range].lim.hi |= llim >> 13;
  828. pci_dev_put(f1);
  829. }
  830. }
  831. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  832. struct err_info *err)
  833. {
  834. struct amd64_pvt *pvt = mci->pvt_info;
  835. error_address_to_page_and_offset(sys_addr, err);
  836. /*
  837. * Find out which node the error address belongs to. This may be
  838. * different from the node that detected the error.
  839. */
  840. err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
  841. if (!err->src_mci) {
  842. amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
  843. (unsigned long)sys_addr);
  844. err->err_code = ERR_NODE;
  845. return;
  846. }
  847. /* Now map the sys_addr to a CSROW */
  848. err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
  849. if (err->csrow < 0) {
  850. err->err_code = ERR_CSROW;
  851. return;
  852. }
  853. /* CHIPKILL enabled */
  854. if (pvt->nbcfg & NBCFG_CHIPKILL) {
  855. err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
  856. if (err->channel < 0) {
  857. /*
  858. * Syndrome didn't map, so we don't know which of the
  859. * 2 DIMMs is in error. So we need to ID 'both' of them
  860. * as suspect.
  861. */
  862. amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
  863. "possible error reporting race\n",
  864. err->syndrome);
  865. err->err_code = ERR_CHANNEL;
  866. return;
  867. }
  868. } else {
  869. /*
  870. * non-chipkill ecc mode
  871. *
  872. * The k8 documentation is unclear about how to determine the
  873. * channel number when using non-chipkill memory. This method
  874. * was obtained from email communication with someone at AMD.
  875. * (Wish the email was placed in this comment - norsk)
  876. */
  877. err->channel = ((sys_addr & BIT(3)) != 0);
  878. }
  879. }
  880. static int ddr2_cs_size(unsigned i, bool dct_width)
  881. {
  882. unsigned shift = 0;
  883. if (i <= 2)
  884. shift = i;
  885. else if (!(i & 0x1))
  886. shift = i >> 1;
  887. else
  888. shift = (i + 1) >> 1;
  889. return 128 << (shift + !!dct_width);
  890. }
  891. static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  892. unsigned cs_mode)
  893. {
  894. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  895. if (pvt->ext_model >= K8_REV_F) {
  896. WARN_ON(cs_mode > 11);
  897. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  898. }
  899. else if (pvt->ext_model >= K8_REV_D) {
  900. unsigned diff;
  901. WARN_ON(cs_mode > 10);
  902. /*
  903. * the below calculation, besides trying to win an obfuscated C
  904. * contest, maps cs_mode values to DIMM chip select sizes. The
  905. * mappings are:
  906. *
  907. * cs_mode CS size (mb)
  908. * ======= ============
  909. * 0 32
  910. * 1 64
  911. * 2 128
  912. * 3 128
  913. * 4 256
  914. * 5 512
  915. * 6 256
  916. * 7 512
  917. * 8 1024
  918. * 9 1024
  919. * 10 2048
  920. *
  921. * Basically, it calculates a value with which to shift the
  922. * smallest CS size of 32MB.
  923. *
  924. * ddr[23]_cs_size have a similar purpose.
  925. */
  926. diff = cs_mode/3 + (unsigned)(cs_mode > 5);
  927. return 32 << (cs_mode - diff);
  928. }
  929. else {
  930. WARN_ON(cs_mode > 6);
  931. return 32 << cs_mode;
  932. }
  933. }
  934. /*
  935. * Get the number of DCT channels in use.
  936. *
  937. * Return:
  938. * number of Memory Channels in operation
  939. * Pass back:
  940. * contents of the DCL0_LOW register
  941. */
  942. static int f1x_early_channel_count(struct amd64_pvt *pvt)
  943. {
  944. int i, j, channels = 0;
  945. /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
  946. if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
  947. return 2;
  948. /*
  949. * Need to check if in unganged mode: In such, there are 2 channels,
  950. * but they are not in 128 bit mode and thus the above 'dclr0' status
  951. * bit will be OFF.
  952. *
  953. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  954. * their CSEnable bit on. If so, then SINGLE DIMM case.
  955. */
  956. edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
  957. /*
  958. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  959. * is more than just one DIMM present in unganged mode. Need to check
  960. * both controllers since DIMMs can be placed in either one.
  961. */
  962. for (i = 0; i < 2; i++) {
  963. u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
  964. for (j = 0; j < 4; j++) {
  965. if (DBAM_DIMM(j, dbam) > 0) {
  966. channels++;
  967. break;
  968. }
  969. }
  970. }
  971. if (channels > 2)
  972. channels = 2;
  973. amd64_info("MCT channel count: %d\n", channels);
  974. return channels;
  975. }
  976. static int ddr3_cs_size(unsigned i, bool dct_width)
  977. {
  978. unsigned shift = 0;
  979. int cs_size = 0;
  980. if (i == 0 || i == 3 || i == 4)
  981. cs_size = -1;
  982. else if (i <= 2)
  983. shift = i;
  984. else if (i == 12)
  985. shift = 7;
  986. else if (!(i & 0x1))
  987. shift = i >> 1;
  988. else
  989. shift = (i + 1) >> 1;
  990. if (cs_size != -1)
  991. cs_size = (128 * (1 << !!dct_width)) << shift;
  992. return cs_size;
  993. }
  994. static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  995. unsigned cs_mode)
  996. {
  997. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  998. WARN_ON(cs_mode > 11);
  999. if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
  1000. return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
  1001. else
  1002. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  1003. }
  1004. /*
  1005. * F15h supports only 64bit DCT interfaces
  1006. */
  1007. static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  1008. unsigned cs_mode)
  1009. {
  1010. WARN_ON(cs_mode > 12);
  1011. return ddr3_cs_size(cs_mode, false);
  1012. }
  1013. static void read_dram_ctl_register(struct amd64_pvt *pvt)
  1014. {
  1015. if (boot_cpu_data.x86 == 0xf)
  1016. return;
  1017. if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
  1018. edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
  1019. pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
  1020. edac_dbg(0, " DCTs operate in %s mode\n",
  1021. (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
  1022. if (!dct_ganging_enabled(pvt))
  1023. edac_dbg(0, " Address range split per DCT: %s\n",
  1024. (dct_high_range_enabled(pvt) ? "yes" : "no"));
  1025. edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
  1026. (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
  1027. (dct_memory_cleared(pvt) ? "yes" : "no"));
  1028. edac_dbg(0, " channel interleave: %s, "
  1029. "interleave bits selector: 0x%x\n",
  1030. (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
  1031. dct_sel_interleave_addr(pvt));
  1032. }
  1033. amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
  1034. }
  1035. /*
  1036. * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  1037. * Interleaving Modes.
  1038. */
  1039. static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1040. bool hi_range_sel, u8 intlv_en)
  1041. {
  1042. u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
  1043. if (dct_ganging_enabled(pvt))
  1044. return 0;
  1045. if (hi_range_sel)
  1046. return dct_sel_high;
  1047. /*
  1048. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  1049. */
  1050. if (dct_interleave_enabled(pvt)) {
  1051. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  1052. /* return DCT select function: 0=DCT0, 1=DCT1 */
  1053. if (!intlv_addr)
  1054. return sys_addr >> 6 & 1;
  1055. if (intlv_addr & 0x2) {
  1056. u8 shift = intlv_addr & 0x1 ? 9 : 6;
  1057. u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
  1058. return ((sys_addr >> shift) & 1) ^ temp;
  1059. }
  1060. return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
  1061. }
  1062. if (dct_high_range_enabled(pvt))
  1063. return ~dct_sel_high & 1;
  1064. return 0;
  1065. }
  1066. /* Convert the sys_addr to the normalized DCT address */
  1067. static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
  1068. u64 sys_addr, bool hi_rng,
  1069. u32 dct_sel_base_addr)
  1070. {
  1071. u64 chan_off;
  1072. u64 dram_base = get_dram_base(pvt, range);
  1073. u64 hole_off = f10_dhar_offset(pvt);
  1074. u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
  1075. if (hi_rng) {
  1076. /*
  1077. * if
  1078. * base address of high range is below 4Gb
  1079. * (bits [47:27] at [31:11])
  1080. * DRAM address space on this DCT is hoisted above 4Gb &&
  1081. * sys_addr > 4Gb
  1082. *
  1083. * remove hole offset from sys_addr
  1084. * else
  1085. * remove high range offset from sys_addr
  1086. */
  1087. if ((!(dct_sel_base_addr >> 16) ||
  1088. dct_sel_base_addr < dhar_base(pvt)) &&
  1089. dhar_valid(pvt) &&
  1090. (sys_addr >= BIT_64(32)))
  1091. chan_off = hole_off;
  1092. else
  1093. chan_off = dct_sel_base_off;
  1094. } else {
  1095. /*
  1096. * if
  1097. * we have a valid hole &&
  1098. * sys_addr > 4Gb
  1099. *
  1100. * remove hole
  1101. * else
  1102. * remove dram base to normalize to DCT address
  1103. */
  1104. if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
  1105. chan_off = hole_off;
  1106. else
  1107. chan_off = dram_base;
  1108. }
  1109. return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
  1110. }
  1111. /*
  1112. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1113. * spare row
  1114. */
  1115. static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
  1116. {
  1117. int tmp_cs;
  1118. if (online_spare_swap_done(pvt, dct) &&
  1119. csrow == online_spare_bad_dramcs(pvt, dct)) {
  1120. for_each_chip_select(tmp_cs, dct, pvt) {
  1121. if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
  1122. csrow = tmp_cs;
  1123. break;
  1124. }
  1125. }
  1126. }
  1127. return csrow;
  1128. }
  1129. /*
  1130. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1131. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1132. *
  1133. * Return:
  1134. * -EINVAL: NOT FOUND
  1135. * 0..csrow = Chip-Select Row
  1136. */
  1137. static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
  1138. {
  1139. struct mem_ctl_info *mci;
  1140. struct amd64_pvt *pvt;
  1141. u64 cs_base, cs_mask;
  1142. int cs_found = -EINVAL;
  1143. int csrow;
  1144. mci = mcis[nid];
  1145. if (!mci)
  1146. return cs_found;
  1147. pvt = mci->pvt_info;
  1148. edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
  1149. for_each_chip_select(csrow, dct, pvt) {
  1150. if (!csrow_enabled(csrow, dct, pvt))
  1151. continue;
  1152. get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
  1153. edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
  1154. csrow, cs_base, cs_mask);
  1155. cs_mask = ~cs_mask;
  1156. edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
  1157. (in_addr & cs_mask), (cs_base & cs_mask));
  1158. if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
  1159. cs_found = f10_process_possible_spare(pvt, dct, csrow);
  1160. edac_dbg(1, " MATCH csrow=%d\n", cs_found);
  1161. break;
  1162. }
  1163. }
  1164. return cs_found;
  1165. }
  1166. /*
  1167. * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
  1168. * swapped with a region located at the bottom of memory so that the GPU can use
  1169. * the interleaved region and thus two channels.
  1170. */
  1171. static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
  1172. {
  1173. u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
  1174. if (boot_cpu_data.x86 == 0x10) {
  1175. /* only revC3 and revE have that feature */
  1176. if (boot_cpu_data.x86_model < 4 ||
  1177. (boot_cpu_data.x86_model < 0xa &&
  1178. boot_cpu_data.x86_mask < 3))
  1179. return sys_addr;
  1180. }
  1181. amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
  1182. if (!(swap_reg & 0x1))
  1183. return sys_addr;
  1184. swap_base = (swap_reg >> 3) & 0x7f;
  1185. swap_limit = (swap_reg >> 11) & 0x7f;
  1186. rgn_size = (swap_reg >> 20) & 0x7f;
  1187. tmp_addr = sys_addr >> 27;
  1188. if (!(sys_addr >> 34) &&
  1189. (((tmp_addr >= swap_base) &&
  1190. (tmp_addr <= swap_limit)) ||
  1191. (tmp_addr < rgn_size)))
  1192. return sys_addr ^ (u64)swap_base << 27;
  1193. return sys_addr;
  1194. }
  1195. /* For a given @dram_range, check if @sys_addr falls within it. */
  1196. static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
  1197. u64 sys_addr, int *chan_sel)
  1198. {
  1199. int cs_found = -EINVAL;
  1200. u64 chan_addr;
  1201. u32 dct_sel_base;
  1202. u8 channel;
  1203. bool high_range = false;
  1204. u8 node_id = dram_dst_node(pvt, range);
  1205. u8 intlv_en = dram_intlv_en(pvt, range);
  1206. u32 intlv_sel = dram_intlv_sel(pvt, range);
  1207. edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
  1208. range, sys_addr, get_dram_limit(pvt, range));
  1209. if (dhar_valid(pvt) &&
  1210. dhar_base(pvt) <= sys_addr &&
  1211. sys_addr < BIT_64(32)) {
  1212. amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
  1213. sys_addr);
  1214. return -EINVAL;
  1215. }
  1216. if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
  1217. return -EINVAL;
  1218. sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
  1219. dct_sel_base = dct_sel_baseaddr(pvt);
  1220. /*
  1221. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1222. * select between DCT0 and DCT1.
  1223. */
  1224. if (dct_high_range_enabled(pvt) &&
  1225. !dct_ganging_enabled(pvt) &&
  1226. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1227. high_range = true;
  1228. channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1229. chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
  1230. high_range, dct_sel_base);
  1231. /* Remove node interleaving, see F1x120 */
  1232. if (intlv_en)
  1233. chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
  1234. (chan_addr & 0xfff);
  1235. /* remove channel interleave */
  1236. if (dct_interleave_enabled(pvt) &&
  1237. !dct_high_range_enabled(pvt) &&
  1238. !dct_ganging_enabled(pvt)) {
  1239. if (dct_sel_interleave_addr(pvt) != 1) {
  1240. if (dct_sel_interleave_addr(pvt) == 0x3)
  1241. /* hash 9 */
  1242. chan_addr = ((chan_addr >> 10) << 9) |
  1243. (chan_addr & 0x1ff);
  1244. else
  1245. /* A[6] or hash 6 */
  1246. chan_addr = ((chan_addr >> 7) << 6) |
  1247. (chan_addr & 0x3f);
  1248. } else
  1249. /* A[12] */
  1250. chan_addr = ((chan_addr >> 13) << 12) |
  1251. (chan_addr & 0xfff);
  1252. }
  1253. edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
  1254. cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
  1255. if (cs_found >= 0)
  1256. *chan_sel = channel;
  1257. return cs_found;
  1258. }
  1259. static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
  1260. int *chan_sel)
  1261. {
  1262. int cs_found = -EINVAL;
  1263. unsigned range;
  1264. for (range = 0; range < DRAM_RANGES; range++) {
  1265. if (!dram_rw(pvt, range))
  1266. continue;
  1267. if ((get_dram_base(pvt, range) <= sys_addr) &&
  1268. (get_dram_limit(pvt, range) >= sys_addr)) {
  1269. cs_found = f1x_match_to_this_node(pvt, range,
  1270. sys_addr, chan_sel);
  1271. if (cs_found >= 0)
  1272. break;
  1273. }
  1274. }
  1275. return cs_found;
  1276. }
  1277. /*
  1278. * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
  1279. * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
  1280. *
  1281. * The @sys_addr is usually an error address received from the hardware
  1282. * (MCX_ADDR).
  1283. */
  1284. static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  1285. struct err_info *err)
  1286. {
  1287. struct amd64_pvt *pvt = mci->pvt_info;
  1288. error_address_to_page_and_offset(sys_addr, err);
  1289. err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
  1290. if (err->csrow < 0) {
  1291. err->err_code = ERR_CSROW;
  1292. return;
  1293. }
  1294. /*
  1295. * We need the syndromes for channel detection only when we're
  1296. * ganged. Otherwise @chan should already contain the channel at
  1297. * this point.
  1298. */
  1299. if (dct_ganging_enabled(pvt))
  1300. err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
  1301. }
  1302. /*
  1303. * debug routine to display the memory sizes of all logical DIMMs and its
  1304. * CSROWs
  1305. */
  1306. static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
  1307. {
  1308. int dimm, size0, size1;
  1309. u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
  1310. u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
  1311. if (boot_cpu_data.x86 == 0xf) {
  1312. /* K8 families < revF not supported yet */
  1313. if (pvt->ext_model < K8_REV_F)
  1314. return;
  1315. else
  1316. WARN_ON(ctrl != 0);
  1317. }
  1318. dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
  1319. dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
  1320. : pvt->csels[0].csbases;
  1321. edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
  1322. ctrl, dbam);
  1323. edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
  1324. /* Dump memory sizes for DIMM and its CSROWs */
  1325. for (dimm = 0; dimm < 4; dimm++) {
  1326. size0 = 0;
  1327. if (dcsb[dimm*2] & DCSB_CS_ENABLE)
  1328. size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1329. DBAM_DIMM(dimm, dbam));
  1330. size1 = 0;
  1331. if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
  1332. size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1333. DBAM_DIMM(dimm, dbam));
  1334. amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
  1335. dimm * 2, size0,
  1336. dimm * 2 + 1, size1);
  1337. }
  1338. }
  1339. static struct amd64_family_type amd64_family_types[] = {
  1340. [K8_CPUS] = {
  1341. .ctl_name = "K8",
  1342. .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1343. .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
  1344. .ops = {
  1345. .early_channel_count = k8_early_channel_count,
  1346. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1347. .dbam_to_cs = k8_dbam_to_chip_select,
  1348. .read_dct_pci_cfg = k8_read_dct_pci_cfg,
  1349. }
  1350. },
  1351. [F10_CPUS] = {
  1352. .ctl_name = "F10h",
  1353. .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1354. .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
  1355. .ops = {
  1356. .early_channel_count = f1x_early_channel_count,
  1357. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1358. .dbam_to_cs = f10_dbam_to_chip_select,
  1359. .read_dct_pci_cfg = f10_read_dct_pci_cfg,
  1360. }
  1361. },
  1362. [F15_CPUS] = {
  1363. .ctl_name = "F15h",
  1364. .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
  1365. .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
  1366. .ops = {
  1367. .early_channel_count = f1x_early_channel_count,
  1368. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1369. .dbam_to_cs = f15_dbam_to_chip_select,
  1370. .read_dct_pci_cfg = f15_read_dct_pci_cfg,
  1371. }
  1372. },
  1373. };
  1374. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  1375. unsigned int device,
  1376. struct pci_dev *related)
  1377. {
  1378. struct pci_dev *dev = NULL;
  1379. dev = pci_get_device(vendor, device, dev);
  1380. while (dev) {
  1381. if ((dev->bus->number == related->bus->number) &&
  1382. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  1383. break;
  1384. dev = pci_get_device(vendor, device, dev);
  1385. }
  1386. return dev;
  1387. }
  1388. /*
  1389. * These are tables of eigenvectors (one per line) which can be used for the
  1390. * construction of the syndrome tables. The modified syndrome search algorithm
  1391. * uses those to find the symbol in error and thus the DIMM.
  1392. *
  1393. * Algorithm courtesy of Ross LaFetra from AMD.
  1394. */
  1395. static u16 x4_vectors[] = {
  1396. 0x2f57, 0x1afe, 0x66cc, 0xdd88,
  1397. 0x11eb, 0x3396, 0x7f4c, 0xeac8,
  1398. 0x0001, 0x0002, 0x0004, 0x0008,
  1399. 0x1013, 0x3032, 0x4044, 0x8088,
  1400. 0x106b, 0x30d6, 0x70fc, 0xe0a8,
  1401. 0x4857, 0xc4fe, 0x13cc, 0x3288,
  1402. 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
  1403. 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
  1404. 0x15c1, 0x2a42, 0x89ac, 0x4758,
  1405. 0x2b03, 0x1602, 0x4f0c, 0xca08,
  1406. 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
  1407. 0x8ba7, 0x465e, 0x244c, 0x1cc8,
  1408. 0x2b87, 0x164e, 0x642c, 0xdc18,
  1409. 0x40b9, 0x80de, 0x1094, 0x20e8,
  1410. 0x27db, 0x1eb6, 0x9dac, 0x7b58,
  1411. 0x11c1, 0x2242, 0x84ac, 0x4c58,
  1412. 0x1be5, 0x2d7a, 0x5e34, 0xa718,
  1413. 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
  1414. 0x4c97, 0xc87e, 0x11fc, 0x33a8,
  1415. 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
  1416. 0x16b3, 0x3d62, 0x4f34, 0x8518,
  1417. 0x1e2f, 0x391a, 0x5cac, 0xf858,
  1418. 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
  1419. 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
  1420. 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
  1421. 0x4397, 0xc27e, 0x17fc, 0x3ea8,
  1422. 0x1617, 0x3d3e, 0x6464, 0xb8b8,
  1423. 0x23ff, 0x12aa, 0xab6c, 0x56d8,
  1424. 0x2dfb, 0x1ba6, 0x913c, 0x7328,
  1425. 0x185d, 0x2ca6, 0x7914, 0x9e28,
  1426. 0x171b, 0x3e36, 0x7d7c, 0xebe8,
  1427. 0x4199, 0x82ee, 0x19f4, 0x2e58,
  1428. 0x4807, 0xc40e, 0x130c, 0x3208,
  1429. 0x1905, 0x2e0a, 0x5804, 0xac08,
  1430. 0x213f, 0x132a, 0xadfc, 0x5ba8,
  1431. 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
  1432. };
  1433. static u16 x8_vectors[] = {
  1434. 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
  1435. 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
  1436. 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
  1437. 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
  1438. 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
  1439. 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
  1440. 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
  1441. 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
  1442. 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
  1443. 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
  1444. 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
  1445. 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
  1446. 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
  1447. 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
  1448. 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
  1449. 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
  1450. 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
  1451. 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
  1452. 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
  1453. };
  1454. static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
  1455. unsigned v_dim)
  1456. {
  1457. unsigned int i, err_sym;
  1458. for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
  1459. u16 s = syndrome;
  1460. unsigned v_idx = err_sym * v_dim;
  1461. unsigned v_end = (err_sym + 1) * v_dim;
  1462. /* walk over all 16 bits of the syndrome */
  1463. for (i = 1; i < (1U << 16); i <<= 1) {
  1464. /* if bit is set in that eigenvector... */
  1465. if (v_idx < v_end && vectors[v_idx] & i) {
  1466. u16 ev_comp = vectors[v_idx++];
  1467. /* ... and bit set in the modified syndrome, */
  1468. if (s & i) {
  1469. /* remove it. */
  1470. s ^= ev_comp;
  1471. if (!s)
  1472. return err_sym;
  1473. }
  1474. } else if (s & i)
  1475. /* can't get to zero, move to next symbol */
  1476. break;
  1477. }
  1478. }
  1479. edac_dbg(0, "syndrome(%x) not found\n", syndrome);
  1480. return -1;
  1481. }
  1482. static int map_err_sym_to_channel(int err_sym, int sym_size)
  1483. {
  1484. if (sym_size == 4)
  1485. switch (err_sym) {
  1486. case 0x20:
  1487. case 0x21:
  1488. return 0;
  1489. break;
  1490. case 0x22:
  1491. case 0x23:
  1492. return 1;
  1493. break;
  1494. default:
  1495. return err_sym >> 4;
  1496. break;
  1497. }
  1498. /* x8 symbols */
  1499. else
  1500. switch (err_sym) {
  1501. /* imaginary bits not in a DIMM */
  1502. case 0x10:
  1503. WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
  1504. err_sym);
  1505. return -1;
  1506. break;
  1507. case 0x11:
  1508. return 0;
  1509. break;
  1510. case 0x12:
  1511. return 1;
  1512. break;
  1513. default:
  1514. return err_sym >> 3;
  1515. break;
  1516. }
  1517. return -1;
  1518. }
  1519. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
  1520. {
  1521. struct amd64_pvt *pvt = mci->pvt_info;
  1522. int err_sym = -1;
  1523. if (pvt->ecc_sym_sz == 8)
  1524. err_sym = decode_syndrome(syndrome, x8_vectors,
  1525. ARRAY_SIZE(x8_vectors),
  1526. pvt->ecc_sym_sz);
  1527. else if (pvt->ecc_sym_sz == 4)
  1528. err_sym = decode_syndrome(syndrome, x4_vectors,
  1529. ARRAY_SIZE(x4_vectors),
  1530. pvt->ecc_sym_sz);
  1531. else {
  1532. amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
  1533. return err_sym;
  1534. }
  1535. return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
  1536. }
  1537. static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
  1538. u8 ecc_type)
  1539. {
  1540. enum hw_event_mc_err_type err_type;
  1541. const char *string;
  1542. if (ecc_type == 2)
  1543. err_type = HW_EVENT_ERR_CORRECTED;
  1544. else if (ecc_type == 1)
  1545. err_type = HW_EVENT_ERR_UNCORRECTED;
  1546. else {
  1547. WARN(1, "Something is rotten in the state of Denmark.\n");
  1548. return;
  1549. }
  1550. switch (err->err_code) {
  1551. case DECODE_OK:
  1552. string = "";
  1553. break;
  1554. case ERR_NODE:
  1555. string = "Failed to map error addr to a node";
  1556. break;
  1557. case ERR_CSROW:
  1558. string = "Failed to map error addr to a csrow";
  1559. break;
  1560. case ERR_CHANNEL:
  1561. string = "unknown syndrome - possible error reporting race";
  1562. break;
  1563. default:
  1564. string = "WTF error";
  1565. break;
  1566. }
  1567. edac_mc_handle_error(err_type, mci, 1,
  1568. err->page, err->offset, err->syndrome,
  1569. err->csrow, err->channel, -1,
  1570. string, "");
  1571. }
  1572. static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
  1573. struct mce *m)
  1574. {
  1575. struct amd64_pvt *pvt = mci->pvt_info;
  1576. u8 ecc_type = (m->status >> 45) & 0x3;
  1577. u8 xec = XEC(m->status, 0x1f);
  1578. u16 ec = EC(m->status);
  1579. u64 sys_addr;
  1580. struct err_info err;
  1581. /* Bail out early if this was an 'observed' error */
  1582. if (PP(ec) == NBSL_PP_OBS)
  1583. return;
  1584. /* Do only ECC errors */
  1585. if (xec && xec != F10_NBSL_EXT_ERR_ECC)
  1586. return;
  1587. memset(&err, 0, sizeof(err));
  1588. sys_addr = get_error_address(m);
  1589. if (ecc_type == 2)
  1590. err.syndrome = extract_syndrome(m->status);
  1591. pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
  1592. __log_bus_error(mci, &err, ecc_type);
  1593. }
  1594. void amd64_decode_bus_error(int node_id, struct mce *m)
  1595. {
  1596. __amd64_decode_bus_error(mcis[node_id], m);
  1597. }
  1598. /*
  1599. * Use pvt->F2 which contains the F2 CPU PCI device to get the related
  1600. * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
  1601. */
  1602. static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
  1603. {
  1604. /* Reserve the ADDRESS MAP Device */
  1605. pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
  1606. if (!pvt->F1) {
  1607. amd64_err("error address map device not found: "
  1608. "vendor %x device 0x%x (broken BIOS?)\n",
  1609. PCI_VENDOR_ID_AMD, f1_id);
  1610. return -ENODEV;
  1611. }
  1612. /* Reserve the MISC Device */
  1613. pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
  1614. if (!pvt->F3) {
  1615. pci_dev_put(pvt->F1);
  1616. pvt->F1 = NULL;
  1617. amd64_err("error F3 device not found: "
  1618. "vendor %x device 0x%x (broken BIOS?)\n",
  1619. PCI_VENDOR_ID_AMD, f3_id);
  1620. return -ENODEV;
  1621. }
  1622. edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
  1623. edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
  1624. edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
  1625. return 0;
  1626. }
  1627. static void free_mc_sibling_devs(struct amd64_pvt *pvt)
  1628. {
  1629. pci_dev_put(pvt->F1);
  1630. pci_dev_put(pvt->F3);
  1631. }
  1632. /*
  1633. * Retrieve the hardware registers of the memory controller (this includes the
  1634. * 'Address Map' and 'Misc' device regs)
  1635. */
  1636. static void read_mc_regs(struct amd64_pvt *pvt)
  1637. {
  1638. struct cpuinfo_x86 *c = &boot_cpu_data;
  1639. u64 msr_val;
  1640. u32 tmp;
  1641. unsigned range;
  1642. /*
  1643. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  1644. * those are Read-As-Zero
  1645. */
  1646. rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
  1647. edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
  1648. /* check first whether TOP_MEM2 is enabled */
  1649. rdmsrl(MSR_K8_SYSCFG, msr_val);
  1650. if (msr_val & (1U << 21)) {
  1651. rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
  1652. edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
  1653. } else
  1654. edac_dbg(0, " TOP_MEM2 disabled\n");
  1655. amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
  1656. read_dram_ctl_register(pvt);
  1657. for (range = 0; range < DRAM_RANGES; range++) {
  1658. u8 rw;
  1659. /* read settings for this DRAM range */
  1660. read_dram_base_limit_regs(pvt, range);
  1661. rw = dram_rw(pvt, range);
  1662. if (!rw)
  1663. continue;
  1664. edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
  1665. range,
  1666. get_dram_base(pvt, range),
  1667. get_dram_limit(pvt, range));
  1668. edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
  1669. dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
  1670. (rw & 0x1) ? "R" : "-",
  1671. (rw & 0x2) ? "W" : "-",
  1672. dram_intlv_sel(pvt, range),
  1673. dram_dst_node(pvt, range));
  1674. }
  1675. read_dct_base_mask(pvt);
  1676. amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
  1677. amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
  1678. amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
  1679. amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
  1680. amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
  1681. if (!dct_ganging_enabled(pvt)) {
  1682. amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
  1683. amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
  1684. }
  1685. pvt->ecc_sym_sz = 4;
  1686. if (c->x86 >= 0x10) {
  1687. amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
  1688. amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
  1689. /* F10h, revD and later can do x8 ECC too */
  1690. if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
  1691. pvt->ecc_sym_sz = 8;
  1692. }
  1693. dump_misc_regs(pvt);
  1694. }
  1695. /*
  1696. * NOTE: CPU Revision Dependent code
  1697. *
  1698. * Input:
  1699. * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
  1700. * k8 private pointer to -->
  1701. * DRAM Bank Address mapping register
  1702. * node_id
  1703. * DCL register where dual_channel_active is
  1704. *
  1705. * The DBAM register consists of 4 sets of 4 bits each definitions:
  1706. *
  1707. * Bits: CSROWs
  1708. * 0-3 CSROWs 0 and 1
  1709. * 4-7 CSROWs 2 and 3
  1710. * 8-11 CSROWs 4 and 5
  1711. * 12-15 CSROWs 6 and 7
  1712. *
  1713. * Values range from: 0 to 15
  1714. * The meaning of the values depends on CPU revision and dual-channel state,
  1715. * see relevant BKDG more info.
  1716. *
  1717. * The memory controller provides for total of only 8 CSROWs in its current
  1718. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  1719. * single channel or two (2) DIMMs in dual channel mode.
  1720. *
  1721. * The following code logic collapses the various tables for CSROW based on CPU
  1722. * revision.
  1723. *
  1724. * Returns:
  1725. * The number of PAGE_SIZE pages on the specified CSROW number it
  1726. * encompasses
  1727. *
  1728. */
  1729. static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
  1730. {
  1731. u32 cs_mode, nr_pages;
  1732. u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
  1733. /*
  1734. * The math on this doesn't look right on the surface because x/2*4 can
  1735. * be simplified to x*2 but this expression makes use of the fact that
  1736. * it is integral math where 1/2=0. This intermediate value becomes the
  1737. * number of bits to shift the DBAM register to extract the proper CSROW
  1738. * field.
  1739. */
  1740. cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
  1741. nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
  1742. edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
  1743. csrow_nr, dct, cs_mode);
  1744. edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
  1745. return nr_pages;
  1746. }
  1747. /*
  1748. * Initialize the array of csrow attribute instances, based on the values
  1749. * from pci config hardware registers.
  1750. */
  1751. static int init_csrows(struct mem_ctl_info *mci)
  1752. {
  1753. struct amd64_pvt *pvt = mci->pvt_info;
  1754. struct csrow_info *csrow;
  1755. struct dimm_info *dimm;
  1756. enum edac_type edac_mode;
  1757. enum mem_type mtype;
  1758. int i, j, empty = 1;
  1759. int nr_pages = 0;
  1760. u32 val;
  1761. amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
  1762. pvt->nbcfg = val;
  1763. edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
  1764. pvt->mc_node_id, val,
  1765. !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
  1766. /*
  1767. * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
  1768. */
  1769. for_each_chip_select(i, 0, pvt) {
  1770. bool row_dct0 = !!csrow_enabled(i, 0, pvt);
  1771. bool row_dct1 = false;
  1772. if (boot_cpu_data.x86 != 0xf)
  1773. row_dct1 = !!csrow_enabled(i, 1, pvt);
  1774. if (!row_dct0 && !row_dct1)
  1775. continue;
  1776. csrow = mci->csrows[i];
  1777. empty = 0;
  1778. edac_dbg(1, "MC node: %d, csrow: %d\n",
  1779. pvt->mc_node_id, i);
  1780. if (row_dct0)
  1781. nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
  1782. /* K8 has only one DCT */
  1783. if (boot_cpu_data.x86 != 0xf && row_dct1)
  1784. nr_pages += amd64_csrow_nr_pages(pvt, 1, i);
  1785. mtype = amd64_determine_memory_type(pvt, i);
  1786. edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
  1787. /*
  1788. * determine whether CHIPKILL or JUST ECC or NO ECC is operating
  1789. */
  1790. if (pvt->nbcfg & NBCFG_ECC_ENABLE)
  1791. edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
  1792. EDAC_S4ECD4ED : EDAC_SECDED;
  1793. else
  1794. edac_mode = EDAC_NONE;
  1795. for (j = 0; j < pvt->channel_count; j++) {
  1796. dimm = csrow->channels[j]->dimm;
  1797. dimm->mtype = mtype;
  1798. dimm->edac_mode = edac_mode;
  1799. dimm->nr_pages = nr_pages;
  1800. }
  1801. csrow->nr_pages = nr_pages;
  1802. }
  1803. return empty;
  1804. }
  1805. /* get all cores on this DCT */
  1806. static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
  1807. {
  1808. int cpu;
  1809. for_each_online_cpu(cpu)
  1810. if (amd_get_nb_id(cpu) == nid)
  1811. cpumask_set_cpu(cpu, mask);
  1812. }
  1813. /* check MCG_CTL on all the cpus on this node */
  1814. static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
  1815. {
  1816. cpumask_var_t mask;
  1817. int cpu, nbe;
  1818. bool ret = false;
  1819. if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
  1820. amd64_warn("%s: Error allocating mask\n", __func__);
  1821. return false;
  1822. }
  1823. get_cpus_on_this_dct_cpumask(mask, nid);
  1824. rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
  1825. for_each_cpu(cpu, mask) {
  1826. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1827. nbe = reg->l & MSR_MCGCTL_NBE;
  1828. edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  1829. cpu, reg->q,
  1830. (nbe ? "enabled" : "disabled"));
  1831. if (!nbe)
  1832. goto out;
  1833. }
  1834. ret = true;
  1835. out:
  1836. free_cpumask_var(mask);
  1837. return ret;
  1838. }
  1839. static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
  1840. {
  1841. cpumask_var_t cmask;
  1842. int cpu;
  1843. if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
  1844. amd64_warn("%s: error allocating mask\n", __func__);
  1845. return false;
  1846. }
  1847. get_cpus_on_this_dct_cpumask(cmask, nid);
  1848. rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1849. for_each_cpu(cpu, cmask) {
  1850. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1851. if (on) {
  1852. if (reg->l & MSR_MCGCTL_NBE)
  1853. s->flags.nb_mce_enable = 1;
  1854. reg->l |= MSR_MCGCTL_NBE;
  1855. } else {
  1856. /*
  1857. * Turn off NB MCE reporting only when it was off before
  1858. */
  1859. if (!s->flags.nb_mce_enable)
  1860. reg->l &= ~MSR_MCGCTL_NBE;
  1861. }
  1862. }
  1863. wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1864. free_cpumask_var(cmask);
  1865. return 0;
  1866. }
  1867. static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
  1868. struct pci_dev *F3)
  1869. {
  1870. bool ret = true;
  1871. u32 value, mask = 0x3; /* UECC/CECC enable */
  1872. if (toggle_ecc_err_reporting(s, nid, ON)) {
  1873. amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
  1874. return false;
  1875. }
  1876. amd64_read_pci_cfg(F3, NBCTL, &value);
  1877. s->old_nbctl = value & mask;
  1878. s->nbctl_valid = true;
  1879. value |= mask;
  1880. amd64_write_pci_cfg(F3, NBCTL, value);
  1881. amd64_read_pci_cfg(F3, NBCFG, &value);
  1882. edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  1883. nid, value, !!(value & NBCFG_ECC_ENABLE));
  1884. if (!(value & NBCFG_ECC_ENABLE)) {
  1885. amd64_warn("DRAM ECC disabled on this node, enabling...\n");
  1886. s->flags.nb_ecc_prev = 0;
  1887. /* Attempt to turn on DRAM ECC Enable */
  1888. value |= NBCFG_ECC_ENABLE;
  1889. amd64_write_pci_cfg(F3, NBCFG, value);
  1890. amd64_read_pci_cfg(F3, NBCFG, &value);
  1891. if (!(value & NBCFG_ECC_ENABLE)) {
  1892. amd64_warn("Hardware rejected DRAM ECC enable,"
  1893. "check memory DIMM configuration.\n");
  1894. ret = false;
  1895. } else {
  1896. amd64_info("Hardware accepted DRAM ECC Enable\n");
  1897. }
  1898. } else {
  1899. s->flags.nb_ecc_prev = 1;
  1900. }
  1901. edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  1902. nid, value, !!(value & NBCFG_ECC_ENABLE));
  1903. return ret;
  1904. }
  1905. static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
  1906. struct pci_dev *F3)
  1907. {
  1908. u32 value, mask = 0x3; /* UECC/CECC enable */
  1909. if (!s->nbctl_valid)
  1910. return;
  1911. amd64_read_pci_cfg(F3, NBCTL, &value);
  1912. value &= ~mask;
  1913. value |= s->old_nbctl;
  1914. amd64_write_pci_cfg(F3, NBCTL, value);
  1915. /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
  1916. if (!s->flags.nb_ecc_prev) {
  1917. amd64_read_pci_cfg(F3, NBCFG, &value);
  1918. value &= ~NBCFG_ECC_ENABLE;
  1919. amd64_write_pci_cfg(F3, NBCFG, value);
  1920. }
  1921. /* restore the NB Enable MCGCTL bit */
  1922. if (toggle_ecc_err_reporting(s, nid, OFF))
  1923. amd64_warn("Error restoring NB MCGCTL settings!\n");
  1924. }
  1925. /*
  1926. * EDAC requires that the BIOS have ECC enabled before
  1927. * taking over the processing of ECC errors. A command line
  1928. * option allows to force-enable hardware ECC later in
  1929. * enable_ecc_error_reporting().
  1930. */
  1931. static const char *ecc_msg =
  1932. "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
  1933. " Either enable ECC checking or force module loading by setting "
  1934. "'ecc_enable_override'.\n"
  1935. " (Note that use of the override may cause unknown side effects.)\n";
  1936. static bool ecc_enabled(struct pci_dev *F3, u8 nid)
  1937. {
  1938. u32 value;
  1939. u8 ecc_en = 0;
  1940. bool nb_mce_en = false;
  1941. amd64_read_pci_cfg(F3, NBCFG, &value);
  1942. ecc_en = !!(value & NBCFG_ECC_ENABLE);
  1943. amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
  1944. nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
  1945. if (!nb_mce_en)
  1946. amd64_notice("NB MCE bank disabled, set MSR "
  1947. "0x%08x[4] on node %d to enable.\n",
  1948. MSR_IA32_MCG_CTL, nid);
  1949. if (!ecc_en || !nb_mce_en) {
  1950. amd64_notice("%s", ecc_msg);
  1951. return false;
  1952. }
  1953. return true;
  1954. }
  1955. static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
  1956. {
  1957. int rc;
  1958. rc = amd64_create_sysfs_dbg_files(mci);
  1959. if (rc < 0)
  1960. return rc;
  1961. if (boot_cpu_data.x86 >= 0x10) {
  1962. rc = amd64_create_sysfs_inject_files(mci);
  1963. if (rc < 0)
  1964. return rc;
  1965. }
  1966. return 0;
  1967. }
  1968. static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
  1969. {
  1970. amd64_remove_sysfs_dbg_files(mci);
  1971. if (boot_cpu_data.x86 >= 0x10)
  1972. amd64_remove_sysfs_inject_files(mci);
  1973. }
  1974. static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
  1975. struct amd64_family_type *fam)
  1976. {
  1977. struct amd64_pvt *pvt = mci->pvt_info;
  1978. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  1979. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  1980. if (pvt->nbcap & NBCAP_SECDED)
  1981. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  1982. if (pvt->nbcap & NBCAP_CHIPKILL)
  1983. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  1984. mci->edac_cap = amd64_determine_edac_cap(pvt);
  1985. mci->mod_name = EDAC_MOD_STR;
  1986. mci->mod_ver = EDAC_AMD64_VERSION;
  1987. mci->ctl_name = fam->ctl_name;
  1988. mci->dev_name = pci_name(pvt->F2);
  1989. mci->ctl_page_to_phys = NULL;
  1990. /* memory scrubber interface */
  1991. mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
  1992. mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
  1993. }
  1994. /*
  1995. * returns a pointer to the family descriptor on success, NULL otherwise.
  1996. */
  1997. static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
  1998. {
  1999. u8 fam = boot_cpu_data.x86;
  2000. struct amd64_family_type *fam_type = NULL;
  2001. switch (fam) {
  2002. case 0xf:
  2003. fam_type = &amd64_family_types[K8_CPUS];
  2004. pvt->ops = &amd64_family_types[K8_CPUS].ops;
  2005. break;
  2006. case 0x10:
  2007. fam_type = &amd64_family_types[F10_CPUS];
  2008. pvt->ops = &amd64_family_types[F10_CPUS].ops;
  2009. break;
  2010. case 0x15:
  2011. fam_type = &amd64_family_types[F15_CPUS];
  2012. pvt->ops = &amd64_family_types[F15_CPUS].ops;
  2013. break;
  2014. default:
  2015. amd64_err("Unsupported family!\n");
  2016. return NULL;
  2017. }
  2018. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  2019. amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
  2020. (fam == 0xf ?
  2021. (pvt->ext_model >= K8_REV_F ? "revF or later "
  2022. : "revE or earlier ")
  2023. : ""), pvt->mc_node_id);
  2024. return fam_type;
  2025. }
  2026. static int amd64_init_one_instance(struct pci_dev *F2)
  2027. {
  2028. struct amd64_pvt *pvt = NULL;
  2029. struct amd64_family_type *fam_type = NULL;
  2030. struct mem_ctl_info *mci = NULL;
  2031. struct edac_mc_layer layers[2];
  2032. int err = 0, ret;
  2033. u8 nid = get_node_id(F2);
  2034. ret = -ENOMEM;
  2035. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  2036. if (!pvt)
  2037. goto err_ret;
  2038. pvt->mc_node_id = nid;
  2039. pvt->F2 = F2;
  2040. ret = -EINVAL;
  2041. fam_type = amd64_per_family_init(pvt);
  2042. if (!fam_type)
  2043. goto err_free;
  2044. ret = -ENODEV;
  2045. err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
  2046. if (err)
  2047. goto err_free;
  2048. read_mc_regs(pvt);
  2049. /*
  2050. * We need to determine how many memory channels there are. Then use
  2051. * that information for calculating the size of the dynamic instance
  2052. * tables in the 'mci' structure.
  2053. */
  2054. ret = -EINVAL;
  2055. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  2056. if (pvt->channel_count < 0)
  2057. goto err_siblings;
  2058. ret = -ENOMEM;
  2059. layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
  2060. layers[0].size = pvt->csels[0].b_cnt;
  2061. layers[0].is_virt_csrow = true;
  2062. layers[1].type = EDAC_MC_LAYER_CHANNEL;
  2063. layers[1].size = pvt->channel_count;
  2064. layers[1].is_virt_csrow = false;
  2065. mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
  2066. if (!mci)
  2067. goto err_siblings;
  2068. mci->pvt_info = pvt;
  2069. mci->pdev = &pvt->F2->dev;
  2070. mci->csbased = 1;
  2071. setup_mci_misc_attrs(mci, fam_type);
  2072. if (init_csrows(mci))
  2073. mci->edac_cap = EDAC_FLAG_NONE;
  2074. ret = -ENODEV;
  2075. if (edac_mc_add_mc(mci)) {
  2076. edac_dbg(1, "failed edac_mc_add_mc()\n");
  2077. goto err_add_mc;
  2078. }
  2079. if (set_mc_sysfs_attrs(mci)) {
  2080. edac_dbg(1, "failed edac_mc_add_mc()\n");
  2081. goto err_add_sysfs;
  2082. }
  2083. /* register stuff with EDAC MCE */
  2084. if (report_gart_errors)
  2085. amd_report_gart_errors(true);
  2086. amd_register_ecc_decoder(amd64_decode_bus_error);
  2087. mcis[nid] = mci;
  2088. atomic_inc(&drv_instances);
  2089. return 0;
  2090. err_add_sysfs:
  2091. edac_mc_del_mc(mci->pdev);
  2092. err_add_mc:
  2093. edac_mc_free(mci);
  2094. err_siblings:
  2095. free_mc_sibling_devs(pvt);
  2096. err_free:
  2097. kfree(pvt);
  2098. err_ret:
  2099. return ret;
  2100. }
  2101. static int amd64_probe_one_instance(struct pci_dev *pdev,
  2102. const struct pci_device_id *mc_type)
  2103. {
  2104. u8 nid = get_node_id(pdev);
  2105. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2106. struct ecc_settings *s;
  2107. int ret = 0;
  2108. ret = pci_enable_device(pdev);
  2109. if (ret < 0) {
  2110. edac_dbg(0, "ret=%d\n", ret);
  2111. return -EIO;
  2112. }
  2113. ret = -ENOMEM;
  2114. s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
  2115. if (!s)
  2116. goto err_out;
  2117. ecc_stngs[nid] = s;
  2118. if (!ecc_enabled(F3, nid)) {
  2119. ret = -ENODEV;
  2120. if (!ecc_enable_override)
  2121. goto err_enable;
  2122. amd64_warn("Forcing ECC on!\n");
  2123. if (!enable_ecc_error_reporting(s, nid, F3))
  2124. goto err_enable;
  2125. }
  2126. ret = amd64_init_one_instance(pdev);
  2127. if (ret < 0) {
  2128. amd64_err("Error probing instance: %d\n", nid);
  2129. restore_ecc_error_reporting(s, nid, F3);
  2130. }
  2131. return ret;
  2132. err_enable:
  2133. kfree(s);
  2134. ecc_stngs[nid] = NULL;
  2135. err_out:
  2136. return ret;
  2137. }
  2138. static void amd64_remove_one_instance(struct pci_dev *pdev)
  2139. {
  2140. struct mem_ctl_info *mci;
  2141. struct amd64_pvt *pvt;
  2142. u8 nid = get_node_id(pdev);
  2143. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2144. struct ecc_settings *s = ecc_stngs[nid];
  2145. mci = find_mci_by_dev(&pdev->dev);
  2146. del_mc_sysfs_attrs(mci);
  2147. /* Remove from EDAC CORE tracking list */
  2148. mci = edac_mc_del_mc(&pdev->dev);
  2149. if (!mci)
  2150. return;
  2151. pvt = mci->pvt_info;
  2152. restore_ecc_error_reporting(s, nid, F3);
  2153. free_mc_sibling_devs(pvt);
  2154. /* unregister from EDAC MCE */
  2155. amd_report_gart_errors(false);
  2156. amd_unregister_ecc_decoder(amd64_decode_bus_error);
  2157. kfree(ecc_stngs[nid]);
  2158. ecc_stngs[nid] = NULL;
  2159. /* Free the EDAC CORE resources */
  2160. mci->pvt_info = NULL;
  2161. mcis[nid] = NULL;
  2162. kfree(pvt);
  2163. edac_mc_free(mci);
  2164. }
  2165. /*
  2166. * This table is part of the interface for loading drivers for PCI devices. The
  2167. * PCI core identifies what devices are on a system during boot, and then
  2168. * inquiry this table to see if this driver is for a given device found.
  2169. */
  2170. static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
  2171. {
  2172. .vendor = PCI_VENDOR_ID_AMD,
  2173. .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
  2174. .subvendor = PCI_ANY_ID,
  2175. .subdevice = PCI_ANY_ID,
  2176. .class = 0,
  2177. .class_mask = 0,
  2178. },
  2179. {
  2180. .vendor = PCI_VENDOR_ID_AMD,
  2181. .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
  2182. .subvendor = PCI_ANY_ID,
  2183. .subdevice = PCI_ANY_ID,
  2184. .class = 0,
  2185. .class_mask = 0,
  2186. },
  2187. {
  2188. .vendor = PCI_VENDOR_ID_AMD,
  2189. .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
  2190. .subvendor = PCI_ANY_ID,
  2191. .subdevice = PCI_ANY_ID,
  2192. .class = 0,
  2193. .class_mask = 0,
  2194. },
  2195. {0, }
  2196. };
  2197. MODULE_DEVICE_TABLE(pci, amd64_pci_table);
  2198. static struct pci_driver amd64_pci_driver = {
  2199. .name = EDAC_MOD_STR,
  2200. .probe = amd64_probe_one_instance,
  2201. .remove = amd64_remove_one_instance,
  2202. .id_table = amd64_pci_table,
  2203. };
  2204. static void setup_pci_device(void)
  2205. {
  2206. struct mem_ctl_info *mci;
  2207. struct amd64_pvt *pvt;
  2208. if (amd64_ctl_pci)
  2209. return;
  2210. mci = mcis[0];
  2211. if (mci) {
  2212. pvt = mci->pvt_info;
  2213. amd64_ctl_pci =
  2214. edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
  2215. if (!amd64_ctl_pci) {
  2216. pr_warning("%s(): Unable to create PCI control\n",
  2217. __func__);
  2218. pr_warning("%s(): PCI error report via EDAC not set\n",
  2219. __func__);
  2220. }
  2221. }
  2222. }
  2223. static int __init amd64_edac_init(void)
  2224. {
  2225. int err = -ENODEV;
  2226. printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
  2227. opstate_init();
  2228. if (amd_cache_northbridges() < 0)
  2229. goto err_ret;
  2230. err = -ENOMEM;
  2231. mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
  2232. ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
  2233. if (!(mcis && ecc_stngs))
  2234. goto err_free;
  2235. msrs = msrs_alloc();
  2236. if (!msrs)
  2237. goto err_free;
  2238. err = pci_register_driver(&amd64_pci_driver);
  2239. if (err)
  2240. goto err_pci;
  2241. err = -ENODEV;
  2242. if (!atomic_read(&drv_instances))
  2243. goto err_no_instances;
  2244. setup_pci_device();
  2245. return 0;
  2246. err_no_instances:
  2247. pci_unregister_driver(&amd64_pci_driver);
  2248. err_pci:
  2249. msrs_free(msrs);
  2250. msrs = NULL;
  2251. err_free:
  2252. kfree(mcis);
  2253. mcis = NULL;
  2254. kfree(ecc_stngs);
  2255. ecc_stngs = NULL;
  2256. err_ret:
  2257. return err;
  2258. }
  2259. static void __exit amd64_edac_exit(void)
  2260. {
  2261. if (amd64_ctl_pci)
  2262. edac_pci_release_generic_ctl(amd64_ctl_pci);
  2263. pci_unregister_driver(&amd64_pci_driver);
  2264. kfree(ecc_stngs);
  2265. ecc_stngs = NULL;
  2266. kfree(mcis);
  2267. mcis = NULL;
  2268. msrs_free(msrs);
  2269. msrs = NULL;
  2270. }
  2271. module_init(amd64_edac_init);
  2272. module_exit(amd64_edac_exit);
  2273. MODULE_LICENSE("GPL");
  2274. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2275. "Dave Peterson, Thayne Harbaugh");
  2276. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2277. EDAC_AMD64_VERSION);
  2278. module_param(edac_op_state, int, 0444);
  2279. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");