ste_dma40.c 86 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432
  1. /*
  2. * Copyright (C) Ericsson AB 2007-2008
  3. * Copyright (C) ST-Ericsson SA 2008-2010
  4. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  5. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  6. * License terms: GNU General Public License (GPL) version 2
  7. */
  8. #include <linux/dma-mapping.h>
  9. #include <linux/kernel.h>
  10. #include <linux/slab.h>
  11. #include <linux/export.h>
  12. #include <linux/dmaengine.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/clk.h>
  15. #include <linux/delay.h>
  16. #include <linux/pm.h>
  17. #include <linux/pm_runtime.h>
  18. #include <linux/err.h>
  19. #include <linux/amba/bus.h>
  20. #include <linux/regulator/consumer.h>
  21. #include <linux/platform_data/dma-ste-dma40.h>
  22. #include "dmaengine.h"
  23. #include "ste_dma40_ll.h"
  24. #define D40_NAME "dma40"
  25. #define D40_PHY_CHAN -1
  26. /* For masking out/in 2 bit channel positions */
  27. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  28. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  29. /* Maximum iterations taken before giving up suspending a channel */
  30. #define D40_SUSPEND_MAX_IT 500
  31. /* Milliseconds */
  32. #define DMA40_AUTOSUSPEND_DELAY 100
  33. /* Hardware requirement on LCLA alignment */
  34. #define LCLA_ALIGNMENT 0x40000
  35. /* Max number of links per event group */
  36. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  37. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  38. /* Attempts before giving up to trying to get pages that are aligned */
  39. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  40. /* Bit markings for allocation map */
  41. #define D40_ALLOC_FREE (1 << 31)
  42. #define D40_ALLOC_PHY (1 << 30)
  43. #define D40_ALLOC_LOG_FREE 0
  44. /**
  45. * enum 40_command - The different commands and/or statuses.
  46. *
  47. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  48. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  49. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  50. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  51. */
  52. enum d40_command {
  53. D40_DMA_STOP = 0,
  54. D40_DMA_RUN = 1,
  55. D40_DMA_SUSPEND_REQ = 2,
  56. D40_DMA_SUSPENDED = 3
  57. };
  58. /*
  59. * enum d40_events - The different Event Enables for the event lines.
  60. *
  61. * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
  62. * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
  63. * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
  64. * @D40_ROUND_EVENTLINE: Status check for event line.
  65. */
  66. enum d40_events {
  67. D40_DEACTIVATE_EVENTLINE = 0,
  68. D40_ACTIVATE_EVENTLINE = 1,
  69. D40_SUSPEND_REQ_EVENTLINE = 2,
  70. D40_ROUND_EVENTLINE = 3
  71. };
  72. /*
  73. * These are the registers that has to be saved and later restored
  74. * when the DMA hw is powered off.
  75. * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
  76. */
  77. static u32 d40_backup_regs[] = {
  78. D40_DREG_LCPA,
  79. D40_DREG_LCLA,
  80. D40_DREG_PRMSE,
  81. D40_DREG_PRMSO,
  82. D40_DREG_PRMOE,
  83. D40_DREG_PRMOO,
  84. };
  85. #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
  86. /* TODO: Check if all these registers have to be saved/restored on dma40 v3 */
  87. static u32 d40_backup_regs_v3[] = {
  88. D40_DREG_PSEG1,
  89. D40_DREG_PSEG2,
  90. D40_DREG_PSEG3,
  91. D40_DREG_PSEG4,
  92. D40_DREG_PCEG1,
  93. D40_DREG_PCEG2,
  94. D40_DREG_PCEG3,
  95. D40_DREG_PCEG4,
  96. D40_DREG_RSEG1,
  97. D40_DREG_RSEG2,
  98. D40_DREG_RSEG3,
  99. D40_DREG_RSEG4,
  100. D40_DREG_RCEG1,
  101. D40_DREG_RCEG2,
  102. D40_DREG_RCEG3,
  103. D40_DREG_RCEG4,
  104. };
  105. #define BACKUP_REGS_SZ_V3 ARRAY_SIZE(d40_backup_regs_v3)
  106. static u32 d40_backup_regs_chan[] = {
  107. D40_CHAN_REG_SSCFG,
  108. D40_CHAN_REG_SSELT,
  109. D40_CHAN_REG_SSPTR,
  110. D40_CHAN_REG_SSLNK,
  111. D40_CHAN_REG_SDCFG,
  112. D40_CHAN_REG_SDELT,
  113. D40_CHAN_REG_SDPTR,
  114. D40_CHAN_REG_SDLNK,
  115. };
  116. /**
  117. * struct d40_lli_pool - Structure for keeping LLIs in memory
  118. *
  119. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  120. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  121. * pre_alloc_lli is used.
  122. * @dma_addr: DMA address, if mapped
  123. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  124. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  125. * one buffer to one buffer.
  126. */
  127. struct d40_lli_pool {
  128. void *base;
  129. int size;
  130. dma_addr_t dma_addr;
  131. /* Space for dst and src, plus an extra for padding */
  132. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  133. };
  134. /**
  135. * struct d40_desc - A descriptor is one DMA job.
  136. *
  137. * @lli_phy: LLI settings for physical channel. Both src and dst=
  138. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  139. * lli_len equals one.
  140. * @lli_log: Same as above but for logical channels.
  141. * @lli_pool: The pool with two entries pre-allocated.
  142. * @lli_len: Number of llis of current descriptor.
  143. * @lli_current: Number of transferred llis.
  144. * @lcla_alloc: Number of LCLA entries allocated.
  145. * @txd: DMA engine struct. Used for among other things for communication
  146. * during a transfer.
  147. * @node: List entry.
  148. * @is_in_client_list: true if the client owns this descriptor.
  149. * @cyclic: true if this is a cyclic job
  150. *
  151. * This descriptor is used for both logical and physical transfers.
  152. */
  153. struct d40_desc {
  154. /* LLI physical */
  155. struct d40_phy_lli_bidir lli_phy;
  156. /* LLI logical */
  157. struct d40_log_lli_bidir lli_log;
  158. struct d40_lli_pool lli_pool;
  159. int lli_len;
  160. int lli_current;
  161. int lcla_alloc;
  162. struct dma_async_tx_descriptor txd;
  163. struct list_head node;
  164. bool is_in_client_list;
  165. bool cyclic;
  166. };
  167. /**
  168. * struct d40_lcla_pool - LCLA pool settings and data.
  169. *
  170. * @base: The virtual address of LCLA. 18 bit aligned.
  171. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  172. * This pointer is only there for clean-up on error.
  173. * @pages: The number of pages needed for all physical channels.
  174. * Only used later for clean-up on error
  175. * @lock: Lock to protect the content in this struct.
  176. * @alloc_map: big map over which LCLA entry is own by which job.
  177. */
  178. struct d40_lcla_pool {
  179. void *base;
  180. dma_addr_t dma_addr;
  181. void *base_unaligned;
  182. int pages;
  183. spinlock_t lock;
  184. struct d40_desc **alloc_map;
  185. };
  186. /**
  187. * struct d40_phy_res - struct for handling eventlines mapped to physical
  188. * channels.
  189. *
  190. * @lock: A lock protection this entity.
  191. * @reserved: True if used by secure world or otherwise.
  192. * @num: The physical channel number of this entity.
  193. * @allocated_src: Bit mapped to show which src event line's are mapped to
  194. * this physical channel. Can also be free or physically allocated.
  195. * @allocated_dst: Same as for src but is dst.
  196. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  197. * event line number.
  198. */
  199. struct d40_phy_res {
  200. spinlock_t lock;
  201. bool reserved;
  202. int num;
  203. u32 allocated_src;
  204. u32 allocated_dst;
  205. };
  206. struct d40_base;
  207. /**
  208. * struct d40_chan - Struct that describes a channel.
  209. *
  210. * @lock: A spinlock to protect this struct.
  211. * @log_num: The logical number, if any of this channel.
  212. * @pending_tx: The number of pending transfers. Used between interrupt handler
  213. * and tasklet.
  214. * @busy: Set to true when transfer is ongoing on this channel.
  215. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  216. * point is NULL, then the channel is not allocated.
  217. * @chan: DMA engine handle.
  218. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  219. * transfer and call client callback.
  220. * @client: Cliented owned descriptor list.
  221. * @pending_queue: Submitted jobs, to be issued by issue_pending()
  222. * @active: Active descriptor.
  223. * @queue: Queued jobs.
  224. * @prepare_queue: Prepared jobs.
  225. * @dma_cfg: The client configuration of this dma channel.
  226. * @configured: whether the dma_cfg configuration is valid
  227. * @base: Pointer to the device instance struct.
  228. * @src_def_cfg: Default cfg register setting for src.
  229. * @dst_def_cfg: Default cfg register setting for dst.
  230. * @log_def: Default logical channel settings.
  231. * @lcpa: Pointer to dst and src lcpa settings.
  232. * @runtime_addr: runtime configured address.
  233. * @runtime_direction: runtime configured direction.
  234. *
  235. * This struct can either "be" a logical or a physical channel.
  236. */
  237. struct d40_chan {
  238. spinlock_t lock;
  239. int log_num;
  240. int pending_tx;
  241. bool busy;
  242. struct d40_phy_res *phy_chan;
  243. struct dma_chan chan;
  244. struct tasklet_struct tasklet;
  245. struct list_head client;
  246. struct list_head pending_queue;
  247. struct list_head active;
  248. struct list_head queue;
  249. struct list_head prepare_queue;
  250. struct stedma40_chan_cfg dma_cfg;
  251. bool configured;
  252. struct d40_base *base;
  253. /* Default register configurations */
  254. u32 src_def_cfg;
  255. u32 dst_def_cfg;
  256. struct d40_def_lcsp log_def;
  257. struct d40_log_lli_full *lcpa;
  258. /* Runtime reconfiguration */
  259. dma_addr_t runtime_addr;
  260. enum dma_transfer_direction runtime_direction;
  261. };
  262. /**
  263. * struct d40_base - The big global struct, one for each probe'd instance.
  264. *
  265. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  266. * @execmd_lock: Lock for execute command usage since several channels share
  267. * the same physical register.
  268. * @dev: The device structure.
  269. * @virtbase: The virtual base address of the DMA's register.
  270. * @rev: silicon revision detected.
  271. * @clk: Pointer to the DMA clock structure.
  272. * @phy_start: Physical memory start of the DMA registers.
  273. * @phy_size: Size of the DMA register map.
  274. * @irq: The IRQ number.
  275. * @num_phy_chans: The number of physical channels. Read from HW. This
  276. * is the number of available channels for this driver, not counting "Secure
  277. * mode" allocated physical channels.
  278. * @num_log_chans: The number of logical channels. Calculated from
  279. * num_phy_chans.
  280. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  281. * @dma_slave: dma_device channels that can do only do slave transfers.
  282. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  283. * @phy_chans: Room for all possible physical channels in system.
  284. * @log_chans: Room for all possible logical channels in system.
  285. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  286. * to log_chans entries.
  287. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  288. * to phy_chans entries.
  289. * @plat_data: Pointer to provided platform_data which is the driver
  290. * configuration.
  291. * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
  292. * @phy_res: Vector containing all physical channels.
  293. * @lcla_pool: lcla pool settings and data.
  294. * @lcpa_base: The virtual mapped address of LCPA.
  295. * @phy_lcpa: The physical address of the LCPA.
  296. * @lcpa_size: The size of the LCPA area.
  297. * @desc_slab: cache for descriptors.
  298. * @reg_val_backup: Here the values of some hardware registers are stored
  299. * before the DMA is powered off. They are restored when the power is back on.
  300. * @reg_val_backup_v3: Backup of registers that only exits on dma40 v3 and
  301. * later.
  302. * @reg_val_backup_chan: Backup data for standard channel parameter registers.
  303. * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
  304. * @initialized: true if the dma has been initialized
  305. */
  306. struct d40_base {
  307. spinlock_t interrupt_lock;
  308. spinlock_t execmd_lock;
  309. struct device *dev;
  310. void __iomem *virtbase;
  311. u8 rev:4;
  312. struct clk *clk;
  313. phys_addr_t phy_start;
  314. resource_size_t phy_size;
  315. int irq;
  316. int num_phy_chans;
  317. int num_log_chans;
  318. struct dma_device dma_both;
  319. struct dma_device dma_slave;
  320. struct dma_device dma_memcpy;
  321. struct d40_chan *phy_chans;
  322. struct d40_chan *log_chans;
  323. struct d40_chan **lookup_log_chans;
  324. struct d40_chan **lookup_phy_chans;
  325. struct stedma40_platform_data *plat_data;
  326. struct regulator *lcpa_regulator;
  327. /* Physical half channels */
  328. struct d40_phy_res *phy_res;
  329. struct d40_lcla_pool lcla_pool;
  330. void *lcpa_base;
  331. dma_addr_t phy_lcpa;
  332. resource_size_t lcpa_size;
  333. struct kmem_cache *desc_slab;
  334. u32 reg_val_backup[BACKUP_REGS_SZ];
  335. u32 reg_val_backup_v3[BACKUP_REGS_SZ_V3];
  336. u32 *reg_val_backup_chan;
  337. u16 gcc_pwr_off_mask;
  338. bool initialized;
  339. };
  340. /**
  341. * struct d40_interrupt_lookup - lookup table for interrupt handler
  342. *
  343. * @src: Interrupt mask register.
  344. * @clr: Interrupt clear register.
  345. * @is_error: true if this is an error interrupt.
  346. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  347. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  348. */
  349. struct d40_interrupt_lookup {
  350. u32 src;
  351. u32 clr;
  352. bool is_error;
  353. int offset;
  354. };
  355. /**
  356. * struct d40_reg_val - simple lookup struct
  357. *
  358. * @reg: The register.
  359. * @val: The value that belongs to the register in reg.
  360. */
  361. struct d40_reg_val {
  362. unsigned int reg;
  363. unsigned int val;
  364. };
  365. static struct device *chan2dev(struct d40_chan *d40c)
  366. {
  367. return &d40c->chan.dev->device;
  368. }
  369. static bool chan_is_physical(struct d40_chan *chan)
  370. {
  371. return chan->log_num == D40_PHY_CHAN;
  372. }
  373. static bool chan_is_logical(struct d40_chan *chan)
  374. {
  375. return !chan_is_physical(chan);
  376. }
  377. static void __iomem *chan_base(struct d40_chan *chan)
  378. {
  379. return chan->base->virtbase + D40_DREG_PCBASE +
  380. chan->phy_chan->num * D40_DREG_PCDELTA;
  381. }
  382. #define d40_err(dev, format, arg...) \
  383. dev_err(dev, "[%s] " format, __func__, ## arg)
  384. #define chan_err(d40c, format, arg...) \
  385. d40_err(chan2dev(d40c), format, ## arg)
  386. static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
  387. int lli_len)
  388. {
  389. bool is_log = chan_is_logical(d40c);
  390. u32 align;
  391. void *base;
  392. if (is_log)
  393. align = sizeof(struct d40_log_lli);
  394. else
  395. align = sizeof(struct d40_phy_lli);
  396. if (lli_len == 1) {
  397. base = d40d->lli_pool.pre_alloc_lli;
  398. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  399. d40d->lli_pool.base = NULL;
  400. } else {
  401. d40d->lli_pool.size = lli_len * 2 * align;
  402. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  403. d40d->lli_pool.base = base;
  404. if (d40d->lli_pool.base == NULL)
  405. return -ENOMEM;
  406. }
  407. if (is_log) {
  408. d40d->lli_log.src = PTR_ALIGN(base, align);
  409. d40d->lli_log.dst = d40d->lli_log.src + lli_len;
  410. d40d->lli_pool.dma_addr = 0;
  411. } else {
  412. d40d->lli_phy.src = PTR_ALIGN(base, align);
  413. d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
  414. d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
  415. d40d->lli_phy.src,
  416. d40d->lli_pool.size,
  417. DMA_TO_DEVICE);
  418. if (dma_mapping_error(d40c->base->dev,
  419. d40d->lli_pool.dma_addr)) {
  420. kfree(d40d->lli_pool.base);
  421. d40d->lli_pool.base = NULL;
  422. d40d->lli_pool.dma_addr = 0;
  423. return -ENOMEM;
  424. }
  425. }
  426. return 0;
  427. }
  428. static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
  429. {
  430. if (d40d->lli_pool.dma_addr)
  431. dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
  432. d40d->lli_pool.size, DMA_TO_DEVICE);
  433. kfree(d40d->lli_pool.base);
  434. d40d->lli_pool.base = NULL;
  435. d40d->lli_pool.size = 0;
  436. d40d->lli_log.src = NULL;
  437. d40d->lli_log.dst = NULL;
  438. d40d->lli_phy.src = NULL;
  439. d40d->lli_phy.dst = NULL;
  440. }
  441. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  442. struct d40_desc *d40d)
  443. {
  444. unsigned long flags;
  445. int i;
  446. int ret = -EINVAL;
  447. int p;
  448. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  449. p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
  450. /*
  451. * Allocate both src and dst at the same time, therefore the half
  452. * start on 1 since 0 can't be used since zero is used as end marker.
  453. */
  454. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  455. if (!d40c->base->lcla_pool.alloc_map[p + i]) {
  456. d40c->base->lcla_pool.alloc_map[p + i] = d40d;
  457. d40d->lcla_alloc++;
  458. ret = i;
  459. break;
  460. }
  461. }
  462. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  463. return ret;
  464. }
  465. static int d40_lcla_free_all(struct d40_chan *d40c,
  466. struct d40_desc *d40d)
  467. {
  468. unsigned long flags;
  469. int i;
  470. int ret = -EINVAL;
  471. if (chan_is_physical(d40c))
  472. return 0;
  473. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  474. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  475. if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  476. D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
  477. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  478. D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
  479. d40d->lcla_alloc--;
  480. if (d40d->lcla_alloc == 0) {
  481. ret = 0;
  482. break;
  483. }
  484. }
  485. }
  486. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  487. return ret;
  488. }
  489. static void d40_desc_remove(struct d40_desc *d40d)
  490. {
  491. list_del(&d40d->node);
  492. }
  493. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  494. {
  495. struct d40_desc *desc = NULL;
  496. if (!list_empty(&d40c->client)) {
  497. struct d40_desc *d;
  498. struct d40_desc *_d;
  499. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  500. if (async_tx_test_ack(&d->txd)) {
  501. d40_desc_remove(d);
  502. desc = d;
  503. memset(desc, 0, sizeof(*desc));
  504. break;
  505. }
  506. }
  507. }
  508. if (!desc)
  509. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  510. if (desc)
  511. INIT_LIST_HEAD(&desc->node);
  512. return desc;
  513. }
  514. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  515. {
  516. d40_pool_lli_free(d40c, d40d);
  517. d40_lcla_free_all(d40c, d40d);
  518. kmem_cache_free(d40c->base->desc_slab, d40d);
  519. }
  520. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  521. {
  522. list_add_tail(&desc->node, &d40c->active);
  523. }
  524. static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
  525. {
  526. struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
  527. struct d40_phy_lli *lli_src = desc->lli_phy.src;
  528. void __iomem *base = chan_base(chan);
  529. writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
  530. writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
  531. writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
  532. writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
  533. writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
  534. writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
  535. writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
  536. writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
  537. }
  538. static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
  539. {
  540. struct d40_lcla_pool *pool = &chan->base->lcla_pool;
  541. struct d40_log_lli_bidir *lli = &desc->lli_log;
  542. int lli_current = desc->lli_current;
  543. int lli_len = desc->lli_len;
  544. bool cyclic = desc->cyclic;
  545. int curr_lcla = -EINVAL;
  546. int first_lcla = 0;
  547. bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
  548. bool linkback;
  549. /*
  550. * We may have partially running cyclic transfers, in case we did't get
  551. * enough LCLA entries.
  552. */
  553. linkback = cyclic && lli_current == 0;
  554. /*
  555. * For linkback, we need one LCLA even with only one link, because we
  556. * can't link back to the one in LCPA space
  557. */
  558. if (linkback || (lli_len - lli_current > 1)) {
  559. curr_lcla = d40_lcla_alloc_one(chan, desc);
  560. first_lcla = curr_lcla;
  561. }
  562. /*
  563. * For linkback, we normally load the LCPA in the loop since we need to
  564. * link it to the second LCLA and not the first. However, if we
  565. * couldn't even get a first LCLA, then we have to run in LCPA and
  566. * reload manually.
  567. */
  568. if (!linkback || curr_lcla == -EINVAL) {
  569. unsigned int flags = 0;
  570. if (curr_lcla == -EINVAL)
  571. flags |= LLI_TERM_INT;
  572. d40_log_lli_lcpa_write(chan->lcpa,
  573. &lli->dst[lli_current],
  574. &lli->src[lli_current],
  575. curr_lcla,
  576. flags);
  577. lli_current++;
  578. }
  579. if (curr_lcla < 0)
  580. goto out;
  581. for (; lli_current < lli_len; lli_current++) {
  582. unsigned int lcla_offset = chan->phy_chan->num * 1024 +
  583. 8 * curr_lcla * 2;
  584. struct d40_log_lli *lcla = pool->base + lcla_offset;
  585. unsigned int flags = 0;
  586. int next_lcla;
  587. if (lli_current + 1 < lli_len)
  588. next_lcla = d40_lcla_alloc_one(chan, desc);
  589. else
  590. next_lcla = linkback ? first_lcla : -EINVAL;
  591. if (cyclic || next_lcla == -EINVAL)
  592. flags |= LLI_TERM_INT;
  593. if (linkback && curr_lcla == first_lcla) {
  594. /* First link goes in both LCPA and LCLA */
  595. d40_log_lli_lcpa_write(chan->lcpa,
  596. &lli->dst[lli_current],
  597. &lli->src[lli_current],
  598. next_lcla, flags);
  599. }
  600. /*
  601. * One unused LCLA in the cyclic case if the very first
  602. * next_lcla fails...
  603. */
  604. d40_log_lli_lcla_write(lcla,
  605. &lli->dst[lli_current],
  606. &lli->src[lli_current],
  607. next_lcla, flags);
  608. /*
  609. * Cache maintenance is not needed if lcla is
  610. * mapped in esram
  611. */
  612. if (!use_esram_lcla) {
  613. dma_sync_single_range_for_device(chan->base->dev,
  614. pool->dma_addr, lcla_offset,
  615. 2 * sizeof(struct d40_log_lli),
  616. DMA_TO_DEVICE);
  617. }
  618. curr_lcla = next_lcla;
  619. if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
  620. lli_current++;
  621. break;
  622. }
  623. }
  624. out:
  625. desc->lli_current = lli_current;
  626. }
  627. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  628. {
  629. if (chan_is_physical(d40c)) {
  630. d40_phy_lli_load(d40c, d40d);
  631. d40d->lli_current = d40d->lli_len;
  632. } else
  633. d40_log_lli_to_lcxa(d40c, d40d);
  634. }
  635. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  636. {
  637. struct d40_desc *d;
  638. if (list_empty(&d40c->active))
  639. return NULL;
  640. d = list_first_entry(&d40c->active,
  641. struct d40_desc,
  642. node);
  643. return d;
  644. }
  645. /* remove desc from current queue and add it to the pending_queue */
  646. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  647. {
  648. d40_desc_remove(desc);
  649. desc->is_in_client_list = false;
  650. list_add_tail(&desc->node, &d40c->pending_queue);
  651. }
  652. static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
  653. {
  654. struct d40_desc *d;
  655. if (list_empty(&d40c->pending_queue))
  656. return NULL;
  657. d = list_first_entry(&d40c->pending_queue,
  658. struct d40_desc,
  659. node);
  660. return d;
  661. }
  662. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  663. {
  664. struct d40_desc *d;
  665. if (list_empty(&d40c->queue))
  666. return NULL;
  667. d = list_first_entry(&d40c->queue,
  668. struct d40_desc,
  669. node);
  670. return d;
  671. }
  672. static int d40_psize_2_burst_size(bool is_log, int psize)
  673. {
  674. if (is_log) {
  675. if (psize == STEDMA40_PSIZE_LOG_1)
  676. return 1;
  677. } else {
  678. if (psize == STEDMA40_PSIZE_PHY_1)
  679. return 1;
  680. }
  681. return 2 << psize;
  682. }
  683. /*
  684. * The dma only supports transmitting packages up to
  685. * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
  686. * dma elements required to send the entire sg list
  687. */
  688. static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
  689. {
  690. int dmalen;
  691. u32 max_w = max(data_width1, data_width2);
  692. u32 min_w = min(data_width1, data_width2);
  693. u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
  694. if (seg_max > STEDMA40_MAX_SEG_SIZE)
  695. seg_max -= (1 << max_w);
  696. if (!IS_ALIGNED(size, 1 << max_w))
  697. return -EINVAL;
  698. if (size <= seg_max)
  699. dmalen = 1;
  700. else {
  701. dmalen = size / seg_max;
  702. if (dmalen * seg_max < size)
  703. dmalen++;
  704. }
  705. return dmalen;
  706. }
  707. static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
  708. u32 data_width1, u32 data_width2)
  709. {
  710. struct scatterlist *sg;
  711. int i;
  712. int len = 0;
  713. int ret;
  714. for_each_sg(sgl, sg, sg_len, i) {
  715. ret = d40_size_2_dmalen(sg_dma_len(sg),
  716. data_width1, data_width2);
  717. if (ret < 0)
  718. return ret;
  719. len += ret;
  720. }
  721. return len;
  722. }
  723. #ifdef CONFIG_PM
  724. static void dma40_backup(void __iomem *baseaddr, u32 *backup,
  725. u32 *regaddr, int num, bool save)
  726. {
  727. int i;
  728. for (i = 0; i < num; i++) {
  729. void __iomem *addr = baseaddr + regaddr[i];
  730. if (save)
  731. backup[i] = readl_relaxed(addr);
  732. else
  733. writel_relaxed(backup[i], addr);
  734. }
  735. }
  736. static void d40_save_restore_registers(struct d40_base *base, bool save)
  737. {
  738. int i;
  739. /* Save/Restore channel specific registers */
  740. for (i = 0; i < base->num_phy_chans; i++) {
  741. void __iomem *addr;
  742. int idx;
  743. if (base->phy_res[i].reserved)
  744. continue;
  745. addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
  746. idx = i * ARRAY_SIZE(d40_backup_regs_chan);
  747. dma40_backup(addr, &base->reg_val_backup_chan[idx],
  748. d40_backup_regs_chan,
  749. ARRAY_SIZE(d40_backup_regs_chan),
  750. save);
  751. }
  752. /* Save/Restore global registers */
  753. dma40_backup(base->virtbase, base->reg_val_backup,
  754. d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
  755. save);
  756. /* Save/Restore registers only existing on dma40 v3 and later */
  757. if (base->rev >= 3)
  758. dma40_backup(base->virtbase, base->reg_val_backup_v3,
  759. d40_backup_regs_v3,
  760. ARRAY_SIZE(d40_backup_regs_v3),
  761. save);
  762. }
  763. #else
  764. static void d40_save_restore_registers(struct d40_base *base, bool save)
  765. {
  766. }
  767. #endif
  768. static int __d40_execute_command_phy(struct d40_chan *d40c,
  769. enum d40_command command)
  770. {
  771. u32 status;
  772. int i;
  773. void __iomem *active_reg;
  774. int ret = 0;
  775. unsigned long flags;
  776. u32 wmask;
  777. if (command == D40_DMA_STOP) {
  778. ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
  779. if (ret)
  780. return ret;
  781. }
  782. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  783. if (d40c->phy_chan->num % 2 == 0)
  784. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  785. else
  786. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  787. if (command == D40_DMA_SUSPEND_REQ) {
  788. status = (readl(active_reg) &
  789. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  790. D40_CHAN_POS(d40c->phy_chan->num);
  791. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  792. goto done;
  793. }
  794. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  795. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  796. active_reg);
  797. if (command == D40_DMA_SUSPEND_REQ) {
  798. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  799. status = (readl(active_reg) &
  800. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  801. D40_CHAN_POS(d40c->phy_chan->num);
  802. cpu_relax();
  803. /*
  804. * Reduce the number of bus accesses while
  805. * waiting for the DMA to suspend.
  806. */
  807. udelay(3);
  808. if (status == D40_DMA_STOP ||
  809. status == D40_DMA_SUSPENDED)
  810. break;
  811. }
  812. if (i == D40_SUSPEND_MAX_IT) {
  813. chan_err(d40c,
  814. "unable to suspend the chl %d (log: %d) status %x\n",
  815. d40c->phy_chan->num, d40c->log_num,
  816. status);
  817. dump_stack();
  818. ret = -EBUSY;
  819. }
  820. }
  821. done:
  822. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  823. return ret;
  824. }
  825. static void d40_term_all(struct d40_chan *d40c)
  826. {
  827. struct d40_desc *d40d;
  828. struct d40_desc *_d;
  829. /* Release active descriptors */
  830. while ((d40d = d40_first_active_get(d40c))) {
  831. d40_desc_remove(d40d);
  832. d40_desc_free(d40c, d40d);
  833. }
  834. /* Release queued descriptors waiting for transfer */
  835. while ((d40d = d40_first_queued(d40c))) {
  836. d40_desc_remove(d40d);
  837. d40_desc_free(d40c, d40d);
  838. }
  839. /* Release pending descriptors */
  840. while ((d40d = d40_first_pending(d40c))) {
  841. d40_desc_remove(d40d);
  842. d40_desc_free(d40c, d40d);
  843. }
  844. /* Release client owned descriptors */
  845. if (!list_empty(&d40c->client))
  846. list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
  847. d40_desc_remove(d40d);
  848. d40_desc_free(d40c, d40d);
  849. }
  850. /* Release descriptors in prepare queue */
  851. if (!list_empty(&d40c->prepare_queue))
  852. list_for_each_entry_safe(d40d, _d,
  853. &d40c->prepare_queue, node) {
  854. d40_desc_remove(d40d);
  855. d40_desc_free(d40c, d40d);
  856. }
  857. d40c->pending_tx = 0;
  858. }
  859. static void __d40_config_set_event(struct d40_chan *d40c,
  860. enum d40_events event_type, u32 event,
  861. int reg)
  862. {
  863. void __iomem *addr = chan_base(d40c) + reg;
  864. int tries;
  865. u32 status;
  866. switch (event_type) {
  867. case D40_DEACTIVATE_EVENTLINE:
  868. writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  869. | ~D40_EVENTLINE_MASK(event), addr);
  870. break;
  871. case D40_SUSPEND_REQ_EVENTLINE:
  872. status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
  873. D40_EVENTLINE_POS(event);
  874. if (status == D40_DEACTIVATE_EVENTLINE ||
  875. status == D40_SUSPEND_REQ_EVENTLINE)
  876. break;
  877. writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
  878. | ~D40_EVENTLINE_MASK(event), addr);
  879. for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
  880. status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
  881. D40_EVENTLINE_POS(event);
  882. cpu_relax();
  883. /*
  884. * Reduce the number of bus accesses while
  885. * waiting for the DMA to suspend.
  886. */
  887. udelay(3);
  888. if (status == D40_DEACTIVATE_EVENTLINE)
  889. break;
  890. }
  891. if (tries == D40_SUSPEND_MAX_IT) {
  892. chan_err(d40c,
  893. "unable to stop the event_line chl %d (log: %d)"
  894. "status %x\n", d40c->phy_chan->num,
  895. d40c->log_num, status);
  896. }
  897. break;
  898. case D40_ACTIVATE_EVENTLINE:
  899. /*
  900. * The hardware sometimes doesn't register the enable when src and dst
  901. * event lines are active on the same logical channel. Retry to ensure
  902. * it does. Usually only one retry is sufficient.
  903. */
  904. tries = 100;
  905. while (--tries) {
  906. writel((D40_ACTIVATE_EVENTLINE <<
  907. D40_EVENTLINE_POS(event)) |
  908. ~D40_EVENTLINE_MASK(event), addr);
  909. if (readl(addr) & D40_EVENTLINE_MASK(event))
  910. break;
  911. }
  912. if (tries != 99)
  913. dev_dbg(chan2dev(d40c),
  914. "[%s] workaround enable S%cLNK (%d tries)\n",
  915. __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
  916. 100 - tries);
  917. WARN_ON(!tries);
  918. break;
  919. case D40_ROUND_EVENTLINE:
  920. BUG();
  921. break;
  922. }
  923. }
  924. static void d40_config_set_event(struct d40_chan *d40c,
  925. enum d40_events event_type)
  926. {
  927. /* Enable event line connected to device (or memcpy) */
  928. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  929. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  930. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  931. __d40_config_set_event(d40c, event_type, event,
  932. D40_CHAN_REG_SSLNK);
  933. }
  934. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  935. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  936. __d40_config_set_event(d40c, event_type, event,
  937. D40_CHAN_REG_SDLNK);
  938. }
  939. }
  940. static u32 d40_chan_has_events(struct d40_chan *d40c)
  941. {
  942. void __iomem *chanbase = chan_base(d40c);
  943. u32 val;
  944. val = readl(chanbase + D40_CHAN_REG_SSLNK);
  945. val |= readl(chanbase + D40_CHAN_REG_SDLNK);
  946. return val;
  947. }
  948. static int
  949. __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
  950. {
  951. unsigned long flags;
  952. int ret = 0;
  953. u32 active_status;
  954. void __iomem *active_reg;
  955. if (d40c->phy_chan->num % 2 == 0)
  956. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  957. else
  958. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  959. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  960. switch (command) {
  961. case D40_DMA_STOP:
  962. case D40_DMA_SUSPEND_REQ:
  963. active_status = (readl(active_reg) &
  964. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  965. D40_CHAN_POS(d40c->phy_chan->num);
  966. if (active_status == D40_DMA_RUN)
  967. d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
  968. else
  969. d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
  970. if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
  971. ret = __d40_execute_command_phy(d40c, command);
  972. break;
  973. case D40_DMA_RUN:
  974. d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
  975. ret = __d40_execute_command_phy(d40c, command);
  976. break;
  977. case D40_DMA_SUSPENDED:
  978. BUG();
  979. break;
  980. }
  981. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  982. return ret;
  983. }
  984. static int d40_channel_execute_command(struct d40_chan *d40c,
  985. enum d40_command command)
  986. {
  987. if (chan_is_logical(d40c))
  988. return __d40_execute_command_log(d40c, command);
  989. else
  990. return __d40_execute_command_phy(d40c, command);
  991. }
  992. static u32 d40_get_prmo(struct d40_chan *d40c)
  993. {
  994. static const unsigned int phy_map[] = {
  995. [STEDMA40_PCHAN_BASIC_MODE]
  996. = D40_DREG_PRMO_PCHAN_BASIC,
  997. [STEDMA40_PCHAN_MODULO_MODE]
  998. = D40_DREG_PRMO_PCHAN_MODULO,
  999. [STEDMA40_PCHAN_DOUBLE_DST_MODE]
  1000. = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
  1001. };
  1002. static const unsigned int log_map[] = {
  1003. [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
  1004. = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
  1005. [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
  1006. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
  1007. [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
  1008. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
  1009. };
  1010. if (chan_is_physical(d40c))
  1011. return phy_map[d40c->dma_cfg.mode_opt];
  1012. else
  1013. return log_map[d40c->dma_cfg.mode_opt];
  1014. }
  1015. static void d40_config_write(struct d40_chan *d40c)
  1016. {
  1017. u32 addr_base;
  1018. u32 var;
  1019. /* Odd addresses are even addresses + 4 */
  1020. addr_base = (d40c->phy_chan->num % 2) * 4;
  1021. /* Setup channel mode to logical or physical */
  1022. var = ((u32)(chan_is_logical(d40c)) + 1) <<
  1023. D40_CHAN_POS(d40c->phy_chan->num);
  1024. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  1025. /* Setup operational mode option register */
  1026. var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
  1027. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  1028. if (chan_is_logical(d40c)) {
  1029. int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
  1030. & D40_SREG_ELEM_LOG_LIDX_MASK;
  1031. void __iomem *chanbase = chan_base(d40c);
  1032. /* Set default config for CFG reg */
  1033. writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
  1034. writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
  1035. /* Set LIDX for lcla */
  1036. writel(lidx, chanbase + D40_CHAN_REG_SSELT);
  1037. writel(lidx, chanbase + D40_CHAN_REG_SDELT);
  1038. /* Clear LNK which will be used by d40_chan_has_events() */
  1039. writel(0, chanbase + D40_CHAN_REG_SSLNK);
  1040. writel(0, chanbase + D40_CHAN_REG_SDLNK);
  1041. }
  1042. }
  1043. static u32 d40_residue(struct d40_chan *d40c)
  1044. {
  1045. u32 num_elt;
  1046. if (chan_is_logical(d40c))
  1047. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  1048. >> D40_MEM_LCSP2_ECNT_POS;
  1049. else {
  1050. u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
  1051. num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
  1052. >> D40_SREG_ELEM_PHY_ECNT_POS;
  1053. }
  1054. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  1055. }
  1056. static bool d40_tx_is_linked(struct d40_chan *d40c)
  1057. {
  1058. bool is_link;
  1059. if (chan_is_logical(d40c))
  1060. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  1061. else
  1062. is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
  1063. & D40_SREG_LNK_PHYS_LNK_MASK;
  1064. return is_link;
  1065. }
  1066. static int d40_pause(struct d40_chan *d40c)
  1067. {
  1068. int res = 0;
  1069. unsigned long flags;
  1070. if (!d40c->busy)
  1071. return 0;
  1072. pm_runtime_get_sync(d40c->base->dev);
  1073. spin_lock_irqsave(&d40c->lock, flags);
  1074. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1075. pm_runtime_mark_last_busy(d40c->base->dev);
  1076. pm_runtime_put_autosuspend(d40c->base->dev);
  1077. spin_unlock_irqrestore(&d40c->lock, flags);
  1078. return res;
  1079. }
  1080. static int d40_resume(struct d40_chan *d40c)
  1081. {
  1082. int res = 0;
  1083. unsigned long flags;
  1084. if (!d40c->busy)
  1085. return 0;
  1086. spin_lock_irqsave(&d40c->lock, flags);
  1087. pm_runtime_get_sync(d40c->base->dev);
  1088. /* If bytes left to transfer or linked tx resume job */
  1089. if (d40_residue(d40c) || d40_tx_is_linked(d40c))
  1090. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  1091. pm_runtime_mark_last_busy(d40c->base->dev);
  1092. pm_runtime_put_autosuspend(d40c->base->dev);
  1093. spin_unlock_irqrestore(&d40c->lock, flags);
  1094. return res;
  1095. }
  1096. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  1097. {
  1098. struct d40_chan *d40c = container_of(tx->chan,
  1099. struct d40_chan,
  1100. chan);
  1101. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  1102. unsigned long flags;
  1103. dma_cookie_t cookie;
  1104. spin_lock_irqsave(&d40c->lock, flags);
  1105. cookie = dma_cookie_assign(tx);
  1106. d40_desc_queue(d40c, d40d);
  1107. spin_unlock_irqrestore(&d40c->lock, flags);
  1108. return cookie;
  1109. }
  1110. static int d40_start(struct d40_chan *d40c)
  1111. {
  1112. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  1113. }
  1114. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  1115. {
  1116. struct d40_desc *d40d;
  1117. int err;
  1118. /* Start queued jobs, if any */
  1119. d40d = d40_first_queued(d40c);
  1120. if (d40d != NULL) {
  1121. if (!d40c->busy) {
  1122. d40c->busy = true;
  1123. pm_runtime_get_sync(d40c->base->dev);
  1124. }
  1125. /* Remove from queue */
  1126. d40_desc_remove(d40d);
  1127. /* Add to active queue */
  1128. d40_desc_submit(d40c, d40d);
  1129. /* Initiate DMA job */
  1130. d40_desc_load(d40c, d40d);
  1131. /* Start dma job */
  1132. err = d40_start(d40c);
  1133. if (err)
  1134. return NULL;
  1135. }
  1136. return d40d;
  1137. }
  1138. /* called from interrupt context */
  1139. static void dma_tc_handle(struct d40_chan *d40c)
  1140. {
  1141. struct d40_desc *d40d;
  1142. /* Get first active entry from list */
  1143. d40d = d40_first_active_get(d40c);
  1144. if (d40d == NULL)
  1145. return;
  1146. if (d40d->cyclic) {
  1147. /*
  1148. * If this was a paritially loaded list, we need to reloaded
  1149. * it, and only when the list is completed. We need to check
  1150. * for done because the interrupt will hit for every link, and
  1151. * not just the last one.
  1152. */
  1153. if (d40d->lli_current < d40d->lli_len
  1154. && !d40_tx_is_linked(d40c)
  1155. && !d40_residue(d40c)) {
  1156. d40_lcla_free_all(d40c, d40d);
  1157. d40_desc_load(d40c, d40d);
  1158. (void) d40_start(d40c);
  1159. if (d40d->lli_current == d40d->lli_len)
  1160. d40d->lli_current = 0;
  1161. }
  1162. } else {
  1163. d40_lcla_free_all(d40c, d40d);
  1164. if (d40d->lli_current < d40d->lli_len) {
  1165. d40_desc_load(d40c, d40d);
  1166. /* Start dma job */
  1167. (void) d40_start(d40c);
  1168. return;
  1169. }
  1170. if (d40_queue_start(d40c) == NULL)
  1171. d40c->busy = false;
  1172. pm_runtime_mark_last_busy(d40c->base->dev);
  1173. pm_runtime_put_autosuspend(d40c->base->dev);
  1174. }
  1175. d40c->pending_tx++;
  1176. tasklet_schedule(&d40c->tasklet);
  1177. }
  1178. static void dma_tasklet(unsigned long data)
  1179. {
  1180. struct d40_chan *d40c = (struct d40_chan *) data;
  1181. struct d40_desc *d40d;
  1182. unsigned long flags;
  1183. dma_async_tx_callback callback;
  1184. void *callback_param;
  1185. spin_lock_irqsave(&d40c->lock, flags);
  1186. /* Get first active entry from list */
  1187. d40d = d40_first_active_get(d40c);
  1188. if (d40d == NULL)
  1189. goto err;
  1190. if (!d40d->cyclic)
  1191. dma_cookie_complete(&d40d->txd);
  1192. /*
  1193. * If terminating a channel pending_tx is set to zero.
  1194. * This prevents any finished active jobs to return to the client.
  1195. */
  1196. if (d40c->pending_tx == 0) {
  1197. spin_unlock_irqrestore(&d40c->lock, flags);
  1198. return;
  1199. }
  1200. /* Callback to client */
  1201. callback = d40d->txd.callback;
  1202. callback_param = d40d->txd.callback_param;
  1203. if (!d40d->cyclic) {
  1204. if (async_tx_test_ack(&d40d->txd)) {
  1205. d40_desc_remove(d40d);
  1206. d40_desc_free(d40c, d40d);
  1207. } else {
  1208. if (!d40d->is_in_client_list) {
  1209. d40_desc_remove(d40d);
  1210. d40_lcla_free_all(d40c, d40d);
  1211. list_add_tail(&d40d->node, &d40c->client);
  1212. d40d->is_in_client_list = true;
  1213. }
  1214. }
  1215. }
  1216. d40c->pending_tx--;
  1217. if (d40c->pending_tx)
  1218. tasklet_schedule(&d40c->tasklet);
  1219. spin_unlock_irqrestore(&d40c->lock, flags);
  1220. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  1221. callback(callback_param);
  1222. return;
  1223. err:
  1224. /* Rescue manouver if receiving double interrupts */
  1225. if (d40c->pending_tx > 0)
  1226. d40c->pending_tx--;
  1227. spin_unlock_irqrestore(&d40c->lock, flags);
  1228. }
  1229. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  1230. {
  1231. static const struct d40_interrupt_lookup il[] = {
  1232. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  1233. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  1234. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  1235. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  1236. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  1237. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  1238. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  1239. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  1240. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  1241. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  1242. };
  1243. int i;
  1244. u32 regs[ARRAY_SIZE(il)];
  1245. u32 idx;
  1246. u32 row;
  1247. long chan = -1;
  1248. struct d40_chan *d40c;
  1249. unsigned long flags;
  1250. struct d40_base *base = data;
  1251. spin_lock_irqsave(&base->interrupt_lock, flags);
  1252. /* Read interrupt status of both logical and physical channels */
  1253. for (i = 0; i < ARRAY_SIZE(il); i++)
  1254. regs[i] = readl(base->virtbase + il[i].src);
  1255. for (;;) {
  1256. chan = find_next_bit((unsigned long *)regs,
  1257. BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
  1258. /* No more set bits found? */
  1259. if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
  1260. break;
  1261. row = chan / BITS_PER_LONG;
  1262. idx = chan & (BITS_PER_LONG - 1);
  1263. /* ACK interrupt */
  1264. writel(1 << idx, base->virtbase + il[row].clr);
  1265. if (il[row].offset == D40_PHY_CHAN)
  1266. d40c = base->lookup_phy_chans[idx];
  1267. else
  1268. d40c = base->lookup_log_chans[il[row].offset + idx];
  1269. spin_lock(&d40c->lock);
  1270. if (!il[row].is_error)
  1271. dma_tc_handle(d40c);
  1272. else
  1273. d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
  1274. chan, il[row].offset, idx);
  1275. spin_unlock(&d40c->lock);
  1276. }
  1277. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  1278. return IRQ_HANDLED;
  1279. }
  1280. static int d40_validate_conf(struct d40_chan *d40c,
  1281. struct stedma40_chan_cfg *conf)
  1282. {
  1283. int res = 0;
  1284. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  1285. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  1286. bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
  1287. if (!conf->dir) {
  1288. chan_err(d40c, "Invalid direction.\n");
  1289. res = -EINVAL;
  1290. }
  1291. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  1292. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  1293. d40c->runtime_addr == 0) {
  1294. chan_err(d40c, "Invalid TX channel address (%d)\n",
  1295. conf->dst_dev_type);
  1296. res = -EINVAL;
  1297. }
  1298. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  1299. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  1300. d40c->runtime_addr == 0) {
  1301. chan_err(d40c, "Invalid RX channel address (%d)\n",
  1302. conf->src_dev_type);
  1303. res = -EINVAL;
  1304. }
  1305. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  1306. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  1307. chan_err(d40c, "Invalid dst\n");
  1308. res = -EINVAL;
  1309. }
  1310. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  1311. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  1312. chan_err(d40c, "Invalid src\n");
  1313. res = -EINVAL;
  1314. }
  1315. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  1316. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  1317. chan_err(d40c, "No event line\n");
  1318. res = -EINVAL;
  1319. }
  1320. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  1321. (src_event_group != dst_event_group)) {
  1322. chan_err(d40c, "Invalid event group\n");
  1323. res = -EINVAL;
  1324. }
  1325. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  1326. /*
  1327. * DMAC HW supports it. Will be added to this driver,
  1328. * in case any dma client requires it.
  1329. */
  1330. chan_err(d40c, "periph to periph not supported\n");
  1331. res = -EINVAL;
  1332. }
  1333. if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
  1334. (1 << conf->src_info.data_width) !=
  1335. d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
  1336. (1 << conf->dst_info.data_width)) {
  1337. /*
  1338. * The DMAC hardware only supports
  1339. * src (burst x width) == dst (burst x width)
  1340. */
  1341. chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
  1342. res = -EINVAL;
  1343. }
  1344. return res;
  1345. }
  1346. static bool d40_alloc_mask_set(struct d40_phy_res *phy,
  1347. bool is_src, int log_event_line, bool is_log,
  1348. bool *first_user)
  1349. {
  1350. unsigned long flags;
  1351. spin_lock_irqsave(&phy->lock, flags);
  1352. *first_user = ((phy->allocated_src | phy->allocated_dst)
  1353. == D40_ALLOC_FREE);
  1354. if (!is_log) {
  1355. /* Physical interrupts are masked per physical full channel */
  1356. if (phy->allocated_src == D40_ALLOC_FREE &&
  1357. phy->allocated_dst == D40_ALLOC_FREE) {
  1358. phy->allocated_dst = D40_ALLOC_PHY;
  1359. phy->allocated_src = D40_ALLOC_PHY;
  1360. goto found;
  1361. } else
  1362. goto not_found;
  1363. }
  1364. /* Logical channel */
  1365. if (is_src) {
  1366. if (phy->allocated_src == D40_ALLOC_PHY)
  1367. goto not_found;
  1368. if (phy->allocated_src == D40_ALLOC_FREE)
  1369. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1370. if (!(phy->allocated_src & (1 << log_event_line))) {
  1371. phy->allocated_src |= 1 << log_event_line;
  1372. goto found;
  1373. } else
  1374. goto not_found;
  1375. } else {
  1376. if (phy->allocated_dst == D40_ALLOC_PHY)
  1377. goto not_found;
  1378. if (phy->allocated_dst == D40_ALLOC_FREE)
  1379. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1380. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1381. phy->allocated_dst |= 1 << log_event_line;
  1382. goto found;
  1383. } else
  1384. goto not_found;
  1385. }
  1386. not_found:
  1387. spin_unlock_irqrestore(&phy->lock, flags);
  1388. return false;
  1389. found:
  1390. spin_unlock_irqrestore(&phy->lock, flags);
  1391. return true;
  1392. }
  1393. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1394. int log_event_line)
  1395. {
  1396. unsigned long flags;
  1397. bool is_free = false;
  1398. spin_lock_irqsave(&phy->lock, flags);
  1399. if (!log_event_line) {
  1400. phy->allocated_dst = D40_ALLOC_FREE;
  1401. phy->allocated_src = D40_ALLOC_FREE;
  1402. is_free = true;
  1403. goto out;
  1404. }
  1405. /* Logical channel */
  1406. if (is_src) {
  1407. phy->allocated_src &= ~(1 << log_event_line);
  1408. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1409. phy->allocated_src = D40_ALLOC_FREE;
  1410. } else {
  1411. phy->allocated_dst &= ~(1 << log_event_line);
  1412. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1413. phy->allocated_dst = D40_ALLOC_FREE;
  1414. }
  1415. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1416. D40_ALLOC_FREE);
  1417. out:
  1418. spin_unlock_irqrestore(&phy->lock, flags);
  1419. return is_free;
  1420. }
  1421. static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
  1422. {
  1423. int dev_type;
  1424. int event_group;
  1425. int event_line;
  1426. struct d40_phy_res *phys;
  1427. int i;
  1428. int j;
  1429. int log_num;
  1430. bool is_src;
  1431. bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
  1432. phys = d40c->base->phy_res;
  1433. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1434. dev_type = d40c->dma_cfg.src_dev_type;
  1435. log_num = 2 * dev_type;
  1436. is_src = true;
  1437. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1438. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1439. /* dst event lines are used for logical memcpy */
  1440. dev_type = d40c->dma_cfg.dst_dev_type;
  1441. log_num = 2 * dev_type + 1;
  1442. is_src = false;
  1443. } else
  1444. return -EINVAL;
  1445. event_group = D40_TYPE_TO_GROUP(dev_type);
  1446. event_line = D40_TYPE_TO_EVENT(dev_type);
  1447. if (!is_log) {
  1448. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1449. /* Find physical half channel */
  1450. for (i = 0; i < d40c->base->num_phy_chans; i++) {
  1451. if (d40_alloc_mask_set(&phys[i], is_src,
  1452. 0, is_log,
  1453. first_phy_user))
  1454. goto found_phy;
  1455. }
  1456. } else
  1457. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1458. int phy_num = j + event_group * 2;
  1459. for (i = phy_num; i < phy_num + 2; i++) {
  1460. if (d40_alloc_mask_set(&phys[i],
  1461. is_src,
  1462. 0,
  1463. is_log,
  1464. first_phy_user))
  1465. goto found_phy;
  1466. }
  1467. }
  1468. return -EINVAL;
  1469. found_phy:
  1470. d40c->phy_chan = &phys[i];
  1471. d40c->log_num = D40_PHY_CHAN;
  1472. goto out;
  1473. }
  1474. if (dev_type == -1)
  1475. return -EINVAL;
  1476. /* Find logical channel */
  1477. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1478. int phy_num = j + event_group * 2;
  1479. if (d40c->dma_cfg.use_fixed_channel) {
  1480. i = d40c->dma_cfg.phy_channel;
  1481. if ((i != phy_num) && (i != phy_num + 1)) {
  1482. dev_err(chan2dev(d40c),
  1483. "invalid fixed phy channel %d\n", i);
  1484. return -EINVAL;
  1485. }
  1486. if (d40_alloc_mask_set(&phys[i], is_src, event_line,
  1487. is_log, first_phy_user))
  1488. goto found_log;
  1489. dev_err(chan2dev(d40c),
  1490. "could not allocate fixed phy channel %d\n", i);
  1491. return -EINVAL;
  1492. }
  1493. /*
  1494. * Spread logical channels across all available physical rather
  1495. * than pack every logical channel at the first available phy
  1496. * channels.
  1497. */
  1498. if (is_src) {
  1499. for (i = phy_num; i < phy_num + 2; i++) {
  1500. if (d40_alloc_mask_set(&phys[i], is_src,
  1501. event_line, is_log,
  1502. first_phy_user))
  1503. goto found_log;
  1504. }
  1505. } else {
  1506. for (i = phy_num + 1; i >= phy_num; i--) {
  1507. if (d40_alloc_mask_set(&phys[i], is_src,
  1508. event_line, is_log,
  1509. first_phy_user))
  1510. goto found_log;
  1511. }
  1512. }
  1513. }
  1514. return -EINVAL;
  1515. found_log:
  1516. d40c->phy_chan = &phys[i];
  1517. d40c->log_num = log_num;
  1518. out:
  1519. if (is_log)
  1520. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1521. else
  1522. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1523. return 0;
  1524. }
  1525. static int d40_config_memcpy(struct d40_chan *d40c)
  1526. {
  1527. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1528. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1529. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1530. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1531. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1532. memcpy[d40c->chan.chan_id];
  1533. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1534. dma_has_cap(DMA_SLAVE, cap)) {
  1535. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1536. } else {
  1537. chan_err(d40c, "No memcpy\n");
  1538. return -EINVAL;
  1539. }
  1540. return 0;
  1541. }
  1542. static int d40_free_dma(struct d40_chan *d40c)
  1543. {
  1544. int res = 0;
  1545. u32 event;
  1546. struct d40_phy_res *phy = d40c->phy_chan;
  1547. bool is_src;
  1548. /* Terminate all queued and active transfers */
  1549. d40_term_all(d40c);
  1550. if (phy == NULL) {
  1551. chan_err(d40c, "phy == null\n");
  1552. return -EINVAL;
  1553. }
  1554. if (phy->allocated_src == D40_ALLOC_FREE &&
  1555. phy->allocated_dst == D40_ALLOC_FREE) {
  1556. chan_err(d40c, "channel already free\n");
  1557. return -EINVAL;
  1558. }
  1559. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1560. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1561. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1562. is_src = false;
  1563. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1564. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1565. is_src = true;
  1566. } else {
  1567. chan_err(d40c, "Unknown direction\n");
  1568. return -EINVAL;
  1569. }
  1570. pm_runtime_get_sync(d40c->base->dev);
  1571. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1572. if (res) {
  1573. chan_err(d40c, "stop failed\n");
  1574. goto out;
  1575. }
  1576. d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
  1577. if (chan_is_logical(d40c))
  1578. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1579. else
  1580. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1581. if (d40c->busy) {
  1582. pm_runtime_mark_last_busy(d40c->base->dev);
  1583. pm_runtime_put_autosuspend(d40c->base->dev);
  1584. }
  1585. d40c->busy = false;
  1586. d40c->phy_chan = NULL;
  1587. d40c->configured = false;
  1588. out:
  1589. pm_runtime_mark_last_busy(d40c->base->dev);
  1590. pm_runtime_put_autosuspend(d40c->base->dev);
  1591. return res;
  1592. }
  1593. static bool d40_is_paused(struct d40_chan *d40c)
  1594. {
  1595. void __iomem *chanbase = chan_base(d40c);
  1596. bool is_paused = false;
  1597. unsigned long flags;
  1598. void __iomem *active_reg;
  1599. u32 status;
  1600. u32 event;
  1601. spin_lock_irqsave(&d40c->lock, flags);
  1602. if (chan_is_physical(d40c)) {
  1603. if (d40c->phy_chan->num % 2 == 0)
  1604. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1605. else
  1606. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1607. status = (readl(active_reg) &
  1608. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1609. D40_CHAN_POS(d40c->phy_chan->num);
  1610. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1611. is_paused = true;
  1612. goto _exit;
  1613. }
  1614. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1615. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1616. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1617. status = readl(chanbase + D40_CHAN_REG_SDLNK);
  1618. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1619. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1620. status = readl(chanbase + D40_CHAN_REG_SSLNK);
  1621. } else {
  1622. chan_err(d40c, "Unknown direction\n");
  1623. goto _exit;
  1624. }
  1625. status = (status & D40_EVENTLINE_MASK(event)) >>
  1626. D40_EVENTLINE_POS(event);
  1627. if (status != D40_DMA_RUN)
  1628. is_paused = true;
  1629. _exit:
  1630. spin_unlock_irqrestore(&d40c->lock, flags);
  1631. return is_paused;
  1632. }
  1633. static u32 stedma40_residue(struct dma_chan *chan)
  1634. {
  1635. struct d40_chan *d40c =
  1636. container_of(chan, struct d40_chan, chan);
  1637. u32 bytes_left;
  1638. unsigned long flags;
  1639. spin_lock_irqsave(&d40c->lock, flags);
  1640. bytes_left = d40_residue(d40c);
  1641. spin_unlock_irqrestore(&d40c->lock, flags);
  1642. return bytes_left;
  1643. }
  1644. static int
  1645. d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
  1646. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1647. unsigned int sg_len, dma_addr_t src_dev_addr,
  1648. dma_addr_t dst_dev_addr)
  1649. {
  1650. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1651. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1652. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1653. int ret;
  1654. ret = d40_log_sg_to_lli(sg_src, sg_len,
  1655. src_dev_addr,
  1656. desc->lli_log.src,
  1657. chan->log_def.lcsp1,
  1658. src_info->data_width,
  1659. dst_info->data_width);
  1660. ret = d40_log_sg_to_lli(sg_dst, sg_len,
  1661. dst_dev_addr,
  1662. desc->lli_log.dst,
  1663. chan->log_def.lcsp3,
  1664. dst_info->data_width,
  1665. src_info->data_width);
  1666. return ret < 0 ? ret : 0;
  1667. }
  1668. static int
  1669. d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
  1670. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1671. unsigned int sg_len, dma_addr_t src_dev_addr,
  1672. dma_addr_t dst_dev_addr)
  1673. {
  1674. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1675. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1676. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1677. unsigned long flags = 0;
  1678. int ret;
  1679. if (desc->cyclic)
  1680. flags |= LLI_CYCLIC | LLI_TERM_INT;
  1681. ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
  1682. desc->lli_phy.src,
  1683. virt_to_phys(desc->lli_phy.src),
  1684. chan->src_def_cfg,
  1685. src_info, dst_info, flags);
  1686. ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
  1687. desc->lli_phy.dst,
  1688. virt_to_phys(desc->lli_phy.dst),
  1689. chan->dst_def_cfg,
  1690. dst_info, src_info, flags);
  1691. dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
  1692. desc->lli_pool.size, DMA_TO_DEVICE);
  1693. return ret < 0 ? ret : 0;
  1694. }
  1695. static struct d40_desc *
  1696. d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
  1697. unsigned int sg_len, unsigned long dma_flags)
  1698. {
  1699. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1700. struct d40_desc *desc;
  1701. int ret;
  1702. desc = d40_desc_get(chan);
  1703. if (!desc)
  1704. return NULL;
  1705. desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
  1706. cfg->dst_info.data_width);
  1707. if (desc->lli_len < 0) {
  1708. chan_err(chan, "Unaligned size\n");
  1709. goto err;
  1710. }
  1711. ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
  1712. if (ret < 0) {
  1713. chan_err(chan, "Could not allocate lli\n");
  1714. goto err;
  1715. }
  1716. desc->lli_current = 0;
  1717. desc->txd.flags = dma_flags;
  1718. desc->txd.tx_submit = d40_tx_submit;
  1719. dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
  1720. return desc;
  1721. err:
  1722. d40_desc_free(chan, desc);
  1723. return NULL;
  1724. }
  1725. static dma_addr_t
  1726. d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
  1727. {
  1728. struct stedma40_platform_data *plat = chan->base->plat_data;
  1729. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1730. dma_addr_t addr = 0;
  1731. if (chan->runtime_addr)
  1732. return chan->runtime_addr;
  1733. if (direction == DMA_DEV_TO_MEM)
  1734. addr = plat->dev_rx[cfg->src_dev_type];
  1735. else if (direction == DMA_MEM_TO_DEV)
  1736. addr = plat->dev_tx[cfg->dst_dev_type];
  1737. return addr;
  1738. }
  1739. static struct dma_async_tx_descriptor *
  1740. d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
  1741. struct scatterlist *sg_dst, unsigned int sg_len,
  1742. enum dma_transfer_direction direction, unsigned long dma_flags)
  1743. {
  1744. struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
  1745. dma_addr_t src_dev_addr = 0;
  1746. dma_addr_t dst_dev_addr = 0;
  1747. struct d40_desc *desc;
  1748. unsigned long flags;
  1749. int ret;
  1750. if (!chan->phy_chan) {
  1751. chan_err(chan, "Cannot prepare unallocated channel\n");
  1752. return NULL;
  1753. }
  1754. spin_lock_irqsave(&chan->lock, flags);
  1755. desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
  1756. if (desc == NULL)
  1757. goto err;
  1758. if (sg_next(&sg_src[sg_len - 1]) == sg_src)
  1759. desc->cyclic = true;
  1760. if (direction != DMA_TRANS_NONE) {
  1761. dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
  1762. if (direction == DMA_DEV_TO_MEM)
  1763. src_dev_addr = dev_addr;
  1764. else if (direction == DMA_MEM_TO_DEV)
  1765. dst_dev_addr = dev_addr;
  1766. }
  1767. if (chan_is_logical(chan))
  1768. ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
  1769. sg_len, src_dev_addr, dst_dev_addr);
  1770. else
  1771. ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
  1772. sg_len, src_dev_addr, dst_dev_addr);
  1773. if (ret) {
  1774. chan_err(chan, "Failed to prepare %s sg job: %d\n",
  1775. chan_is_logical(chan) ? "log" : "phy", ret);
  1776. goto err;
  1777. }
  1778. /*
  1779. * add descriptor to the prepare queue in order to be able
  1780. * to free them later in terminate_all
  1781. */
  1782. list_add_tail(&desc->node, &chan->prepare_queue);
  1783. spin_unlock_irqrestore(&chan->lock, flags);
  1784. return &desc->txd;
  1785. err:
  1786. if (desc)
  1787. d40_desc_free(chan, desc);
  1788. spin_unlock_irqrestore(&chan->lock, flags);
  1789. return NULL;
  1790. }
  1791. bool stedma40_filter(struct dma_chan *chan, void *data)
  1792. {
  1793. struct stedma40_chan_cfg *info = data;
  1794. struct d40_chan *d40c =
  1795. container_of(chan, struct d40_chan, chan);
  1796. int err;
  1797. if (data) {
  1798. err = d40_validate_conf(d40c, info);
  1799. if (!err)
  1800. d40c->dma_cfg = *info;
  1801. } else
  1802. err = d40_config_memcpy(d40c);
  1803. if (!err)
  1804. d40c->configured = true;
  1805. return err == 0;
  1806. }
  1807. EXPORT_SYMBOL(stedma40_filter);
  1808. static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
  1809. {
  1810. bool realtime = d40c->dma_cfg.realtime;
  1811. bool highprio = d40c->dma_cfg.high_priority;
  1812. u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
  1813. u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
  1814. u32 event = D40_TYPE_TO_EVENT(dev_type);
  1815. u32 group = D40_TYPE_TO_GROUP(dev_type);
  1816. u32 bit = 1 << event;
  1817. /* Destination event lines are stored in the upper halfword */
  1818. if (!src)
  1819. bit <<= 16;
  1820. writel(bit, d40c->base->virtbase + prioreg + group * 4);
  1821. writel(bit, d40c->base->virtbase + rtreg + group * 4);
  1822. }
  1823. static void d40_set_prio_realtime(struct d40_chan *d40c)
  1824. {
  1825. if (d40c->base->rev < 3)
  1826. return;
  1827. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  1828. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1829. __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
  1830. if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
  1831. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1832. __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
  1833. }
  1834. /* DMA ENGINE functions */
  1835. static int d40_alloc_chan_resources(struct dma_chan *chan)
  1836. {
  1837. int err;
  1838. unsigned long flags;
  1839. struct d40_chan *d40c =
  1840. container_of(chan, struct d40_chan, chan);
  1841. bool is_free_phy;
  1842. spin_lock_irqsave(&d40c->lock, flags);
  1843. dma_cookie_init(chan);
  1844. /* If no dma configuration is set use default configuration (memcpy) */
  1845. if (!d40c->configured) {
  1846. err = d40_config_memcpy(d40c);
  1847. if (err) {
  1848. chan_err(d40c, "Failed to configure memcpy channel\n");
  1849. goto fail;
  1850. }
  1851. }
  1852. err = d40_allocate_channel(d40c, &is_free_phy);
  1853. if (err) {
  1854. chan_err(d40c, "Failed to allocate channel\n");
  1855. d40c->configured = false;
  1856. goto fail;
  1857. }
  1858. pm_runtime_get_sync(d40c->base->dev);
  1859. /* Fill in basic CFG register values */
  1860. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  1861. &d40c->dst_def_cfg, chan_is_logical(d40c));
  1862. d40_set_prio_realtime(d40c);
  1863. if (chan_is_logical(d40c)) {
  1864. d40_log_cfg(&d40c->dma_cfg,
  1865. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1866. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1867. d40c->lcpa = d40c->base->lcpa_base +
  1868. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  1869. else
  1870. d40c->lcpa = d40c->base->lcpa_base +
  1871. d40c->dma_cfg.dst_dev_type *
  1872. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  1873. }
  1874. dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
  1875. chan_is_logical(d40c) ? "logical" : "physical",
  1876. d40c->phy_chan->num,
  1877. d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
  1878. /*
  1879. * Only write channel configuration to the DMA if the physical
  1880. * resource is free. In case of multiple logical channels
  1881. * on the same physical resource, only the first write is necessary.
  1882. */
  1883. if (is_free_phy)
  1884. d40_config_write(d40c);
  1885. fail:
  1886. pm_runtime_mark_last_busy(d40c->base->dev);
  1887. pm_runtime_put_autosuspend(d40c->base->dev);
  1888. spin_unlock_irqrestore(&d40c->lock, flags);
  1889. return err;
  1890. }
  1891. static void d40_free_chan_resources(struct dma_chan *chan)
  1892. {
  1893. struct d40_chan *d40c =
  1894. container_of(chan, struct d40_chan, chan);
  1895. int err;
  1896. unsigned long flags;
  1897. if (d40c->phy_chan == NULL) {
  1898. chan_err(d40c, "Cannot free unallocated channel\n");
  1899. return;
  1900. }
  1901. spin_lock_irqsave(&d40c->lock, flags);
  1902. err = d40_free_dma(d40c);
  1903. if (err)
  1904. chan_err(d40c, "Failed to free channel\n");
  1905. spin_unlock_irqrestore(&d40c->lock, flags);
  1906. }
  1907. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  1908. dma_addr_t dst,
  1909. dma_addr_t src,
  1910. size_t size,
  1911. unsigned long dma_flags)
  1912. {
  1913. struct scatterlist dst_sg;
  1914. struct scatterlist src_sg;
  1915. sg_init_table(&dst_sg, 1);
  1916. sg_init_table(&src_sg, 1);
  1917. sg_dma_address(&dst_sg) = dst;
  1918. sg_dma_address(&src_sg) = src;
  1919. sg_dma_len(&dst_sg) = size;
  1920. sg_dma_len(&src_sg) = size;
  1921. return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
  1922. }
  1923. static struct dma_async_tx_descriptor *
  1924. d40_prep_memcpy_sg(struct dma_chan *chan,
  1925. struct scatterlist *dst_sg, unsigned int dst_nents,
  1926. struct scatterlist *src_sg, unsigned int src_nents,
  1927. unsigned long dma_flags)
  1928. {
  1929. if (dst_nents != src_nents)
  1930. return NULL;
  1931. return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
  1932. }
  1933. static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
  1934. struct scatterlist *sgl,
  1935. unsigned int sg_len,
  1936. enum dma_transfer_direction direction,
  1937. unsigned long dma_flags,
  1938. void *context)
  1939. {
  1940. if (direction != DMA_DEV_TO_MEM && direction != DMA_MEM_TO_DEV)
  1941. return NULL;
  1942. return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
  1943. }
  1944. static struct dma_async_tx_descriptor *
  1945. dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
  1946. size_t buf_len, size_t period_len,
  1947. enum dma_transfer_direction direction, unsigned long flags,
  1948. void *context)
  1949. {
  1950. unsigned int periods = buf_len / period_len;
  1951. struct dma_async_tx_descriptor *txd;
  1952. struct scatterlist *sg;
  1953. int i;
  1954. sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
  1955. for (i = 0; i < periods; i++) {
  1956. sg_dma_address(&sg[i]) = dma_addr;
  1957. sg_dma_len(&sg[i]) = period_len;
  1958. dma_addr += period_len;
  1959. }
  1960. sg[periods].offset = 0;
  1961. sg_dma_len(&sg[periods]) = 0;
  1962. sg[periods].page_link =
  1963. ((unsigned long)sg | 0x01) & ~0x02;
  1964. txd = d40_prep_sg(chan, sg, sg, periods, direction,
  1965. DMA_PREP_INTERRUPT);
  1966. kfree(sg);
  1967. return txd;
  1968. }
  1969. static enum dma_status d40_tx_status(struct dma_chan *chan,
  1970. dma_cookie_t cookie,
  1971. struct dma_tx_state *txstate)
  1972. {
  1973. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1974. enum dma_status ret;
  1975. if (d40c->phy_chan == NULL) {
  1976. chan_err(d40c, "Cannot read status of unallocated channel\n");
  1977. return -EINVAL;
  1978. }
  1979. ret = dma_cookie_status(chan, cookie, txstate);
  1980. if (ret != DMA_SUCCESS)
  1981. dma_set_residue(txstate, stedma40_residue(chan));
  1982. if (d40_is_paused(d40c))
  1983. ret = DMA_PAUSED;
  1984. return ret;
  1985. }
  1986. static void d40_issue_pending(struct dma_chan *chan)
  1987. {
  1988. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1989. unsigned long flags;
  1990. if (d40c->phy_chan == NULL) {
  1991. chan_err(d40c, "Channel is not allocated!\n");
  1992. return;
  1993. }
  1994. spin_lock_irqsave(&d40c->lock, flags);
  1995. list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
  1996. /* Busy means that queued jobs are already being processed */
  1997. if (!d40c->busy)
  1998. (void) d40_queue_start(d40c);
  1999. spin_unlock_irqrestore(&d40c->lock, flags);
  2000. }
  2001. static void d40_terminate_all(struct dma_chan *chan)
  2002. {
  2003. unsigned long flags;
  2004. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2005. int ret;
  2006. spin_lock_irqsave(&d40c->lock, flags);
  2007. pm_runtime_get_sync(d40c->base->dev);
  2008. ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
  2009. if (ret)
  2010. chan_err(d40c, "Failed to stop channel\n");
  2011. d40_term_all(d40c);
  2012. pm_runtime_mark_last_busy(d40c->base->dev);
  2013. pm_runtime_put_autosuspend(d40c->base->dev);
  2014. if (d40c->busy) {
  2015. pm_runtime_mark_last_busy(d40c->base->dev);
  2016. pm_runtime_put_autosuspend(d40c->base->dev);
  2017. }
  2018. d40c->busy = false;
  2019. spin_unlock_irqrestore(&d40c->lock, flags);
  2020. }
  2021. static int
  2022. dma40_config_to_halfchannel(struct d40_chan *d40c,
  2023. struct stedma40_half_channel_info *info,
  2024. enum dma_slave_buswidth width,
  2025. u32 maxburst)
  2026. {
  2027. enum stedma40_periph_data_width addr_width;
  2028. int psize;
  2029. switch (width) {
  2030. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  2031. addr_width = STEDMA40_BYTE_WIDTH;
  2032. break;
  2033. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  2034. addr_width = STEDMA40_HALFWORD_WIDTH;
  2035. break;
  2036. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  2037. addr_width = STEDMA40_WORD_WIDTH;
  2038. break;
  2039. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  2040. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  2041. break;
  2042. default:
  2043. dev_err(d40c->base->dev,
  2044. "illegal peripheral address width "
  2045. "requested (%d)\n",
  2046. width);
  2047. return -EINVAL;
  2048. }
  2049. if (chan_is_logical(d40c)) {
  2050. if (maxburst >= 16)
  2051. psize = STEDMA40_PSIZE_LOG_16;
  2052. else if (maxburst >= 8)
  2053. psize = STEDMA40_PSIZE_LOG_8;
  2054. else if (maxburst >= 4)
  2055. psize = STEDMA40_PSIZE_LOG_4;
  2056. else
  2057. psize = STEDMA40_PSIZE_LOG_1;
  2058. } else {
  2059. if (maxburst >= 16)
  2060. psize = STEDMA40_PSIZE_PHY_16;
  2061. else if (maxburst >= 8)
  2062. psize = STEDMA40_PSIZE_PHY_8;
  2063. else if (maxburst >= 4)
  2064. psize = STEDMA40_PSIZE_PHY_4;
  2065. else
  2066. psize = STEDMA40_PSIZE_PHY_1;
  2067. }
  2068. info->data_width = addr_width;
  2069. info->psize = psize;
  2070. info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  2071. return 0;
  2072. }
  2073. /* Runtime reconfiguration extension */
  2074. static int d40_set_runtime_config(struct dma_chan *chan,
  2075. struct dma_slave_config *config)
  2076. {
  2077. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2078. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  2079. enum dma_slave_buswidth src_addr_width, dst_addr_width;
  2080. dma_addr_t config_addr;
  2081. u32 src_maxburst, dst_maxburst;
  2082. int ret;
  2083. src_addr_width = config->src_addr_width;
  2084. src_maxburst = config->src_maxburst;
  2085. dst_addr_width = config->dst_addr_width;
  2086. dst_maxburst = config->dst_maxburst;
  2087. if (config->direction == DMA_DEV_TO_MEM) {
  2088. dma_addr_t dev_addr_rx =
  2089. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  2090. config_addr = config->src_addr;
  2091. if (dev_addr_rx)
  2092. dev_dbg(d40c->base->dev,
  2093. "channel has a pre-wired RX address %08x "
  2094. "overriding with %08x\n",
  2095. dev_addr_rx, config_addr);
  2096. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  2097. dev_dbg(d40c->base->dev,
  2098. "channel was not configured for peripheral "
  2099. "to memory transfer (%d) overriding\n",
  2100. cfg->dir);
  2101. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  2102. /* Configure the memory side */
  2103. if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2104. dst_addr_width = src_addr_width;
  2105. if (dst_maxburst == 0)
  2106. dst_maxburst = src_maxburst;
  2107. } else if (config->direction == DMA_MEM_TO_DEV) {
  2108. dma_addr_t dev_addr_tx =
  2109. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  2110. config_addr = config->dst_addr;
  2111. if (dev_addr_tx)
  2112. dev_dbg(d40c->base->dev,
  2113. "channel has a pre-wired TX address %08x "
  2114. "overriding with %08x\n",
  2115. dev_addr_tx, config_addr);
  2116. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  2117. dev_dbg(d40c->base->dev,
  2118. "channel was not configured for memory "
  2119. "to peripheral transfer (%d) overriding\n",
  2120. cfg->dir);
  2121. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  2122. /* Configure the memory side */
  2123. if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2124. src_addr_width = dst_addr_width;
  2125. if (src_maxburst == 0)
  2126. src_maxburst = dst_maxburst;
  2127. } else {
  2128. dev_err(d40c->base->dev,
  2129. "unrecognized channel direction %d\n",
  2130. config->direction);
  2131. return -EINVAL;
  2132. }
  2133. if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
  2134. dev_err(d40c->base->dev,
  2135. "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
  2136. src_maxburst,
  2137. src_addr_width,
  2138. dst_maxburst,
  2139. dst_addr_width);
  2140. return -EINVAL;
  2141. }
  2142. ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
  2143. src_addr_width,
  2144. src_maxburst);
  2145. if (ret)
  2146. return ret;
  2147. ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
  2148. dst_addr_width,
  2149. dst_maxburst);
  2150. if (ret)
  2151. return ret;
  2152. /* Fill in register values */
  2153. if (chan_is_logical(d40c))
  2154. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  2155. else
  2156. d40_phy_cfg(cfg, &d40c->src_def_cfg,
  2157. &d40c->dst_def_cfg, false);
  2158. /* These settings will take precedence later */
  2159. d40c->runtime_addr = config_addr;
  2160. d40c->runtime_direction = config->direction;
  2161. dev_dbg(d40c->base->dev,
  2162. "configured channel %s for %s, data width %d/%d, "
  2163. "maxburst %d/%d elements, LE, no flow control\n",
  2164. dma_chan_name(chan),
  2165. (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
  2166. src_addr_width, dst_addr_width,
  2167. src_maxburst, dst_maxburst);
  2168. return 0;
  2169. }
  2170. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  2171. unsigned long arg)
  2172. {
  2173. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2174. if (d40c->phy_chan == NULL) {
  2175. chan_err(d40c, "Channel is not allocated!\n");
  2176. return -EINVAL;
  2177. }
  2178. switch (cmd) {
  2179. case DMA_TERMINATE_ALL:
  2180. d40_terminate_all(chan);
  2181. return 0;
  2182. case DMA_PAUSE:
  2183. return d40_pause(d40c);
  2184. case DMA_RESUME:
  2185. return d40_resume(d40c);
  2186. case DMA_SLAVE_CONFIG:
  2187. return d40_set_runtime_config(chan,
  2188. (struct dma_slave_config *) arg);
  2189. default:
  2190. break;
  2191. }
  2192. /* Other commands are unimplemented */
  2193. return -ENXIO;
  2194. }
  2195. /* Initialization functions */
  2196. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  2197. struct d40_chan *chans, int offset,
  2198. int num_chans)
  2199. {
  2200. int i = 0;
  2201. struct d40_chan *d40c;
  2202. INIT_LIST_HEAD(&dma->channels);
  2203. for (i = offset; i < offset + num_chans; i++) {
  2204. d40c = &chans[i];
  2205. d40c->base = base;
  2206. d40c->chan.device = dma;
  2207. spin_lock_init(&d40c->lock);
  2208. d40c->log_num = D40_PHY_CHAN;
  2209. INIT_LIST_HEAD(&d40c->active);
  2210. INIT_LIST_HEAD(&d40c->queue);
  2211. INIT_LIST_HEAD(&d40c->pending_queue);
  2212. INIT_LIST_HEAD(&d40c->client);
  2213. INIT_LIST_HEAD(&d40c->prepare_queue);
  2214. tasklet_init(&d40c->tasklet, dma_tasklet,
  2215. (unsigned long) d40c);
  2216. list_add_tail(&d40c->chan.device_node,
  2217. &dma->channels);
  2218. }
  2219. }
  2220. static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
  2221. {
  2222. if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
  2223. dev->device_prep_slave_sg = d40_prep_slave_sg;
  2224. if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
  2225. dev->device_prep_dma_memcpy = d40_prep_memcpy;
  2226. /*
  2227. * This controller can only access address at even
  2228. * 32bit boundaries, i.e. 2^2
  2229. */
  2230. dev->copy_align = 2;
  2231. }
  2232. if (dma_has_cap(DMA_SG, dev->cap_mask))
  2233. dev->device_prep_dma_sg = d40_prep_memcpy_sg;
  2234. if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
  2235. dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
  2236. dev->device_alloc_chan_resources = d40_alloc_chan_resources;
  2237. dev->device_free_chan_resources = d40_free_chan_resources;
  2238. dev->device_issue_pending = d40_issue_pending;
  2239. dev->device_tx_status = d40_tx_status;
  2240. dev->device_control = d40_control;
  2241. dev->dev = base->dev;
  2242. }
  2243. static int __init d40_dmaengine_init(struct d40_base *base,
  2244. int num_reserved_chans)
  2245. {
  2246. int err ;
  2247. d40_chan_init(base, &base->dma_slave, base->log_chans,
  2248. 0, base->num_log_chans);
  2249. dma_cap_zero(base->dma_slave.cap_mask);
  2250. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  2251. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2252. d40_ops_init(base, &base->dma_slave);
  2253. err = dma_async_device_register(&base->dma_slave);
  2254. if (err) {
  2255. d40_err(base->dev, "Failed to register slave channels\n");
  2256. goto failure1;
  2257. }
  2258. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  2259. base->num_log_chans, base->plat_data->memcpy_len);
  2260. dma_cap_zero(base->dma_memcpy.cap_mask);
  2261. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  2262. dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
  2263. d40_ops_init(base, &base->dma_memcpy);
  2264. err = dma_async_device_register(&base->dma_memcpy);
  2265. if (err) {
  2266. d40_err(base->dev,
  2267. "Failed to regsiter memcpy only channels\n");
  2268. goto failure2;
  2269. }
  2270. d40_chan_init(base, &base->dma_both, base->phy_chans,
  2271. 0, num_reserved_chans);
  2272. dma_cap_zero(base->dma_both.cap_mask);
  2273. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  2274. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  2275. dma_cap_set(DMA_SG, base->dma_both.cap_mask);
  2276. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2277. d40_ops_init(base, &base->dma_both);
  2278. err = dma_async_device_register(&base->dma_both);
  2279. if (err) {
  2280. d40_err(base->dev,
  2281. "Failed to register logical and physical capable channels\n");
  2282. goto failure3;
  2283. }
  2284. return 0;
  2285. failure3:
  2286. dma_async_device_unregister(&base->dma_memcpy);
  2287. failure2:
  2288. dma_async_device_unregister(&base->dma_slave);
  2289. failure1:
  2290. return err;
  2291. }
  2292. /* Suspend resume functionality */
  2293. #ifdef CONFIG_PM
  2294. static int dma40_pm_suspend(struct device *dev)
  2295. {
  2296. struct platform_device *pdev = to_platform_device(dev);
  2297. struct d40_base *base = platform_get_drvdata(pdev);
  2298. int ret = 0;
  2299. if (!pm_runtime_suspended(dev))
  2300. return -EBUSY;
  2301. if (base->lcpa_regulator)
  2302. ret = regulator_disable(base->lcpa_regulator);
  2303. return ret;
  2304. }
  2305. static int dma40_runtime_suspend(struct device *dev)
  2306. {
  2307. struct platform_device *pdev = to_platform_device(dev);
  2308. struct d40_base *base = platform_get_drvdata(pdev);
  2309. d40_save_restore_registers(base, true);
  2310. /* Don't disable/enable clocks for v1 due to HW bugs */
  2311. if (base->rev != 1)
  2312. writel_relaxed(base->gcc_pwr_off_mask,
  2313. base->virtbase + D40_DREG_GCC);
  2314. return 0;
  2315. }
  2316. static int dma40_runtime_resume(struct device *dev)
  2317. {
  2318. struct platform_device *pdev = to_platform_device(dev);
  2319. struct d40_base *base = platform_get_drvdata(pdev);
  2320. if (base->initialized)
  2321. d40_save_restore_registers(base, false);
  2322. writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
  2323. base->virtbase + D40_DREG_GCC);
  2324. return 0;
  2325. }
  2326. static int dma40_resume(struct device *dev)
  2327. {
  2328. struct platform_device *pdev = to_platform_device(dev);
  2329. struct d40_base *base = platform_get_drvdata(pdev);
  2330. int ret = 0;
  2331. if (base->lcpa_regulator)
  2332. ret = regulator_enable(base->lcpa_regulator);
  2333. return ret;
  2334. }
  2335. static const struct dev_pm_ops dma40_pm_ops = {
  2336. .suspend = dma40_pm_suspend,
  2337. .runtime_suspend = dma40_runtime_suspend,
  2338. .runtime_resume = dma40_runtime_resume,
  2339. .resume = dma40_resume,
  2340. };
  2341. #define DMA40_PM_OPS (&dma40_pm_ops)
  2342. #else
  2343. #define DMA40_PM_OPS NULL
  2344. #endif
  2345. /* Initialization functions. */
  2346. static int __init d40_phy_res_init(struct d40_base *base)
  2347. {
  2348. int i;
  2349. int num_phy_chans_avail = 0;
  2350. u32 val[2];
  2351. int odd_even_bit = -2;
  2352. int gcc = D40_DREG_GCC_ENA;
  2353. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2354. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2355. for (i = 0; i < base->num_phy_chans; i++) {
  2356. base->phy_res[i].num = i;
  2357. odd_even_bit += 2 * ((i % 2) == 0);
  2358. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2359. /* Mark security only channels as occupied */
  2360. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2361. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2362. base->phy_res[i].reserved = true;
  2363. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2364. D40_DREG_GCC_SRC);
  2365. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2366. D40_DREG_GCC_DST);
  2367. } else {
  2368. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2369. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2370. base->phy_res[i].reserved = false;
  2371. num_phy_chans_avail++;
  2372. }
  2373. spin_lock_init(&base->phy_res[i].lock);
  2374. }
  2375. /* Mark disabled channels as occupied */
  2376. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2377. int chan = base->plat_data->disabled_channels[i];
  2378. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2379. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2380. base->phy_res[chan].reserved = true;
  2381. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2382. D40_DREG_GCC_SRC);
  2383. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2384. D40_DREG_GCC_DST);
  2385. num_phy_chans_avail--;
  2386. }
  2387. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2388. num_phy_chans_avail, base->num_phy_chans);
  2389. /* Verify settings extended vs standard */
  2390. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2391. for (i = 0; i < base->num_phy_chans; i++) {
  2392. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2393. (val[0] & 0x3) != 1)
  2394. dev_info(base->dev,
  2395. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2396. __func__, i, val[0] & 0x3);
  2397. val[0] = val[0] >> 2;
  2398. }
  2399. /*
  2400. * To keep things simple, Enable all clocks initially.
  2401. * The clocks will get managed later post channel allocation.
  2402. * The clocks for the event lines on which reserved channels exists
  2403. * are not managed here.
  2404. */
  2405. writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
  2406. base->gcc_pwr_off_mask = gcc;
  2407. return num_phy_chans_avail;
  2408. }
  2409. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2410. {
  2411. struct stedma40_platform_data *plat_data;
  2412. struct clk *clk = NULL;
  2413. void __iomem *virtbase = NULL;
  2414. struct resource *res = NULL;
  2415. struct d40_base *base = NULL;
  2416. int num_log_chans = 0;
  2417. int num_phy_chans;
  2418. int clk_ret = -EINVAL;
  2419. int i;
  2420. u32 pid;
  2421. u32 cid;
  2422. u8 rev;
  2423. clk = clk_get(&pdev->dev, NULL);
  2424. if (IS_ERR(clk)) {
  2425. d40_err(&pdev->dev, "No matching clock found\n");
  2426. goto failure;
  2427. }
  2428. clk_ret = clk_prepare_enable(clk);
  2429. if (clk_ret) {
  2430. d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
  2431. goto failure;
  2432. }
  2433. /* Get IO for DMAC base address */
  2434. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2435. if (!res)
  2436. goto failure;
  2437. if (request_mem_region(res->start, resource_size(res),
  2438. D40_NAME " I/O base") == NULL)
  2439. goto failure;
  2440. virtbase = ioremap(res->start, resource_size(res));
  2441. if (!virtbase)
  2442. goto failure;
  2443. /* This is just a regular AMBA PrimeCell ID actually */
  2444. for (pid = 0, i = 0; i < 4; i++)
  2445. pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
  2446. & 255) << (i * 8);
  2447. for (cid = 0, i = 0; i < 4; i++)
  2448. cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
  2449. & 255) << (i * 8);
  2450. if (cid != AMBA_CID) {
  2451. d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
  2452. goto failure;
  2453. }
  2454. if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
  2455. d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
  2456. AMBA_MANF_BITS(pid),
  2457. AMBA_VENDOR_ST);
  2458. goto failure;
  2459. }
  2460. /*
  2461. * HW revision:
  2462. * DB8500ed has revision 0
  2463. * ? has revision 1
  2464. * DB8500v1 has revision 2
  2465. * DB8500v2 has revision 3
  2466. */
  2467. rev = AMBA_REV_BITS(pid);
  2468. /* The number of physical channels on this HW */
  2469. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2470. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
  2471. rev, res->start);
  2472. if (rev < 2) {
  2473. d40_err(&pdev->dev, "hardware revision: %d is not supported",
  2474. rev);
  2475. goto failure;
  2476. }
  2477. plat_data = pdev->dev.platform_data;
  2478. /* Count the number of logical channels in use */
  2479. for (i = 0; i < plat_data->dev_len; i++)
  2480. if (plat_data->dev_rx[i] != 0)
  2481. num_log_chans++;
  2482. for (i = 0; i < plat_data->dev_len; i++)
  2483. if (plat_data->dev_tx[i] != 0)
  2484. num_log_chans++;
  2485. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2486. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2487. sizeof(struct d40_chan), GFP_KERNEL);
  2488. if (base == NULL) {
  2489. d40_err(&pdev->dev, "Out of memory\n");
  2490. goto failure;
  2491. }
  2492. base->rev = rev;
  2493. base->clk = clk;
  2494. base->num_phy_chans = num_phy_chans;
  2495. base->num_log_chans = num_log_chans;
  2496. base->phy_start = res->start;
  2497. base->phy_size = resource_size(res);
  2498. base->virtbase = virtbase;
  2499. base->plat_data = plat_data;
  2500. base->dev = &pdev->dev;
  2501. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2502. base->log_chans = &base->phy_chans[num_phy_chans];
  2503. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2504. GFP_KERNEL);
  2505. if (!base->phy_res)
  2506. goto failure;
  2507. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2508. sizeof(struct d40_chan *),
  2509. GFP_KERNEL);
  2510. if (!base->lookup_phy_chans)
  2511. goto failure;
  2512. if (num_log_chans + plat_data->memcpy_len) {
  2513. /*
  2514. * The max number of logical channels are event lines for all
  2515. * src devices and dst devices
  2516. */
  2517. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2518. sizeof(struct d40_chan *),
  2519. GFP_KERNEL);
  2520. if (!base->lookup_log_chans)
  2521. goto failure;
  2522. }
  2523. base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
  2524. sizeof(d40_backup_regs_chan),
  2525. GFP_KERNEL);
  2526. if (!base->reg_val_backup_chan)
  2527. goto failure;
  2528. base->lcla_pool.alloc_map =
  2529. kzalloc(num_phy_chans * sizeof(struct d40_desc *)
  2530. * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
  2531. if (!base->lcla_pool.alloc_map)
  2532. goto failure;
  2533. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2534. 0, SLAB_HWCACHE_ALIGN,
  2535. NULL);
  2536. if (base->desc_slab == NULL)
  2537. goto failure;
  2538. return base;
  2539. failure:
  2540. if (!clk_ret)
  2541. clk_disable_unprepare(clk);
  2542. if (!IS_ERR(clk))
  2543. clk_put(clk);
  2544. if (virtbase)
  2545. iounmap(virtbase);
  2546. if (res)
  2547. release_mem_region(res->start,
  2548. resource_size(res));
  2549. if (virtbase)
  2550. iounmap(virtbase);
  2551. if (base) {
  2552. kfree(base->lcla_pool.alloc_map);
  2553. kfree(base->reg_val_backup_chan);
  2554. kfree(base->lookup_log_chans);
  2555. kfree(base->lookup_phy_chans);
  2556. kfree(base->phy_res);
  2557. kfree(base);
  2558. }
  2559. return NULL;
  2560. }
  2561. static void __init d40_hw_init(struct d40_base *base)
  2562. {
  2563. static struct d40_reg_val dma_init_reg[] = {
  2564. /* Clock every part of the DMA block from start */
  2565. { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
  2566. /* Interrupts on all logical channels */
  2567. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  2568. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  2569. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  2570. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  2571. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  2572. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  2573. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  2574. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  2575. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  2576. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  2577. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  2578. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  2579. };
  2580. int i;
  2581. u32 prmseo[2] = {0, 0};
  2582. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2583. u32 pcmis = 0;
  2584. u32 pcicr = 0;
  2585. for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
  2586. writel(dma_init_reg[i].val,
  2587. base->virtbase + dma_init_reg[i].reg);
  2588. /* Configure all our dma channels to default settings */
  2589. for (i = 0; i < base->num_phy_chans; i++) {
  2590. activeo[i % 2] = activeo[i % 2] << 2;
  2591. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2592. == D40_ALLOC_PHY) {
  2593. activeo[i % 2] |= 3;
  2594. continue;
  2595. }
  2596. /* Enable interrupt # */
  2597. pcmis = (pcmis << 1) | 1;
  2598. /* Clear interrupt # */
  2599. pcicr = (pcicr << 1) | 1;
  2600. /* Set channel to physical mode */
  2601. prmseo[i % 2] = prmseo[i % 2] << 2;
  2602. prmseo[i % 2] |= 1;
  2603. }
  2604. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2605. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2606. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2607. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2608. /* Write which interrupt to enable */
  2609. writel(pcmis, base->virtbase + D40_DREG_PCMIS);
  2610. /* Write which interrupt to clear */
  2611. writel(pcicr, base->virtbase + D40_DREG_PCICR);
  2612. }
  2613. static int __init d40_lcla_allocate(struct d40_base *base)
  2614. {
  2615. struct d40_lcla_pool *pool = &base->lcla_pool;
  2616. unsigned long *page_list;
  2617. int i, j;
  2618. int ret = 0;
  2619. /*
  2620. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2621. * To full fill this hardware requirement without wasting 256 kb
  2622. * we allocate pages until we get an aligned one.
  2623. */
  2624. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2625. GFP_KERNEL);
  2626. if (!page_list) {
  2627. ret = -ENOMEM;
  2628. goto failure;
  2629. }
  2630. /* Calculating how many pages that are required */
  2631. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2632. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2633. page_list[i] = __get_free_pages(GFP_KERNEL,
  2634. base->lcla_pool.pages);
  2635. if (!page_list[i]) {
  2636. d40_err(base->dev, "Failed to allocate %d pages.\n",
  2637. base->lcla_pool.pages);
  2638. for (j = 0; j < i; j++)
  2639. free_pages(page_list[j], base->lcla_pool.pages);
  2640. goto failure;
  2641. }
  2642. if ((virt_to_phys((void *)page_list[i]) &
  2643. (LCLA_ALIGNMENT - 1)) == 0)
  2644. break;
  2645. }
  2646. for (j = 0; j < i; j++)
  2647. free_pages(page_list[j], base->lcla_pool.pages);
  2648. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2649. base->lcla_pool.base = (void *)page_list[i];
  2650. } else {
  2651. /*
  2652. * After many attempts and no succees with finding the correct
  2653. * alignment, try with allocating a big buffer.
  2654. */
  2655. dev_warn(base->dev,
  2656. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2657. __func__, base->lcla_pool.pages);
  2658. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2659. base->num_phy_chans +
  2660. LCLA_ALIGNMENT,
  2661. GFP_KERNEL);
  2662. if (!base->lcla_pool.base_unaligned) {
  2663. ret = -ENOMEM;
  2664. goto failure;
  2665. }
  2666. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2667. LCLA_ALIGNMENT);
  2668. }
  2669. pool->dma_addr = dma_map_single(base->dev, pool->base,
  2670. SZ_1K * base->num_phy_chans,
  2671. DMA_TO_DEVICE);
  2672. if (dma_mapping_error(base->dev, pool->dma_addr)) {
  2673. pool->dma_addr = 0;
  2674. ret = -ENOMEM;
  2675. goto failure;
  2676. }
  2677. writel(virt_to_phys(base->lcla_pool.base),
  2678. base->virtbase + D40_DREG_LCLA);
  2679. failure:
  2680. kfree(page_list);
  2681. return ret;
  2682. }
  2683. static int __init d40_probe(struct platform_device *pdev)
  2684. {
  2685. int err;
  2686. int ret = -ENOENT;
  2687. struct d40_base *base;
  2688. struct resource *res = NULL;
  2689. int num_reserved_chans;
  2690. u32 val;
  2691. base = d40_hw_detect_init(pdev);
  2692. if (!base)
  2693. goto failure;
  2694. num_reserved_chans = d40_phy_res_init(base);
  2695. platform_set_drvdata(pdev, base);
  2696. spin_lock_init(&base->interrupt_lock);
  2697. spin_lock_init(&base->execmd_lock);
  2698. /* Get IO for logical channel parameter address */
  2699. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2700. if (!res) {
  2701. ret = -ENOENT;
  2702. d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
  2703. goto failure;
  2704. }
  2705. base->lcpa_size = resource_size(res);
  2706. base->phy_lcpa = res->start;
  2707. if (request_mem_region(res->start, resource_size(res),
  2708. D40_NAME " I/O lcpa") == NULL) {
  2709. ret = -EBUSY;
  2710. d40_err(&pdev->dev,
  2711. "Failed to request LCPA region 0x%x-0x%x\n",
  2712. res->start, res->end);
  2713. goto failure;
  2714. }
  2715. /* We make use of ESRAM memory for this. */
  2716. val = readl(base->virtbase + D40_DREG_LCPA);
  2717. if (res->start != val && val != 0) {
  2718. dev_warn(&pdev->dev,
  2719. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2720. __func__, val, res->start);
  2721. } else
  2722. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2723. base->lcpa_base = ioremap(res->start, resource_size(res));
  2724. if (!base->lcpa_base) {
  2725. ret = -ENOMEM;
  2726. d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
  2727. goto failure;
  2728. }
  2729. /* If lcla has to be located in ESRAM we don't need to allocate */
  2730. if (base->plat_data->use_esram_lcla) {
  2731. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  2732. "lcla_esram");
  2733. if (!res) {
  2734. ret = -ENOENT;
  2735. d40_err(&pdev->dev,
  2736. "No \"lcla_esram\" memory resource\n");
  2737. goto failure;
  2738. }
  2739. base->lcla_pool.base = ioremap(res->start,
  2740. resource_size(res));
  2741. if (!base->lcla_pool.base) {
  2742. ret = -ENOMEM;
  2743. d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
  2744. goto failure;
  2745. }
  2746. writel(res->start, base->virtbase + D40_DREG_LCLA);
  2747. } else {
  2748. ret = d40_lcla_allocate(base);
  2749. if (ret) {
  2750. d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
  2751. goto failure;
  2752. }
  2753. }
  2754. spin_lock_init(&base->lcla_pool.lock);
  2755. base->irq = platform_get_irq(pdev, 0);
  2756. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2757. if (ret) {
  2758. d40_err(&pdev->dev, "No IRQ defined\n");
  2759. goto failure;
  2760. }
  2761. pm_runtime_irq_safe(base->dev);
  2762. pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
  2763. pm_runtime_use_autosuspend(base->dev);
  2764. pm_runtime_enable(base->dev);
  2765. pm_runtime_resume(base->dev);
  2766. if (base->plat_data->use_esram_lcla) {
  2767. base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
  2768. if (IS_ERR(base->lcpa_regulator)) {
  2769. d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
  2770. base->lcpa_regulator = NULL;
  2771. goto failure;
  2772. }
  2773. ret = regulator_enable(base->lcpa_regulator);
  2774. if (ret) {
  2775. d40_err(&pdev->dev,
  2776. "Failed to enable lcpa_regulator\n");
  2777. regulator_put(base->lcpa_regulator);
  2778. base->lcpa_regulator = NULL;
  2779. goto failure;
  2780. }
  2781. }
  2782. base->initialized = true;
  2783. err = d40_dmaengine_init(base, num_reserved_chans);
  2784. if (err)
  2785. goto failure;
  2786. d40_hw_init(base);
  2787. dev_info(base->dev, "initialized\n");
  2788. return 0;
  2789. failure:
  2790. if (base) {
  2791. if (base->desc_slab)
  2792. kmem_cache_destroy(base->desc_slab);
  2793. if (base->virtbase)
  2794. iounmap(base->virtbase);
  2795. if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
  2796. iounmap(base->lcla_pool.base);
  2797. base->lcla_pool.base = NULL;
  2798. }
  2799. if (base->lcla_pool.dma_addr)
  2800. dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
  2801. SZ_1K * base->num_phy_chans,
  2802. DMA_TO_DEVICE);
  2803. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  2804. free_pages((unsigned long)base->lcla_pool.base,
  2805. base->lcla_pool.pages);
  2806. kfree(base->lcla_pool.base_unaligned);
  2807. if (base->phy_lcpa)
  2808. release_mem_region(base->phy_lcpa,
  2809. base->lcpa_size);
  2810. if (base->phy_start)
  2811. release_mem_region(base->phy_start,
  2812. base->phy_size);
  2813. if (base->clk) {
  2814. clk_disable(base->clk);
  2815. clk_put(base->clk);
  2816. }
  2817. if (base->lcpa_regulator) {
  2818. regulator_disable(base->lcpa_regulator);
  2819. regulator_put(base->lcpa_regulator);
  2820. }
  2821. kfree(base->lcla_pool.alloc_map);
  2822. kfree(base->lookup_log_chans);
  2823. kfree(base->lookup_phy_chans);
  2824. kfree(base->phy_res);
  2825. kfree(base);
  2826. }
  2827. d40_err(&pdev->dev, "probe failed\n");
  2828. return ret;
  2829. }
  2830. static struct platform_driver d40_driver = {
  2831. .driver = {
  2832. .owner = THIS_MODULE,
  2833. .name = D40_NAME,
  2834. .pm = DMA40_PM_OPS,
  2835. },
  2836. };
  2837. static int __init stedma40_init(void)
  2838. {
  2839. return platform_driver_probe(&d40_driver, d40_probe);
  2840. }
  2841. subsys_initcall(stedma40_init);