ep93xx_dma.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454
  1. /*
  2. * Driver for the Cirrus Logic EP93xx DMA Controller
  3. *
  4. * Copyright (C) 2011 Mika Westerberg
  5. *
  6. * DMA M2P implementation is based on the original
  7. * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
  8. *
  9. * Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
  10. * Copyright (C) 2006 Applied Data Systems
  11. * Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
  12. *
  13. * This driver is based on dw_dmac and amba-pl08x drivers.
  14. *
  15. * This program is free software; you can redistribute it and/or modify
  16. * it under the terms of the GNU General Public License as published by
  17. * the Free Software Foundation; either version 2 of the License, or
  18. * (at your option) any later version.
  19. */
  20. #include <linux/clk.h>
  21. #include <linux/init.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/dmaengine.h>
  24. #include <linux/module.h>
  25. #include <linux/platform_device.h>
  26. #include <linux/slab.h>
  27. #include <linux/platform_data/dma-ep93xx.h>
  28. #include "dmaengine.h"
  29. /* M2P registers */
  30. #define M2P_CONTROL 0x0000
  31. #define M2P_CONTROL_STALLINT BIT(0)
  32. #define M2P_CONTROL_NFBINT BIT(1)
  33. #define M2P_CONTROL_CH_ERROR_INT BIT(3)
  34. #define M2P_CONTROL_ENABLE BIT(4)
  35. #define M2P_CONTROL_ICE BIT(6)
  36. #define M2P_INTERRUPT 0x0004
  37. #define M2P_INTERRUPT_STALL BIT(0)
  38. #define M2P_INTERRUPT_NFB BIT(1)
  39. #define M2P_INTERRUPT_ERROR BIT(3)
  40. #define M2P_PPALLOC 0x0008
  41. #define M2P_STATUS 0x000c
  42. #define M2P_MAXCNT0 0x0020
  43. #define M2P_BASE0 0x0024
  44. #define M2P_MAXCNT1 0x0030
  45. #define M2P_BASE1 0x0034
  46. #define M2P_STATE_IDLE 0
  47. #define M2P_STATE_STALL 1
  48. #define M2P_STATE_ON 2
  49. #define M2P_STATE_NEXT 3
  50. /* M2M registers */
  51. #define M2M_CONTROL 0x0000
  52. #define M2M_CONTROL_DONEINT BIT(2)
  53. #define M2M_CONTROL_ENABLE BIT(3)
  54. #define M2M_CONTROL_START BIT(4)
  55. #define M2M_CONTROL_DAH BIT(11)
  56. #define M2M_CONTROL_SAH BIT(12)
  57. #define M2M_CONTROL_PW_SHIFT 9
  58. #define M2M_CONTROL_PW_8 (0 << M2M_CONTROL_PW_SHIFT)
  59. #define M2M_CONTROL_PW_16 (1 << M2M_CONTROL_PW_SHIFT)
  60. #define M2M_CONTROL_PW_32 (2 << M2M_CONTROL_PW_SHIFT)
  61. #define M2M_CONTROL_PW_MASK (3 << M2M_CONTROL_PW_SHIFT)
  62. #define M2M_CONTROL_TM_SHIFT 13
  63. #define M2M_CONTROL_TM_TX (1 << M2M_CONTROL_TM_SHIFT)
  64. #define M2M_CONTROL_TM_RX (2 << M2M_CONTROL_TM_SHIFT)
  65. #define M2M_CONTROL_NFBINT BIT(21)
  66. #define M2M_CONTROL_RSS_SHIFT 22
  67. #define M2M_CONTROL_RSS_SSPRX (1 << M2M_CONTROL_RSS_SHIFT)
  68. #define M2M_CONTROL_RSS_SSPTX (2 << M2M_CONTROL_RSS_SHIFT)
  69. #define M2M_CONTROL_RSS_IDE (3 << M2M_CONTROL_RSS_SHIFT)
  70. #define M2M_CONTROL_NO_HDSK BIT(24)
  71. #define M2M_CONTROL_PWSC_SHIFT 25
  72. #define M2M_INTERRUPT 0x0004
  73. #define M2M_INTERRUPT_MASK 6
  74. #define M2M_STATUS 0x000c
  75. #define M2M_STATUS_CTL_SHIFT 1
  76. #define M2M_STATUS_CTL_IDLE (0 << M2M_STATUS_CTL_SHIFT)
  77. #define M2M_STATUS_CTL_STALL (1 << M2M_STATUS_CTL_SHIFT)
  78. #define M2M_STATUS_CTL_MEMRD (2 << M2M_STATUS_CTL_SHIFT)
  79. #define M2M_STATUS_CTL_MEMWR (3 << M2M_STATUS_CTL_SHIFT)
  80. #define M2M_STATUS_CTL_BWCWAIT (4 << M2M_STATUS_CTL_SHIFT)
  81. #define M2M_STATUS_CTL_MASK (7 << M2M_STATUS_CTL_SHIFT)
  82. #define M2M_STATUS_BUF_SHIFT 4
  83. #define M2M_STATUS_BUF_NO (0 << M2M_STATUS_BUF_SHIFT)
  84. #define M2M_STATUS_BUF_ON (1 << M2M_STATUS_BUF_SHIFT)
  85. #define M2M_STATUS_BUF_NEXT (2 << M2M_STATUS_BUF_SHIFT)
  86. #define M2M_STATUS_BUF_MASK (3 << M2M_STATUS_BUF_SHIFT)
  87. #define M2M_STATUS_DONE BIT(6)
  88. #define M2M_BCR0 0x0010
  89. #define M2M_BCR1 0x0014
  90. #define M2M_SAR_BASE0 0x0018
  91. #define M2M_SAR_BASE1 0x001c
  92. #define M2M_DAR_BASE0 0x002c
  93. #define M2M_DAR_BASE1 0x0030
  94. #define DMA_MAX_CHAN_BYTES 0xffff
  95. #define DMA_MAX_CHAN_DESCRIPTORS 32
  96. struct ep93xx_dma_engine;
  97. /**
  98. * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
  99. * @src_addr: source address of the transaction
  100. * @dst_addr: destination address of the transaction
  101. * @size: size of the transaction (in bytes)
  102. * @complete: this descriptor is completed
  103. * @txd: dmaengine API descriptor
  104. * @tx_list: list of linked descriptors
  105. * @node: link used for putting this into a channel queue
  106. */
  107. struct ep93xx_dma_desc {
  108. u32 src_addr;
  109. u32 dst_addr;
  110. size_t size;
  111. bool complete;
  112. struct dma_async_tx_descriptor txd;
  113. struct list_head tx_list;
  114. struct list_head node;
  115. };
  116. /**
  117. * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
  118. * @chan: dmaengine API channel
  119. * @edma: pointer to to the engine device
  120. * @regs: memory mapped registers
  121. * @irq: interrupt number of the channel
  122. * @clk: clock used by this channel
  123. * @tasklet: channel specific tasklet used for callbacks
  124. * @lock: lock protecting the fields following
  125. * @flags: flags for the channel
  126. * @buffer: which buffer to use next (0/1)
  127. * @active: flattened chain of descriptors currently being processed
  128. * @queue: pending descriptors which are handled next
  129. * @free_list: list of free descriptors which can be used
  130. * @runtime_addr: physical address currently used as dest/src (M2M only). This
  131. * is set via %DMA_SLAVE_CONFIG before slave operation is
  132. * prepared
  133. * @runtime_ctrl: M2M runtime values for the control register.
  134. *
  135. * As EP93xx DMA controller doesn't support real chained DMA descriptors we
  136. * will have slightly different scheme here: @active points to a head of
  137. * flattened DMA descriptor chain.
  138. *
  139. * @queue holds pending transactions. These are linked through the first
  140. * descriptor in the chain. When a descriptor is moved to the @active queue,
  141. * the first and chained descriptors are flattened into a single list.
  142. *
  143. * @chan.private holds pointer to &struct ep93xx_dma_data which contains
  144. * necessary channel configuration information. For memcpy channels this must
  145. * be %NULL.
  146. */
  147. struct ep93xx_dma_chan {
  148. struct dma_chan chan;
  149. const struct ep93xx_dma_engine *edma;
  150. void __iomem *regs;
  151. int irq;
  152. struct clk *clk;
  153. struct tasklet_struct tasklet;
  154. /* protects the fields following */
  155. spinlock_t lock;
  156. unsigned long flags;
  157. /* Channel is configured for cyclic transfers */
  158. #define EP93XX_DMA_IS_CYCLIC 0
  159. int buffer;
  160. struct list_head active;
  161. struct list_head queue;
  162. struct list_head free_list;
  163. u32 runtime_addr;
  164. u32 runtime_ctrl;
  165. };
  166. /**
  167. * struct ep93xx_dma_engine - the EP93xx DMA engine instance
  168. * @dma_dev: holds the dmaengine device
  169. * @m2m: is this an M2M or M2P device
  170. * @hw_setup: method which sets the channel up for operation
  171. * @hw_shutdown: shuts the channel down and flushes whatever is left
  172. * @hw_submit: pushes active descriptor(s) to the hardware
  173. * @hw_interrupt: handle the interrupt
  174. * @num_channels: number of channels for this instance
  175. * @channels: array of channels
  176. *
  177. * There is one instance of this struct for the M2P channels and one for the
  178. * M2M channels. hw_xxx() methods are used to perform operations which are
  179. * different on M2M and M2P channels. These methods are called with channel
  180. * lock held and interrupts disabled so they cannot sleep.
  181. */
  182. struct ep93xx_dma_engine {
  183. struct dma_device dma_dev;
  184. bool m2m;
  185. int (*hw_setup)(struct ep93xx_dma_chan *);
  186. void (*hw_shutdown)(struct ep93xx_dma_chan *);
  187. void (*hw_submit)(struct ep93xx_dma_chan *);
  188. int (*hw_interrupt)(struct ep93xx_dma_chan *);
  189. #define INTERRUPT_UNKNOWN 0
  190. #define INTERRUPT_DONE 1
  191. #define INTERRUPT_NEXT_BUFFER 2
  192. size_t num_channels;
  193. struct ep93xx_dma_chan channels[];
  194. };
  195. static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac)
  196. {
  197. return &edmac->chan.dev->device;
  198. }
  199. static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan)
  200. {
  201. return container_of(chan, struct ep93xx_dma_chan, chan);
  202. }
  203. /**
  204. * ep93xx_dma_set_active - set new active descriptor chain
  205. * @edmac: channel
  206. * @desc: head of the new active descriptor chain
  207. *
  208. * Sets @desc to be the head of the new active descriptor chain. This is the
  209. * chain which is processed next. The active list must be empty before calling
  210. * this function.
  211. *
  212. * Called with @edmac->lock held and interrupts disabled.
  213. */
  214. static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac,
  215. struct ep93xx_dma_desc *desc)
  216. {
  217. BUG_ON(!list_empty(&edmac->active));
  218. list_add_tail(&desc->node, &edmac->active);
  219. /* Flatten the @desc->tx_list chain into @edmac->active list */
  220. while (!list_empty(&desc->tx_list)) {
  221. struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list,
  222. struct ep93xx_dma_desc, node);
  223. /*
  224. * We copy the callback parameters from the first descriptor
  225. * to all the chained descriptors. This way we can call the
  226. * callback without having to find out the first descriptor in
  227. * the chain. Useful for cyclic transfers.
  228. */
  229. d->txd.callback = desc->txd.callback;
  230. d->txd.callback_param = desc->txd.callback_param;
  231. list_move_tail(&d->node, &edmac->active);
  232. }
  233. }
  234. /* Called with @edmac->lock held and interrupts disabled */
  235. static struct ep93xx_dma_desc *
  236. ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac)
  237. {
  238. if (list_empty(&edmac->active))
  239. return NULL;
  240. return list_first_entry(&edmac->active, struct ep93xx_dma_desc, node);
  241. }
  242. /**
  243. * ep93xx_dma_advance_active - advances to the next active descriptor
  244. * @edmac: channel
  245. *
  246. * Function advances active descriptor to the next in the @edmac->active and
  247. * returns %true if we still have descriptors in the chain to process.
  248. * Otherwise returns %false.
  249. *
  250. * When the channel is in cyclic mode always returns %true.
  251. *
  252. * Called with @edmac->lock held and interrupts disabled.
  253. */
  254. static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac)
  255. {
  256. struct ep93xx_dma_desc *desc;
  257. list_rotate_left(&edmac->active);
  258. if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
  259. return true;
  260. desc = ep93xx_dma_get_active(edmac);
  261. if (!desc)
  262. return false;
  263. /*
  264. * If txd.cookie is set it means that we are back in the first
  265. * descriptor in the chain and hence done with it.
  266. */
  267. return !desc->txd.cookie;
  268. }
  269. /*
  270. * M2P DMA implementation
  271. */
  272. static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control)
  273. {
  274. writel(control, edmac->regs + M2P_CONTROL);
  275. /*
  276. * EP93xx User's Guide states that we must perform a dummy read after
  277. * write to the control register.
  278. */
  279. readl(edmac->regs + M2P_CONTROL);
  280. }
  281. static int m2p_hw_setup(struct ep93xx_dma_chan *edmac)
  282. {
  283. struct ep93xx_dma_data *data = edmac->chan.private;
  284. u32 control;
  285. writel(data->port & 0xf, edmac->regs + M2P_PPALLOC);
  286. control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE
  287. | M2P_CONTROL_ENABLE;
  288. m2p_set_control(edmac, control);
  289. return 0;
  290. }
  291. static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac)
  292. {
  293. return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3;
  294. }
  295. static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac)
  296. {
  297. u32 control;
  298. control = readl(edmac->regs + M2P_CONTROL);
  299. control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
  300. m2p_set_control(edmac, control);
  301. while (m2p_channel_state(edmac) >= M2P_STATE_ON)
  302. cpu_relax();
  303. m2p_set_control(edmac, 0);
  304. while (m2p_channel_state(edmac) == M2P_STATE_STALL)
  305. cpu_relax();
  306. }
  307. static void m2p_fill_desc(struct ep93xx_dma_chan *edmac)
  308. {
  309. struct ep93xx_dma_desc *desc;
  310. u32 bus_addr;
  311. desc = ep93xx_dma_get_active(edmac);
  312. if (!desc) {
  313. dev_warn(chan2dev(edmac), "M2P: empty descriptor list\n");
  314. return;
  315. }
  316. if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_MEM_TO_DEV)
  317. bus_addr = desc->src_addr;
  318. else
  319. bus_addr = desc->dst_addr;
  320. if (edmac->buffer == 0) {
  321. writel(desc->size, edmac->regs + M2P_MAXCNT0);
  322. writel(bus_addr, edmac->regs + M2P_BASE0);
  323. } else {
  324. writel(desc->size, edmac->regs + M2P_MAXCNT1);
  325. writel(bus_addr, edmac->regs + M2P_BASE1);
  326. }
  327. edmac->buffer ^= 1;
  328. }
  329. static void m2p_hw_submit(struct ep93xx_dma_chan *edmac)
  330. {
  331. u32 control = readl(edmac->regs + M2P_CONTROL);
  332. m2p_fill_desc(edmac);
  333. control |= M2P_CONTROL_STALLINT;
  334. if (ep93xx_dma_advance_active(edmac)) {
  335. m2p_fill_desc(edmac);
  336. control |= M2P_CONTROL_NFBINT;
  337. }
  338. m2p_set_control(edmac, control);
  339. }
  340. static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac)
  341. {
  342. u32 irq_status = readl(edmac->regs + M2P_INTERRUPT);
  343. u32 control;
  344. if (irq_status & M2P_INTERRUPT_ERROR) {
  345. struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac);
  346. /* Clear the error interrupt */
  347. writel(1, edmac->regs + M2P_INTERRUPT);
  348. /*
  349. * It seems that there is no easy way of reporting errors back
  350. * to client so we just report the error here and continue as
  351. * usual.
  352. *
  353. * Revisit this when there is a mechanism to report back the
  354. * errors.
  355. */
  356. dev_err(chan2dev(edmac),
  357. "DMA transfer failed! Details:\n"
  358. "\tcookie : %d\n"
  359. "\tsrc_addr : 0x%08x\n"
  360. "\tdst_addr : 0x%08x\n"
  361. "\tsize : %zu\n",
  362. desc->txd.cookie, desc->src_addr, desc->dst_addr,
  363. desc->size);
  364. }
  365. switch (irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB)) {
  366. case M2P_INTERRUPT_STALL:
  367. /* Disable interrupts */
  368. control = readl(edmac->regs + M2P_CONTROL);
  369. control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
  370. m2p_set_control(edmac, control);
  371. return INTERRUPT_DONE;
  372. case M2P_INTERRUPT_NFB:
  373. if (ep93xx_dma_advance_active(edmac))
  374. m2p_fill_desc(edmac);
  375. return INTERRUPT_NEXT_BUFFER;
  376. }
  377. return INTERRUPT_UNKNOWN;
  378. }
  379. /*
  380. * M2M DMA implementation
  381. */
  382. static int m2m_hw_setup(struct ep93xx_dma_chan *edmac)
  383. {
  384. const struct ep93xx_dma_data *data = edmac->chan.private;
  385. u32 control = 0;
  386. if (!data) {
  387. /* This is memcpy channel, nothing to configure */
  388. writel(control, edmac->regs + M2M_CONTROL);
  389. return 0;
  390. }
  391. switch (data->port) {
  392. case EP93XX_DMA_SSP:
  393. /*
  394. * This was found via experimenting - anything less than 5
  395. * causes the channel to perform only a partial transfer which
  396. * leads to problems since we don't get DONE interrupt then.
  397. */
  398. control = (5 << M2M_CONTROL_PWSC_SHIFT);
  399. control |= M2M_CONTROL_NO_HDSK;
  400. if (data->direction == DMA_MEM_TO_DEV) {
  401. control |= M2M_CONTROL_DAH;
  402. control |= M2M_CONTROL_TM_TX;
  403. control |= M2M_CONTROL_RSS_SSPTX;
  404. } else {
  405. control |= M2M_CONTROL_SAH;
  406. control |= M2M_CONTROL_TM_RX;
  407. control |= M2M_CONTROL_RSS_SSPRX;
  408. }
  409. break;
  410. case EP93XX_DMA_IDE:
  411. /*
  412. * This IDE part is totally untested. Values below are taken
  413. * from the EP93xx Users's Guide and might not be correct.
  414. */
  415. if (data->direction == DMA_MEM_TO_DEV) {
  416. /* Worst case from the UG */
  417. control = (3 << M2M_CONTROL_PWSC_SHIFT);
  418. control |= M2M_CONTROL_DAH;
  419. control |= M2M_CONTROL_TM_TX;
  420. } else {
  421. control = (2 << M2M_CONTROL_PWSC_SHIFT);
  422. control |= M2M_CONTROL_SAH;
  423. control |= M2M_CONTROL_TM_RX;
  424. }
  425. control |= M2M_CONTROL_NO_HDSK;
  426. control |= M2M_CONTROL_RSS_IDE;
  427. control |= M2M_CONTROL_PW_16;
  428. break;
  429. default:
  430. return -EINVAL;
  431. }
  432. writel(control, edmac->regs + M2M_CONTROL);
  433. return 0;
  434. }
  435. static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac)
  436. {
  437. /* Just disable the channel */
  438. writel(0, edmac->regs + M2M_CONTROL);
  439. }
  440. static void m2m_fill_desc(struct ep93xx_dma_chan *edmac)
  441. {
  442. struct ep93xx_dma_desc *desc;
  443. desc = ep93xx_dma_get_active(edmac);
  444. if (!desc) {
  445. dev_warn(chan2dev(edmac), "M2M: empty descriptor list\n");
  446. return;
  447. }
  448. if (edmac->buffer == 0) {
  449. writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0);
  450. writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0);
  451. writel(desc->size, edmac->regs + M2M_BCR0);
  452. } else {
  453. writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1);
  454. writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1);
  455. writel(desc->size, edmac->regs + M2M_BCR1);
  456. }
  457. edmac->buffer ^= 1;
  458. }
  459. static void m2m_hw_submit(struct ep93xx_dma_chan *edmac)
  460. {
  461. struct ep93xx_dma_data *data = edmac->chan.private;
  462. u32 control = readl(edmac->regs + M2M_CONTROL);
  463. /*
  464. * Since we allow clients to configure PW (peripheral width) we always
  465. * clear PW bits here and then set them according what is given in
  466. * the runtime configuration.
  467. */
  468. control &= ~M2M_CONTROL_PW_MASK;
  469. control |= edmac->runtime_ctrl;
  470. m2m_fill_desc(edmac);
  471. control |= M2M_CONTROL_DONEINT;
  472. if (ep93xx_dma_advance_active(edmac)) {
  473. m2m_fill_desc(edmac);
  474. control |= M2M_CONTROL_NFBINT;
  475. }
  476. /*
  477. * Now we can finally enable the channel. For M2M channel this must be
  478. * done _after_ the BCRx registers are programmed.
  479. */
  480. control |= M2M_CONTROL_ENABLE;
  481. writel(control, edmac->regs + M2M_CONTROL);
  482. if (!data) {
  483. /*
  484. * For memcpy channels the software trigger must be asserted
  485. * in order to start the memcpy operation.
  486. */
  487. control |= M2M_CONTROL_START;
  488. writel(control, edmac->regs + M2M_CONTROL);
  489. }
  490. }
  491. /*
  492. * According to EP93xx User's Guide, we should receive DONE interrupt when all
  493. * M2M DMA controller transactions complete normally. This is not always the
  494. * case - sometimes EP93xx M2M DMA asserts DONE interrupt when the DMA channel
  495. * is still running (channel Buffer FSM in DMA_BUF_ON state, and channel
  496. * Control FSM in DMA_MEM_RD state, observed at least in IDE-DMA operation).
  497. * In effect, disabling the channel when only DONE bit is set could stop
  498. * currently running DMA transfer. To avoid this, we use Buffer FSM and
  499. * Control FSM to check current state of DMA channel.
  500. */
  501. static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac)
  502. {
  503. u32 status = readl(edmac->regs + M2M_STATUS);
  504. u32 ctl_fsm = status & M2M_STATUS_CTL_MASK;
  505. u32 buf_fsm = status & M2M_STATUS_BUF_MASK;
  506. bool done = status & M2M_STATUS_DONE;
  507. bool last_done;
  508. u32 control;
  509. struct ep93xx_dma_desc *desc;
  510. /* Accept only DONE and NFB interrupts */
  511. if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_MASK))
  512. return INTERRUPT_UNKNOWN;
  513. if (done) {
  514. /* Clear the DONE bit */
  515. writel(0, edmac->regs + M2M_INTERRUPT);
  516. }
  517. /*
  518. * Check whether we are done with descriptors or not. This, together
  519. * with DMA channel state, determines action to take in interrupt.
  520. */
  521. desc = ep93xx_dma_get_active(edmac);
  522. last_done = !desc || desc->txd.cookie;
  523. /*
  524. * Use M2M DMA Buffer FSM and Control FSM to check current state of
  525. * DMA channel. Using DONE and NFB bits from channel status register
  526. * or bits from channel interrupt register is not reliable.
  527. */
  528. if (!last_done &&
  529. (buf_fsm == M2M_STATUS_BUF_NO ||
  530. buf_fsm == M2M_STATUS_BUF_ON)) {
  531. /*
  532. * Two buffers are ready for update when Buffer FSM is in
  533. * DMA_NO_BUF state. Only one buffer can be prepared without
  534. * disabling the channel or polling the DONE bit.
  535. * To simplify things, always prepare only one buffer.
  536. */
  537. if (ep93xx_dma_advance_active(edmac)) {
  538. m2m_fill_desc(edmac);
  539. if (done && !edmac->chan.private) {
  540. /* Software trigger for memcpy channel */
  541. control = readl(edmac->regs + M2M_CONTROL);
  542. control |= M2M_CONTROL_START;
  543. writel(control, edmac->regs + M2M_CONTROL);
  544. }
  545. return INTERRUPT_NEXT_BUFFER;
  546. } else {
  547. last_done = true;
  548. }
  549. }
  550. /*
  551. * Disable the channel only when Buffer FSM is in DMA_NO_BUF state
  552. * and Control FSM is in DMA_STALL state.
  553. */
  554. if (last_done &&
  555. buf_fsm == M2M_STATUS_BUF_NO &&
  556. ctl_fsm == M2M_STATUS_CTL_STALL) {
  557. /* Disable interrupts and the channel */
  558. control = readl(edmac->regs + M2M_CONTROL);
  559. control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_NFBINT
  560. | M2M_CONTROL_ENABLE);
  561. writel(control, edmac->regs + M2M_CONTROL);
  562. return INTERRUPT_DONE;
  563. }
  564. /*
  565. * Nothing to do this time.
  566. */
  567. return INTERRUPT_NEXT_BUFFER;
  568. }
  569. /*
  570. * DMA engine API implementation
  571. */
  572. static struct ep93xx_dma_desc *
  573. ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac)
  574. {
  575. struct ep93xx_dma_desc *desc, *_desc;
  576. struct ep93xx_dma_desc *ret = NULL;
  577. unsigned long flags;
  578. spin_lock_irqsave(&edmac->lock, flags);
  579. list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) {
  580. if (async_tx_test_ack(&desc->txd)) {
  581. list_del_init(&desc->node);
  582. /* Re-initialize the descriptor */
  583. desc->src_addr = 0;
  584. desc->dst_addr = 0;
  585. desc->size = 0;
  586. desc->complete = false;
  587. desc->txd.cookie = 0;
  588. desc->txd.callback = NULL;
  589. desc->txd.callback_param = NULL;
  590. ret = desc;
  591. break;
  592. }
  593. }
  594. spin_unlock_irqrestore(&edmac->lock, flags);
  595. return ret;
  596. }
  597. static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac,
  598. struct ep93xx_dma_desc *desc)
  599. {
  600. if (desc) {
  601. unsigned long flags;
  602. spin_lock_irqsave(&edmac->lock, flags);
  603. list_splice_init(&desc->tx_list, &edmac->free_list);
  604. list_add(&desc->node, &edmac->free_list);
  605. spin_unlock_irqrestore(&edmac->lock, flags);
  606. }
  607. }
  608. /**
  609. * ep93xx_dma_advance_work - start processing the next pending transaction
  610. * @edmac: channel
  611. *
  612. * If we have pending transactions queued and we are currently idling, this
  613. * function takes the next queued transaction from the @edmac->queue and
  614. * pushes it to the hardware for execution.
  615. */
  616. static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac)
  617. {
  618. struct ep93xx_dma_desc *new;
  619. unsigned long flags;
  620. spin_lock_irqsave(&edmac->lock, flags);
  621. if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) {
  622. spin_unlock_irqrestore(&edmac->lock, flags);
  623. return;
  624. }
  625. /* Take the next descriptor from the pending queue */
  626. new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node);
  627. list_del_init(&new->node);
  628. ep93xx_dma_set_active(edmac, new);
  629. /* Push it to the hardware */
  630. edmac->edma->hw_submit(edmac);
  631. spin_unlock_irqrestore(&edmac->lock, flags);
  632. }
  633. static void ep93xx_dma_unmap_buffers(struct ep93xx_dma_desc *desc)
  634. {
  635. struct device *dev = desc->txd.chan->device->dev;
  636. if (!(desc->txd.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  637. if (desc->txd.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
  638. dma_unmap_single(dev, desc->src_addr, desc->size,
  639. DMA_TO_DEVICE);
  640. else
  641. dma_unmap_page(dev, desc->src_addr, desc->size,
  642. DMA_TO_DEVICE);
  643. }
  644. if (!(desc->txd.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
  645. if (desc->txd.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
  646. dma_unmap_single(dev, desc->dst_addr, desc->size,
  647. DMA_FROM_DEVICE);
  648. else
  649. dma_unmap_page(dev, desc->dst_addr, desc->size,
  650. DMA_FROM_DEVICE);
  651. }
  652. }
  653. static void ep93xx_dma_tasklet(unsigned long data)
  654. {
  655. struct ep93xx_dma_chan *edmac = (struct ep93xx_dma_chan *)data;
  656. struct ep93xx_dma_desc *desc, *d;
  657. dma_async_tx_callback callback = NULL;
  658. void *callback_param = NULL;
  659. LIST_HEAD(list);
  660. spin_lock_irq(&edmac->lock);
  661. /*
  662. * If dma_terminate_all() was called before we get to run, the active
  663. * list has become empty. If that happens we aren't supposed to do
  664. * anything more than call ep93xx_dma_advance_work().
  665. */
  666. desc = ep93xx_dma_get_active(edmac);
  667. if (desc) {
  668. if (desc->complete) {
  669. /* mark descriptor complete for non cyclic case only */
  670. if (!test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
  671. dma_cookie_complete(&desc->txd);
  672. list_splice_init(&edmac->active, &list);
  673. }
  674. callback = desc->txd.callback;
  675. callback_param = desc->txd.callback_param;
  676. }
  677. spin_unlock_irq(&edmac->lock);
  678. /* Pick up the next descriptor from the queue */
  679. ep93xx_dma_advance_work(edmac);
  680. /* Now we can release all the chained descriptors */
  681. list_for_each_entry_safe(desc, d, &list, node) {
  682. /*
  683. * For the memcpy channels the API requires us to unmap the
  684. * buffers unless requested otherwise.
  685. */
  686. if (!edmac->chan.private)
  687. ep93xx_dma_unmap_buffers(desc);
  688. ep93xx_dma_desc_put(edmac, desc);
  689. }
  690. if (callback)
  691. callback(callback_param);
  692. }
  693. static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id)
  694. {
  695. struct ep93xx_dma_chan *edmac = dev_id;
  696. struct ep93xx_dma_desc *desc;
  697. irqreturn_t ret = IRQ_HANDLED;
  698. spin_lock(&edmac->lock);
  699. desc = ep93xx_dma_get_active(edmac);
  700. if (!desc) {
  701. dev_warn(chan2dev(edmac),
  702. "got interrupt while active list is empty\n");
  703. spin_unlock(&edmac->lock);
  704. return IRQ_NONE;
  705. }
  706. switch (edmac->edma->hw_interrupt(edmac)) {
  707. case INTERRUPT_DONE:
  708. desc->complete = true;
  709. tasklet_schedule(&edmac->tasklet);
  710. break;
  711. case INTERRUPT_NEXT_BUFFER:
  712. if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
  713. tasklet_schedule(&edmac->tasklet);
  714. break;
  715. default:
  716. dev_warn(chan2dev(edmac), "unknown interrupt!\n");
  717. ret = IRQ_NONE;
  718. break;
  719. }
  720. spin_unlock(&edmac->lock);
  721. return ret;
  722. }
  723. /**
  724. * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
  725. * @tx: descriptor to be executed
  726. *
  727. * Function will execute given descriptor on the hardware or if the hardware
  728. * is busy, queue the descriptor to be executed later on. Returns cookie which
  729. * can be used to poll the status of the descriptor.
  730. */
  731. static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
  732. {
  733. struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan);
  734. struct ep93xx_dma_desc *desc;
  735. dma_cookie_t cookie;
  736. unsigned long flags;
  737. spin_lock_irqsave(&edmac->lock, flags);
  738. cookie = dma_cookie_assign(tx);
  739. desc = container_of(tx, struct ep93xx_dma_desc, txd);
  740. /*
  741. * If nothing is currently prosessed, we push this descriptor
  742. * directly to the hardware. Otherwise we put the descriptor
  743. * to the pending queue.
  744. */
  745. if (list_empty(&edmac->active)) {
  746. ep93xx_dma_set_active(edmac, desc);
  747. edmac->edma->hw_submit(edmac);
  748. } else {
  749. list_add_tail(&desc->node, &edmac->queue);
  750. }
  751. spin_unlock_irqrestore(&edmac->lock, flags);
  752. return cookie;
  753. }
  754. /**
  755. * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
  756. * @chan: channel to allocate resources
  757. *
  758. * Function allocates necessary resources for the given DMA channel and
  759. * returns number of allocated descriptors for the channel. Negative errno
  760. * is returned in case of failure.
  761. */
  762. static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan)
  763. {
  764. struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
  765. struct ep93xx_dma_data *data = chan->private;
  766. const char *name = dma_chan_name(chan);
  767. int ret, i;
  768. /* Sanity check the channel parameters */
  769. if (!edmac->edma->m2m) {
  770. if (!data)
  771. return -EINVAL;
  772. if (data->port < EP93XX_DMA_I2S1 ||
  773. data->port > EP93XX_DMA_IRDA)
  774. return -EINVAL;
  775. if (data->direction != ep93xx_dma_chan_direction(chan))
  776. return -EINVAL;
  777. } else {
  778. if (data) {
  779. switch (data->port) {
  780. case EP93XX_DMA_SSP:
  781. case EP93XX_DMA_IDE:
  782. if (data->direction != DMA_MEM_TO_DEV &&
  783. data->direction != DMA_DEV_TO_MEM)
  784. return -EINVAL;
  785. break;
  786. default:
  787. return -EINVAL;
  788. }
  789. }
  790. }
  791. if (data && data->name)
  792. name = data->name;
  793. ret = clk_enable(edmac->clk);
  794. if (ret)
  795. return ret;
  796. ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac);
  797. if (ret)
  798. goto fail_clk_disable;
  799. spin_lock_irq(&edmac->lock);
  800. dma_cookie_init(&edmac->chan);
  801. ret = edmac->edma->hw_setup(edmac);
  802. spin_unlock_irq(&edmac->lock);
  803. if (ret)
  804. goto fail_free_irq;
  805. for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) {
  806. struct ep93xx_dma_desc *desc;
  807. desc = kzalloc(sizeof(*desc), GFP_KERNEL);
  808. if (!desc) {
  809. dev_warn(chan2dev(edmac), "not enough descriptors\n");
  810. break;
  811. }
  812. INIT_LIST_HEAD(&desc->tx_list);
  813. dma_async_tx_descriptor_init(&desc->txd, chan);
  814. desc->txd.flags = DMA_CTRL_ACK;
  815. desc->txd.tx_submit = ep93xx_dma_tx_submit;
  816. ep93xx_dma_desc_put(edmac, desc);
  817. }
  818. return i;
  819. fail_free_irq:
  820. free_irq(edmac->irq, edmac);
  821. fail_clk_disable:
  822. clk_disable(edmac->clk);
  823. return ret;
  824. }
  825. /**
  826. * ep93xx_dma_free_chan_resources - release resources for the channel
  827. * @chan: channel
  828. *
  829. * Function releases all the resources allocated for the given channel.
  830. * The channel must be idle when this is called.
  831. */
  832. static void ep93xx_dma_free_chan_resources(struct dma_chan *chan)
  833. {
  834. struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
  835. struct ep93xx_dma_desc *desc, *d;
  836. unsigned long flags;
  837. LIST_HEAD(list);
  838. BUG_ON(!list_empty(&edmac->active));
  839. BUG_ON(!list_empty(&edmac->queue));
  840. spin_lock_irqsave(&edmac->lock, flags);
  841. edmac->edma->hw_shutdown(edmac);
  842. edmac->runtime_addr = 0;
  843. edmac->runtime_ctrl = 0;
  844. edmac->buffer = 0;
  845. list_splice_init(&edmac->free_list, &list);
  846. spin_unlock_irqrestore(&edmac->lock, flags);
  847. list_for_each_entry_safe(desc, d, &list, node)
  848. kfree(desc);
  849. clk_disable(edmac->clk);
  850. free_irq(edmac->irq, edmac);
  851. }
  852. /**
  853. * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
  854. * @chan: channel
  855. * @dest: destination bus address
  856. * @src: source bus address
  857. * @len: size of the transaction
  858. * @flags: flags for the descriptor
  859. *
  860. * Returns a valid DMA descriptor or %NULL in case of failure.
  861. */
  862. static struct dma_async_tx_descriptor *
  863. ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
  864. dma_addr_t src, size_t len, unsigned long flags)
  865. {
  866. struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
  867. struct ep93xx_dma_desc *desc, *first;
  868. size_t bytes, offset;
  869. first = NULL;
  870. for (offset = 0; offset < len; offset += bytes) {
  871. desc = ep93xx_dma_desc_get(edmac);
  872. if (!desc) {
  873. dev_warn(chan2dev(edmac), "couln't get descriptor\n");
  874. goto fail;
  875. }
  876. bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES);
  877. desc->src_addr = src + offset;
  878. desc->dst_addr = dest + offset;
  879. desc->size = bytes;
  880. if (!first)
  881. first = desc;
  882. else
  883. list_add_tail(&desc->node, &first->tx_list);
  884. }
  885. first->txd.cookie = -EBUSY;
  886. first->txd.flags = flags;
  887. return &first->txd;
  888. fail:
  889. ep93xx_dma_desc_put(edmac, first);
  890. return NULL;
  891. }
  892. /**
  893. * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
  894. * @chan: channel
  895. * @sgl: list of buffers to transfer
  896. * @sg_len: number of entries in @sgl
  897. * @dir: direction of tha DMA transfer
  898. * @flags: flags for the descriptor
  899. * @context: operation context (ignored)
  900. *
  901. * Returns a valid DMA descriptor or %NULL in case of failure.
  902. */
  903. static struct dma_async_tx_descriptor *
  904. ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
  905. unsigned int sg_len, enum dma_transfer_direction dir,
  906. unsigned long flags, void *context)
  907. {
  908. struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
  909. struct ep93xx_dma_desc *desc, *first;
  910. struct scatterlist *sg;
  911. int i;
  912. if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
  913. dev_warn(chan2dev(edmac),
  914. "channel was configured with different direction\n");
  915. return NULL;
  916. }
  917. if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
  918. dev_warn(chan2dev(edmac),
  919. "channel is already used for cyclic transfers\n");
  920. return NULL;
  921. }
  922. first = NULL;
  923. for_each_sg(sgl, sg, sg_len, i) {
  924. size_t sg_len = sg_dma_len(sg);
  925. if (sg_len > DMA_MAX_CHAN_BYTES) {
  926. dev_warn(chan2dev(edmac), "too big transfer size %d\n",
  927. sg_len);
  928. goto fail;
  929. }
  930. desc = ep93xx_dma_desc_get(edmac);
  931. if (!desc) {
  932. dev_warn(chan2dev(edmac), "couln't get descriptor\n");
  933. goto fail;
  934. }
  935. if (dir == DMA_MEM_TO_DEV) {
  936. desc->src_addr = sg_dma_address(sg);
  937. desc->dst_addr = edmac->runtime_addr;
  938. } else {
  939. desc->src_addr = edmac->runtime_addr;
  940. desc->dst_addr = sg_dma_address(sg);
  941. }
  942. desc->size = sg_len;
  943. if (!first)
  944. first = desc;
  945. else
  946. list_add_tail(&desc->node, &first->tx_list);
  947. }
  948. first->txd.cookie = -EBUSY;
  949. first->txd.flags = flags;
  950. return &first->txd;
  951. fail:
  952. ep93xx_dma_desc_put(edmac, first);
  953. return NULL;
  954. }
  955. /**
  956. * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
  957. * @chan: channel
  958. * @dma_addr: DMA mapped address of the buffer
  959. * @buf_len: length of the buffer (in bytes)
  960. * @period_len: length of a single period
  961. * @dir: direction of the operation
  962. * @flags: tx descriptor status flags
  963. * @context: operation context (ignored)
  964. *
  965. * Prepares a descriptor for cyclic DMA operation. This means that once the
  966. * descriptor is submitted, we will be submitting in a @period_len sized
  967. * buffers and calling callback once the period has been elapsed. Transfer
  968. * terminates only when client calls dmaengine_terminate_all() for this
  969. * channel.
  970. *
  971. * Returns a valid DMA descriptor or %NULL in case of failure.
  972. */
  973. static struct dma_async_tx_descriptor *
  974. ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
  975. size_t buf_len, size_t period_len,
  976. enum dma_transfer_direction dir, unsigned long flags,
  977. void *context)
  978. {
  979. struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
  980. struct ep93xx_dma_desc *desc, *first;
  981. size_t offset = 0;
  982. if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
  983. dev_warn(chan2dev(edmac),
  984. "channel was configured with different direction\n");
  985. return NULL;
  986. }
  987. if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
  988. dev_warn(chan2dev(edmac),
  989. "channel is already used for cyclic transfers\n");
  990. return NULL;
  991. }
  992. if (period_len > DMA_MAX_CHAN_BYTES) {
  993. dev_warn(chan2dev(edmac), "too big period length %d\n",
  994. period_len);
  995. return NULL;
  996. }
  997. /* Split the buffer into period size chunks */
  998. first = NULL;
  999. for (offset = 0; offset < buf_len; offset += period_len) {
  1000. desc = ep93xx_dma_desc_get(edmac);
  1001. if (!desc) {
  1002. dev_warn(chan2dev(edmac), "couln't get descriptor\n");
  1003. goto fail;
  1004. }
  1005. if (dir == DMA_MEM_TO_DEV) {
  1006. desc->src_addr = dma_addr + offset;
  1007. desc->dst_addr = edmac->runtime_addr;
  1008. } else {
  1009. desc->src_addr = edmac->runtime_addr;
  1010. desc->dst_addr = dma_addr + offset;
  1011. }
  1012. desc->size = period_len;
  1013. if (!first)
  1014. first = desc;
  1015. else
  1016. list_add_tail(&desc->node, &first->tx_list);
  1017. }
  1018. first->txd.cookie = -EBUSY;
  1019. return &first->txd;
  1020. fail:
  1021. ep93xx_dma_desc_put(edmac, first);
  1022. return NULL;
  1023. }
  1024. /**
  1025. * ep93xx_dma_terminate_all - terminate all transactions
  1026. * @edmac: channel
  1027. *
  1028. * Stops all DMA transactions. All descriptors are put back to the
  1029. * @edmac->free_list and callbacks are _not_ called.
  1030. */
  1031. static int ep93xx_dma_terminate_all(struct ep93xx_dma_chan *edmac)
  1032. {
  1033. struct ep93xx_dma_desc *desc, *_d;
  1034. unsigned long flags;
  1035. LIST_HEAD(list);
  1036. spin_lock_irqsave(&edmac->lock, flags);
  1037. /* First we disable and flush the DMA channel */
  1038. edmac->edma->hw_shutdown(edmac);
  1039. clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags);
  1040. list_splice_init(&edmac->active, &list);
  1041. list_splice_init(&edmac->queue, &list);
  1042. /*
  1043. * We then re-enable the channel. This way we can continue submitting
  1044. * the descriptors by just calling ->hw_submit() again.
  1045. */
  1046. edmac->edma->hw_setup(edmac);
  1047. spin_unlock_irqrestore(&edmac->lock, flags);
  1048. list_for_each_entry_safe(desc, _d, &list, node)
  1049. ep93xx_dma_desc_put(edmac, desc);
  1050. return 0;
  1051. }
  1052. static int ep93xx_dma_slave_config(struct ep93xx_dma_chan *edmac,
  1053. struct dma_slave_config *config)
  1054. {
  1055. enum dma_slave_buswidth width;
  1056. unsigned long flags;
  1057. u32 addr, ctrl;
  1058. if (!edmac->edma->m2m)
  1059. return -EINVAL;
  1060. switch (config->direction) {
  1061. case DMA_DEV_TO_MEM:
  1062. width = config->src_addr_width;
  1063. addr = config->src_addr;
  1064. break;
  1065. case DMA_MEM_TO_DEV:
  1066. width = config->dst_addr_width;
  1067. addr = config->dst_addr;
  1068. break;
  1069. default:
  1070. return -EINVAL;
  1071. }
  1072. switch (width) {
  1073. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1074. ctrl = 0;
  1075. break;
  1076. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1077. ctrl = M2M_CONTROL_PW_16;
  1078. break;
  1079. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1080. ctrl = M2M_CONTROL_PW_32;
  1081. break;
  1082. default:
  1083. return -EINVAL;
  1084. }
  1085. spin_lock_irqsave(&edmac->lock, flags);
  1086. edmac->runtime_addr = addr;
  1087. edmac->runtime_ctrl = ctrl;
  1088. spin_unlock_irqrestore(&edmac->lock, flags);
  1089. return 0;
  1090. }
  1091. /**
  1092. * ep93xx_dma_control - manipulate all pending operations on a channel
  1093. * @chan: channel
  1094. * @cmd: control command to perform
  1095. * @arg: optional argument
  1096. *
  1097. * Controls the channel. Function returns %0 in case of success or negative
  1098. * error in case of failure.
  1099. */
  1100. static int ep93xx_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1101. unsigned long arg)
  1102. {
  1103. struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
  1104. struct dma_slave_config *config;
  1105. switch (cmd) {
  1106. case DMA_TERMINATE_ALL:
  1107. return ep93xx_dma_terminate_all(edmac);
  1108. case DMA_SLAVE_CONFIG:
  1109. config = (struct dma_slave_config *)arg;
  1110. return ep93xx_dma_slave_config(edmac, config);
  1111. default:
  1112. break;
  1113. }
  1114. return -ENOSYS;
  1115. }
  1116. /**
  1117. * ep93xx_dma_tx_status - check if a transaction is completed
  1118. * @chan: channel
  1119. * @cookie: transaction specific cookie
  1120. * @state: state of the transaction is stored here if given
  1121. *
  1122. * This function can be used to query state of a given transaction.
  1123. */
  1124. static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan,
  1125. dma_cookie_t cookie,
  1126. struct dma_tx_state *state)
  1127. {
  1128. struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
  1129. enum dma_status ret;
  1130. unsigned long flags;
  1131. spin_lock_irqsave(&edmac->lock, flags);
  1132. ret = dma_cookie_status(chan, cookie, state);
  1133. spin_unlock_irqrestore(&edmac->lock, flags);
  1134. return ret;
  1135. }
  1136. /**
  1137. * ep93xx_dma_issue_pending - push pending transactions to the hardware
  1138. * @chan: channel
  1139. *
  1140. * When this function is called, all pending transactions are pushed to the
  1141. * hardware and executed.
  1142. */
  1143. static void ep93xx_dma_issue_pending(struct dma_chan *chan)
  1144. {
  1145. ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan));
  1146. }
  1147. static int __init ep93xx_dma_probe(struct platform_device *pdev)
  1148. {
  1149. struct ep93xx_dma_platform_data *pdata = dev_get_platdata(&pdev->dev);
  1150. struct ep93xx_dma_engine *edma;
  1151. struct dma_device *dma_dev;
  1152. size_t edma_size;
  1153. int ret, i;
  1154. edma_size = pdata->num_channels * sizeof(struct ep93xx_dma_chan);
  1155. edma = kzalloc(sizeof(*edma) + edma_size, GFP_KERNEL);
  1156. if (!edma)
  1157. return -ENOMEM;
  1158. dma_dev = &edma->dma_dev;
  1159. edma->m2m = platform_get_device_id(pdev)->driver_data;
  1160. edma->num_channels = pdata->num_channels;
  1161. INIT_LIST_HEAD(&dma_dev->channels);
  1162. for (i = 0; i < pdata->num_channels; i++) {
  1163. const struct ep93xx_dma_chan_data *cdata = &pdata->channels[i];
  1164. struct ep93xx_dma_chan *edmac = &edma->channels[i];
  1165. edmac->chan.device = dma_dev;
  1166. edmac->regs = cdata->base;
  1167. edmac->irq = cdata->irq;
  1168. edmac->edma = edma;
  1169. edmac->clk = clk_get(NULL, cdata->name);
  1170. if (IS_ERR(edmac->clk)) {
  1171. dev_warn(&pdev->dev, "failed to get clock for %s\n",
  1172. cdata->name);
  1173. continue;
  1174. }
  1175. spin_lock_init(&edmac->lock);
  1176. INIT_LIST_HEAD(&edmac->active);
  1177. INIT_LIST_HEAD(&edmac->queue);
  1178. INIT_LIST_HEAD(&edmac->free_list);
  1179. tasklet_init(&edmac->tasklet, ep93xx_dma_tasklet,
  1180. (unsigned long)edmac);
  1181. list_add_tail(&edmac->chan.device_node,
  1182. &dma_dev->channels);
  1183. }
  1184. dma_cap_zero(dma_dev->cap_mask);
  1185. dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
  1186. dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
  1187. dma_dev->dev = &pdev->dev;
  1188. dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources;
  1189. dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources;
  1190. dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg;
  1191. dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic;
  1192. dma_dev->device_control = ep93xx_dma_control;
  1193. dma_dev->device_issue_pending = ep93xx_dma_issue_pending;
  1194. dma_dev->device_tx_status = ep93xx_dma_tx_status;
  1195. dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES);
  1196. if (edma->m2m) {
  1197. dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
  1198. dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy;
  1199. edma->hw_setup = m2m_hw_setup;
  1200. edma->hw_shutdown = m2m_hw_shutdown;
  1201. edma->hw_submit = m2m_hw_submit;
  1202. edma->hw_interrupt = m2m_hw_interrupt;
  1203. } else {
  1204. dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
  1205. edma->hw_setup = m2p_hw_setup;
  1206. edma->hw_shutdown = m2p_hw_shutdown;
  1207. edma->hw_submit = m2p_hw_submit;
  1208. edma->hw_interrupt = m2p_hw_interrupt;
  1209. }
  1210. ret = dma_async_device_register(dma_dev);
  1211. if (unlikely(ret)) {
  1212. for (i = 0; i < edma->num_channels; i++) {
  1213. struct ep93xx_dma_chan *edmac = &edma->channels[i];
  1214. if (!IS_ERR_OR_NULL(edmac->clk))
  1215. clk_put(edmac->clk);
  1216. }
  1217. kfree(edma);
  1218. } else {
  1219. dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n",
  1220. edma->m2m ? "M" : "P");
  1221. }
  1222. return ret;
  1223. }
  1224. static struct platform_device_id ep93xx_dma_driver_ids[] = {
  1225. { "ep93xx-dma-m2p", 0 },
  1226. { "ep93xx-dma-m2m", 1 },
  1227. { },
  1228. };
  1229. static struct platform_driver ep93xx_dma_driver = {
  1230. .driver = {
  1231. .name = "ep93xx-dma",
  1232. },
  1233. .id_table = ep93xx_dma_driver_ids,
  1234. };
  1235. static int __init ep93xx_dma_module_init(void)
  1236. {
  1237. return platform_driver_probe(&ep93xx_dma_driver, ep93xx_dma_probe);
  1238. }
  1239. subsys_initcall(ep93xx_dma_module_init);
  1240. MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
  1241. MODULE_DESCRIPTION("EP93xx DMA driver");
  1242. MODULE_LICENSE("GPL");