mmu.c 106 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include <linux/kvm_host.h>
  25. #include <linux/types.h>
  26. #include <linux/string.h>
  27. #include <linux/mm.h>
  28. #include <linux/highmem.h>
  29. #include <linux/module.h>
  30. #include <linux/swap.h>
  31. #include <linux/hugetlb.h>
  32. #include <linux/compiler.h>
  33. #include <linux/srcu.h>
  34. #include <linux/slab.h>
  35. #include <linux/uaccess.h>
  36. #include <asm/page.h>
  37. #include <asm/cmpxchg.h>
  38. #include <asm/io.h>
  39. #include <asm/vmx.h>
  40. /*
  41. * When setting this variable to true it enables Two-Dimensional-Paging
  42. * where the hardware walks 2 page tables:
  43. * 1. the guest-virtual to guest-physical
  44. * 2. while doing 1. it walks guest-physical to host-physical
  45. * If the hardware supports that we don't need to do shadow paging.
  46. */
  47. bool tdp_enabled = false;
  48. enum {
  49. AUDIT_PRE_PAGE_FAULT,
  50. AUDIT_POST_PAGE_FAULT,
  51. AUDIT_PRE_PTE_WRITE,
  52. AUDIT_POST_PTE_WRITE,
  53. AUDIT_PRE_SYNC,
  54. AUDIT_POST_SYNC
  55. };
  56. #undef MMU_DEBUG
  57. #ifdef MMU_DEBUG
  58. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  59. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  60. #else
  61. #define pgprintk(x...) do { } while (0)
  62. #define rmap_printk(x...) do { } while (0)
  63. #endif
  64. #ifdef MMU_DEBUG
  65. static bool dbg = 0;
  66. module_param(dbg, bool, 0644);
  67. #endif
  68. #ifndef MMU_DEBUG
  69. #define ASSERT(x) do { } while (0)
  70. #else
  71. #define ASSERT(x) \
  72. if (!(x)) { \
  73. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  74. __FILE__, __LINE__, #x); \
  75. }
  76. #endif
  77. #define PTE_PREFETCH_NUM 8
  78. #define PT_FIRST_AVAIL_BITS_SHIFT 10
  79. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  80. #define PT64_LEVEL_BITS 9
  81. #define PT64_LEVEL_SHIFT(level) \
  82. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LVL_OFFSET_MASK(level) \
  89. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  90. * PT32_LEVEL_BITS))) - 1))
  91. #define PT32_INDEX(address, level)\
  92. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  93. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  94. #define PT64_DIR_BASE_ADDR_MASK \
  95. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  96. #define PT64_LVL_ADDR_MASK(level) \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  98. * PT64_LEVEL_BITS))) - 1))
  99. #define PT64_LVL_OFFSET_MASK(level) \
  100. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  101. * PT64_LEVEL_BITS))) - 1))
  102. #define PT32_BASE_ADDR_MASK PAGE_MASK
  103. #define PT32_DIR_BASE_ADDR_MASK \
  104. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  105. #define PT32_LVL_ADDR_MASK(level) \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  107. * PT32_LEVEL_BITS))) - 1))
  108. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  109. | PT64_NX_MASK)
  110. #define ACC_EXEC_MASK 1
  111. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  112. #define ACC_USER_MASK PT_USER_MASK
  113. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  114. #include <trace/events/kvm.h>
  115. #define CREATE_TRACE_POINTS
  116. #include "mmutrace.h"
  117. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  118. #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
  119. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  120. /* make pte_list_desc fit well in cache line */
  121. #define PTE_LIST_EXT 3
  122. struct pte_list_desc {
  123. u64 *sptes[PTE_LIST_EXT];
  124. struct pte_list_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. u64 *sptep;
  130. int level;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  138. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  139. shadow_walk_okay(&(_walker)) && \
  140. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  141. __shadow_walk_next(&(_walker), spte))
  142. static struct kmem_cache *pte_list_desc_cache;
  143. static struct kmem_cache *mmu_page_header_cache;
  144. static struct percpu_counter kvm_total_used_mmu_pages;
  145. static u64 __read_mostly shadow_nx_mask;
  146. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  147. static u64 __read_mostly shadow_user_mask;
  148. static u64 __read_mostly shadow_accessed_mask;
  149. static u64 __read_mostly shadow_dirty_mask;
  150. static u64 __read_mostly shadow_mmio_mask;
  151. static void mmu_spte_set(u64 *sptep, u64 spte);
  152. static void mmu_free_roots(struct kvm_vcpu *vcpu);
  153. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  154. {
  155. shadow_mmio_mask = mmio_mask;
  156. }
  157. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  158. static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
  159. {
  160. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  161. trace_mark_mmio_spte(sptep, gfn, access);
  162. mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
  163. }
  164. static bool is_mmio_spte(u64 spte)
  165. {
  166. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  167. }
  168. static gfn_t get_mmio_spte_gfn(u64 spte)
  169. {
  170. return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
  171. }
  172. static unsigned get_mmio_spte_access(u64 spte)
  173. {
  174. return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
  175. }
  176. static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
  177. {
  178. if (unlikely(is_noslot_pfn(pfn))) {
  179. mark_mmio_spte(sptep, gfn, access);
  180. return true;
  181. }
  182. return false;
  183. }
  184. static inline u64 rsvd_bits(int s, int e)
  185. {
  186. return ((1ULL << (e - s + 1)) - 1) << s;
  187. }
  188. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  189. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  190. {
  191. shadow_user_mask = user_mask;
  192. shadow_accessed_mask = accessed_mask;
  193. shadow_dirty_mask = dirty_mask;
  194. shadow_nx_mask = nx_mask;
  195. shadow_x_mask = x_mask;
  196. }
  197. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  198. static int is_cpuid_PSE36(void)
  199. {
  200. return 1;
  201. }
  202. static int is_nx(struct kvm_vcpu *vcpu)
  203. {
  204. return vcpu->arch.efer & EFER_NX;
  205. }
  206. static int is_shadow_present_pte(u64 pte)
  207. {
  208. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  209. }
  210. static int is_large_pte(u64 pte)
  211. {
  212. return pte & PT_PAGE_SIZE_MASK;
  213. }
  214. static int is_dirty_gpte(unsigned long pte)
  215. {
  216. return pte & PT_DIRTY_MASK;
  217. }
  218. static int is_rmap_spte(u64 pte)
  219. {
  220. return is_shadow_present_pte(pte);
  221. }
  222. static int is_last_spte(u64 pte, int level)
  223. {
  224. if (level == PT_PAGE_TABLE_LEVEL)
  225. return 1;
  226. if (is_large_pte(pte))
  227. return 1;
  228. return 0;
  229. }
  230. static pfn_t spte_to_pfn(u64 pte)
  231. {
  232. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  233. }
  234. static gfn_t pse36_gfn_delta(u32 gpte)
  235. {
  236. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  237. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  238. }
  239. #ifdef CONFIG_X86_64
  240. static void __set_spte(u64 *sptep, u64 spte)
  241. {
  242. *sptep = spte;
  243. }
  244. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  245. {
  246. *sptep = spte;
  247. }
  248. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  249. {
  250. return xchg(sptep, spte);
  251. }
  252. static u64 __get_spte_lockless(u64 *sptep)
  253. {
  254. return ACCESS_ONCE(*sptep);
  255. }
  256. static bool __check_direct_spte_mmio_pf(u64 spte)
  257. {
  258. /* It is valid if the spte is zapped. */
  259. return spte == 0ull;
  260. }
  261. #else
  262. union split_spte {
  263. struct {
  264. u32 spte_low;
  265. u32 spte_high;
  266. };
  267. u64 spte;
  268. };
  269. static void count_spte_clear(u64 *sptep, u64 spte)
  270. {
  271. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  272. if (is_shadow_present_pte(spte))
  273. return;
  274. /* Ensure the spte is completely set before we increase the count */
  275. smp_wmb();
  276. sp->clear_spte_count++;
  277. }
  278. static void __set_spte(u64 *sptep, u64 spte)
  279. {
  280. union split_spte *ssptep, sspte;
  281. ssptep = (union split_spte *)sptep;
  282. sspte = (union split_spte)spte;
  283. ssptep->spte_high = sspte.spte_high;
  284. /*
  285. * If we map the spte from nonpresent to present, We should store
  286. * the high bits firstly, then set present bit, so cpu can not
  287. * fetch this spte while we are setting the spte.
  288. */
  289. smp_wmb();
  290. ssptep->spte_low = sspte.spte_low;
  291. }
  292. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  293. {
  294. union split_spte *ssptep, sspte;
  295. ssptep = (union split_spte *)sptep;
  296. sspte = (union split_spte)spte;
  297. ssptep->spte_low = sspte.spte_low;
  298. /*
  299. * If we map the spte from present to nonpresent, we should clear
  300. * present bit firstly to avoid vcpu fetch the old high bits.
  301. */
  302. smp_wmb();
  303. ssptep->spte_high = sspte.spte_high;
  304. count_spte_clear(sptep, spte);
  305. }
  306. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  307. {
  308. union split_spte *ssptep, sspte, orig;
  309. ssptep = (union split_spte *)sptep;
  310. sspte = (union split_spte)spte;
  311. /* xchg acts as a barrier before the setting of the high bits */
  312. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  313. orig.spte_high = ssptep->spte_high;
  314. ssptep->spte_high = sspte.spte_high;
  315. count_spte_clear(sptep, spte);
  316. return orig.spte;
  317. }
  318. /*
  319. * The idea using the light way get the spte on x86_32 guest is from
  320. * gup_get_pte(arch/x86/mm/gup.c).
  321. * The difference is we can not catch the spte tlb flush if we leave
  322. * guest mode, so we emulate it by increase clear_spte_count when spte
  323. * is cleared.
  324. */
  325. static u64 __get_spte_lockless(u64 *sptep)
  326. {
  327. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  328. union split_spte spte, *orig = (union split_spte *)sptep;
  329. int count;
  330. retry:
  331. count = sp->clear_spte_count;
  332. smp_rmb();
  333. spte.spte_low = orig->spte_low;
  334. smp_rmb();
  335. spte.spte_high = orig->spte_high;
  336. smp_rmb();
  337. if (unlikely(spte.spte_low != orig->spte_low ||
  338. count != sp->clear_spte_count))
  339. goto retry;
  340. return spte.spte;
  341. }
  342. static bool __check_direct_spte_mmio_pf(u64 spte)
  343. {
  344. union split_spte sspte = (union split_spte)spte;
  345. u32 high_mmio_mask = shadow_mmio_mask >> 32;
  346. /* It is valid if the spte is zapped. */
  347. if (spte == 0ull)
  348. return true;
  349. /* It is valid if the spte is being zapped. */
  350. if (sspte.spte_low == 0ull &&
  351. (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
  352. return true;
  353. return false;
  354. }
  355. #endif
  356. static bool spte_is_locklessly_modifiable(u64 spte)
  357. {
  358. return !(~spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE));
  359. }
  360. static bool spte_has_volatile_bits(u64 spte)
  361. {
  362. /*
  363. * Always atomicly update spte if it can be updated
  364. * out of mmu-lock, it can ensure dirty bit is not lost,
  365. * also, it can help us to get a stable is_writable_pte()
  366. * to ensure tlb flush is not missed.
  367. */
  368. if (spte_is_locklessly_modifiable(spte))
  369. return true;
  370. if (!shadow_accessed_mask)
  371. return false;
  372. if (!is_shadow_present_pte(spte))
  373. return false;
  374. if ((spte & shadow_accessed_mask) &&
  375. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  376. return false;
  377. return true;
  378. }
  379. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  380. {
  381. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  382. }
  383. /* Rules for using mmu_spte_set:
  384. * Set the sptep from nonpresent to present.
  385. * Note: the sptep being assigned *must* be either not present
  386. * or in a state where the hardware will not attempt to update
  387. * the spte.
  388. */
  389. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  390. {
  391. WARN_ON(is_shadow_present_pte(*sptep));
  392. __set_spte(sptep, new_spte);
  393. }
  394. /* Rules for using mmu_spte_update:
  395. * Update the state bits, it means the mapped pfn is not changged.
  396. *
  397. * Whenever we overwrite a writable spte with a read-only one we
  398. * should flush remote TLBs. Otherwise rmap_write_protect
  399. * will find a read-only spte, even though the writable spte
  400. * might be cached on a CPU's TLB, the return value indicates this
  401. * case.
  402. */
  403. static bool mmu_spte_update(u64 *sptep, u64 new_spte)
  404. {
  405. u64 old_spte = *sptep;
  406. bool ret = false;
  407. WARN_ON(!is_rmap_spte(new_spte));
  408. if (!is_shadow_present_pte(old_spte)) {
  409. mmu_spte_set(sptep, new_spte);
  410. return ret;
  411. }
  412. if (!spte_has_volatile_bits(old_spte))
  413. __update_clear_spte_fast(sptep, new_spte);
  414. else
  415. old_spte = __update_clear_spte_slow(sptep, new_spte);
  416. /*
  417. * For the spte updated out of mmu-lock is safe, since
  418. * we always atomicly update it, see the comments in
  419. * spte_has_volatile_bits().
  420. */
  421. if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
  422. ret = true;
  423. if (!shadow_accessed_mask)
  424. return ret;
  425. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  426. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  427. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  428. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  429. return ret;
  430. }
  431. /*
  432. * Rules for using mmu_spte_clear_track_bits:
  433. * It sets the sptep from present to nonpresent, and track the
  434. * state bits, it is used to clear the last level sptep.
  435. */
  436. static int mmu_spte_clear_track_bits(u64 *sptep)
  437. {
  438. pfn_t pfn;
  439. u64 old_spte = *sptep;
  440. if (!spte_has_volatile_bits(old_spte))
  441. __update_clear_spte_fast(sptep, 0ull);
  442. else
  443. old_spte = __update_clear_spte_slow(sptep, 0ull);
  444. if (!is_rmap_spte(old_spte))
  445. return 0;
  446. pfn = spte_to_pfn(old_spte);
  447. /*
  448. * KVM does not hold the refcount of the page used by
  449. * kvm mmu, before reclaiming the page, we should
  450. * unmap it from mmu first.
  451. */
  452. WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
  453. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  454. kvm_set_pfn_accessed(pfn);
  455. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  456. kvm_set_pfn_dirty(pfn);
  457. return 1;
  458. }
  459. /*
  460. * Rules for using mmu_spte_clear_no_track:
  461. * Directly clear spte without caring the state bits of sptep,
  462. * it is used to set the upper level spte.
  463. */
  464. static void mmu_spte_clear_no_track(u64 *sptep)
  465. {
  466. __update_clear_spte_fast(sptep, 0ull);
  467. }
  468. static u64 mmu_spte_get_lockless(u64 *sptep)
  469. {
  470. return __get_spte_lockless(sptep);
  471. }
  472. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  473. {
  474. /*
  475. * Prevent page table teardown by making any free-er wait during
  476. * kvm_flush_remote_tlbs() IPI to all active vcpus.
  477. */
  478. local_irq_disable();
  479. vcpu->mode = READING_SHADOW_PAGE_TABLES;
  480. /*
  481. * Make sure a following spte read is not reordered ahead of the write
  482. * to vcpu->mode.
  483. */
  484. smp_mb();
  485. }
  486. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  487. {
  488. /*
  489. * Make sure the write to vcpu->mode is not reordered in front of
  490. * reads to sptes. If it does, kvm_commit_zap_page() can see us
  491. * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
  492. */
  493. smp_mb();
  494. vcpu->mode = OUTSIDE_GUEST_MODE;
  495. local_irq_enable();
  496. }
  497. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  498. struct kmem_cache *base_cache, int min)
  499. {
  500. void *obj;
  501. if (cache->nobjs >= min)
  502. return 0;
  503. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  504. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  505. if (!obj)
  506. return -ENOMEM;
  507. cache->objects[cache->nobjs++] = obj;
  508. }
  509. return 0;
  510. }
  511. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  512. {
  513. return cache->nobjs;
  514. }
  515. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  516. struct kmem_cache *cache)
  517. {
  518. while (mc->nobjs)
  519. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  520. }
  521. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  522. int min)
  523. {
  524. void *page;
  525. if (cache->nobjs >= min)
  526. return 0;
  527. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  528. page = (void *)__get_free_page(GFP_KERNEL);
  529. if (!page)
  530. return -ENOMEM;
  531. cache->objects[cache->nobjs++] = page;
  532. }
  533. return 0;
  534. }
  535. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  536. {
  537. while (mc->nobjs)
  538. free_page((unsigned long)mc->objects[--mc->nobjs]);
  539. }
  540. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  541. {
  542. int r;
  543. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  544. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  545. if (r)
  546. goto out;
  547. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  548. if (r)
  549. goto out;
  550. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  551. mmu_page_header_cache, 4);
  552. out:
  553. return r;
  554. }
  555. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  556. {
  557. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  558. pte_list_desc_cache);
  559. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  560. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  561. mmu_page_header_cache);
  562. }
  563. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  564. {
  565. void *p;
  566. BUG_ON(!mc->nobjs);
  567. p = mc->objects[--mc->nobjs];
  568. return p;
  569. }
  570. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  571. {
  572. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
  573. }
  574. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  575. {
  576. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  577. }
  578. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  579. {
  580. if (!sp->role.direct)
  581. return sp->gfns[index];
  582. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  583. }
  584. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  585. {
  586. if (sp->role.direct)
  587. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  588. else
  589. sp->gfns[index] = gfn;
  590. }
  591. /*
  592. * Return the pointer to the large page information for a given gfn,
  593. * handling slots that are not large page aligned.
  594. */
  595. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  596. struct kvm_memory_slot *slot,
  597. int level)
  598. {
  599. unsigned long idx;
  600. idx = gfn_to_index(gfn, slot->base_gfn, level);
  601. return &slot->arch.lpage_info[level - 2][idx];
  602. }
  603. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  604. {
  605. struct kvm_memory_slot *slot;
  606. struct kvm_lpage_info *linfo;
  607. int i;
  608. slot = gfn_to_memslot(kvm, gfn);
  609. for (i = PT_DIRECTORY_LEVEL;
  610. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  611. linfo = lpage_info_slot(gfn, slot, i);
  612. linfo->write_count += 1;
  613. }
  614. kvm->arch.indirect_shadow_pages++;
  615. }
  616. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  617. {
  618. struct kvm_memory_slot *slot;
  619. struct kvm_lpage_info *linfo;
  620. int i;
  621. slot = gfn_to_memslot(kvm, gfn);
  622. for (i = PT_DIRECTORY_LEVEL;
  623. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  624. linfo = lpage_info_slot(gfn, slot, i);
  625. linfo->write_count -= 1;
  626. WARN_ON(linfo->write_count < 0);
  627. }
  628. kvm->arch.indirect_shadow_pages--;
  629. }
  630. static int has_wrprotected_page(struct kvm *kvm,
  631. gfn_t gfn,
  632. int level)
  633. {
  634. struct kvm_memory_slot *slot;
  635. struct kvm_lpage_info *linfo;
  636. slot = gfn_to_memslot(kvm, gfn);
  637. if (slot) {
  638. linfo = lpage_info_slot(gfn, slot, level);
  639. return linfo->write_count;
  640. }
  641. return 1;
  642. }
  643. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  644. {
  645. unsigned long page_size;
  646. int i, ret = 0;
  647. page_size = kvm_host_page_size(kvm, gfn);
  648. for (i = PT_PAGE_TABLE_LEVEL;
  649. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  650. if (page_size >= KVM_HPAGE_SIZE(i))
  651. ret = i;
  652. else
  653. break;
  654. }
  655. return ret;
  656. }
  657. static struct kvm_memory_slot *
  658. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  659. bool no_dirty_log)
  660. {
  661. struct kvm_memory_slot *slot;
  662. slot = gfn_to_memslot(vcpu->kvm, gfn);
  663. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  664. (no_dirty_log && slot->dirty_bitmap))
  665. slot = NULL;
  666. return slot;
  667. }
  668. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  669. {
  670. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  671. }
  672. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  673. {
  674. int host_level, level, max_level;
  675. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  676. if (host_level == PT_PAGE_TABLE_LEVEL)
  677. return host_level;
  678. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  679. kvm_x86_ops->get_lpage_level() : host_level;
  680. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  681. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  682. break;
  683. return level - 1;
  684. }
  685. /*
  686. * Pte mapping structures:
  687. *
  688. * If pte_list bit zero is zero, then pte_list point to the spte.
  689. *
  690. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  691. * pte_list_desc containing more mappings.
  692. *
  693. * Returns the number of pte entries before the spte was added or zero if
  694. * the spte was not added.
  695. *
  696. */
  697. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  698. unsigned long *pte_list)
  699. {
  700. struct pte_list_desc *desc;
  701. int i, count = 0;
  702. if (!*pte_list) {
  703. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  704. *pte_list = (unsigned long)spte;
  705. } else if (!(*pte_list & 1)) {
  706. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  707. desc = mmu_alloc_pte_list_desc(vcpu);
  708. desc->sptes[0] = (u64 *)*pte_list;
  709. desc->sptes[1] = spte;
  710. *pte_list = (unsigned long)desc | 1;
  711. ++count;
  712. } else {
  713. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  714. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  715. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  716. desc = desc->more;
  717. count += PTE_LIST_EXT;
  718. }
  719. if (desc->sptes[PTE_LIST_EXT-1]) {
  720. desc->more = mmu_alloc_pte_list_desc(vcpu);
  721. desc = desc->more;
  722. }
  723. for (i = 0; desc->sptes[i]; ++i)
  724. ++count;
  725. desc->sptes[i] = spte;
  726. }
  727. return count;
  728. }
  729. static void
  730. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  731. int i, struct pte_list_desc *prev_desc)
  732. {
  733. int j;
  734. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  735. ;
  736. desc->sptes[i] = desc->sptes[j];
  737. desc->sptes[j] = NULL;
  738. if (j != 0)
  739. return;
  740. if (!prev_desc && !desc->more)
  741. *pte_list = (unsigned long)desc->sptes[0];
  742. else
  743. if (prev_desc)
  744. prev_desc->more = desc->more;
  745. else
  746. *pte_list = (unsigned long)desc->more | 1;
  747. mmu_free_pte_list_desc(desc);
  748. }
  749. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  750. {
  751. struct pte_list_desc *desc;
  752. struct pte_list_desc *prev_desc;
  753. int i;
  754. if (!*pte_list) {
  755. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  756. BUG();
  757. } else if (!(*pte_list & 1)) {
  758. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  759. if ((u64 *)*pte_list != spte) {
  760. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  761. BUG();
  762. }
  763. *pte_list = 0;
  764. } else {
  765. rmap_printk("pte_list_remove: %p many->many\n", spte);
  766. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  767. prev_desc = NULL;
  768. while (desc) {
  769. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  770. if (desc->sptes[i] == spte) {
  771. pte_list_desc_remove_entry(pte_list,
  772. desc, i,
  773. prev_desc);
  774. return;
  775. }
  776. prev_desc = desc;
  777. desc = desc->more;
  778. }
  779. pr_err("pte_list_remove: %p many->many\n", spte);
  780. BUG();
  781. }
  782. }
  783. typedef void (*pte_list_walk_fn) (u64 *spte);
  784. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  785. {
  786. struct pte_list_desc *desc;
  787. int i;
  788. if (!*pte_list)
  789. return;
  790. if (!(*pte_list & 1))
  791. return fn((u64 *)*pte_list);
  792. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  793. while (desc) {
  794. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  795. fn(desc->sptes[i]);
  796. desc = desc->more;
  797. }
  798. }
  799. static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
  800. struct kvm_memory_slot *slot)
  801. {
  802. unsigned long idx;
  803. idx = gfn_to_index(gfn, slot->base_gfn, level);
  804. return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
  805. }
  806. /*
  807. * Take gfn and return the reverse mapping to it.
  808. */
  809. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  810. {
  811. struct kvm_memory_slot *slot;
  812. slot = gfn_to_memslot(kvm, gfn);
  813. return __gfn_to_rmap(gfn, level, slot);
  814. }
  815. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  816. {
  817. struct kvm_mmu_memory_cache *cache;
  818. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  819. return mmu_memory_cache_free_objects(cache);
  820. }
  821. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  822. {
  823. struct kvm_mmu_page *sp;
  824. unsigned long *rmapp;
  825. sp = page_header(__pa(spte));
  826. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  827. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  828. return pte_list_add(vcpu, spte, rmapp);
  829. }
  830. static void rmap_remove(struct kvm *kvm, u64 *spte)
  831. {
  832. struct kvm_mmu_page *sp;
  833. gfn_t gfn;
  834. unsigned long *rmapp;
  835. sp = page_header(__pa(spte));
  836. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  837. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  838. pte_list_remove(spte, rmapp);
  839. }
  840. /*
  841. * Used by the following functions to iterate through the sptes linked by a
  842. * rmap. All fields are private and not assumed to be used outside.
  843. */
  844. struct rmap_iterator {
  845. /* private fields */
  846. struct pte_list_desc *desc; /* holds the sptep if not NULL */
  847. int pos; /* index of the sptep */
  848. };
  849. /*
  850. * Iteration must be started by this function. This should also be used after
  851. * removing/dropping sptes from the rmap link because in such cases the
  852. * information in the itererator may not be valid.
  853. *
  854. * Returns sptep if found, NULL otherwise.
  855. */
  856. static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
  857. {
  858. if (!rmap)
  859. return NULL;
  860. if (!(rmap & 1)) {
  861. iter->desc = NULL;
  862. return (u64 *)rmap;
  863. }
  864. iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
  865. iter->pos = 0;
  866. return iter->desc->sptes[iter->pos];
  867. }
  868. /*
  869. * Must be used with a valid iterator: e.g. after rmap_get_first().
  870. *
  871. * Returns sptep if found, NULL otherwise.
  872. */
  873. static u64 *rmap_get_next(struct rmap_iterator *iter)
  874. {
  875. if (iter->desc) {
  876. if (iter->pos < PTE_LIST_EXT - 1) {
  877. u64 *sptep;
  878. ++iter->pos;
  879. sptep = iter->desc->sptes[iter->pos];
  880. if (sptep)
  881. return sptep;
  882. }
  883. iter->desc = iter->desc->more;
  884. if (iter->desc) {
  885. iter->pos = 0;
  886. /* desc->sptes[0] cannot be NULL */
  887. return iter->desc->sptes[iter->pos];
  888. }
  889. }
  890. return NULL;
  891. }
  892. static void drop_spte(struct kvm *kvm, u64 *sptep)
  893. {
  894. if (mmu_spte_clear_track_bits(sptep))
  895. rmap_remove(kvm, sptep);
  896. }
  897. static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
  898. {
  899. if (is_large_pte(*sptep)) {
  900. WARN_ON(page_header(__pa(sptep))->role.level ==
  901. PT_PAGE_TABLE_LEVEL);
  902. drop_spte(kvm, sptep);
  903. --kvm->stat.lpages;
  904. return true;
  905. }
  906. return false;
  907. }
  908. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  909. {
  910. if (__drop_large_spte(vcpu->kvm, sptep))
  911. kvm_flush_remote_tlbs(vcpu->kvm);
  912. }
  913. /*
  914. * Write-protect on the specified @sptep, @pt_protect indicates whether
  915. * spte writ-protection is caused by protecting shadow page table.
  916. * @flush indicates whether tlb need be flushed.
  917. *
  918. * Note: write protection is difference between drity logging and spte
  919. * protection:
  920. * - for dirty logging, the spte can be set to writable at anytime if
  921. * its dirty bitmap is properly set.
  922. * - for spte protection, the spte can be writable only after unsync-ing
  923. * shadow page.
  924. *
  925. * Return true if the spte is dropped.
  926. */
  927. static bool
  928. spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
  929. {
  930. u64 spte = *sptep;
  931. if (!is_writable_pte(spte) &&
  932. !(pt_protect && spte_is_locklessly_modifiable(spte)))
  933. return false;
  934. rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
  935. if (__drop_large_spte(kvm, sptep)) {
  936. *flush |= true;
  937. return true;
  938. }
  939. if (pt_protect)
  940. spte &= ~SPTE_MMU_WRITEABLE;
  941. spte = spte & ~PT_WRITABLE_MASK;
  942. *flush |= mmu_spte_update(sptep, spte);
  943. return false;
  944. }
  945. static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
  946. int level, bool pt_protect)
  947. {
  948. u64 *sptep;
  949. struct rmap_iterator iter;
  950. bool flush = false;
  951. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  952. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  953. if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
  954. sptep = rmap_get_first(*rmapp, &iter);
  955. continue;
  956. }
  957. sptep = rmap_get_next(&iter);
  958. }
  959. return flush;
  960. }
  961. /**
  962. * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
  963. * @kvm: kvm instance
  964. * @slot: slot to protect
  965. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  966. * @mask: indicates which pages we should protect
  967. *
  968. * Used when we do not need to care about huge page mappings: e.g. during dirty
  969. * logging we do not have any such mappings.
  970. */
  971. void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
  972. struct kvm_memory_slot *slot,
  973. gfn_t gfn_offset, unsigned long mask)
  974. {
  975. unsigned long *rmapp;
  976. while (mask) {
  977. rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
  978. PT_PAGE_TABLE_LEVEL, slot);
  979. __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL, false);
  980. /* clear the first set bit */
  981. mask &= mask - 1;
  982. }
  983. }
  984. static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
  985. {
  986. struct kvm_memory_slot *slot;
  987. unsigned long *rmapp;
  988. int i;
  989. bool write_protected = false;
  990. slot = gfn_to_memslot(kvm, gfn);
  991. for (i = PT_PAGE_TABLE_LEVEL;
  992. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  993. rmapp = __gfn_to_rmap(gfn, i, slot);
  994. write_protected |= __rmap_write_protect(kvm, rmapp, i, true);
  995. }
  996. return write_protected;
  997. }
  998. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  999. struct kvm_memory_slot *slot, unsigned long data)
  1000. {
  1001. u64 *sptep;
  1002. struct rmap_iterator iter;
  1003. int need_tlb_flush = 0;
  1004. while ((sptep = rmap_get_first(*rmapp, &iter))) {
  1005. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1006. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
  1007. drop_spte(kvm, sptep);
  1008. need_tlb_flush = 1;
  1009. }
  1010. return need_tlb_flush;
  1011. }
  1012. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1013. struct kvm_memory_slot *slot, unsigned long data)
  1014. {
  1015. u64 *sptep;
  1016. struct rmap_iterator iter;
  1017. int need_flush = 0;
  1018. u64 new_spte;
  1019. pte_t *ptep = (pte_t *)data;
  1020. pfn_t new_pfn;
  1021. WARN_ON(pte_huge(*ptep));
  1022. new_pfn = pte_pfn(*ptep);
  1023. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1024. BUG_ON(!is_shadow_present_pte(*sptep));
  1025. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
  1026. need_flush = 1;
  1027. if (pte_write(*ptep)) {
  1028. drop_spte(kvm, sptep);
  1029. sptep = rmap_get_first(*rmapp, &iter);
  1030. } else {
  1031. new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
  1032. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  1033. new_spte &= ~PT_WRITABLE_MASK;
  1034. new_spte &= ~SPTE_HOST_WRITEABLE;
  1035. new_spte &= ~shadow_accessed_mask;
  1036. mmu_spte_clear_track_bits(sptep);
  1037. mmu_spte_set(sptep, new_spte);
  1038. sptep = rmap_get_next(&iter);
  1039. }
  1040. }
  1041. if (need_flush)
  1042. kvm_flush_remote_tlbs(kvm);
  1043. return 0;
  1044. }
  1045. static int kvm_handle_hva_range(struct kvm *kvm,
  1046. unsigned long start,
  1047. unsigned long end,
  1048. unsigned long data,
  1049. int (*handler)(struct kvm *kvm,
  1050. unsigned long *rmapp,
  1051. struct kvm_memory_slot *slot,
  1052. unsigned long data))
  1053. {
  1054. int j;
  1055. int ret = 0;
  1056. struct kvm_memslots *slots;
  1057. struct kvm_memory_slot *memslot;
  1058. slots = kvm_memslots(kvm);
  1059. kvm_for_each_memslot(memslot, slots) {
  1060. unsigned long hva_start, hva_end;
  1061. gfn_t gfn_start, gfn_end;
  1062. hva_start = max(start, memslot->userspace_addr);
  1063. hva_end = min(end, memslot->userspace_addr +
  1064. (memslot->npages << PAGE_SHIFT));
  1065. if (hva_start >= hva_end)
  1066. continue;
  1067. /*
  1068. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  1069. * {gfn_start, gfn_start+1, ..., gfn_end-1}.
  1070. */
  1071. gfn_start = hva_to_gfn_memslot(hva_start, memslot);
  1072. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  1073. for (j = PT_PAGE_TABLE_LEVEL;
  1074. j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
  1075. unsigned long idx, idx_end;
  1076. unsigned long *rmapp;
  1077. /*
  1078. * {idx(page_j) | page_j intersects with
  1079. * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
  1080. */
  1081. idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
  1082. idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
  1083. rmapp = __gfn_to_rmap(gfn_start, j, memslot);
  1084. for (; idx <= idx_end; ++idx)
  1085. ret |= handler(kvm, rmapp++, memslot, data);
  1086. }
  1087. }
  1088. return ret;
  1089. }
  1090. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  1091. unsigned long data,
  1092. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  1093. struct kvm_memory_slot *slot,
  1094. unsigned long data))
  1095. {
  1096. return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
  1097. }
  1098. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  1099. {
  1100. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  1101. }
  1102. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  1103. {
  1104. return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
  1105. }
  1106. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  1107. {
  1108. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  1109. }
  1110. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1111. struct kvm_memory_slot *slot, unsigned long data)
  1112. {
  1113. u64 *sptep;
  1114. struct rmap_iterator uninitialized_var(iter);
  1115. int young = 0;
  1116. /*
  1117. * In case of absence of EPT Access and Dirty Bits supports,
  1118. * emulate the accessed bit for EPT, by checking if this page has
  1119. * an EPT mapping, and clearing it if it does. On the next access,
  1120. * a new EPT mapping will be established.
  1121. * This has some overhead, but not as much as the cost of swapping
  1122. * out actively used pages or breaking up actively used hugepages.
  1123. */
  1124. if (!shadow_accessed_mask) {
  1125. young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
  1126. goto out;
  1127. }
  1128. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1129. sptep = rmap_get_next(&iter)) {
  1130. BUG_ON(!is_shadow_present_pte(*sptep));
  1131. if (*sptep & shadow_accessed_mask) {
  1132. young = 1;
  1133. clear_bit((ffs(shadow_accessed_mask) - 1),
  1134. (unsigned long *)sptep);
  1135. }
  1136. }
  1137. out:
  1138. /* @data has hva passed to kvm_age_hva(). */
  1139. trace_kvm_age_page(data, slot, young);
  1140. return young;
  1141. }
  1142. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1143. struct kvm_memory_slot *slot, unsigned long data)
  1144. {
  1145. u64 *sptep;
  1146. struct rmap_iterator iter;
  1147. int young = 0;
  1148. /*
  1149. * If there's no access bit in the secondary pte set by the
  1150. * hardware it's up to gup-fast/gup to set the access bit in
  1151. * the primary pte or in the page structure.
  1152. */
  1153. if (!shadow_accessed_mask)
  1154. goto out;
  1155. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1156. sptep = rmap_get_next(&iter)) {
  1157. BUG_ON(!is_shadow_present_pte(*sptep));
  1158. if (*sptep & shadow_accessed_mask) {
  1159. young = 1;
  1160. break;
  1161. }
  1162. }
  1163. out:
  1164. return young;
  1165. }
  1166. #define RMAP_RECYCLE_THRESHOLD 1000
  1167. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1168. {
  1169. unsigned long *rmapp;
  1170. struct kvm_mmu_page *sp;
  1171. sp = page_header(__pa(spte));
  1172. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  1173. kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
  1174. kvm_flush_remote_tlbs(vcpu->kvm);
  1175. }
  1176. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  1177. {
  1178. return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
  1179. }
  1180. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1181. {
  1182. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1183. }
  1184. #ifdef MMU_DEBUG
  1185. static int is_empty_shadow_page(u64 *spt)
  1186. {
  1187. u64 *pos;
  1188. u64 *end;
  1189. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1190. if (is_shadow_present_pte(*pos)) {
  1191. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1192. pos, *pos);
  1193. return 0;
  1194. }
  1195. return 1;
  1196. }
  1197. #endif
  1198. /*
  1199. * This value is the sum of all of the kvm instances's
  1200. * kvm->arch.n_used_mmu_pages values. We need a global,
  1201. * aggregate version in order to make the slab shrinker
  1202. * faster
  1203. */
  1204. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1205. {
  1206. kvm->arch.n_used_mmu_pages += nr;
  1207. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1208. }
  1209. /*
  1210. * Remove the sp from shadow page cache, after call it,
  1211. * we can not find this sp from the cache, and the shadow
  1212. * page table is still valid.
  1213. * It should be under the protection of mmu lock.
  1214. */
  1215. static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
  1216. {
  1217. ASSERT(is_empty_shadow_page(sp->spt));
  1218. hlist_del(&sp->hash_link);
  1219. if (!sp->role.direct)
  1220. free_page((unsigned long)sp->gfns);
  1221. }
  1222. /*
  1223. * Free the shadow page table and the sp, we can do it
  1224. * out of the protection of mmu lock.
  1225. */
  1226. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1227. {
  1228. list_del(&sp->link);
  1229. free_page((unsigned long)sp->spt);
  1230. kmem_cache_free(mmu_page_header_cache, sp);
  1231. }
  1232. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1233. {
  1234. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1235. }
  1236. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1237. struct kvm_mmu_page *sp, u64 *parent_pte)
  1238. {
  1239. if (!parent_pte)
  1240. return;
  1241. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1242. }
  1243. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1244. u64 *parent_pte)
  1245. {
  1246. pte_list_remove(parent_pte, &sp->parent_ptes);
  1247. }
  1248. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1249. u64 *parent_pte)
  1250. {
  1251. mmu_page_remove_parent_pte(sp, parent_pte);
  1252. mmu_spte_clear_no_track(parent_pte);
  1253. }
  1254. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  1255. u64 *parent_pte, int direct)
  1256. {
  1257. struct kvm_mmu_page *sp;
  1258. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
  1259. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1260. if (!direct)
  1261. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1262. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1263. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1264. bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
  1265. sp->parent_ptes = 0;
  1266. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1267. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1268. return sp;
  1269. }
  1270. static void mark_unsync(u64 *spte);
  1271. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1272. {
  1273. pte_list_walk(&sp->parent_ptes, mark_unsync);
  1274. }
  1275. static void mark_unsync(u64 *spte)
  1276. {
  1277. struct kvm_mmu_page *sp;
  1278. unsigned int index;
  1279. sp = page_header(__pa(spte));
  1280. index = spte - sp->spt;
  1281. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1282. return;
  1283. if (sp->unsync_children++)
  1284. return;
  1285. kvm_mmu_mark_parents_unsync(sp);
  1286. }
  1287. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1288. struct kvm_mmu_page *sp)
  1289. {
  1290. return 1;
  1291. }
  1292. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1293. {
  1294. }
  1295. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1296. struct kvm_mmu_page *sp, u64 *spte,
  1297. const void *pte)
  1298. {
  1299. WARN_ON(1);
  1300. }
  1301. #define KVM_PAGE_ARRAY_NR 16
  1302. struct kvm_mmu_pages {
  1303. struct mmu_page_and_offset {
  1304. struct kvm_mmu_page *sp;
  1305. unsigned int idx;
  1306. } page[KVM_PAGE_ARRAY_NR];
  1307. unsigned int nr;
  1308. };
  1309. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1310. int idx)
  1311. {
  1312. int i;
  1313. if (sp->unsync)
  1314. for (i=0; i < pvec->nr; i++)
  1315. if (pvec->page[i].sp == sp)
  1316. return 0;
  1317. pvec->page[pvec->nr].sp = sp;
  1318. pvec->page[pvec->nr].idx = idx;
  1319. pvec->nr++;
  1320. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1321. }
  1322. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1323. struct kvm_mmu_pages *pvec)
  1324. {
  1325. int i, ret, nr_unsync_leaf = 0;
  1326. for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
  1327. struct kvm_mmu_page *child;
  1328. u64 ent = sp->spt[i];
  1329. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1330. goto clear_child_bitmap;
  1331. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1332. if (child->unsync_children) {
  1333. if (mmu_pages_add(pvec, child, i))
  1334. return -ENOSPC;
  1335. ret = __mmu_unsync_walk(child, pvec);
  1336. if (!ret)
  1337. goto clear_child_bitmap;
  1338. else if (ret > 0)
  1339. nr_unsync_leaf += ret;
  1340. else
  1341. return ret;
  1342. } else if (child->unsync) {
  1343. nr_unsync_leaf++;
  1344. if (mmu_pages_add(pvec, child, i))
  1345. return -ENOSPC;
  1346. } else
  1347. goto clear_child_bitmap;
  1348. continue;
  1349. clear_child_bitmap:
  1350. __clear_bit(i, sp->unsync_child_bitmap);
  1351. sp->unsync_children--;
  1352. WARN_ON((int)sp->unsync_children < 0);
  1353. }
  1354. return nr_unsync_leaf;
  1355. }
  1356. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1357. struct kvm_mmu_pages *pvec)
  1358. {
  1359. if (!sp->unsync_children)
  1360. return 0;
  1361. mmu_pages_add(pvec, sp, 0);
  1362. return __mmu_unsync_walk(sp, pvec);
  1363. }
  1364. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1365. {
  1366. WARN_ON(!sp->unsync);
  1367. trace_kvm_mmu_sync_page(sp);
  1368. sp->unsync = 0;
  1369. --kvm->stat.mmu_unsync;
  1370. }
  1371. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1372. struct list_head *invalid_list);
  1373. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1374. struct list_head *invalid_list);
  1375. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1376. hlist_for_each_entry(sp, pos, \
  1377. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1378. if ((sp)->gfn != (gfn)) {} else
  1379. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1380. hlist_for_each_entry(sp, pos, \
  1381. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1382. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1383. (sp)->role.invalid) {} else
  1384. /* @sp->gfn should be write-protected at the call site */
  1385. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1386. struct list_head *invalid_list, bool clear_unsync)
  1387. {
  1388. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1389. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1390. return 1;
  1391. }
  1392. if (clear_unsync)
  1393. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1394. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1395. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1396. return 1;
  1397. }
  1398. kvm_mmu_flush_tlb(vcpu);
  1399. return 0;
  1400. }
  1401. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1402. struct kvm_mmu_page *sp)
  1403. {
  1404. LIST_HEAD(invalid_list);
  1405. int ret;
  1406. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1407. if (ret)
  1408. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1409. return ret;
  1410. }
  1411. #ifdef CONFIG_KVM_MMU_AUDIT
  1412. #include "mmu_audit.c"
  1413. #else
  1414. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
  1415. static void mmu_audit_disable(void) { }
  1416. #endif
  1417. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1418. struct list_head *invalid_list)
  1419. {
  1420. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1421. }
  1422. /* @gfn should be write-protected at the call site */
  1423. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1424. {
  1425. struct kvm_mmu_page *s;
  1426. struct hlist_node *node;
  1427. LIST_HEAD(invalid_list);
  1428. bool flush = false;
  1429. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1430. if (!s->unsync)
  1431. continue;
  1432. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1433. kvm_unlink_unsync_page(vcpu->kvm, s);
  1434. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1435. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1436. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1437. continue;
  1438. }
  1439. flush = true;
  1440. }
  1441. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1442. if (flush)
  1443. kvm_mmu_flush_tlb(vcpu);
  1444. }
  1445. struct mmu_page_path {
  1446. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1447. unsigned int idx[PT64_ROOT_LEVEL-1];
  1448. };
  1449. #define for_each_sp(pvec, sp, parents, i) \
  1450. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1451. sp = pvec.page[i].sp; \
  1452. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1453. i = mmu_pages_next(&pvec, &parents, i))
  1454. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1455. struct mmu_page_path *parents,
  1456. int i)
  1457. {
  1458. int n;
  1459. for (n = i+1; n < pvec->nr; n++) {
  1460. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1461. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1462. parents->idx[0] = pvec->page[n].idx;
  1463. return n;
  1464. }
  1465. parents->parent[sp->role.level-2] = sp;
  1466. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1467. }
  1468. return n;
  1469. }
  1470. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1471. {
  1472. struct kvm_mmu_page *sp;
  1473. unsigned int level = 0;
  1474. do {
  1475. unsigned int idx = parents->idx[level];
  1476. sp = parents->parent[level];
  1477. if (!sp)
  1478. return;
  1479. --sp->unsync_children;
  1480. WARN_ON((int)sp->unsync_children < 0);
  1481. __clear_bit(idx, sp->unsync_child_bitmap);
  1482. level++;
  1483. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1484. }
  1485. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1486. struct mmu_page_path *parents,
  1487. struct kvm_mmu_pages *pvec)
  1488. {
  1489. parents->parent[parent->role.level-1] = NULL;
  1490. pvec->nr = 0;
  1491. }
  1492. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1493. struct kvm_mmu_page *parent)
  1494. {
  1495. int i;
  1496. struct kvm_mmu_page *sp;
  1497. struct mmu_page_path parents;
  1498. struct kvm_mmu_pages pages;
  1499. LIST_HEAD(invalid_list);
  1500. kvm_mmu_pages_init(parent, &parents, &pages);
  1501. while (mmu_unsync_walk(parent, &pages)) {
  1502. bool protected = false;
  1503. for_each_sp(pages, sp, parents, i)
  1504. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1505. if (protected)
  1506. kvm_flush_remote_tlbs(vcpu->kvm);
  1507. for_each_sp(pages, sp, parents, i) {
  1508. kvm_sync_page(vcpu, sp, &invalid_list);
  1509. mmu_pages_clear_parents(&parents);
  1510. }
  1511. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1512. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1513. kvm_mmu_pages_init(parent, &parents, &pages);
  1514. }
  1515. }
  1516. static void init_shadow_page_table(struct kvm_mmu_page *sp)
  1517. {
  1518. int i;
  1519. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1520. sp->spt[i] = 0ull;
  1521. }
  1522. static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
  1523. {
  1524. sp->write_flooding_count = 0;
  1525. }
  1526. static void clear_sp_write_flooding_count(u64 *spte)
  1527. {
  1528. struct kvm_mmu_page *sp = page_header(__pa(spte));
  1529. __clear_sp_write_flooding_count(sp);
  1530. }
  1531. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1532. gfn_t gfn,
  1533. gva_t gaddr,
  1534. unsigned level,
  1535. int direct,
  1536. unsigned access,
  1537. u64 *parent_pte)
  1538. {
  1539. union kvm_mmu_page_role role;
  1540. unsigned quadrant;
  1541. struct kvm_mmu_page *sp;
  1542. struct hlist_node *node;
  1543. bool need_sync = false;
  1544. role = vcpu->arch.mmu.base_role;
  1545. role.level = level;
  1546. role.direct = direct;
  1547. if (role.direct)
  1548. role.cr4_pae = 0;
  1549. role.access = access;
  1550. if (!vcpu->arch.mmu.direct_map
  1551. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1552. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1553. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1554. role.quadrant = quadrant;
  1555. }
  1556. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1557. if (!need_sync && sp->unsync)
  1558. need_sync = true;
  1559. if (sp->role.word != role.word)
  1560. continue;
  1561. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1562. break;
  1563. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1564. if (sp->unsync_children) {
  1565. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1566. kvm_mmu_mark_parents_unsync(sp);
  1567. } else if (sp->unsync)
  1568. kvm_mmu_mark_parents_unsync(sp);
  1569. __clear_sp_write_flooding_count(sp);
  1570. trace_kvm_mmu_get_page(sp, false);
  1571. return sp;
  1572. }
  1573. ++vcpu->kvm->stat.mmu_cache_miss;
  1574. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1575. if (!sp)
  1576. return sp;
  1577. sp->gfn = gfn;
  1578. sp->role = role;
  1579. hlist_add_head(&sp->hash_link,
  1580. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1581. if (!direct) {
  1582. if (rmap_write_protect(vcpu->kvm, gfn))
  1583. kvm_flush_remote_tlbs(vcpu->kvm);
  1584. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1585. kvm_sync_pages(vcpu, gfn);
  1586. account_shadowed(vcpu->kvm, gfn);
  1587. }
  1588. init_shadow_page_table(sp);
  1589. trace_kvm_mmu_get_page(sp, true);
  1590. return sp;
  1591. }
  1592. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1593. struct kvm_vcpu *vcpu, u64 addr)
  1594. {
  1595. iterator->addr = addr;
  1596. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1597. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1598. if (iterator->level == PT64_ROOT_LEVEL &&
  1599. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1600. !vcpu->arch.mmu.direct_map)
  1601. --iterator->level;
  1602. if (iterator->level == PT32E_ROOT_LEVEL) {
  1603. iterator->shadow_addr
  1604. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1605. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1606. --iterator->level;
  1607. if (!iterator->shadow_addr)
  1608. iterator->level = 0;
  1609. }
  1610. }
  1611. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1612. {
  1613. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1614. return false;
  1615. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1616. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1617. return true;
  1618. }
  1619. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1620. u64 spte)
  1621. {
  1622. if (is_last_spte(spte, iterator->level)) {
  1623. iterator->level = 0;
  1624. return;
  1625. }
  1626. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1627. --iterator->level;
  1628. }
  1629. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1630. {
  1631. return __shadow_walk_next(iterator, *iterator->sptep);
  1632. }
  1633. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1634. {
  1635. u64 spte;
  1636. spte = __pa(sp->spt)
  1637. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  1638. | PT_WRITABLE_MASK | PT_USER_MASK;
  1639. mmu_spte_set(sptep, spte);
  1640. }
  1641. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1642. unsigned direct_access)
  1643. {
  1644. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1645. struct kvm_mmu_page *child;
  1646. /*
  1647. * For the direct sp, if the guest pte's dirty bit
  1648. * changed form clean to dirty, it will corrupt the
  1649. * sp's access: allow writable in the read-only sp,
  1650. * so we should update the spte at this point to get
  1651. * a new sp with the correct access.
  1652. */
  1653. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1654. if (child->role.access == direct_access)
  1655. return;
  1656. drop_parent_pte(child, sptep);
  1657. kvm_flush_remote_tlbs(vcpu->kvm);
  1658. }
  1659. }
  1660. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1661. u64 *spte)
  1662. {
  1663. u64 pte;
  1664. struct kvm_mmu_page *child;
  1665. pte = *spte;
  1666. if (is_shadow_present_pte(pte)) {
  1667. if (is_last_spte(pte, sp->role.level)) {
  1668. drop_spte(kvm, spte);
  1669. if (is_large_pte(pte))
  1670. --kvm->stat.lpages;
  1671. } else {
  1672. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1673. drop_parent_pte(child, spte);
  1674. }
  1675. return true;
  1676. }
  1677. if (is_mmio_spte(pte))
  1678. mmu_spte_clear_no_track(spte);
  1679. return false;
  1680. }
  1681. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1682. struct kvm_mmu_page *sp)
  1683. {
  1684. unsigned i;
  1685. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1686. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1687. }
  1688. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1689. {
  1690. mmu_page_remove_parent_pte(sp, parent_pte);
  1691. }
  1692. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1693. {
  1694. u64 *sptep;
  1695. struct rmap_iterator iter;
  1696. while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
  1697. drop_parent_pte(sp, sptep);
  1698. }
  1699. static int mmu_zap_unsync_children(struct kvm *kvm,
  1700. struct kvm_mmu_page *parent,
  1701. struct list_head *invalid_list)
  1702. {
  1703. int i, zapped = 0;
  1704. struct mmu_page_path parents;
  1705. struct kvm_mmu_pages pages;
  1706. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1707. return 0;
  1708. kvm_mmu_pages_init(parent, &parents, &pages);
  1709. while (mmu_unsync_walk(parent, &pages)) {
  1710. struct kvm_mmu_page *sp;
  1711. for_each_sp(pages, sp, parents, i) {
  1712. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1713. mmu_pages_clear_parents(&parents);
  1714. zapped++;
  1715. }
  1716. kvm_mmu_pages_init(parent, &parents, &pages);
  1717. }
  1718. return zapped;
  1719. }
  1720. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1721. struct list_head *invalid_list)
  1722. {
  1723. int ret;
  1724. trace_kvm_mmu_prepare_zap_page(sp);
  1725. ++kvm->stat.mmu_shadow_zapped;
  1726. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1727. kvm_mmu_page_unlink_children(kvm, sp);
  1728. kvm_mmu_unlink_parents(kvm, sp);
  1729. if (!sp->role.invalid && !sp->role.direct)
  1730. unaccount_shadowed(kvm, sp->gfn);
  1731. if (sp->unsync)
  1732. kvm_unlink_unsync_page(kvm, sp);
  1733. if (!sp->root_count) {
  1734. /* Count self */
  1735. ret++;
  1736. list_move(&sp->link, invalid_list);
  1737. kvm_mod_used_mmu_pages(kvm, -1);
  1738. } else {
  1739. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1740. kvm_reload_remote_mmus(kvm);
  1741. }
  1742. sp->role.invalid = 1;
  1743. return ret;
  1744. }
  1745. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1746. struct list_head *invalid_list)
  1747. {
  1748. struct kvm_mmu_page *sp;
  1749. if (list_empty(invalid_list))
  1750. return;
  1751. /*
  1752. * wmb: make sure everyone sees our modifications to the page tables
  1753. * rmb: make sure we see changes to vcpu->mode
  1754. */
  1755. smp_mb();
  1756. /*
  1757. * Wait for all vcpus to exit guest mode and/or lockless shadow
  1758. * page table walks.
  1759. */
  1760. kvm_flush_remote_tlbs(kvm);
  1761. do {
  1762. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1763. WARN_ON(!sp->role.invalid || sp->root_count);
  1764. kvm_mmu_isolate_page(sp);
  1765. kvm_mmu_free_page(sp);
  1766. } while (!list_empty(invalid_list));
  1767. }
  1768. /*
  1769. * Changing the number of mmu pages allocated to the vm
  1770. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1771. */
  1772. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1773. {
  1774. LIST_HEAD(invalid_list);
  1775. /*
  1776. * If we set the number of mmu pages to be smaller be than the
  1777. * number of actived pages , we must to free some mmu pages before we
  1778. * change the value
  1779. */
  1780. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1781. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
  1782. !list_empty(&kvm->arch.active_mmu_pages)) {
  1783. struct kvm_mmu_page *page;
  1784. page = container_of(kvm->arch.active_mmu_pages.prev,
  1785. struct kvm_mmu_page, link);
  1786. kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
  1787. }
  1788. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1789. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1790. }
  1791. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1792. }
  1793. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1794. {
  1795. struct kvm_mmu_page *sp;
  1796. struct hlist_node *node;
  1797. LIST_HEAD(invalid_list);
  1798. int r;
  1799. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1800. r = 0;
  1801. spin_lock(&kvm->mmu_lock);
  1802. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1803. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1804. sp->role.word);
  1805. r = 1;
  1806. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1807. }
  1808. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1809. spin_unlock(&kvm->mmu_lock);
  1810. return r;
  1811. }
  1812. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  1813. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1814. {
  1815. int slot = memslot_id(kvm, gfn);
  1816. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1817. __set_bit(slot, sp->slot_bitmap);
  1818. }
  1819. /*
  1820. * The function is based on mtrr_type_lookup() in
  1821. * arch/x86/kernel/cpu/mtrr/generic.c
  1822. */
  1823. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1824. u64 start, u64 end)
  1825. {
  1826. int i;
  1827. u64 base, mask;
  1828. u8 prev_match, curr_match;
  1829. int num_var_ranges = KVM_NR_VAR_MTRR;
  1830. if (!mtrr_state->enabled)
  1831. return 0xFF;
  1832. /* Make end inclusive end, instead of exclusive */
  1833. end--;
  1834. /* Look in fixed ranges. Just return the type as per start */
  1835. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1836. int idx;
  1837. if (start < 0x80000) {
  1838. idx = 0;
  1839. idx += (start >> 16);
  1840. return mtrr_state->fixed_ranges[idx];
  1841. } else if (start < 0xC0000) {
  1842. idx = 1 * 8;
  1843. idx += ((start - 0x80000) >> 14);
  1844. return mtrr_state->fixed_ranges[idx];
  1845. } else if (start < 0x1000000) {
  1846. idx = 3 * 8;
  1847. idx += ((start - 0xC0000) >> 12);
  1848. return mtrr_state->fixed_ranges[idx];
  1849. }
  1850. }
  1851. /*
  1852. * Look in variable ranges
  1853. * Look of multiple ranges matching this address and pick type
  1854. * as per MTRR precedence
  1855. */
  1856. if (!(mtrr_state->enabled & 2))
  1857. return mtrr_state->def_type;
  1858. prev_match = 0xFF;
  1859. for (i = 0; i < num_var_ranges; ++i) {
  1860. unsigned short start_state, end_state;
  1861. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1862. continue;
  1863. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1864. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1865. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1866. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1867. start_state = ((start & mask) == (base & mask));
  1868. end_state = ((end & mask) == (base & mask));
  1869. if (start_state != end_state)
  1870. return 0xFE;
  1871. if ((start & mask) != (base & mask))
  1872. continue;
  1873. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1874. if (prev_match == 0xFF) {
  1875. prev_match = curr_match;
  1876. continue;
  1877. }
  1878. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1879. curr_match == MTRR_TYPE_UNCACHABLE)
  1880. return MTRR_TYPE_UNCACHABLE;
  1881. if ((prev_match == MTRR_TYPE_WRBACK &&
  1882. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1883. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1884. curr_match == MTRR_TYPE_WRBACK)) {
  1885. prev_match = MTRR_TYPE_WRTHROUGH;
  1886. curr_match = MTRR_TYPE_WRTHROUGH;
  1887. }
  1888. if (prev_match != curr_match)
  1889. return MTRR_TYPE_UNCACHABLE;
  1890. }
  1891. if (prev_match != 0xFF)
  1892. return prev_match;
  1893. return mtrr_state->def_type;
  1894. }
  1895. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1896. {
  1897. u8 mtrr;
  1898. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1899. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1900. if (mtrr == 0xfe || mtrr == 0xff)
  1901. mtrr = MTRR_TYPE_WRBACK;
  1902. return mtrr;
  1903. }
  1904. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1905. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1906. {
  1907. trace_kvm_mmu_unsync_page(sp);
  1908. ++vcpu->kvm->stat.mmu_unsync;
  1909. sp->unsync = 1;
  1910. kvm_mmu_mark_parents_unsync(sp);
  1911. }
  1912. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1913. {
  1914. struct kvm_mmu_page *s;
  1915. struct hlist_node *node;
  1916. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1917. if (s->unsync)
  1918. continue;
  1919. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1920. __kvm_unsync_page(vcpu, s);
  1921. }
  1922. }
  1923. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1924. bool can_unsync)
  1925. {
  1926. struct kvm_mmu_page *s;
  1927. struct hlist_node *node;
  1928. bool need_unsync = false;
  1929. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1930. if (!can_unsync)
  1931. return 1;
  1932. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1933. return 1;
  1934. if (!need_unsync && !s->unsync) {
  1935. need_unsync = true;
  1936. }
  1937. }
  1938. if (need_unsync)
  1939. kvm_unsync_pages(vcpu, gfn);
  1940. return 0;
  1941. }
  1942. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1943. unsigned pte_access, int user_fault,
  1944. int write_fault, int level,
  1945. gfn_t gfn, pfn_t pfn, bool speculative,
  1946. bool can_unsync, bool host_writable)
  1947. {
  1948. u64 spte;
  1949. int ret = 0;
  1950. if (set_mmio_spte(sptep, gfn, pfn, pte_access))
  1951. return 0;
  1952. spte = PT_PRESENT_MASK;
  1953. if (!speculative)
  1954. spte |= shadow_accessed_mask;
  1955. if (pte_access & ACC_EXEC_MASK)
  1956. spte |= shadow_x_mask;
  1957. else
  1958. spte |= shadow_nx_mask;
  1959. if (pte_access & ACC_USER_MASK)
  1960. spte |= shadow_user_mask;
  1961. if (level > PT_PAGE_TABLE_LEVEL)
  1962. spte |= PT_PAGE_SIZE_MASK;
  1963. if (tdp_enabled)
  1964. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1965. kvm_is_mmio_pfn(pfn));
  1966. if (host_writable)
  1967. spte |= SPTE_HOST_WRITEABLE;
  1968. else
  1969. pte_access &= ~ACC_WRITE_MASK;
  1970. spte |= (u64)pfn << PAGE_SHIFT;
  1971. if ((pte_access & ACC_WRITE_MASK)
  1972. || (!vcpu->arch.mmu.direct_map && write_fault
  1973. && !is_write_protection(vcpu) && !user_fault)) {
  1974. /*
  1975. * There are two cases:
  1976. * - the one is other vcpu creates new sp in the window
  1977. * between mapping_level() and acquiring mmu-lock.
  1978. * - the another case is the new sp is created by itself
  1979. * (page-fault path) when guest uses the target gfn as
  1980. * its page table.
  1981. * Both of these cases can be fixed by allowing guest to
  1982. * retry the access, it will refault, then we can establish
  1983. * the mapping by using small page.
  1984. */
  1985. if (level > PT_PAGE_TABLE_LEVEL &&
  1986. has_wrprotected_page(vcpu->kvm, gfn, level))
  1987. goto done;
  1988. spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
  1989. if (!vcpu->arch.mmu.direct_map
  1990. && !(pte_access & ACC_WRITE_MASK)) {
  1991. spte &= ~PT_USER_MASK;
  1992. /*
  1993. * If we converted a user page to a kernel page,
  1994. * so that the kernel can write to it when cr0.wp=0,
  1995. * then we should prevent the kernel from executing it
  1996. * if SMEP is enabled.
  1997. */
  1998. if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
  1999. spte |= PT64_NX_MASK;
  2000. }
  2001. /*
  2002. * Optimization: for pte sync, if spte was writable the hash
  2003. * lookup is unnecessary (and expensive). Write protection
  2004. * is responsibility of mmu_get_page / kvm_sync_page.
  2005. * Same reasoning can be applied to dirty page accounting.
  2006. */
  2007. if (!can_unsync && is_writable_pte(*sptep))
  2008. goto set_pte;
  2009. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  2010. pgprintk("%s: found shadow page for %llx, marking ro\n",
  2011. __func__, gfn);
  2012. ret = 1;
  2013. pte_access &= ~ACC_WRITE_MASK;
  2014. spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
  2015. }
  2016. }
  2017. if (pte_access & ACC_WRITE_MASK)
  2018. mark_page_dirty(vcpu->kvm, gfn);
  2019. set_pte:
  2020. if (mmu_spte_update(sptep, spte))
  2021. kvm_flush_remote_tlbs(vcpu->kvm);
  2022. done:
  2023. return ret;
  2024. }
  2025. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  2026. unsigned pt_access, unsigned pte_access,
  2027. int user_fault, int write_fault,
  2028. int *emulate, int level, gfn_t gfn,
  2029. pfn_t pfn, bool speculative,
  2030. bool host_writable)
  2031. {
  2032. int was_rmapped = 0;
  2033. int rmap_count;
  2034. pgprintk("%s: spte %llx access %x write_fault %d"
  2035. " user_fault %d gfn %llx\n",
  2036. __func__, *sptep, pt_access,
  2037. write_fault, user_fault, gfn);
  2038. if (is_rmap_spte(*sptep)) {
  2039. /*
  2040. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  2041. * the parent of the now unreachable PTE.
  2042. */
  2043. if (level > PT_PAGE_TABLE_LEVEL &&
  2044. !is_large_pte(*sptep)) {
  2045. struct kvm_mmu_page *child;
  2046. u64 pte = *sptep;
  2047. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2048. drop_parent_pte(child, sptep);
  2049. kvm_flush_remote_tlbs(vcpu->kvm);
  2050. } else if (pfn != spte_to_pfn(*sptep)) {
  2051. pgprintk("hfn old %llx new %llx\n",
  2052. spte_to_pfn(*sptep), pfn);
  2053. drop_spte(vcpu->kvm, sptep);
  2054. kvm_flush_remote_tlbs(vcpu->kvm);
  2055. } else
  2056. was_rmapped = 1;
  2057. }
  2058. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  2059. level, gfn, pfn, speculative, true,
  2060. host_writable)) {
  2061. if (write_fault)
  2062. *emulate = 1;
  2063. kvm_mmu_flush_tlb(vcpu);
  2064. }
  2065. if (unlikely(is_mmio_spte(*sptep) && emulate))
  2066. *emulate = 1;
  2067. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  2068. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  2069. is_large_pte(*sptep)? "2MB" : "4kB",
  2070. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  2071. *sptep, sptep);
  2072. if (!was_rmapped && is_large_pte(*sptep))
  2073. ++vcpu->kvm->stat.lpages;
  2074. if (is_shadow_present_pte(*sptep)) {
  2075. page_header_update_slot(vcpu->kvm, sptep, gfn);
  2076. if (!was_rmapped) {
  2077. rmap_count = rmap_add(vcpu, sptep, gfn);
  2078. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  2079. rmap_recycle(vcpu, sptep, gfn);
  2080. }
  2081. }
  2082. kvm_release_pfn_clean(pfn);
  2083. }
  2084. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  2085. {
  2086. mmu_free_roots(vcpu);
  2087. }
  2088. static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
  2089. {
  2090. int bit7;
  2091. bit7 = (gpte >> 7) & 1;
  2092. return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
  2093. }
  2094. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  2095. bool no_dirty_log)
  2096. {
  2097. struct kvm_memory_slot *slot;
  2098. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  2099. if (!slot)
  2100. return KVM_PFN_ERR_FAULT;
  2101. return gfn_to_pfn_memslot_atomic(slot, gfn);
  2102. }
  2103. static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
  2104. struct kvm_mmu_page *sp, u64 *spte,
  2105. u64 gpte)
  2106. {
  2107. if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
  2108. goto no_present;
  2109. if (!is_present_gpte(gpte))
  2110. goto no_present;
  2111. if (!(gpte & PT_ACCESSED_MASK))
  2112. goto no_present;
  2113. return false;
  2114. no_present:
  2115. drop_spte(vcpu->kvm, spte);
  2116. return true;
  2117. }
  2118. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  2119. struct kvm_mmu_page *sp,
  2120. u64 *start, u64 *end)
  2121. {
  2122. struct page *pages[PTE_PREFETCH_NUM];
  2123. unsigned access = sp->role.access;
  2124. int i, ret;
  2125. gfn_t gfn;
  2126. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  2127. if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
  2128. return -1;
  2129. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  2130. if (ret <= 0)
  2131. return -1;
  2132. for (i = 0; i < ret; i++, gfn++, start++)
  2133. mmu_set_spte(vcpu, start, ACC_ALL,
  2134. access, 0, 0, NULL,
  2135. sp->role.level, gfn,
  2136. page_to_pfn(pages[i]), true, true);
  2137. return 0;
  2138. }
  2139. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  2140. struct kvm_mmu_page *sp, u64 *sptep)
  2141. {
  2142. u64 *spte, *start = NULL;
  2143. int i;
  2144. WARN_ON(!sp->role.direct);
  2145. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2146. spte = sp->spt + i;
  2147. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2148. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2149. if (!start)
  2150. continue;
  2151. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2152. break;
  2153. start = NULL;
  2154. } else if (!start)
  2155. start = spte;
  2156. }
  2157. }
  2158. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2159. {
  2160. struct kvm_mmu_page *sp;
  2161. /*
  2162. * Since it's no accessed bit on EPT, it's no way to
  2163. * distinguish between actually accessed translations
  2164. * and prefetched, so disable pte prefetch if EPT is
  2165. * enabled.
  2166. */
  2167. if (!shadow_accessed_mask)
  2168. return;
  2169. sp = page_header(__pa(sptep));
  2170. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2171. return;
  2172. __direct_pte_prefetch(vcpu, sp, sptep);
  2173. }
  2174. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  2175. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  2176. bool prefault)
  2177. {
  2178. struct kvm_shadow_walk_iterator iterator;
  2179. struct kvm_mmu_page *sp;
  2180. int emulate = 0;
  2181. gfn_t pseudo_gfn;
  2182. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2183. if (iterator.level == level) {
  2184. unsigned pte_access = ACC_ALL;
  2185. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
  2186. 0, write, &emulate,
  2187. level, gfn, pfn, prefault, map_writable);
  2188. direct_pte_prefetch(vcpu, iterator.sptep);
  2189. ++vcpu->stat.pf_fixed;
  2190. break;
  2191. }
  2192. if (!is_shadow_present_pte(*iterator.sptep)) {
  2193. u64 base_addr = iterator.addr;
  2194. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2195. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2196. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2197. iterator.level - 1,
  2198. 1, ACC_ALL, iterator.sptep);
  2199. mmu_spte_set(iterator.sptep,
  2200. __pa(sp->spt)
  2201. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  2202. | shadow_user_mask | shadow_x_mask
  2203. | shadow_accessed_mask);
  2204. }
  2205. }
  2206. return emulate;
  2207. }
  2208. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2209. {
  2210. siginfo_t info;
  2211. info.si_signo = SIGBUS;
  2212. info.si_errno = 0;
  2213. info.si_code = BUS_MCEERR_AR;
  2214. info.si_addr = (void __user *)address;
  2215. info.si_addr_lsb = PAGE_SHIFT;
  2216. send_sig_info(SIGBUS, &info, tsk);
  2217. }
  2218. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
  2219. {
  2220. /*
  2221. * Do not cache the mmio info caused by writing the readonly gfn
  2222. * into the spte otherwise read access on readonly gfn also can
  2223. * caused mmio page fault and treat it as mmio access.
  2224. * Return 1 to tell kvm to emulate it.
  2225. */
  2226. if (pfn == KVM_PFN_ERR_RO_FAULT)
  2227. return 1;
  2228. if (pfn == KVM_PFN_ERR_HWPOISON) {
  2229. kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
  2230. return 0;
  2231. }
  2232. return -EFAULT;
  2233. }
  2234. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2235. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  2236. {
  2237. pfn_t pfn = *pfnp;
  2238. gfn_t gfn = *gfnp;
  2239. int level = *levelp;
  2240. /*
  2241. * Check if it's a transparent hugepage. If this would be an
  2242. * hugetlbfs page, level wouldn't be set to
  2243. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2244. * here.
  2245. */
  2246. if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
  2247. level == PT_PAGE_TABLE_LEVEL &&
  2248. PageTransCompound(pfn_to_page(pfn)) &&
  2249. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  2250. unsigned long mask;
  2251. /*
  2252. * mmu_notifier_retry was successful and we hold the
  2253. * mmu_lock here, so the pmd can't become splitting
  2254. * from under us, and in turn
  2255. * __split_huge_page_refcount() can't run from under
  2256. * us and we can safely transfer the refcount from
  2257. * PG_tail to PG_head as we switch the pfn to tail to
  2258. * head.
  2259. */
  2260. *levelp = level = PT_DIRECTORY_LEVEL;
  2261. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2262. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2263. if (pfn & mask) {
  2264. gfn &= ~mask;
  2265. *gfnp = gfn;
  2266. kvm_release_pfn_clean(pfn);
  2267. pfn &= ~mask;
  2268. kvm_get_pfn(pfn);
  2269. *pfnp = pfn;
  2270. }
  2271. }
  2272. }
  2273. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2274. pfn_t pfn, unsigned access, int *ret_val)
  2275. {
  2276. bool ret = true;
  2277. /* The pfn is invalid, report the error! */
  2278. if (unlikely(is_error_pfn(pfn))) {
  2279. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2280. goto exit;
  2281. }
  2282. if (unlikely(is_noslot_pfn(pfn)))
  2283. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2284. ret = false;
  2285. exit:
  2286. return ret;
  2287. }
  2288. static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
  2289. {
  2290. /*
  2291. * #PF can be fast only if the shadow page table is present and it
  2292. * is caused by write-protect, that means we just need change the
  2293. * W bit of the spte which can be done out of mmu-lock.
  2294. */
  2295. if (!(error_code & PFERR_PRESENT_MASK) ||
  2296. !(error_code & PFERR_WRITE_MASK))
  2297. return false;
  2298. return true;
  2299. }
  2300. static bool
  2301. fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
  2302. {
  2303. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  2304. gfn_t gfn;
  2305. WARN_ON(!sp->role.direct);
  2306. /*
  2307. * The gfn of direct spte is stable since it is calculated
  2308. * by sp->gfn.
  2309. */
  2310. gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
  2311. if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
  2312. mark_page_dirty(vcpu->kvm, gfn);
  2313. return true;
  2314. }
  2315. /*
  2316. * Return value:
  2317. * - true: let the vcpu to access on the same address again.
  2318. * - false: let the real page fault path to fix it.
  2319. */
  2320. static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
  2321. u32 error_code)
  2322. {
  2323. struct kvm_shadow_walk_iterator iterator;
  2324. bool ret = false;
  2325. u64 spte = 0ull;
  2326. if (!page_fault_can_be_fast(vcpu, error_code))
  2327. return false;
  2328. walk_shadow_page_lockless_begin(vcpu);
  2329. for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
  2330. if (!is_shadow_present_pte(spte) || iterator.level < level)
  2331. break;
  2332. /*
  2333. * If the mapping has been changed, let the vcpu fault on the
  2334. * same address again.
  2335. */
  2336. if (!is_rmap_spte(spte)) {
  2337. ret = true;
  2338. goto exit;
  2339. }
  2340. if (!is_last_spte(spte, level))
  2341. goto exit;
  2342. /*
  2343. * Check if it is a spurious fault caused by TLB lazily flushed.
  2344. *
  2345. * Need not check the access of upper level table entries since
  2346. * they are always ACC_ALL.
  2347. */
  2348. if (is_writable_pte(spte)) {
  2349. ret = true;
  2350. goto exit;
  2351. }
  2352. /*
  2353. * Currently, to simplify the code, only the spte write-protected
  2354. * by dirty-log can be fast fixed.
  2355. */
  2356. if (!spte_is_locklessly_modifiable(spte))
  2357. goto exit;
  2358. /*
  2359. * Currently, fast page fault only works for direct mapping since
  2360. * the gfn is not stable for indirect shadow page.
  2361. * See Documentation/virtual/kvm/locking.txt to get more detail.
  2362. */
  2363. ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
  2364. exit:
  2365. trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
  2366. spte, ret);
  2367. walk_shadow_page_lockless_end(vcpu);
  2368. return ret;
  2369. }
  2370. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2371. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  2372. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
  2373. gfn_t gfn, bool prefault)
  2374. {
  2375. int r;
  2376. int level;
  2377. int force_pt_level;
  2378. pfn_t pfn;
  2379. unsigned long mmu_seq;
  2380. bool map_writable, write = error_code & PFERR_WRITE_MASK;
  2381. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2382. if (likely(!force_pt_level)) {
  2383. level = mapping_level(vcpu, gfn);
  2384. /*
  2385. * This path builds a PAE pagetable - so we can map
  2386. * 2mb pages at maximum. Therefore check if the level
  2387. * is larger than that.
  2388. */
  2389. if (level > PT_DIRECTORY_LEVEL)
  2390. level = PT_DIRECTORY_LEVEL;
  2391. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2392. } else
  2393. level = PT_PAGE_TABLE_LEVEL;
  2394. if (fast_page_fault(vcpu, v, level, error_code))
  2395. return 0;
  2396. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2397. smp_rmb();
  2398. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2399. return 0;
  2400. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2401. return r;
  2402. spin_lock(&vcpu->kvm->mmu_lock);
  2403. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2404. goto out_unlock;
  2405. kvm_mmu_free_some_pages(vcpu);
  2406. if (likely(!force_pt_level))
  2407. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2408. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2409. prefault);
  2410. spin_unlock(&vcpu->kvm->mmu_lock);
  2411. return r;
  2412. out_unlock:
  2413. spin_unlock(&vcpu->kvm->mmu_lock);
  2414. kvm_release_pfn_clean(pfn);
  2415. return 0;
  2416. }
  2417. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2418. {
  2419. int i;
  2420. struct kvm_mmu_page *sp;
  2421. LIST_HEAD(invalid_list);
  2422. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2423. return;
  2424. spin_lock(&vcpu->kvm->mmu_lock);
  2425. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2426. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2427. vcpu->arch.mmu.direct_map)) {
  2428. hpa_t root = vcpu->arch.mmu.root_hpa;
  2429. sp = page_header(root);
  2430. --sp->root_count;
  2431. if (!sp->root_count && sp->role.invalid) {
  2432. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2433. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2434. }
  2435. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2436. spin_unlock(&vcpu->kvm->mmu_lock);
  2437. return;
  2438. }
  2439. for (i = 0; i < 4; ++i) {
  2440. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2441. if (root) {
  2442. root &= PT64_BASE_ADDR_MASK;
  2443. sp = page_header(root);
  2444. --sp->root_count;
  2445. if (!sp->root_count && sp->role.invalid)
  2446. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2447. &invalid_list);
  2448. }
  2449. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2450. }
  2451. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2452. spin_unlock(&vcpu->kvm->mmu_lock);
  2453. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2454. }
  2455. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2456. {
  2457. int ret = 0;
  2458. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2459. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2460. ret = 1;
  2461. }
  2462. return ret;
  2463. }
  2464. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2465. {
  2466. struct kvm_mmu_page *sp;
  2467. unsigned i;
  2468. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2469. spin_lock(&vcpu->kvm->mmu_lock);
  2470. kvm_mmu_free_some_pages(vcpu);
  2471. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2472. 1, ACC_ALL, NULL);
  2473. ++sp->root_count;
  2474. spin_unlock(&vcpu->kvm->mmu_lock);
  2475. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2476. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2477. for (i = 0; i < 4; ++i) {
  2478. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2479. ASSERT(!VALID_PAGE(root));
  2480. spin_lock(&vcpu->kvm->mmu_lock);
  2481. kvm_mmu_free_some_pages(vcpu);
  2482. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2483. i << 30,
  2484. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2485. NULL);
  2486. root = __pa(sp->spt);
  2487. ++sp->root_count;
  2488. spin_unlock(&vcpu->kvm->mmu_lock);
  2489. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2490. }
  2491. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2492. } else
  2493. BUG();
  2494. return 0;
  2495. }
  2496. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2497. {
  2498. struct kvm_mmu_page *sp;
  2499. u64 pdptr, pm_mask;
  2500. gfn_t root_gfn;
  2501. int i;
  2502. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2503. if (mmu_check_root(vcpu, root_gfn))
  2504. return 1;
  2505. /*
  2506. * Do we shadow a long mode page table? If so we need to
  2507. * write-protect the guests page table root.
  2508. */
  2509. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2510. hpa_t root = vcpu->arch.mmu.root_hpa;
  2511. ASSERT(!VALID_PAGE(root));
  2512. spin_lock(&vcpu->kvm->mmu_lock);
  2513. kvm_mmu_free_some_pages(vcpu);
  2514. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2515. 0, ACC_ALL, NULL);
  2516. root = __pa(sp->spt);
  2517. ++sp->root_count;
  2518. spin_unlock(&vcpu->kvm->mmu_lock);
  2519. vcpu->arch.mmu.root_hpa = root;
  2520. return 0;
  2521. }
  2522. /*
  2523. * We shadow a 32 bit page table. This may be a legacy 2-level
  2524. * or a PAE 3-level page table. In either case we need to be aware that
  2525. * the shadow page table may be a PAE or a long mode page table.
  2526. */
  2527. pm_mask = PT_PRESENT_MASK;
  2528. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2529. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2530. for (i = 0; i < 4; ++i) {
  2531. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2532. ASSERT(!VALID_PAGE(root));
  2533. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2534. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2535. if (!is_present_gpte(pdptr)) {
  2536. vcpu->arch.mmu.pae_root[i] = 0;
  2537. continue;
  2538. }
  2539. root_gfn = pdptr >> PAGE_SHIFT;
  2540. if (mmu_check_root(vcpu, root_gfn))
  2541. return 1;
  2542. }
  2543. spin_lock(&vcpu->kvm->mmu_lock);
  2544. kvm_mmu_free_some_pages(vcpu);
  2545. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2546. PT32_ROOT_LEVEL, 0,
  2547. ACC_ALL, NULL);
  2548. root = __pa(sp->spt);
  2549. ++sp->root_count;
  2550. spin_unlock(&vcpu->kvm->mmu_lock);
  2551. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2552. }
  2553. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2554. /*
  2555. * If we shadow a 32 bit page table with a long mode page
  2556. * table we enter this path.
  2557. */
  2558. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2559. if (vcpu->arch.mmu.lm_root == NULL) {
  2560. /*
  2561. * The additional page necessary for this is only
  2562. * allocated on demand.
  2563. */
  2564. u64 *lm_root;
  2565. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2566. if (lm_root == NULL)
  2567. return 1;
  2568. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2569. vcpu->arch.mmu.lm_root = lm_root;
  2570. }
  2571. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2572. }
  2573. return 0;
  2574. }
  2575. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2576. {
  2577. if (vcpu->arch.mmu.direct_map)
  2578. return mmu_alloc_direct_roots(vcpu);
  2579. else
  2580. return mmu_alloc_shadow_roots(vcpu);
  2581. }
  2582. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2583. {
  2584. int i;
  2585. struct kvm_mmu_page *sp;
  2586. if (vcpu->arch.mmu.direct_map)
  2587. return;
  2588. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2589. return;
  2590. vcpu_clear_mmio_info(vcpu, ~0ul);
  2591. kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2592. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2593. hpa_t root = vcpu->arch.mmu.root_hpa;
  2594. sp = page_header(root);
  2595. mmu_sync_children(vcpu, sp);
  2596. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2597. return;
  2598. }
  2599. for (i = 0; i < 4; ++i) {
  2600. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2601. if (root && VALID_PAGE(root)) {
  2602. root &= PT64_BASE_ADDR_MASK;
  2603. sp = page_header(root);
  2604. mmu_sync_children(vcpu, sp);
  2605. }
  2606. }
  2607. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2608. }
  2609. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2610. {
  2611. spin_lock(&vcpu->kvm->mmu_lock);
  2612. mmu_sync_roots(vcpu);
  2613. spin_unlock(&vcpu->kvm->mmu_lock);
  2614. }
  2615. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2616. u32 access, struct x86_exception *exception)
  2617. {
  2618. if (exception)
  2619. exception->error_code = 0;
  2620. return vaddr;
  2621. }
  2622. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2623. u32 access,
  2624. struct x86_exception *exception)
  2625. {
  2626. if (exception)
  2627. exception->error_code = 0;
  2628. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
  2629. }
  2630. static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2631. {
  2632. if (direct)
  2633. return vcpu_match_mmio_gpa(vcpu, addr);
  2634. return vcpu_match_mmio_gva(vcpu, addr);
  2635. }
  2636. /*
  2637. * On direct hosts, the last spte is only allows two states
  2638. * for mmio page fault:
  2639. * - It is the mmio spte
  2640. * - It is zapped or it is being zapped.
  2641. *
  2642. * This function completely checks the spte when the last spte
  2643. * is not the mmio spte.
  2644. */
  2645. static bool check_direct_spte_mmio_pf(u64 spte)
  2646. {
  2647. return __check_direct_spte_mmio_pf(spte);
  2648. }
  2649. static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
  2650. {
  2651. struct kvm_shadow_walk_iterator iterator;
  2652. u64 spte = 0ull;
  2653. walk_shadow_page_lockless_begin(vcpu);
  2654. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
  2655. if (!is_shadow_present_pte(spte))
  2656. break;
  2657. walk_shadow_page_lockless_end(vcpu);
  2658. return spte;
  2659. }
  2660. /*
  2661. * If it is a real mmio page fault, return 1 and emulat the instruction
  2662. * directly, return 0 to let CPU fault again on the address, -1 is
  2663. * returned if bug is detected.
  2664. */
  2665. int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2666. {
  2667. u64 spte;
  2668. if (quickly_check_mmio_pf(vcpu, addr, direct))
  2669. return 1;
  2670. spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
  2671. if (is_mmio_spte(spte)) {
  2672. gfn_t gfn = get_mmio_spte_gfn(spte);
  2673. unsigned access = get_mmio_spte_access(spte);
  2674. if (direct)
  2675. addr = 0;
  2676. trace_handle_mmio_page_fault(addr, gfn, access);
  2677. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2678. return 1;
  2679. }
  2680. /*
  2681. * It's ok if the gva is remapped by other cpus on shadow guest,
  2682. * it's a BUG if the gfn is not a mmio page.
  2683. */
  2684. if (direct && !check_direct_spte_mmio_pf(spte))
  2685. return -1;
  2686. /*
  2687. * If the page table is zapped by other cpus, let CPU fault again on
  2688. * the address.
  2689. */
  2690. return 0;
  2691. }
  2692. EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
  2693. static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
  2694. u32 error_code, bool direct)
  2695. {
  2696. int ret;
  2697. ret = handle_mmio_page_fault_common(vcpu, addr, direct);
  2698. WARN_ON(ret < 0);
  2699. return ret;
  2700. }
  2701. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2702. u32 error_code, bool prefault)
  2703. {
  2704. gfn_t gfn;
  2705. int r;
  2706. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2707. if (unlikely(error_code & PFERR_RSVD_MASK))
  2708. return handle_mmio_page_fault(vcpu, gva, error_code, true);
  2709. r = mmu_topup_memory_caches(vcpu);
  2710. if (r)
  2711. return r;
  2712. ASSERT(vcpu);
  2713. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2714. gfn = gva >> PAGE_SHIFT;
  2715. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2716. error_code, gfn, prefault);
  2717. }
  2718. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2719. {
  2720. struct kvm_arch_async_pf arch;
  2721. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2722. arch.gfn = gfn;
  2723. arch.direct_map = vcpu->arch.mmu.direct_map;
  2724. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2725. return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
  2726. }
  2727. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2728. {
  2729. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2730. kvm_event_needs_reinjection(vcpu)))
  2731. return false;
  2732. return kvm_x86_ops->interrupt_allowed(vcpu);
  2733. }
  2734. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2735. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2736. {
  2737. bool async;
  2738. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2739. if (!async)
  2740. return false; /* *pfn has correct page already */
  2741. if (!prefault && can_do_async_pf(vcpu)) {
  2742. trace_kvm_try_async_get_page(gva, gfn);
  2743. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2744. trace_kvm_async_pf_doublefault(gva, gfn);
  2745. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2746. return true;
  2747. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2748. return true;
  2749. }
  2750. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2751. return false;
  2752. }
  2753. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2754. bool prefault)
  2755. {
  2756. pfn_t pfn;
  2757. int r;
  2758. int level;
  2759. int force_pt_level;
  2760. gfn_t gfn = gpa >> PAGE_SHIFT;
  2761. unsigned long mmu_seq;
  2762. int write = error_code & PFERR_WRITE_MASK;
  2763. bool map_writable;
  2764. ASSERT(vcpu);
  2765. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2766. if (unlikely(error_code & PFERR_RSVD_MASK))
  2767. return handle_mmio_page_fault(vcpu, gpa, error_code, true);
  2768. r = mmu_topup_memory_caches(vcpu);
  2769. if (r)
  2770. return r;
  2771. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2772. if (likely(!force_pt_level)) {
  2773. level = mapping_level(vcpu, gfn);
  2774. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2775. } else
  2776. level = PT_PAGE_TABLE_LEVEL;
  2777. if (fast_page_fault(vcpu, gpa, level, error_code))
  2778. return 0;
  2779. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2780. smp_rmb();
  2781. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2782. return 0;
  2783. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2784. return r;
  2785. spin_lock(&vcpu->kvm->mmu_lock);
  2786. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2787. goto out_unlock;
  2788. kvm_mmu_free_some_pages(vcpu);
  2789. if (likely(!force_pt_level))
  2790. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2791. r = __direct_map(vcpu, gpa, write, map_writable,
  2792. level, gfn, pfn, prefault);
  2793. spin_unlock(&vcpu->kvm->mmu_lock);
  2794. return r;
  2795. out_unlock:
  2796. spin_unlock(&vcpu->kvm->mmu_lock);
  2797. kvm_release_pfn_clean(pfn);
  2798. return 0;
  2799. }
  2800. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2801. {
  2802. mmu_free_roots(vcpu);
  2803. }
  2804. static int nonpaging_init_context(struct kvm_vcpu *vcpu,
  2805. struct kvm_mmu *context)
  2806. {
  2807. context->new_cr3 = nonpaging_new_cr3;
  2808. context->page_fault = nonpaging_page_fault;
  2809. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2810. context->free = nonpaging_free;
  2811. context->sync_page = nonpaging_sync_page;
  2812. context->invlpg = nonpaging_invlpg;
  2813. context->update_pte = nonpaging_update_pte;
  2814. context->root_level = 0;
  2815. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2816. context->root_hpa = INVALID_PAGE;
  2817. context->direct_map = true;
  2818. context->nx = false;
  2819. return 0;
  2820. }
  2821. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2822. {
  2823. ++vcpu->stat.tlb_flush;
  2824. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2825. }
  2826. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2827. {
  2828. pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
  2829. mmu_free_roots(vcpu);
  2830. }
  2831. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2832. {
  2833. return kvm_read_cr3(vcpu);
  2834. }
  2835. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2836. struct x86_exception *fault)
  2837. {
  2838. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2839. }
  2840. static void paging_free(struct kvm_vcpu *vcpu)
  2841. {
  2842. nonpaging_free(vcpu);
  2843. }
  2844. static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
  2845. {
  2846. unsigned mask;
  2847. BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
  2848. mask = (unsigned)~ACC_WRITE_MASK;
  2849. /* Allow write access to dirty gptes */
  2850. mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
  2851. *access &= mask;
  2852. }
  2853. static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
  2854. int *nr_present)
  2855. {
  2856. if (unlikely(is_mmio_spte(*sptep))) {
  2857. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2858. mmu_spte_clear_no_track(sptep);
  2859. return true;
  2860. }
  2861. (*nr_present)++;
  2862. mark_mmio_spte(sptep, gfn, access);
  2863. return true;
  2864. }
  2865. return false;
  2866. }
  2867. static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
  2868. {
  2869. unsigned access;
  2870. access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
  2871. access &= ~(gpte >> PT64_NX_SHIFT);
  2872. return access;
  2873. }
  2874. static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
  2875. {
  2876. unsigned index;
  2877. index = level - 1;
  2878. index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
  2879. return mmu->last_pte_bitmap & (1 << index);
  2880. }
  2881. #define PTTYPE 64
  2882. #include "paging_tmpl.h"
  2883. #undef PTTYPE
  2884. #define PTTYPE 32
  2885. #include "paging_tmpl.h"
  2886. #undef PTTYPE
  2887. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2888. struct kvm_mmu *context)
  2889. {
  2890. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2891. u64 exb_bit_rsvd = 0;
  2892. if (!context->nx)
  2893. exb_bit_rsvd = rsvd_bits(63, 63);
  2894. switch (context->root_level) {
  2895. case PT32_ROOT_LEVEL:
  2896. /* no rsvd bits for 2 level 4K page table entries */
  2897. context->rsvd_bits_mask[0][1] = 0;
  2898. context->rsvd_bits_mask[0][0] = 0;
  2899. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2900. if (!is_pse(vcpu)) {
  2901. context->rsvd_bits_mask[1][1] = 0;
  2902. break;
  2903. }
  2904. if (is_cpuid_PSE36())
  2905. /* 36bits PSE 4MB page */
  2906. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2907. else
  2908. /* 32 bits PSE 4MB page */
  2909. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2910. break;
  2911. case PT32E_ROOT_LEVEL:
  2912. context->rsvd_bits_mask[0][2] =
  2913. rsvd_bits(maxphyaddr, 63) |
  2914. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2915. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2916. rsvd_bits(maxphyaddr, 62); /* PDE */
  2917. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2918. rsvd_bits(maxphyaddr, 62); /* PTE */
  2919. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2920. rsvd_bits(maxphyaddr, 62) |
  2921. rsvd_bits(13, 20); /* large page */
  2922. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2923. break;
  2924. case PT64_ROOT_LEVEL:
  2925. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2926. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2927. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2928. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2929. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2930. rsvd_bits(maxphyaddr, 51);
  2931. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2932. rsvd_bits(maxphyaddr, 51);
  2933. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2934. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2935. rsvd_bits(maxphyaddr, 51) |
  2936. rsvd_bits(13, 29);
  2937. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2938. rsvd_bits(maxphyaddr, 51) |
  2939. rsvd_bits(13, 20); /* large page */
  2940. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2941. break;
  2942. }
  2943. }
  2944. static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  2945. {
  2946. unsigned bit, byte, pfec;
  2947. u8 map;
  2948. bool fault, x, w, u, wf, uf, ff, smep;
  2949. smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  2950. for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
  2951. pfec = byte << 1;
  2952. map = 0;
  2953. wf = pfec & PFERR_WRITE_MASK;
  2954. uf = pfec & PFERR_USER_MASK;
  2955. ff = pfec & PFERR_FETCH_MASK;
  2956. for (bit = 0; bit < 8; ++bit) {
  2957. x = bit & ACC_EXEC_MASK;
  2958. w = bit & ACC_WRITE_MASK;
  2959. u = bit & ACC_USER_MASK;
  2960. /* Not really needed: !nx will cause pte.nx to fault */
  2961. x |= !mmu->nx;
  2962. /* Allow supervisor writes if !cr0.wp */
  2963. w |= !is_write_protection(vcpu) && !uf;
  2964. /* Disallow supervisor fetches of user code if cr4.smep */
  2965. x &= !(smep && u && !uf);
  2966. fault = (ff && !x) || (uf && !u) || (wf && !w);
  2967. map |= fault << bit;
  2968. }
  2969. mmu->permissions[byte] = map;
  2970. }
  2971. }
  2972. static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  2973. {
  2974. u8 map;
  2975. unsigned level, root_level = mmu->root_level;
  2976. const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
  2977. if (root_level == PT32E_ROOT_LEVEL)
  2978. --root_level;
  2979. /* PT_PAGE_TABLE_LEVEL always terminates */
  2980. map = 1 | (1 << ps_set_index);
  2981. for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
  2982. if (level <= PT_PDPE_LEVEL
  2983. && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
  2984. map |= 1 << (ps_set_index | (level - 1));
  2985. }
  2986. mmu->last_pte_bitmap = map;
  2987. }
  2988. static int paging64_init_context_common(struct kvm_vcpu *vcpu,
  2989. struct kvm_mmu *context,
  2990. int level)
  2991. {
  2992. context->nx = is_nx(vcpu);
  2993. context->root_level = level;
  2994. reset_rsvds_bits_mask(vcpu, context);
  2995. update_permission_bitmask(vcpu, context);
  2996. update_last_pte_bitmap(vcpu, context);
  2997. ASSERT(is_pae(vcpu));
  2998. context->new_cr3 = paging_new_cr3;
  2999. context->page_fault = paging64_page_fault;
  3000. context->gva_to_gpa = paging64_gva_to_gpa;
  3001. context->sync_page = paging64_sync_page;
  3002. context->invlpg = paging64_invlpg;
  3003. context->update_pte = paging64_update_pte;
  3004. context->free = paging_free;
  3005. context->shadow_root_level = level;
  3006. context->root_hpa = INVALID_PAGE;
  3007. context->direct_map = false;
  3008. return 0;
  3009. }
  3010. static int paging64_init_context(struct kvm_vcpu *vcpu,
  3011. struct kvm_mmu *context)
  3012. {
  3013. return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  3014. }
  3015. static int paging32_init_context(struct kvm_vcpu *vcpu,
  3016. struct kvm_mmu *context)
  3017. {
  3018. context->nx = false;
  3019. context->root_level = PT32_ROOT_LEVEL;
  3020. reset_rsvds_bits_mask(vcpu, context);
  3021. update_permission_bitmask(vcpu, context);
  3022. update_last_pte_bitmap(vcpu, context);
  3023. context->new_cr3 = paging_new_cr3;
  3024. context->page_fault = paging32_page_fault;
  3025. context->gva_to_gpa = paging32_gva_to_gpa;
  3026. context->free = paging_free;
  3027. context->sync_page = paging32_sync_page;
  3028. context->invlpg = paging32_invlpg;
  3029. context->update_pte = paging32_update_pte;
  3030. context->shadow_root_level = PT32E_ROOT_LEVEL;
  3031. context->root_hpa = INVALID_PAGE;
  3032. context->direct_map = false;
  3033. return 0;
  3034. }
  3035. static int paging32E_init_context(struct kvm_vcpu *vcpu,
  3036. struct kvm_mmu *context)
  3037. {
  3038. return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  3039. }
  3040. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  3041. {
  3042. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  3043. context->base_role.word = 0;
  3044. context->new_cr3 = nonpaging_new_cr3;
  3045. context->page_fault = tdp_page_fault;
  3046. context->free = nonpaging_free;
  3047. context->sync_page = nonpaging_sync_page;
  3048. context->invlpg = nonpaging_invlpg;
  3049. context->update_pte = nonpaging_update_pte;
  3050. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  3051. context->root_hpa = INVALID_PAGE;
  3052. context->direct_map = true;
  3053. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  3054. context->get_cr3 = get_cr3;
  3055. context->get_pdptr = kvm_pdptr_read;
  3056. context->inject_page_fault = kvm_inject_page_fault;
  3057. if (!is_paging(vcpu)) {
  3058. context->nx = false;
  3059. context->gva_to_gpa = nonpaging_gva_to_gpa;
  3060. context->root_level = 0;
  3061. } else if (is_long_mode(vcpu)) {
  3062. context->nx = is_nx(vcpu);
  3063. context->root_level = PT64_ROOT_LEVEL;
  3064. reset_rsvds_bits_mask(vcpu, context);
  3065. context->gva_to_gpa = paging64_gva_to_gpa;
  3066. } else if (is_pae(vcpu)) {
  3067. context->nx = is_nx(vcpu);
  3068. context->root_level = PT32E_ROOT_LEVEL;
  3069. reset_rsvds_bits_mask(vcpu, context);
  3070. context->gva_to_gpa = paging64_gva_to_gpa;
  3071. } else {
  3072. context->nx = false;
  3073. context->root_level = PT32_ROOT_LEVEL;
  3074. reset_rsvds_bits_mask(vcpu, context);
  3075. context->gva_to_gpa = paging32_gva_to_gpa;
  3076. }
  3077. update_permission_bitmask(vcpu, context);
  3078. update_last_pte_bitmap(vcpu, context);
  3079. return 0;
  3080. }
  3081. int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  3082. {
  3083. int r;
  3084. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  3085. ASSERT(vcpu);
  3086. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3087. if (!is_paging(vcpu))
  3088. r = nonpaging_init_context(vcpu, context);
  3089. else if (is_long_mode(vcpu))
  3090. r = paging64_init_context(vcpu, context);
  3091. else if (is_pae(vcpu))
  3092. r = paging32E_init_context(vcpu, context);
  3093. else
  3094. r = paging32_init_context(vcpu, context);
  3095. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  3096. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  3097. vcpu->arch.mmu.base_role.smep_andnot_wp
  3098. = smep && !is_write_protection(vcpu);
  3099. return r;
  3100. }
  3101. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  3102. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  3103. {
  3104. int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  3105. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  3106. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  3107. vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
  3108. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  3109. return r;
  3110. }
  3111. static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  3112. {
  3113. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  3114. g_context->get_cr3 = get_cr3;
  3115. g_context->get_pdptr = kvm_pdptr_read;
  3116. g_context->inject_page_fault = kvm_inject_page_fault;
  3117. /*
  3118. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  3119. * translation of l2_gpa to l1_gpa addresses is done using the
  3120. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  3121. * functions between mmu and nested_mmu are swapped.
  3122. */
  3123. if (!is_paging(vcpu)) {
  3124. g_context->nx = false;
  3125. g_context->root_level = 0;
  3126. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  3127. } else if (is_long_mode(vcpu)) {
  3128. g_context->nx = is_nx(vcpu);
  3129. g_context->root_level = PT64_ROOT_LEVEL;
  3130. reset_rsvds_bits_mask(vcpu, g_context);
  3131. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3132. } else if (is_pae(vcpu)) {
  3133. g_context->nx = is_nx(vcpu);
  3134. g_context->root_level = PT32E_ROOT_LEVEL;
  3135. reset_rsvds_bits_mask(vcpu, g_context);
  3136. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3137. } else {
  3138. g_context->nx = false;
  3139. g_context->root_level = PT32_ROOT_LEVEL;
  3140. reset_rsvds_bits_mask(vcpu, g_context);
  3141. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  3142. }
  3143. update_permission_bitmask(vcpu, g_context);
  3144. update_last_pte_bitmap(vcpu, g_context);
  3145. return 0;
  3146. }
  3147. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  3148. {
  3149. if (mmu_is_nested(vcpu))
  3150. return init_kvm_nested_mmu(vcpu);
  3151. else if (tdp_enabled)
  3152. return init_kvm_tdp_mmu(vcpu);
  3153. else
  3154. return init_kvm_softmmu(vcpu);
  3155. }
  3156. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  3157. {
  3158. ASSERT(vcpu);
  3159. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  3160. /* mmu.free() should set root_hpa = INVALID_PAGE */
  3161. vcpu->arch.mmu.free(vcpu);
  3162. }
  3163. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  3164. {
  3165. destroy_kvm_mmu(vcpu);
  3166. return init_kvm_mmu(vcpu);
  3167. }
  3168. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  3169. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  3170. {
  3171. int r;
  3172. r = mmu_topup_memory_caches(vcpu);
  3173. if (r)
  3174. goto out;
  3175. r = mmu_alloc_roots(vcpu);
  3176. spin_lock(&vcpu->kvm->mmu_lock);
  3177. mmu_sync_roots(vcpu);
  3178. spin_unlock(&vcpu->kvm->mmu_lock);
  3179. if (r)
  3180. goto out;
  3181. /* set_cr3() should ensure TLB has been flushed */
  3182. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  3183. out:
  3184. return r;
  3185. }
  3186. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  3187. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  3188. {
  3189. mmu_free_roots(vcpu);
  3190. }
  3191. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  3192. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  3193. struct kvm_mmu_page *sp, u64 *spte,
  3194. const void *new)
  3195. {
  3196. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  3197. ++vcpu->kvm->stat.mmu_pde_zapped;
  3198. return;
  3199. }
  3200. ++vcpu->kvm->stat.mmu_pte_updated;
  3201. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  3202. }
  3203. static bool need_remote_flush(u64 old, u64 new)
  3204. {
  3205. if (!is_shadow_present_pte(old))
  3206. return false;
  3207. if (!is_shadow_present_pte(new))
  3208. return true;
  3209. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  3210. return true;
  3211. old ^= PT64_NX_MASK;
  3212. new ^= PT64_NX_MASK;
  3213. return (old & ~new & PT64_PERM_MASK) != 0;
  3214. }
  3215. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  3216. bool remote_flush, bool local_flush)
  3217. {
  3218. if (zap_page)
  3219. return;
  3220. if (remote_flush)
  3221. kvm_flush_remote_tlbs(vcpu->kvm);
  3222. else if (local_flush)
  3223. kvm_mmu_flush_tlb(vcpu);
  3224. }
  3225. static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
  3226. const u8 *new, int *bytes)
  3227. {
  3228. u64 gentry;
  3229. int r;
  3230. /*
  3231. * Assume that the pte write on a page table of the same type
  3232. * as the current vcpu paging mode since we update the sptes only
  3233. * when they have the same mode.
  3234. */
  3235. if (is_pae(vcpu) && *bytes == 4) {
  3236. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  3237. *gpa &= ~(gpa_t)7;
  3238. *bytes = 8;
  3239. r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
  3240. if (r)
  3241. gentry = 0;
  3242. new = (const u8 *)&gentry;
  3243. }
  3244. switch (*bytes) {
  3245. case 4:
  3246. gentry = *(const u32 *)new;
  3247. break;
  3248. case 8:
  3249. gentry = *(const u64 *)new;
  3250. break;
  3251. default:
  3252. gentry = 0;
  3253. break;
  3254. }
  3255. return gentry;
  3256. }
  3257. /*
  3258. * If we're seeing too many writes to a page, it may no longer be a page table,
  3259. * or we may be forking, in which case it is better to unmap the page.
  3260. */
  3261. static bool detect_write_flooding(struct kvm_mmu_page *sp)
  3262. {
  3263. /*
  3264. * Skip write-flooding detected for the sp whose level is 1, because
  3265. * it can become unsync, then the guest page is not write-protected.
  3266. */
  3267. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  3268. return false;
  3269. return ++sp->write_flooding_count >= 3;
  3270. }
  3271. /*
  3272. * Misaligned accesses are too much trouble to fix up; also, they usually
  3273. * indicate a page is not used as a page table.
  3274. */
  3275. static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
  3276. int bytes)
  3277. {
  3278. unsigned offset, pte_size, misaligned;
  3279. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  3280. gpa, bytes, sp->role.word);
  3281. offset = offset_in_page(gpa);
  3282. pte_size = sp->role.cr4_pae ? 8 : 4;
  3283. /*
  3284. * Sometimes, the OS only writes the last one bytes to update status
  3285. * bits, for example, in linux, andb instruction is used in clear_bit().
  3286. */
  3287. if (!(offset & (pte_size - 1)) && bytes == 1)
  3288. return false;
  3289. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  3290. misaligned |= bytes < 4;
  3291. return misaligned;
  3292. }
  3293. static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
  3294. {
  3295. unsigned page_offset, quadrant;
  3296. u64 *spte;
  3297. int level;
  3298. page_offset = offset_in_page(gpa);
  3299. level = sp->role.level;
  3300. *nspte = 1;
  3301. if (!sp->role.cr4_pae) {
  3302. page_offset <<= 1; /* 32->64 */
  3303. /*
  3304. * A 32-bit pde maps 4MB while the shadow pdes map
  3305. * only 2MB. So we need to double the offset again
  3306. * and zap two pdes instead of one.
  3307. */
  3308. if (level == PT32_ROOT_LEVEL) {
  3309. page_offset &= ~7; /* kill rounding error */
  3310. page_offset <<= 1;
  3311. *nspte = 2;
  3312. }
  3313. quadrant = page_offset >> PAGE_SHIFT;
  3314. page_offset &= ~PAGE_MASK;
  3315. if (quadrant != sp->role.quadrant)
  3316. return NULL;
  3317. }
  3318. spte = &sp->spt[page_offset / sizeof(*spte)];
  3319. return spte;
  3320. }
  3321. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  3322. const u8 *new, int bytes)
  3323. {
  3324. gfn_t gfn = gpa >> PAGE_SHIFT;
  3325. union kvm_mmu_page_role mask = { .word = 0 };
  3326. struct kvm_mmu_page *sp;
  3327. struct hlist_node *node;
  3328. LIST_HEAD(invalid_list);
  3329. u64 entry, gentry, *spte;
  3330. int npte;
  3331. bool remote_flush, local_flush, zap_page;
  3332. /*
  3333. * If we don't have indirect shadow pages, it means no page is
  3334. * write-protected, so we can exit simply.
  3335. */
  3336. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  3337. return;
  3338. zap_page = remote_flush = local_flush = false;
  3339. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  3340. gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
  3341. /*
  3342. * No need to care whether allocation memory is successful
  3343. * or not since pte prefetch is skiped if it does not have
  3344. * enough objects in the cache.
  3345. */
  3346. mmu_topup_memory_caches(vcpu);
  3347. spin_lock(&vcpu->kvm->mmu_lock);
  3348. ++vcpu->kvm->stat.mmu_pte_write;
  3349. kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3350. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  3351. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  3352. if (detect_write_misaligned(sp, gpa, bytes) ||
  3353. detect_write_flooding(sp)) {
  3354. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  3355. &invalid_list);
  3356. ++vcpu->kvm->stat.mmu_flooded;
  3357. continue;
  3358. }
  3359. spte = get_written_sptes(sp, gpa, &npte);
  3360. if (!spte)
  3361. continue;
  3362. local_flush = true;
  3363. while (npte--) {
  3364. entry = *spte;
  3365. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3366. if (gentry &&
  3367. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3368. & mask.word) && rmap_can_add(vcpu))
  3369. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3370. if (!remote_flush && need_remote_flush(entry, *spte))
  3371. remote_flush = true;
  3372. ++spte;
  3373. }
  3374. }
  3375. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  3376. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3377. kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3378. spin_unlock(&vcpu->kvm->mmu_lock);
  3379. }
  3380. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3381. {
  3382. gpa_t gpa;
  3383. int r;
  3384. if (vcpu->arch.mmu.direct_map)
  3385. return 0;
  3386. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3387. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3388. return r;
  3389. }
  3390. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3391. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  3392. {
  3393. LIST_HEAD(invalid_list);
  3394. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
  3395. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  3396. struct kvm_mmu_page *sp;
  3397. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  3398. struct kvm_mmu_page, link);
  3399. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  3400. ++vcpu->kvm->stat.mmu_recycled;
  3401. }
  3402. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3403. }
  3404. static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
  3405. {
  3406. if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
  3407. return vcpu_match_mmio_gpa(vcpu, addr);
  3408. return vcpu_match_mmio_gva(vcpu, addr);
  3409. }
  3410. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3411. void *insn, int insn_len)
  3412. {
  3413. int r, emulation_type = EMULTYPE_RETRY;
  3414. enum emulation_result er;
  3415. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3416. if (r < 0)
  3417. goto out;
  3418. if (!r) {
  3419. r = 1;
  3420. goto out;
  3421. }
  3422. if (is_mmio_page_fault(vcpu, cr2))
  3423. emulation_type = 0;
  3424. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3425. switch (er) {
  3426. case EMULATE_DONE:
  3427. return 1;
  3428. case EMULATE_DO_MMIO:
  3429. ++vcpu->stat.mmio_exits;
  3430. /* fall through */
  3431. case EMULATE_FAIL:
  3432. return 0;
  3433. default:
  3434. BUG();
  3435. }
  3436. out:
  3437. return r;
  3438. }
  3439. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3440. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3441. {
  3442. vcpu->arch.mmu.invlpg(vcpu, gva);
  3443. kvm_mmu_flush_tlb(vcpu);
  3444. ++vcpu->stat.invlpg;
  3445. }
  3446. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3447. void kvm_enable_tdp(void)
  3448. {
  3449. tdp_enabled = true;
  3450. }
  3451. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3452. void kvm_disable_tdp(void)
  3453. {
  3454. tdp_enabled = false;
  3455. }
  3456. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3457. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3458. {
  3459. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3460. if (vcpu->arch.mmu.lm_root != NULL)
  3461. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3462. }
  3463. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3464. {
  3465. struct page *page;
  3466. int i;
  3467. ASSERT(vcpu);
  3468. /*
  3469. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3470. * Therefore we need to allocate shadow page tables in the first
  3471. * 4GB of memory, which happens to fit the DMA32 zone.
  3472. */
  3473. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3474. if (!page)
  3475. return -ENOMEM;
  3476. vcpu->arch.mmu.pae_root = page_address(page);
  3477. for (i = 0; i < 4; ++i)
  3478. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3479. return 0;
  3480. }
  3481. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3482. {
  3483. ASSERT(vcpu);
  3484. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  3485. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3486. vcpu->arch.mmu.translate_gpa = translate_gpa;
  3487. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  3488. return alloc_mmu_pages(vcpu);
  3489. }
  3490. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3491. {
  3492. ASSERT(vcpu);
  3493. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3494. return init_kvm_mmu(vcpu);
  3495. }
  3496. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  3497. {
  3498. struct kvm_mmu_page *sp;
  3499. bool flush = false;
  3500. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  3501. int i;
  3502. u64 *pt;
  3503. if (!test_bit(slot, sp->slot_bitmap))
  3504. continue;
  3505. pt = sp->spt;
  3506. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  3507. if (!is_shadow_present_pte(pt[i]) ||
  3508. !is_last_spte(pt[i], sp->role.level))
  3509. continue;
  3510. spte_write_protect(kvm, &pt[i], &flush, false);
  3511. }
  3512. }
  3513. kvm_flush_remote_tlbs(kvm);
  3514. }
  3515. void kvm_mmu_zap_all(struct kvm *kvm)
  3516. {
  3517. struct kvm_mmu_page *sp, *node;
  3518. LIST_HEAD(invalid_list);
  3519. spin_lock(&kvm->mmu_lock);
  3520. restart:
  3521. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  3522. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  3523. goto restart;
  3524. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3525. spin_unlock(&kvm->mmu_lock);
  3526. }
  3527. static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  3528. struct list_head *invalid_list)
  3529. {
  3530. struct kvm_mmu_page *page;
  3531. if (list_empty(&kvm->arch.active_mmu_pages))
  3532. return;
  3533. page = container_of(kvm->arch.active_mmu_pages.prev,
  3534. struct kvm_mmu_page, link);
  3535. kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  3536. }
  3537. static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
  3538. {
  3539. struct kvm *kvm;
  3540. int nr_to_scan = sc->nr_to_scan;
  3541. if (nr_to_scan == 0)
  3542. goto out;
  3543. raw_spin_lock(&kvm_lock);
  3544. list_for_each_entry(kvm, &vm_list, vm_list) {
  3545. int idx;
  3546. LIST_HEAD(invalid_list);
  3547. /*
  3548. * Never scan more than sc->nr_to_scan VM instances.
  3549. * Will not hit this condition practically since we do not try
  3550. * to shrink more than one VM and it is very unlikely to see
  3551. * !n_used_mmu_pages so many times.
  3552. */
  3553. if (!nr_to_scan--)
  3554. break;
  3555. /*
  3556. * n_used_mmu_pages is accessed without holding kvm->mmu_lock
  3557. * here. We may skip a VM instance errorneosly, but we do not
  3558. * want to shrink a VM that only started to populate its MMU
  3559. * anyway.
  3560. */
  3561. if (!kvm->arch.n_used_mmu_pages)
  3562. continue;
  3563. idx = srcu_read_lock(&kvm->srcu);
  3564. spin_lock(&kvm->mmu_lock);
  3565. kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
  3566. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3567. spin_unlock(&kvm->mmu_lock);
  3568. srcu_read_unlock(&kvm->srcu, idx);
  3569. list_move_tail(&kvm->vm_list, &vm_list);
  3570. break;
  3571. }
  3572. raw_spin_unlock(&kvm_lock);
  3573. out:
  3574. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  3575. }
  3576. static struct shrinker mmu_shrinker = {
  3577. .shrink = mmu_shrink,
  3578. .seeks = DEFAULT_SEEKS * 10,
  3579. };
  3580. static void mmu_destroy_caches(void)
  3581. {
  3582. if (pte_list_desc_cache)
  3583. kmem_cache_destroy(pte_list_desc_cache);
  3584. if (mmu_page_header_cache)
  3585. kmem_cache_destroy(mmu_page_header_cache);
  3586. }
  3587. int kvm_mmu_module_init(void)
  3588. {
  3589. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  3590. sizeof(struct pte_list_desc),
  3591. 0, 0, NULL);
  3592. if (!pte_list_desc_cache)
  3593. goto nomem;
  3594. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  3595. sizeof(struct kvm_mmu_page),
  3596. 0, 0, NULL);
  3597. if (!mmu_page_header_cache)
  3598. goto nomem;
  3599. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  3600. goto nomem;
  3601. register_shrinker(&mmu_shrinker);
  3602. return 0;
  3603. nomem:
  3604. mmu_destroy_caches();
  3605. return -ENOMEM;
  3606. }
  3607. /*
  3608. * Caculate mmu pages needed for kvm.
  3609. */
  3610. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  3611. {
  3612. unsigned int nr_mmu_pages;
  3613. unsigned int nr_pages = 0;
  3614. struct kvm_memslots *slots;
  3615. struct kvm_memory_slot *memslot;
  3616. slots = kvm_memslots(kvm);
  3617. kvm_for_each_memslot(memslot, slots)
  3618. nr_pages += memslot->npages;
  3619. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  3620. nr_mmu_pages = max(nr_mmu_pages,
  3621. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  3622. return nr_mmu_pages;
  3623. }
  3624. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  3625. {
  3626. struct kvm_shadow_walk_iterator iterator;
  3627. u64 spte;
  3628. int nr_sptes = 0;
  3629. walk_shadow_page_lockless_begin(vcpu);
  3630. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
  3631. sptes[iterator.level-1] = spte;
  3632. nr_sptes++;
  3633. if (!is_shadow_present_pte(spte))
  3634. break;
  3635. }
  3636. walk_shadow_page_lockless_end(vcpu);
  3637. return nr_sptes;
  3638. }
  3639. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3640. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  3641. {
  3642. ASSERT(vcpu);
  3643. destroy_kvm_mmu(vcpu);
  3644. free_mmu_pages(vcpu);
  3645. mmu_free_memory_caches(vcpu);
  3646. }
  3647. void kvm_mmu_module_exit(void)
  3648. {
  3649. mmu_destroy_caches();
  3650. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  3651. unregister_shrinker(&mmu_shrinker);
  3652. mmu_audit_disable();
  3653. }