fpu-internal.h 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619
  1. /*
  2. * Copyright (C) 1994 Linus Torvalds
  3. *
  4. * Pentium III FXSR, SSE support
  5. * General FPU state handling cleanups
  6. * Gareth Hughes <gareth@valinux.com>, May 2000
  7. * x86-64 work by Andi Kleen 2002
  8. */
  9. #ifndef _FPU_INTERNAL_H
  10. #define _FPU_INTERNAL_H
  11. #include <linux/kernel_stat.h>
  12. #include <linux/regset.h>
  13. #include <linux/compat.h>
  14. #include <linux/slab.h>
  15. #include <asm/asm.h>
  16. #include <asm/cpufeature.h>
  17. #include <asm/processor.h>
  18. #include <asm/sigcontext.h>
  19. #include <asm/user.h>
  20. #include <asm/uaccess.h>
  21. #include <asm/xsave.h>
  22. #include <asm/smap.h>
  23. #ifdef CONFIG_X86_64
  24. # include <asm/sigcontext32.h>
  25. # include <asm/user32.h>
  26. int ia32_setup_rt_frame(int sig, struct k_sigaction *ka, siginfo_t *info,
  27. compat_sigset_t *set, struct pt_regs *regs);
  28. int ia32_setup_frame(int sig, struct k_sigaction *ka,
  29. compat_sigset_t *set, struct pt_regs *regs);
  30. #else
  31. # define user_i387_ia32_struct user_i387_struct
  32. # define user32_fxsr_struct user_fxsr_struct
  33. # define ia32_setup_frame __setup_frame
  34. # define ia32_setup_rt_frame __setup_rt_frame
  35. #endif
  36. extern unsigned int mxcsr_feature_mask;
  37. extern void fpu_init(void);
  38. extern void eager_fpu_init(void);
  39. DECLARE_PER_CPU(struct task_struct *, fpu_owner_task);
  40. extern void convert_from_fxsr(struct user_i387_ia32_struct *env,
  41. struct task_struct *tsk);
  42. extern void convert_to_fxsr(struct task_struct *tsk,
  43. const struct user_i387_ia32_struct *env);
  44. extern user_regset_active_fn fpregs_active, xfpregs_active;
  45. extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
  46. xstateregs_get;
  47. extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
  48. xstateregs_set;
  49. /*
  50. * xstateregs_active == fpregs_active. Please refer to the comment
  51. * at the definition of fpregs_active.
  52. */
  53. #define xstateregs_active fpregs_active
  54. #ifdef CONFIG_MATH_EMULATION
  55. # define HAVE_HWFP (boot_cpu_data.hard_math)
  56. extern void finit_soft_fpu(struct i387_soft_struct *soft);
  57. #else
  58. # define HAVE_HWFP 1
  59. static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
  60. #endif
  61. static inline int is_ia32_compat_frame(void)
  62. {
  63. return config_enabled(CONFIG_IA32_EMULATION) &&
  64. test_thread_flag(TIF_IA32);
  65. }
  66. static inline int is_ia32_frame(void)
  67. {
  68. return config_enabled(CONFIG_X86_32) || is_ia32_compat_frame();
  69. }
  70. static inline int is_x32_frame(void)
  71. {
  72. return config_enabled(CONFIG_X86_X32_ABI) && test_thread_flag(TIF_X32);
  73. }
  74. #define X87_FSW_ES (1 << 7) /* Exception Summary */
  75. static __always_inline __pure bool use_eager_fpu(void)
  76. {
  77. return static_cpu_has(X86_FEATURE_EAGER_FPU);
  78. }
  79. static __always_inline __pure bool use_xsaveopt(void)
  80. {
  81. return static_cpu_has(X86_FEATURE_XSAVEOPT);
  82. }
  83. static __always_inline __pure bool use_xsave(void)
  84. {
  85. return static_cpu_has(X86_FEATURE_XSAVE);
  86. }
  87. static __always_inline __pure bool use_fxsr(void)
  88. {
  89. return static_cpu_has(X86_FEATURE_FXSR);
  90. }
  91. static inline void fx_finit(struct i387_fxsave_struct *fx)
  92. {
  93. memset(fx, 0, xstate_size);
  94. fx->cwd = 0x37f;
  95. fx->mxcsr = MXCSR_DEFAULT;
  96. }
  97. extern void __sanitize_i387_state(struct task_struct *);
  98. static inline void sanitize_i387_state(struct task_struct *tsk)
  99. {
  100. if (!use_xsaveopt())
  101. return;
  102. __sanitize_i387_state(tsk);
  103. }
  104. #define user_insn(insn, output, input...) \
  105. ({ \
  106. int err; \
  107. asm volatile(ASM_STAC "\n" \
  108. "1:" #insn "\n\t" \
  109. "2: " ASM_CLAC "\n" \
  110. ".section .fixup,\"ax\"\n" \
  111. "3: movl $-1,%[err]\n" \
  112. " jmp 2b\n" \
  113. ".previous\n" \
  114. _ASM_EXTABLE(1b, 3b) \
  115. : [err] "=r" (err), output \
  116. : "0"(0), input); \
  117. err; \
  118. })
  119. #define check_insn(insn, output, input...) \
  120. ({ \
  121. int err; \
  122. asm volatile("1:" #insn "\n\t" \
  123. "2:\n" \
  124. ".section .fixup,\"ax\"\n" \
  125. "3: movl $-1,%[err]\n" \
  126. " jmp 2b\n" \
  127. ".previous\n" \
  128. _ASM_EXTABLE(1b, 3b) \
  129. : [err] "=r" (err), output \
  130. : "0"(0), input); \
  131. err; \
  132. })
  133. static inline int fsave_user(struct i387_fsave_struct __user *fx)
  134. {
  135. return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx));
  136. }
  137. static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
  138. {
  139. if (config_enabled(CONFIG_X86_32))
  140. return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
  141. else if (config_enabled(CONFIG_AS_FXSAVEQ))
  142. return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
  143. /* See comment in fpu_fxsave() below. */
  144. return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
  145. }
  146. static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
  147. {
  148. if (config_enabled(CONFIG_X86_32))
  149. return check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
  150. else if (config_enabled(CONFIG_AS_FXSAVEQ))
  151. return check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
  152. /* See comment in fpu_fxsave() below. */
  153. return check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
  154. "m" (*fx));
  155. }
  156. static inline int fxrstor_user(struct i387_fxsave_struct __user *fx)
  157. {
  158. if (config_enabled(CONFIG_X86_32))
  159. return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
  160. else if (config_enabled(CONFIG_AS_FXSAVEQ))
  161. return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
  162. /* See comment in fpu_fxsave() below. */
  163. return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
  164. "m" (*fx));
  165. }
  166. static inline int frstor_checking(struct i387_fsave_struct *fx)
  167. {
  168. return check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
  169. }
  170. static inline int frstor_user(struct i387_fsave_struct __user *fx)
  171. {
  172. return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
  173. }
  174. static inline void fpu_fxsave(struct fpu *fpu)
  175. {
  176. if (config_enabled(CONFIG_X86_32))
  177. asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state->fxsave));
  178. else if (config_enabled(CONFIG_AS_FXSAVEQ))
  179. asm volatile("fxsaveq %0" : "=m" (fpu->state->fxsave));
  180. else {
  181. /* Using "rex64; fxsave %0" is broken because, if the memory
  182. * operand uses any extended registers for addressing, a second
  183. * REX prefix will be generated (to the assembler, rex64
  184. * followed by semicolon is a separate instruction), and hence
  185. * the 64-bitness is lost.
  186. *
  187. * Using "fxsaveq %0" would be the ideal choice, but is only
  188. * supported starting with gas 2.16.
  189. *
  190. * Using, as a workaround, the properly prefixed form below
  191. * isn't accepted by any binutils version so far released,
  192. * complaining that the same type of prefix is used twice if
  193. * an extended register is needed for addressing (fix submitted
  194. * to mainline 2005-11-21).
  195. *
  196. * asm volatile("rex64/fxsave %0" : "=m" (fpu->state->fxsave));
  197. *
  198. * This, however, we can work around by forcing the compiler to
  199. * select an addressing mode that doesn't require extended
  200. * registers.
  201. */
  202. asm volatile( "rex64/fxsave (%[fx])"
  203. : "=m" (fpu->state->fxsave)
  204. : [fx] "R" (&fpu->state->fxsave));
  205. }
  206. }
  207. /*
  208. * These must be called with preempt disabled. Returns
  209. * 'true' if the FPU state is still intact.
  210. */
  211. static inline int fpu_save_init(struct fpu *fpu)
  212. {
  213. if (use_xsave()) {
  214. fpu_xsave(fpu);
  215. /*
  216. * xsave header may indicate the init state of the FP.
  217. */
  218. if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
  219. return 1;
  220. } else if (use_fxsr()) {
  221. fpu_fxsave(fpu);
  222. } else {
  223. asm volatile("fnsave %[fx]; fwait"
  224. : [fx] "=m" (fpu->state->fsave));
  225. return 0;
  226. }
  227. /*
  228. * If exceptions are pending, we need to clear them so
  229. * that we don't randomly get exceptions later.
  230. *
  231. * FIXME! Is this perhaps only true for the old-style
  232. * irq13 case? Maybe we could leave the x87 state
  233. * intact otherwise?
  234. */
  235. if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) {
  236. asm volatile("fnclex");
  237. return 0;
  238. }
  239. return 1;
  240. }
  241. static inline int __save_init_fpu(struct task_struct *tsk)
  242. {
  243. return fpu_save_init(&tsk->thread.fpu);
  244. }
  245. static inline int fpu_restore_checking(struct fpu *fpu)
  246. {
  247. if (use_xsave())
  248. return fpu_xrstor_checking(&fpu->state->xsave);
  249. else if (use_fxsr())
  250. return fxrstor_checking(&fpu->state->fxsave);
  251. else
  252. return frstor_checking(&fpu->state->fsave);
  253. }
  254. static inline int restore_fpu_checking(struct task_struct *tsk)
  255. {
  256. /* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
  257. is pending. Clear the x87 state here by setting it to fixed
  258. values. "m" is a random variable that should be in L1 */
  259. alternative_input(
  260. ASM_NOP8 ASM_NOP2,
  261. "emms\n\t" /* clear stack tags */
  262. "fildl %P[addr]", /* set F?P to defined value */
  263. X86_FEATURE_FXSAVE_LEAK,
  264. [addr] "m" (tsk->thread.fpu.has_fpu));
  265. return fpu_restore_checking(&tsk->thread.fpu);
  266. }
  267. /*
  268. * Software FPU state helpers. Careful: these need to
  269. * be preemption protection *and* they need to be
  270. * properly paired with the CR0.TS changes!
  271. */
  272. static inline int __thread_has_fpu(struct task_struct *tsk)
  273. {
  274. return tsk->thread.fpu.has_fpu;
  275. }
  276. /* Must be paired with an 'stts' after! */
  277. static inline void __thread_clear_has_fpu(struct task_struct *tsk)
  278. {
  279. tsk->thread.fpu.has_fpu = 0;
  280. this_cpu_write(fpu_owner_task, NULL);
  281. }
  282. /* Must be paired with a 'clts' before! */
  283. static inline void __thread_set_has_fpu(struct task_struct *tsk)
  284. {
  285. tsk->thread.fpu.has_fpu = 1;
  286. this_cpu_write(fpu_owner_task, tsk);
  287. }
  288. /*
  289. * Encapsulate the CR0.TS handling together with the
  290. * software flag.
  291. *
  292. * These generally need preemption protection to work,
  293. * do try to avoid using these on their own.
  294. */
  295. static inline void __thread_fpu_end(struct task_struct *tsk)
  296. {
  297. __thread_clear_has_fpu(tsk);
  298. if (!use_eager_fpu())
  299. stts();
  300. }
  301. static inline void __thread_fpu_begin(struct task_struct *tsk)
  302. {
  303. if (!use_eager_fpu())
  304. clts();
  305. __thread_set_has_fpu(tsk);
  306. }
  307. static inline void __drop_fpu(struct task_struct *tsk)
  308. {
  309. if (__thread_has_fpu(tsk)) {
  310. /* Ignore delayed exceptions from user space */
  311. asm volatile("1: fwait\n"
  312. "2:\n"
  313. _ASM_EXTABLE(1b, 2b));
  314. __thread_fpu_end(tsk);
  315. }
  316. }
  317. static inline void drop_fpu(struct task_struct *tsk)
  318. {
  319. /*
  320. * Forget coprocessor state..
  321. */
  322. preempt_disable();
  323. tsk->fpu_counter = 0;
  324. __drop_fpu(tsk);
  325. clear_used_math();
  326. preempt_enable();
  327. }
  328. static inline void drop_init_fpu(struct task_struct *tsk)
  329. {
  330. if (!use_eager_fpu())
  331. drop_fpu(tsk);
  332. else {
  333. if (use_xsave())
  334. xrstor_state(init_xstate_buf, -1);
  335. else
  336. fxrstor_checking(&init_xstate_buf->i387);
  337. }
  338. }
  339. /*
  340. * FPU state switching for scheduling.
  341. *
  342. * This is a two-stage process:
  343. *
  344. * - switch_fpu_prepare() saves the old state and
  345. * sets the new state of the CR0.TS bit. This is
  346. * done within the context of the old process.
  347. *
  348. * - switch_fpu_finish() restores the new state as
  349. * necessary.
  350. */
  351. typedef struct { int preload; } fpu_switch_t;
  352. /*
  353. * Must be run with preemption disabled: this clears the fpu_owner_task,
  354. * on this CPU.
  355. *
  356. * This will disable any lazy FPU state restore of the current FPU state,
  357. * but if the current thread owns the FPU, it will still be saved by.
  358. */
  359. static inline void __cpu_disable_lazy_restore(unsigned int cpu)
  360. {
  361. per_cpu(fpu_owner_task, cpu) = NULL;
  362. }
  363. static inline int fpu_lazy_restore(struct task_struct *new, unsigned int cpu)
  364. {
  365. return new == this_cpu_read_stable(fpu_owner_task) &&
  366. cpu == new->thread.fpu.last_cpu;
  367. }
  368. static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new, int cpu)
  369. {
  370. fpu_switch_t fpu;
  371. /*
  372. * If the task has used the math, pre-load the FPU on xsave processors
  373. * or if the past 5 consecutive context-switches used math.
  374. */
  375. fpu.preload = tsk_used_math(new) && (use_eager_fpu() ||
  376. new->fpu_counter > 5);
  377. if (__thread_has_fpu(old)) {
  378. if (!__save_init_fpu(old))
  379. cpu = ~0;
  380. old->thread.fpu.last_cpu = cpu;
  381. old->thread.fpu.has_fpu = 0; /* But leave fpu_owner_task! */
  382. /* Don't change CR0.TS if we just switch! */
  383. if (fpu.preload) {
  384. new->fpu_counter++;
  385. __thread_set_has_fpu(new);
  386. prefetch(new->thread.fpu.state);
  387. } else if (!use_eager_fpu())
  388. stts();
  389. } else {
  390. old->fpu_counter = 0;
  391. old->thread.fpu.last_cpu = ~0;
  392. if (fpu.preload) {
  393. new->fpu_counter++;
  394. if (!use_eager_fpu() && fpu_lazy_restore(new, cpu))
  395. fpu.preload = 0;
  396. else
  397. prefetch(new->thread.fpu.state);
  398. __thread_fpu_begin(new);
  399. }
  400. }
  401. return fpu;
  402. }
  403. /*
  404. * By the time this gets called, we've already cleared CR0.TS and
  405. * given the process the FPU if we are going to preload the FPU
  406. * state - all we need to do is to conditionally restore the register
  407. * state itself.
  408. */
  409. static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu)
  410. {
  411. if (fpu.preload) {
  412. if (unlikely(restore_fpu_checking(new)))
  413. drop_init_fpu(new);
  414. }
  415. }
  416. /*
  417. * Signal frame handlers...
  418. */
  419. extern int save_xstate_sig(void __user *buf, void __user *fx, int size);
  420. extern int __restore_xstate_sig(void __user *buf, void __user *fx, int size);
  421. static inline int xstate_sigframe_size(void)
  422. {
  423. return use_xsave() ? xstate_size + FP_XSTATE_MAGIC2_SIZE : xstate_size;
  424. }
  425. static inline int restore_xstate_sig(void __user *buf, int ia32_frame)
  426. {
  427. void __user *buf_fx = buf;
  428. int size = xstate_sigframe_size();
  429. if (ia32_frame && use_fxsr()) {
  430. buf_fx = buf + sizeof(struct i387_fsave_struct);
  431. size += sizeof(struct i387_fsave_struct);
  432. }
  433. return __restore_xstate_sig(buf, buf_fx, size);
  434. }
  435. /*
  436. * Need to be preemption-safe.
  437. *
  438. * NOTE! user_fpu_begin() must be used only immediately before restoring
  439. * it. This function does not do any save/restore on their own.
  440. */
  441. static inline void user_fpu_begin(void)
  442. {
  443. preempt_disable();
  444. if (!user_has_fpu())
  445. __thread_fpu_begin(current);
  446. preempt_enable();
  447. }
  448. static inline void __save_fpu(struct task_struct *tsk)
  449. {
  450. if (use_xsave())
  451. xsave_state(&tsk->thread.fpu.state->xsave, -1);
  452. else
  453. fpu_fxsave(&tsk->thread.fpu);
  454. }
  455. /*
  456. * These disable preemption on their own and are safe
  457. */
  458. static inline void save_init_fpu(struct task_struct *tsk)
  459. {
  460. WARN_ON_ONCE(!__thread_has_fpu(tsk));
  461. if (use_eager_fpu()) {
  462. __save_fpu(tsk);
  463. return;
  464. }
  465. preempt_disable();
  466. __save_init_fpu(tsk);
  467. __thread_fpu_end(tsk);
  468. preempt_enable();
  469. }
  470. /*
  471. * i387 state interaction
  472. */
  473. static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
  474. {
  475. if (cpu_has_fxsr) {
  476. return tsk->thread.fpu.state->fxsave.cwd;
  477. } else {
  478. return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
  479. }
  480. }
  481. static inline unsigned short get_fpu_swd(struct task_struct *tsk)
  482. {
  483. if (cpu_has_fxsr) {
  484. return tsk->thread.fpu.state->fxsave.swd;
  485. } else {
  486. return (unsigned short)tsk->thread.fpu.state->fsave.swd;
  487. }
  488. }
  489. static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
  490. {
  491. if (cpu_has_xmm) {
  492. return tsk->thread.fpu.state->fxsave.mxcsr;
  493. } else {
  494. return MXCSR_DEFAULT;
  495. }
  496. }
  497. static bool fpu_allocated(struct fpu *fpu)
  498. {
  499. return fpu->state != NULL;
  500. }
  501. static inline int fpu_alloc(struct fpu *fpu)
  502. {
  503. if (fpu_allocated(fpu))
  504. return 0;
  505. fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
  506. if (!fpu->state)
  507. return -ENOMEM;
  508. WARN_ON((unsigned long)fpu->state & 15);
  509. return 0;
  510. }
  511. static inline void fpu_free(struct fpu *fpu)
  512. {
  513. if (fpu->state) {
  514. kmem_cache_free(task_xstate_cachep, fpu->state);
  515. fpu->state = NULL;
  516. }
  517. }
  518. static inline void fpu_copy(struct task_struct *dst, struct task_struct *src)
  519. {
  520. if (use_eager_fpu()) {
  521. memset(&dst->thread.fpu.state->xsave, 0, xstate_size);
  522. __save_fpu(dst);
  523. } else {
  524. struct fpu *dfpu = &dst->thread.fpu;
  525. struct fpu *sfpu = &src->thread.fpu;
  526. unlazy_fpu(src);
  527. memcpy(dfpu->state, sfpu->state, xstate_size);
  528. }
  529. }
  530. static inline unsigned long
  531. alloc_mathframe(unsigned long sp, int ia32_frame, unsigned long *buf_fx,
  532. unsigned long *size)
  533. {
  534. unsigned long frame_size = xstate_sigframe_size();
  535. *buf_fx = sp = round_down(sp - frame_size, 64);
  536. if (ia32_frame && use_fxsr()) {
  537. frame_size += sizeof(struct i387_fsave_struct);
  538. sp -= sizeof(struct i387_fsave_struct);
  539. }
  540. *size = frame_size;
  541. return sp;
  542. }
  543. #endif