vmem.c 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431
  1. /*
  2. * Copyright IBM Corp. 2006
  3. * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
  4. */
  5. #include <linux/bootmem.h>
  6. #include <linux/pfn.h>
  7. #include <linux/mm.h>
  8. #include <linux/module.h>
  9. #include <linux/list.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/slab.h>
  12. #include <asm/pgalloc.h>
  13. #include <asm/pgtable.h>
  14. #include <asm/setup.h>
  15. #include <asm/tlbflush.h>
  16. #include <asm/sections.h>
  17. static DEFINE_MUTEX(vmem_mutex);
  18. struct memory_segment {
  19. struct list_head list;
  20. unsigned long start;
  21. unsigned long size;
  22. };
  23. static LIST_HEAD(mem_segs);
  24. static void __ref *vmem_alloc_pages(unsigned int order)
  25. {
  26. if (slab_is_available())
  27. return (void *)__get_free_pages(GFP_KERNEL, order);
  28. return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
  29. }
  30. static inline pud_t *vmem_pud_alloc(void)
  31. {
  32. pud_t *pud = NULL;
  33. #ifdef CONFIG_64BIT
  34. pud = vmem_alloc_pages(2);
  35. if (!pud)
  36. return NULL;
  37. clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
  38. #endif
  39. return pud;
  40. }
  41. static inline pmd_t *vmem_pmd_alloc(void)
  42. {
  43. pmd_t *pmd = NULL;
  44. #ifdef CONFIG_64BIT
  45. pmd = vmem_alloc_pages(2);
  46. if (!pmd)
  47. return NULL;
  48. clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
  49. #endif
  50. return pmd;
  51. }
  52. static pte_t __ref *vmem_pte_alloc(unsigned long address)
  53. {
  54. pte_t *pte;
  55. if (slab_is_available())
  56. pte = (pte_t *) page_table_alloc(&init_mm, address);
  57. else
  58. pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
  59. if (!pte)
  60. return NULL;
  61. clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
  62. PTRS_PER_PTE * sizeof(pte_t));
  63. return pte;
  64. }
  65. /*
  66. * Add a physical memory range to the 1:1 mapping.
  67. */
  68. static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
  69. {
  70. unsigned long end = start + size;
  71. unsigned long address = start;
  72. pgd_t *pg_dir;
  73. pud_t *pu_dir;
  74. pmd_t *pm_dir;
  75. pte_t *pt_dir;
  76. pte_t pte;
  77. int ret = -ENOMEM;
  78. while (address < end) {
  79. pte = mk_pte_phys(address, __pgprot(ro ? _PAGE_RO : 0));
  80. pg_dir = pgd_offset_k(address);
  81. if (pgd_none(*pg_dir)) {
  82. pu_dir = vmem_pud_alloc();
  83. if (!pu_dir)
  84. goto out;
  85. pgd_populate(&init_mm, pg_dir, pu_dir);
  86. }
  87. pu_dir = pud_offset(pg_dir, address);
  88. #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
  89. if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
  90. !(address & ~PUD_MASK) && (address + PUD_SIZE <= end)) {
  91. pte_val(pte) |= _REGION3_ENTRY_LARGE;
  92. pte_val(pte) |= _REGION_ENTRY_TYPE_R3;
  93. pud_val(*pu_dir) = pte_val(pte);
  94. address += PUD_SIZE;
  95. continue;
  96. }
  97. #endif
  98. if (pud_none(*pu_dir)) {
  99. pm_dir = vmem_pmd_alloc();
  100. if (!pm_dir)
  101. goto out;
  102. pud_populate(&init_mm, pu_dir, pm_dir);
  103. }
  104. pm_dir = pmd_offset(pu_dir, address);
  105. #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
  106. if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
  107. !(address & ~PMD_MASK) && (address + PMD_SIZE <= end)) {
  108. pte_val(pte) |= _SEGMENT_ENTRY_LARGE;
  109. pmd_val(*pm_dir) = pte_val(pte);
  110. address += PMD_SIZE;
  111. continue;
  112. }
  113. #endif
  114. if (pmd_none(*pm_dir)) {
  115. pt_dir = vmem_pte_alloc(address);
  116. if (!pt_dir)
  117. goto out;
  118. pmd_populate(&init_mm, pm_dir, pt_dir);
  119. }
  120. pt_dir = pte_offset_kernel(pm_dir, address);
  121. *pt_dir = pte;
  122. address += PAGE_SIZE;
  123. }
  124. ret = 0;
  125. out:
  126. flush_tlb_kernel_range(start, end);
  127. return ret;
  128. }
  129. /*
  130. * Remove a physical memory range from the 1:1 mapping.
  131. * Currently only invalidates page table entries.
  132. */
  133. static void vmem_remove_range(unsigned long start, unsigned long size)
  134. {
  135. unsigned long end = start + size;
  136. unsigned long address = start;
  137. pgd_t *pg_dir;
  138. pud_t *pu_dir;
  139. pmd_t *pm_dir;
  140. pte_t *pt_dir;
  141. pte_t pte;
  142. pte_val(pte) = _PAGE_TYPE_EMPTY;
  143. while (address < end) {
  144. pg_dir = pgd_offset_k(address);
  145. if (pgd_none(*pg_dir)) {
  146. address += PGDIR_SIZE;
  147. continue;
  148. }
  149. pu_dir = pud_offset(pg_dir, address);
  150. if (pud_none(*pu_dir)) {
  151. address += PUD_SIZE;
  152. continue;
  153. }
  154. if (pud_large(*pu_dir)) {
  155. pud_clear(pu_dir);
  156. address += PUD_SIZE;
  157. continue;
  158. }
  159. pm_dir = pmd_offset(pu_dir, address);
  160. if (pmd_none(*pm_dir)) {
  161. address += PMD_SIZE;
  162. continue;
  163. }
  164. if (pmd_large(*pm_dir)) {
  165. pmd_clear(pm_dir);
  166. address += PMD_SIZE;
  167. continue;
  168. }
  169. pt_dir = pte_offset_kernel(pm_dir, address);
  170. *pt_dir = pte;
  171. address += PAGE_SIZE;
  172. }
  173. flush_tlb_kernel_range(start, end);
  174. }
  175. /*
  176. * Add a backed mem_map array to the virtual mem_map array.
  177. */
  178. int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
  179. {
  180. unsigned long address, start_addr, end_addr;
  181. pgd_t *pg_dir;
  182. pud_t *pu_dir;
  183. pmd_t *pm_dir;
  184. pte_t *pt_dir;
  185. pte_t pte;
  186. int ret = -ENOMEM;
  187. start_addr = (unsigned long) start;
  188. end_addr = (unsigned long) (start + nr);
  189. for (address = start_addr; address < end_addr;) {
  190. pg_dir = pgd_offset_k(address);
  191. if (pgd_none(*pg_dir)) {
  192. pu_dir = vmem_pud_alloc();
  193. if (!pu_dir)
  194. goto out;
  195. pgd_populate(&init_mm, pg_dir, pu_dir);
  196. }
  197. pu_dir = pud_offset(pg_dir, address);
  198. if (pud_none(*pu_dir)) {
  199. pm_dir = vmem_pmd_alloc();
  200. if (!pm_dir)
  201. goto out;
  202. pud_populate(&init_mm, pu_dir, pm_dir);
  203. }
  204. pm_dir = pmd_offset(pu_dir, address);
  205. if (pmd_none(*pm_dir)) {
  206. #ifdef CONFIG_64BIT
  207. /* Use 1MB frames for vmemmap if available. We always
  208. * use large frames even if they are only partially
  209. * used.
  210. * Otherwise we would have also page tables since
  211. * vmemmap_populate gets called for each section
  212. * separately. */
  213. if (MACHINE_HAS_EDAT1) {
  214. void *new_page;
  215. new_page = vmemmap_alloc_block(PMD_SIZE, node);
  216. if (!new_page)
  217. goto out;
  218. pte = mk_pte_phys(__pa(new_page), PAGE_RW);
  219. pte_val(pte) |= _SEGMENT_ENTRY_LARGE;
  220. pmd_val(*pm_dir) = pte_val(pte);
  221. address = (address + PMD_SIZE) & PMD_MASK;
  222. continue;
  223. }
  224. #endif
  225. pt_dir = vmem_pte_alloc(address);
  226. if (!pt_dir)
  227. goto out;
  228. pmd_populate(&init_mm, pm_dir, pt_dir);
  229. } else if (pmd_large(*pm_dir)) {
  230. address = (address + PMD_SIZE) & PMD_MASK;
  231. continue;
  232. }
  233. pt_dir = pte_offset_kernel(pm_dir, address);
  234. if (pte_none(*pt_dir)) {
  235. unsigned long new_page;
  236. new_page =__pa(vmem_alloc_pages(0));
  237. if (!new_page)
  238. goto out;
  239. pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
  240. *pt_dir = pte;
  241. }
  242. address += PAGE_SIZE;
  243. }
  244. memset(start, 0, nr * sizeof(struct page));
  245. ret = 0;
  246. out:
  247. flush_tlb_kernel_range(start_addr, end_addr);
  248. return ret;
  249. }
  250. /*
  251. * Add memory segment to the segment list if it doesn't overlap with
  252. * an already present segment.
  253. */
  254. static int insert_memory_segment(struct memory_segment *seg)
  255. {
  256. struct memory_segment *tmp;
  257. if (seg->start + seg->size > VMEM_MAX_PHYS ||
  258. seg->start + seg->size < seg->start)
  259. return -ERANGE;
  260. list_for_each_entry(tmp, &mem_segs, list) {
  261. if (seg->start >= tmp->start + tmp->size)
  262. continue;
  263. if (seg->start + seg->size <= tmp->start)
  264. continue;
  265. return -ENOSPC;
  266. }
  267. list_add(&seg->list, &mem_segs);
  268. return 0;
  269. }
  270. /*
  271. * Remove memory segment from the segment list.
  272. */
  273. static void remove_memory_segment(struct memory_segment *seg)
  274. {
  275. list_del(&seg->list);
  276. }
  277. static void __remove_shared_memory(struct memory_segment *seg)
  278. {
  279. remove_memory_segment(seg);
  280. vmem_remove_range(seg->start, seg->size);
  281. }
  282. int vmem_remove_mapping(unsigned long start, unsigned long size)
  283. {
  284. struct memory_segment *seg;
  285. int ret;
  286. mutex_lock(&vmem_mutex);
  287. ret = -ENOENT;
  288. list_for_each_entry(seg, &mem_segs, list) {
  289. if (seg->start == start && seg->size == size)
  290. break;
  291. }
  292. if (seg->start != start || seg->size != size)
  293. goto out;
  294. ret = 0;
  295. __remove_shared_memory(seg);
  296. kfree(seg);
  297. out:
  298. mutex_unlock(&vmem_mutex);
  299. return ret;
  300. }
  301. int vmem_add_mapping(unsigned long start, unsigned long size)
  302. {
  303. struct memory_segment *seg;
  304. int ret;
  305. mutex_lock(&vmem_mutex);
  306. ret = -ENOMEM;
  307. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  308. if (!seg)
  309. goto out;
  310. seg->start = start;
  311. seg->size = size;
  312. ret = insert_memory_segment(seg);
  313. if (ret)
  314. goto out_free;
  315. ret = vmem_add_mem(start, size, 0);
  316. if (ret)
  317. goto out_remove;
  318. goto out;
  319. out_remove:
  320. __remove_shared_memory(seg);
  321. out_free:
  322. kfree(seg);
  323. out:
  324. mutex_unlock(&vmem_mutex);
  325. return ret;
  326. }
  327. /*
  328. * map whole physical memory to virtual memory (identity mapping)
  329. * we reserve enough space in the vmalloc area for vmemmap to hotplug
  330. * additional memory segments.
  331. */
  332. void __init vmem_map_init(void)
  333. {
  334. unsigned long ro_start, ro_end;
  335. unsigned long start, end;
  336. int i;
  337. ro_start = PFN_ALIGN((unsigned long)&_stext);
  338. ro_end = (unsigned long)&_eshared & PAGE_MASK;
  339. for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
  340. if (memory_chunk[i].type == CHUNK_CRASHK ||
  341. memory_chunk[i].type == CHUNK_OLDMEM)
  342. continue;
  343. start = memory_chunk[i].addr;
  344. end = memory_chunk[i].addr + memory_chunk[i].size;
  345. if (start >= ro_end || end <= ro_start)
  346. vmem_add_mem(start, end - start, 0);
  347. else if (start >= ro_start && end <= ro_end)
  348. vmem_add_mem(start, end - start, 1);
  349. else if (start >= ro_start) {
  350. vmem_add_mem(start, ro_end - start, 1);
  351. vmem_add_mem(ro_end, end - ro_end, 0);
  352. } else if (end < ro_end) {
  353. vmem_add_mem(start, ro_start - start, 0);
  354. vmem_add_mem(ro_start, end - ro_start, 1);
  355. } else {
  356. vmem_add_mem(start, ro_start - start, 0);
  357. vmem_add_mem(ro_start, ro_end - ro_start, 1);
  358. vmem_add_mem(ro_end, end - ro_end, 0);
  359. }
  360. }
  361. }
  362. /*
  363. * Convert memory chunk array to a memory segment list so there is a single
  364. * list that contains both r/w memory and shared memory segments.
  365. */
  366. static int __init vmem_convert_memory_chunk(void)
  367. {
  368. struct memory_segment *seg;
  369. int i;
  370. mutex_lock(&vmem_mutex);
  371. for (i = 0; i < MEMORY_CHUNKS; i++) {
  372. if (!memory_chunk[i].size)
  373. continue;
  374. if (memory_chunk[i].type == CHUNK_CRASHK ||
  375. memory_chunk[i].type == CHUNK_OLDMEM)
  376. continue;
  377. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  378. if (!seg)
  379. panic("Out of memory...\n");
  380. seg->start = memory_chunk[i].addr;
  381. seg->size = memory_chunk[i].size;
  382. insert_memory_segment(seg);
  383. }
  384. mutex_unlock(&vmem_mutex);
  385. return 0;
  386. }
  387. core_initcall(vmem_convert_memory_chunk);