tlbex.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Synthesize TLB refill handlers at runtime.
  7. *
  8. * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
  9. * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
  10. * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
  11. * Copyright (C) 2008, 2009 Cavium Networks, Inc.
  12. * Copyright (C) 2011 MIPS Technologies, Inc.
  13. *
  14. * ... and the days got worse and worse and now you see
  15. * I've gone completly out of my mind.
  16. *
  17. * They're coming to take me a away haha
  18. * they're coming to take me a away hoho hihi haha
  19. * to the funny farm where code is beautiful all the time ...
  20. *
  21. * (Condolences to Napoleon XIV)
  22. */
  23. #include <linux/bug.h>
  24. #include <linux/kernel.h>
  25. #include <linux/types.h>
  26. #include <linux/smp.h>
  27. #include <linux/string.h>
  28. #include <linux/init.h>
  29. #include <linux/cache.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/pgtable.h>
  32. #include <asm/war.h>
  33. #include <asm/uasm.h>
  34. #include <asm/setup.h>
  35. /*
  36. * TLB load/store/modify handlers.
  37. *
  38. * Only the fastpath gets synthesized at runtime, the slowpath for
  39. * do_page_fault remains normal asm.
  40. */
  41. extern void tlb_do_page_fault_0(void);
  42. extern void tlb_do_page_fault_1(void);
  43. struct work_registers {
  44. int r1;
  45. int r2;
  46. int r3;
  47. };
  48. struct tlb_reg_save {
  49. unsigned long a;
  50. unsigned long b;
  51. } ____cacheline_aligned_in_smp;
  52. static struct tlb_reg_save handler_reg_save[NR_CPUS];
  53. static inline int r45k_bvahwbug(void)
  54. {
  55. /* XXX: We should probe for the presence of this bug, but we don't. */
  56. return 0;
  57. }
  58. static inline int r4k_250MHZhwbug(void)
  59. {
  60. /* XXX: We should probe for the presence of this bug, but we don't. */
  61. return 0;
  62. }
  63. static inline int __maybe_unused bcm1250_m3_war(void)
  64. {
  65. return BCM1250_M3_WAR;
  66. }
  67. static inline int __maybe_unused r10000_llsc_war(void)
  68. {
  69. return R10000_LLSC_WAR;
  70. }
  71. static int use_bbit_insns(void)
  72. {
  73. switch (current_cpu_type()) {
  74. case CPU_CAVIUM_OCTEON:
  75. case CPU_CAVIUM_OCTEON_PLUS:
  76. case CPU_CAVIUM_OCTEON2:
  77. return 1;
  78. default:
  79. return 0;
  80. }
  81. }
  82. static int use_lwx_insns(void)
  83. {
  84. switch (current_cpu_type()) {
  85. case CPU_CAVIUM_OCTEON2:
  86. return 1;
  87. default:
  88. return 0;
  89. }
  90. }
  91. #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
  92. CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
  93. static bool scratchpad_available(void)
  94. {
  95. return true;
  96. }
  97. static int scratchpad_offset(int i)
  98. {
  99. /*
  100. * CVMSEG starts at address -32768 and extends for
  101. * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
  102. */
  103. i += 1; /* Kernel use starts at the top and works down. */
  104. return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
  105. }
  106. #else
  107. static bool scratchpad_available(void)
  108. {
  109. return false;
  110. }
  111. static int scratchpad_offset(int i)
  112. {
  113. BUG();
  114. /* Really unreachable, but evidently some GCC want this. */
  115. return 0;
  116. }
  117. #endif
  118. /*
  119. * Found by experiment: At least some revisions of the 4kc throw under
  120. * some circumstances a machine check exception, triggered by invalid
  121. * values in the index register. Delaying the tlbp instruction until
  122. * after the next branch, plus adding an additional nop in front of
  123. * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
  124. * why; it's not an issue caused by the core RTL.
  125. *
  126. */
  127. static int __cpuinit m4kc_tlbp_war(void)
  128. {
  129. return (current_cpu_data.processor_id & 0xffff00) ==
  130. (PRID_COMP_MIPS | PRID_IMP_4KC);
  131. }
  132. /* Handle labels (which must be positive integers). */
  133. enum label_id {
  134. label_second_part = 1,
  135. label_leave,
  136. label_vmalloc,
  137. label_vmalloc_done,
  138. label_tlbw_hazard_0,
  139. label_split = label_tlbw_hazard_0 + 8,
  140. label_tlbl_goaround1,
  141. label_tlbl_goaround2,
  142. label_nopage_tlbl,
  143. label_nopage_tlbs,
  144. label_nopage_tlbm,
  145. label_smp_pgtable_change,
  146. label_r3000_write_probe_fail,
  147. label_large_segbits_fault,
  148. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  149. label_tlb_huge_update,
  150. #endif
  151. };
  152. UASM_L_LA(_second_part)
  153. UASM_L_LA(_leave)
  154. UASM_L_LA(_vmalloc)
  155. UASM_L_LA(_vmalloc_done)
  156. /* _tlbw_hazard_x is handled differently. */
  157. UASM_L_LA(_split)
  158. UASM_L_LA(_tlbl_goaround1)
  159. UASM_L_LA(_tlbl_goaround2)
  160. UASM_L_LA(_nopage_tlbl)
  161. UASM_L_LA(_nopage_tlbs)
  162. UASM_L_LA(_nopage_tlbm)
  163. UASM_L_LA(_smp_pgtable_change)
  164. UASM_L_LA(_r3000_write_probe_fail)
  165. UASM_L_LA(_large_segbits_fault)
  166. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  167. UASM_L_LA(_tlb_huge_update)
  168. #endif
  169. static int __cpuinitdata hazard_instance;
  170. static void __cpuinit uasm_bgezl_hazard(u32 **p,
  171. struct uasm_reloc **r,
  172. int instance)
  173. {
  174. switch (instance) {
  175. case 0 ... 7:
  176. uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
  177. return;
  178. default:
  179. BUG();
  180. }
  181. }
  182. static void __cpuinit uasm_bgezl_label(struct uasm_label **l,
  183. u32 **p,
  184. int instance)
  185. {
  186. switch (instance) {
  187. case 0 ... 7:
  188. uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
  189. break;
  190. default:
  191. BUG();
  192. }
  193. }
  194. /*
  195. * pgtable bits are assigned dynamically depending on processor feature
  196. * and statically based on kernel configuration. This spits out the actual
  197. * values the kernel is using. Required to make sense from disassembled
  198. * TLB exception handlers.
  199. */
  200. static void output_pgtable_bits_defines(void)
  201. {
  202. #define pr_define(fmt, ...) \
  203. pr_debug("#define " fmt, ##__VA_ARGS__)
  204. pr_debug("#include <asm/asm.h>\n");
  205. pr_debug("#include <asm/regdef.h>\n");
  206. pr_debug("\n");
  207. pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
  208. pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
  209. pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
  210. pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
  211. pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
  212. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  213. pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
  214. pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
  215. #endif
  216. if (cpu_has_rixi) {
  217. #ifdef _PAGE_NO_EXEC_SHIFT
  218. pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
  219. #endif
  220. #ifdef _PAGE_NO_READ_SHIFT
  221. pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
  222. #endif
  223. }
  224. pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
  225. pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
  226. pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
  227. pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
  228. pr_debug("\n");
  229. }
  230. static inline void dump_handler(const char *symbol, const u32 *handler, int count)
  231. {
  232. int i;
  233. pr_debug("LEAF(%s)\n", symbol);
  234. pr_debug("\t.set push\n");
  235. pr_debug("\t.set noreorder\n");
  236. for (i = 0; i < count; i++)
  237. pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
  238. pr_debug("\t.set\tpop\n");
  239. pr_debug("\tEND(%s)\n", symbol);
  240. }
  241. /* The only general purpose registers allowed in TLB handlers. */
  242. #define K0 26
  243. #define K1 27
  244. /* Some CP0 registers */
  245. #define C0_INDEX 0, 0
  246. #define C0_ENTRYLO0 2, 0
  247. #define C0_TCBIND 2, 2
  248. #define C0_ENTRYLO1 3, 0
  249. #define C0_CONTEXT 4, 0
  250. #define C0_PAGEMASK 5, 0
  251. #define C0_BADVADDR 8, 0
  252. #define C0_ENTRYHI 10, 0
  253. #define C0_EPC 14, 0
  254. #define C0_XCONTEXT 20, 0
  255. #ifdef CONFIG_64BIT
  256. # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
  257. #else
  258. # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
  259. #endif
  260. /* The worst case length of the handler is around 18 instructions for
  261. * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
  262. * Maximum space available is 32 instructions for R3000 and 64
  263. * instructions for R4000.
  264. *
  265. * We deliberately chose a buffer size of 128, so we won't scribble
  266. * over anything important on overflow before we panic.
  267. */
  268. static u32 tlb_handler[128] __cpuinitdata;
  269. /* simply assume worst case size for labels and relocs */
  270. static struct uasm_label labels[128] __cpuinitdata;
  271. static struct uasm_reloc relocs[128] __cpuinitdata;
  272. #ifdef CONFIG_64BIT
  273. static int check_for_high_segbits __cpuinitdata;
  274. #endif
  275. static int check_for_high_segbits __cpuinitdata;
  276. static unsigned int kscratch_used_mask __cpuinitdata;
  277. static int __cpuinit allocate_kscratch(void)
  278. {
  279. int r;
  280. unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
  281. r = ffs(a);
  282. if (r == 0)
  283. return -1;
  284. r--; /* make it zero based */
  285. kscratch_used_mask |= (1 << r);
  286. return r;
  287. }
  288. static int scratch_reg __cpuinitdata;
  289. static int pgd_reg __cpuinitdata;
  290. enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
  291. static struct work_registers __cpuinit build_get_work_registers(u32 **p)
  292. {
  293. struct work_registers r;
  294. int smp_processor_id_reg;
  295. int smp_processor_id_sel;
  296. int smp_processor_id_shift;
  297. if (scratch_reg > 0) {
  298. /* Save in CPU local C0_KScratch? */
  299. UASM_i_MTC0(p, 1, 31, scratch_reg);
  300. r.r1 = K0;
  301. r.r2 = K1;
  302. r.r3 = 1;
  303. return r;
  304. }
  305. if (num_possible_cpus() > 1) {
  306. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  307. smp_processor_id_shift = 51;
  308. smp_processor_id_reg = 20; /* XContext */
  309. smp_processor_id_sel = 0;
  310. #else
  311. # ifdef CONFIG_32BIT
  312. smp_processor_id_shift = 25;
  313. smp_processor_id_reg = 4; /* Context */
  314. smp_processor_id_sel = 0;
  315. # endif
  316. # ifdef CONFIG_64BIT
  317. smp_processor_id_shift = 26;
  318. smp_processor_id_reg = 4; /* Context */
  319. smp_processor_id_sel = 0;
  320. # endif
  321. #endif
  322. /* Get smp_processor_id */
  323. UASM_i_MFC0(p, K0, smp_processor_id_reg, smp_processor_id_sel);
  324. UASM_i_SRL_SAFE(p, K0, K0, smp_processor_id_shift);
  325. /* handler_reg_save index in K0 */
  326. UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
  327. UASM_i_LA(p, K1, (long)&handler_reg_save);
  328. UASM_i_ADDU(p, K0, K0, K1);
  329. } else {
  330. UASM_i_LA(p, K0, (long)&handler_reg_save);
  331. }
  332. /* K0 now points to save area, save $1 and $2 */
  333. UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
  334. UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
  335. r.r1 = K1;
  336. r.r2 = 1;
  337. r.r3 = 2;
  338. return r;
  339. }
  340. static void __cpuinit build_restore_work_registers(u32 **p)
  341. {
  342. if (scratch_reg > 0) {
  343. UASM_i_MFC0(p, 1, 31, scratch_reg);
  344. return;
  345. }
  346. /* K0 already points to save area, restore $1 and $2 */
  347. UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
  348. UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
  349. }
  350. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  351. /*
  352. * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
  353. * we cannot do r3000 under these circumstances.
  354. *
  355. * Declare pgd_current here instead of including mmu_context.h to avoid type
  356. * conflicts for tlbmiss_handler_setup_pgd
  357. */
  358. extern unsigned long pgd_current[];
  359. /*
  360. * The R3000 TLB handler is simple.
  361. */
  362. static void __cpuinit build_r3000_tlb_refill_handler(void)
  363. {
  364. long pgdc = (long)pgd_current;
  365. u32 *p;
  366. memset(tlb_handler, 0, sizeof(tlb_handler));
  367. p = tlb_handler;
  368. uasm_i_mfc0(&p, K0, C0_BADVADDR);
  369. uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
  370. uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
  371. uasm_i_srl(&p, K0, K0, 22); /* load delay */
  372. uasm_i_sll(&p, K0, K0, 2);
  373. uasm_i_addu(&p, K1, K1, K0);
  374. uasm_i_mfc0(&p, K0, C0_CONTEXT);
  375. uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
  376. uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
  377. uasm_i_addu(&p, K1, K1, K0);
  378. uasm_i_lw(&p, K0, 0, K1);
  379. uasm_i_nop(&p); /* load delay */
  380. uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
  381. uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
  382. uasm_i_tlbwr(&p); /* cp0 delay */
  383. uasm_i_jr(&p, K1);
  384. uasm_i_rfe(&p); /* branch delay */
  385. if (p > tlb_handler + 32)
  386. panic("TLB refill handler space exceeded");
  387. pr_debug("Wrote TLB refill handler (%u instructions).\n",
  388. (unsigned int)(p - tlb_handler));
  389. memcpy((void *)ebase, tlb_handler, 0x80);
  390. dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
  391. }
  392. #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
  393. /*
  394. * The R4000 TLB handler is much more complicated. We have two
  395. * consecutive handler areas with 32 instructions space each.
  396. * Since they aren't used at the same time, we can overflow in the
  397. * other one.To keep things simple, we first assume linear space,
  398. * then we relocate it to the final handler layout as needed.
  399. */
  400. static u32 final_handler[64] __cpuinitdata;
  401. /*
  402. * Hazards
  403. *
  404. * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
  405. * 2. A timing hazard exists for the TLBP instruction.
  406. *
  407. * stalling_instruction
  408. * TLBP
  409. *
  410. * The JTLB is being read for the TLBP throughout the stall generated by the
  411. * previous instruction. This is not really correct as the stalling instruction
  412. * can modify the address used to access the JTLB. The failure symptom is that
  413. * the TLBP instruction will use an address created for the stalling instruction
  414. * and not the address held in C0_ENHI and thus report the wrong results.
  415. *
  416. * The software work-around is to not allow the instruction preceding the TLBP
  417. * to stall - make it an NOP or some other instruction guaranteed not to stall.
  418. *
  419. * Errata 2 will not be fixed. This errata is also on the R5000.
  420. *
  421. * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
  422. */
  423. static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p)
  424. {
  425. switch (current_cpu_type()) {
  426. /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
  427. case CPU_R4600:
  428. case CPU_R4700:
  429. case CPU_R5000:
  430. case CPU_NEVADA:
  431. uasm_i_nop(p);
  432. uasm_i_tlbp(p);
  433. break;
  434. default:
  435. uasm_i_tlbp(p);
  436. break;
  437. }
  438. }
  439. /*
  440. * Write random or indexed TLB entry, and care about the hazards from
  441. * the preceding mtc0 and for the following eret.
  442. */
  443. enum tlb_write_entry { tlb_random, tlb_indexed };
  444. static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l,
  445. struct uasm_reloc **r,
  446. enum tlb_write_entry wmode)
  447. {
  448. void(*tlbw)(u32 **) = NULL;
  449. switch (wmode) {
  450. case tlb_random: tlbw = uasm_i_tlbwr; break;
  451. case tlb_indexed: tlbw = uasm_i_tlbwi; break;
  452. }
  453. if (cpu_has_mips_r2) {
  454. /*
  455. * The architecture spec says an ehb is required here,
  456. * but a number of cores do not have the hazard and
  457. * using an ehb causes an expensive pipeline stall.
  458. */
  459. switch (current_cpu_type()) {
  460. case CPU_M14KC:
  461. case CPU_74K:
  462. break;
  463. default:
  464. uasm_i_ehb(p);
  465. break;
  466. }
  467. tlbw(p);
  468. return;
  469. }
  470. switch (current_cpu_type()) {
  471. case CPU_R4000PC:
  472. case CPU_R4000SC:
  473. case CPU_R4000MC:
  474. case CPU_R4400PC:
  475. case CPU_R4400SC:
  476. case CPU_R4400MC:
  477. /*
  478. * This branch uses up a mtc0 hazard nop slot and saves
  479. * two nops after the tlbw instruction.
  480. */
  481. uasm_bgezl_hazard(p, r, hazard_instance);
  482. tlbw(p);
  483. uasm_bgezl_label(l, p, hazard_instance);
  484. hazard_instance++;
  485. uasm_i_nop(p);
  486. break;
  487. case CPU_R4600:
  488. case CPU_R4700:
  489. uasm_i_nop(p);
  490. tlbw(p);
  491. uasm_i_nop(p);
  492. break;
  493. case CPU_R5000:
  494. case CPU_NEVADA:
  495. uasm_i_nop(p); /* QED specifies 2 nops hazard */
  496. uasm_i_nop(p); /* QED specifies 2 nops hazard */
  497. tlbw(p);
  498. break;
  499. case CPU_R4300:
  500. case CPU_5KC:
  501. case CPU_TX49XX:
  502. case CPU_PR4450:
  503. case CPU_XLR:
  504. uasm_i_nop(p);
  505. tlbw(p);
  506. break;
  507. case CPU_R10000:
  508. case CPU_R12000:
  509. case CPU_R14000:
  510. case CPU_4KC:
  511. case CPU_4KEC:
  512. case CPU_M14KC:
  513. case CPU_SB1:
  514. case CPU_SB1A:
  515. case CPU_4KSC:
  516. case CPU_20KC:
  517. case CPU_25KF:
  518. case CPU_BMIPS32:
  519. case CPU_BMIPS3300:
  520. case CPU_BMIPS4350:
  521. case CPU_BMIPS4380:
  522. case CPU_BMIPS5000:
  523. case CPU_LOONGSON2:
  524. case CPU_R5500:
  525. if (m4kc_tlbp_war())
  526. uasm_i_nop(p);
  527. case CPU_ALCHEMY:
  528. tlbw(p);
  529. break;
  530. case CPU_RM7000:
  531. uasm_i_nop(p);
  532. uasm_i_nop(p);
  533. uasm_i_nop(p);
  534. uasm_i_nop(p);
  535. tlbw(p);
  536. break;
  537. case CPU_VR4111:
  538. case CPU_VR4121:
  539. case CPU_VR4122:
  540. case CPU_VR4181:
  541. case CPU_VR4181A:
  542. uasm_i_nop(p);
  543. uasm_i_nop(p);
  544. tlbw(p);
  545. uasm_i_nop(p);
  546. uasm_i_nop(p);
  547. break;
  548. case CPU_VR4131:
  549. case CPU_VR4133:
  550. case CPU_R5432:
  551. uasm_i_nop(p);
  552. uasm_i_nop(p);
  553. tlbw(p);
  554. break;
  555. case CPU_JZRISC:
  556. tlbw(p);
  557. uasm_i_nop(p);
  558. break;
  559. default:
  560. panic("No TLB refill handler yet (CPU type: %d)",
  561. current_cpu_data.cputype);
  562. break;
  563. }
  564. }
  565. static __cpuinit __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
  566. unsigned int reg)
  567. {
  568. if (cpu_has_rixi) {
  569. UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
  570. } else {
  571. #ifdef CONFIG_64BIT_PHYS_ADDR
  572. uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
  573. #else
  574. UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
  575. #endif
  576. }
  577. }
  578. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  579. static __cpuinit void build_restore_pagemask(u32 **p,
  580. struct uasm_reloc **r,
  581. unsigned int tmp,
  582. enum label_id lid,
  583. int restore_scratch)
  584. {
  585. if (restore_scratch) {
  586. /* Reset default page size */
  587. if (PM_DEFAULT_MASK >> 16) {
  588. uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
  589. uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
  590. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  591. uasm_il_b(p, r, lid);
  592. } else if (PM_DEFAULT_MASK) {
  593. uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
  594. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  595. uasm_il_b(p, r, lid);
  596. } else {
  597. uasm_i_mtc0(p, 0, C0_PAGEMASK);
  598. uasm_il_b(p, r, lid);
  599. }
  600. if (scratch_reg > 0)
  601. UASM_i_MFC0(p, 1, 31, scratch_reg);
  602. else
  603. UASM_i_LW(p, 1, scratchpad_offset(0), 0);
  604. } else {
  605. /* Reset default page size */
  606. if (PM_DEFAULT_MASK >> 16) {
  607. uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
  608. uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
  609. uasm_il_b(p, r, lid);
  610. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  611. } else if (PM_DEFAULT_MASK) {
  612. uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
  613. uasm_il_b(p, r, lid);
  614. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  615. } else {
  616. uasm_il_b(p, r, lid);
  617. uasm_i_mtc0(p, 0, C0_PAGEMASK);
  618. }
  619. }
  620. }
  621. static __cpuinit void build_huge_tlb_write_entry(u32 **p,
  622. struct uasm_label **l,
  623. struct uasm_reloc **r,
  624. unsigned int tmp,
  625. enum tlb_write_entry wmode,
  626. int restore_scratch)
  627. {
  628. /* Set huge page tlb entry size */
  629. uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
  630. uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
  631. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  632. build_tlb_write_entry(p, l, r, wmode);
  633. build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
  634. }
  635. /*
  636. * Check if Huge PTE is present, if so then jump to LABEL.
  637. */
  638. static void __cpuinit
  639. build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
  640. unsigned int pmd, int lid)
  641. {
  642. UASM_i_LW(p, tmp, 0, pmd);
  643. if (use_bbit_insns()) {
  644. uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
  645. } else {
  646. uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
  647. uasm_il_bnez(p, r, tmp, lid);
  648. }
  649. }
  650. static __cpuinit void build_huge_update_entries(u32 **p,
  651. unsigned int pte,
  652. unsigned int tmp)
  653. {
  654. int small_sequence;
  655. /*
  656. * A huge PTE describes an area the size of the
  657. * configured huge page size. This is twice the
  658. * of the large TLB entry size we intend to use.
  659. * A TLB entry half the size of the configured
  660. * huge page size is configured into entrylo0
  661. * and entrylo1 to cover the contiguous huge PTE
  662. * address space.
  663. */
  664. small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
  665. /* We can clobber tmp. It isn't used after this.*/
  666. if (!small_sequence)
  667. uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
  668. build_convert_pte_to_entrylo(p, pte);
  669. UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
  670. /* convert to entrylo1 */
  671. if (small_sequence)
  672. UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
  673. else
  674. UASM_i_ADDU(p, pte, pte, tmp);
  675. UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
  676. }
  677. static __cpuinit void build_huge_handler_tail(u32 **p,
  678. struct uasm_reloc **r,
  679. struct uasm_label **l,
  680. unsigned int pte,
  681. unsigned int ptr)
  682. {
  683. #ifdef CONFIG_SMP
  684. UASM_i_SC(p, pte, 0, ptr);
  685. uasm_il_beqz(p, r, pte, label_tlb_huge_update);
  686. UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
  687. #else
  688. UASM_i_SW(p, pte, 0, ptr);
  689. #endif
  690. build_huge_update_entries(p, pte, ptr);
  691. build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
  692. }
  693. #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
  694. #ifdef CONFIG_64BIT
  695. /*
  696. * TMP and PTR are scratch.
  697. * TMP will be clobbered, PTR will hold the pmd entry.
  698. */
  699. static void __cpuinit
  700. build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
  701. unsigned int tmp, unsigned int ptr)
  702. {
  703. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  704. long pgdc = (long)pgd_current;
  705. #endif
  706. /*
  707. * The vmalloc handling is not in the hotpath.
  708. */
  709. uasm_i_dmfc0(p, tmp, C0_BADVADDR);
  710. if (check_for_high_segbits) {
  711. /*
  712. * The kernel currently implicitely assumes that the
  713. * MIPS SEGBITS parameter for the processor is
  714. * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
  715. * allocate virtual addresses outside the maximum
  716. * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
  717. * that doesn't prevent user code from accessing the
  718. * higher xuseg addresses. Here, we make sure that
  719. * everything but the lower xuseg addresses goes down
  720. * the module_alloc/vmalloc path.
  721. */
  722. uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  723. uasm_il_bnez(p, r, ptr, label_vmalloc);
  724. } else {
  725. uasm_il_bltz(p, r, tmp, label_vmalloc);
  726. }
  727. /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
  728. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  729. if (pgd_reg != -1) {
  730. /* pgd is in pgd_reg */
  731. UASM_i_MFC0(p, ptr, 31, pgd_reg);
  732. } else {
  733. /*
  734. * &pgd << 11 stored in CONTEXT [23..63].
  735. */
  736. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  737. /* Clear lower 23 bits of context. */
  738. uasm_i_dins(p, ptr, 0, 0, 23);
  739. /* 1 0 1 0 1 << 6 xkphys cached */
  740. uasm_i_ori(p, ptr, ptr, 0x540);
  741. uasm_i_drotr(p, ptr, ptr, 11);
  742. }
  743. #elif defined(CONFIG_SMP)
  744. # ifdef CONFIG_MIPS_MT_SMTC
  745. /*
  746. * SMTC uses TCBind value as "CPU" index
  747. */
  748. uasm_i_mfc0(p, ptr, C0_TCBIND);
  749. uasm_i_dsrl_safe(p, ptr, ptr, 19);
  750. # else
  751. /*
  752. * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
  753. * stored in CONTEXT.
  754. */
  755. uasm_i_dmfc0(p, ptr, C0_CONTEXT);
  756. uasm_i_dsrl_safe(p, ptr, ptr, 23);
  757. # endif
  758. UASM_i_LA_mostly(p, tmp, pgdc);
  759. uasm_i_daddu(p, ptr, ptr, tmp);
  760. uasm_i_dmfc0(p, tmp, C0_BADVADDR);
  761. uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
  762. #else
  763. UASM_i_LA_mostly(p, ptr, pgdc);
  764. uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
  765. #endif
  766. uasm_l_vmalloc_done(l, *p);
  767. /* get pgd offset in bytes */
  768. uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
  769. uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
  770. uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
  771. #ifndef __PAGETABLE_PMD_FOLDED
  772. uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  773. uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
  774. uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
  775. uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
  776. uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
  777. #endif
  778. }
  779. /*
  780. * BVADDR is the faulting address, PTR is scratch.
  781. * PTR will hold the pgd for vmalloc.
  782. */
  783. static void __cpuinit
  784. build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
  785. unsigned int bvaddr, unsigned int ptr,
  786. enum vmalloc64_mode mode)
  787. {
  788. long swpd = (long)swapper_pg_dir;
  789. int single_insn_swpd;
  790. int did_vmalloc_branch = 0;
  791. single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
  792. uasm_l_vmalloc(l, *p);
  793. if (mode != not_refill && check_for_high_segbits) {
  794. if (single_insn_swpd) {
  795. uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
  796. uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
  797. did_vmalloc_branch = 1;
  798. /* fall through */
  799. } else {
  800. uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
  801. }
  802. }
  803. if (!did_vmalloc_branch) {
  804. if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
  805. uasm_il_b(p, r, label_vmalloc_done);
  806. uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
  807. } else {
  808. UASM_i_LA_mostly(p, ptr, swpd);
  809. uasm_il_b(p, r, label_vmalloc_done);
  810. if (uasm_in_compat_space_p(swpd))
  811. uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
  812. else
  813. uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
  814. }
  815. }
  816. if (mode != not_refill && check_for_high_segbits) {
  817. uasm_l_large_segbits_fault(l, *p);
  818. /*
  819. * We get here if we are an xsseg address, or if we are
  820. * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
  821. *
  822. * Ignoring xsseg (assume disabled so would generate
  823. * (address errors?), the only remaining possibility
  824. * is the upper xuseg addresses. On processors with
  825. * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
  826. * addresses would have taken an address error. We try
  827. * to mimic that here by taking a load/istream page
  828. * fault.
  829. */
  830. UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
  831. uasm_i_jr(p, ptr);
  832. if (mode == refill_scratch) {
  833. if (scratch_reg > 0)
  834. UASM_i_MFC0(p, 1, 31, scratch_reg);
  835. else
  836. UASM_i_LW(p, 1, scratchpad_offset(0), 0);
  837. } else {
  838. uasm_i_nop(p);
  839. }
  840. }
  841. }
  842. #else /* !CONFIG_64BIT */
  843. /*
  844. * TMP and PTR are scratch.
  845. * TMP will be clobbered, PTR will hold the pgd entry.
  846. */
  847. static void __cpuinit __maybe_unused
  848. build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
  849. {
  850. long pgdc = (long)pgd_current;
  851. /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
  852. #ifdef CONFIG_SMP
  853. #ifdef CONFIG_MIPS_MT_SMTC
  854. /*
  855. * SMTC uses TCBind value as "CPU" index
  856. */
  857. uasm_i_mfc0(p, ptr, C0_TCBIND);
  858. UASM_i_LA_mostly(p, tmp, pgdc);
  859. uasm_i_srl(p, ptr, ptr, 19);
  860. #else
  861. /*
  862. * smp_processor_id() << 3 is stored in CONTEXT.
  863. */
  864. uasm_i_mfc0(p, ptr, C0_CONTEXT);
  865. UASM_i_LA_mostly(p, tmp, pgdc);
  866. uasm_i_srl(p, ptr, ptr, 23);
  867. #endif
  868. uasm_i_addu(p, ptr, tmp, ptr);
  869. #else
  870. UASM_i_LA_mostly(p, ptr, pgdc);
  871. #endif
  872. uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  873. uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
  874. uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
  875. uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
  876. uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
  877. }
  878. #endif /* !CONFIG_64BIT */
  879. static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx)
  880. {
  881. unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
  882. unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
  883. switch (current_cpu_type()) {
  884. case CPU_VR41XX:
  885. case CPU_VR4111:
  886. case CPU_VR4121:
  887. case CPU_VR4122:
  888. case CPU_VR4131:
  889. case CPU_VR4181:
  890. case CPU_VR4181A:
  891. case CPU_VR4133:
  892. shift += 2;
  893. break;
  894. default:
  895. break;
  896. }
  897. if (shift)
  898. UASM_i_SRL(p, ctx, ctx, shift);
  899. uasm_i_andi(p, ctx, ctx, mask);
  900. }
  901. static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
  902. {
  903. /*
  904. * Bug workaround for the Nevada. It seems as if under certain
  905. * circumstances the move from cp0_context might produce a
  906. * bogus result when the mfc0 instruction and its consumer are
  907. * in a different cacheline or a load instruction, probably any
  908. * memory reference, is between them.
  909. */
  910. switch (current_cpu_type()) {
  911. case CPU_NEVADA:
  912. UASM_i_LW(p, ptr, 0, ptr);
  913. GET_CONTEXT(p, tmp); /* get context reg */
  914. break;
  915. default:
  916. GET_CONTEXT(p, tmp); /* get context reg */
  917. UASM_i_LW(p, ptr, 0, ptr);
  918. break;
  919. }
  920. build_adjust_context(p, tmp);
  921. UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
  922. }
  923. static void __cpuinit build_update_entries(u32 **p, unsigned int tmp,
  924. unsigned int ptep)
  925. {
  926. /*
  927. * 64bit address support (36bit on a 32bit CPU) in a 32bit
  928. * Kernel is a special case. Only a few CPUs use it.
  929. */
  930. #ifdef CONFIG_64BIT_PHYS_ADDR
  931. if (cpu_has_64bits) {
  932. uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
  933. uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  934. if (cpu_has_rixi) {
  935. UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
  936. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  937. UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
  938. } else {
  939. uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
  940. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  941. uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
  942. }
  943. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  944. } else {
  945. int pte_off_even = sizeof(pte_t) / 2;
  946. int pte_off_odd = pte_off_even + sizeof(pte_t);
  947. /* The pte entries are pre-shifted */
  948. uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
  949. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  950. uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
  951. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  952. }
  953. #else
  954. UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
  955. UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  956. if (r45k_bvahwbug())
  957. build_tlb_probe_entry(p);
  958. if (cpu_has_rixi) {
  959. UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
  960. if (r4k_250MHZhwbug())
  961. UASM_i_MTC0(p, 0, C0_ENTRYLO0);
  962. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  963. UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
  964. } else {
  965. UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
  966. if (r4k_250MHZhwbug())
  967. UASM_i_MTC0(p, 0, C0_ENTRYLO0);
  968. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  969. UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
  970. if (r45k_bvahwbug())
  971. uasm_i_mfc0(p, tmp, C0_INDEX);
  972. }
  973. if (r4k_250MHZhwbug())
  974. UASM_i_MTC0(p, 0, C0_ENTRYLO1);
  975. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  976. #endif
  977. }
  978. struct mips_huge_tlb_info {
  979. int huge_pte;
  980. int restore_scratch;
  981. };
  982. static struct mips_huge_tlb_info __cpuinit
  983. build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
  984. struct uasm_reloc **r, unsigned int tmp,
  985. unsigned int ptr, int c0_scratch)
  986. {
  987. struct mips_huge_tlb_info rv;
  988. unsigned int even, odd;
  989. int vmalloc_branch_delay_filled = 0;
  990. const int scratch = 1; /* Our extra working register */
  991. rv.huge_pte = scratch;
  992. rv.restore_scratch = 0;
  993. if (check_for_high_segbits) {
  994. UASM_i_MFC0(p, tmp, C0_BADVADDR);
  995. if (pgd_reg != -1)
  996. UASM_i_MFC0(p, ptr, 31, pgd_reg);
  997. else
  998. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  999. if (c0_scratch >= 0)
  1000. UASM_i_MTC0(p, scratch, 31, c0_scratch);
  1001. else
  1002. UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
  1003. uasm_i_dsrl_safe(p, scratch, tmp,
  1004. PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  1005. uasm_il_bnez(p, r, scratch, label_vmalloc);
  1006. if (pgd_reg == -1) {
  1007. vmalloc_branch_delay_filled = 1;
  1008. /* Clear lower 23 bits of context. */
  1009. uasm_i_dins(p, ptr, 0, 0, 23);
  1010. }
  1011. } else {
  1012. if (pgd_reg != -1)
  1013. UASM_i_MFC0(p, ptr, 31, pgd_reg);
  1014. else
  1015. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  1016. UASM_i_MFC0(p, tmp, C0_BADVADDR);
  1017. if (c0_scratch >= 0)
  1018. UASM_i_MTC0(p, scratch, 31, c0_scratch);
  1019. else
  1020. UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
  1021. if (pgd_reg == -1)
  1022. /* Clear lower 23 bits of context. */
  1023. uasm_i_dins(p, ptr, 0, 0, 23);
  1024. uasm_il_bltz(p, r, tmp, label_vmalloc);
  1025. }
  1026. if (pgd_reg == -1) {
  1027. vmalloc_branch_delay_filled = 1;
  1028. /* 1 0 1 0 1 << 6 xkphys cached */
  1029. uasm_i_ori(p, ptr, ptr, 0x540);
  1030. uasm_i_drotr(p, ptr, ptr, 11);
  1031. }
  1032. #ifdef __PAGETABLE_PMD_FOLDED
  1033. #define LOC_PTEP scratch
  1034. #else
  1035. #define LOC_PTEP ptr
  1036. #endif
  1037. if (!vmalloc_branch_delay_filled)
  1038. /* get pgd offset in bytes */
  1039. uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
  1040. uasm_l_vmalloc_done(l, *p);
  1041. /*
  1042. * tmp ptr
  1043. * fall-through case = badvaddr *pgd_current
  1044. * vmalloc case = badvaddr swapper_pg_dir
  1045. */
  1046. if (vmalloc_branch_delay_filled)
  1047. /* get pgd offset in bytes */
  1048. uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
  1049. #ifdef __PAGETABLE_PMD_FOLDED
  1050. GET_CONTEXT(p, tmp); /* get context reg */
  1051. #endif
  1052. uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
  1053. if (use_lwx_insns()) {
  1054. UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
  1055. } else {
  1056. uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
  1057. uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
  1058. }
  1059. #ifndef __PAGETABLE_PMD_FOLDED
  1060. /* get pmd offset in bytes */
  1061. uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
  1062. uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
  1063. GET_CONTEXT(p, tmp); /* get context reg */
  1064. if (use_lwx_insns()) {
  1065. UASM_i_LWX(p, scratch, scratch, ptr);
  1066. } else {
  1067. uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
  1068. UASM_i_LW(p, scratch, 0, ptr);
  1069. }
  1070. #endif
  1071. /* Adjust the context during the load latency. */
  1072. build_adjust_context(p, tmp);
  1073. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1074. uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
  1075. /*
  1076. * The in the LWX case we don't want to do the load in the
  1077. * delay slot. It cannot issue in the same cycle and may be
  1078. * speculative and unneeded.
  1079. */
  1080. if (use_lwx_insns())
  1081. uasm_i_nop(p);
  1082. #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
  1083. /* build_update_entries */
  1084. if (use_lwx_insns()) {
  1085. even = ptr;
  1086. odd = tmp;
  1087. UASM_i_LWX(p, even, scratch, tmp);
  1088. UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
  1089. UASM_i_LWX(p, odd, scratch, tmp);
  1090. } else {
  1091. UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
  1092. even = tmp;
  1093. odd = ptr;
  1094. UASM_i_LW(p, even, 0, ptr); /* get even pte */
  1095. UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
  1096. }
  1097. if (cpu_has_rixi) {
  1098. uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
  1099. UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
  1100. uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
  1101. } else {
  1102. uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
  1103. UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
  1104. uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
  1105. }
  1106. UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
  1107. if (c0_scratch >= 0) {
  1108. UASM_i_MFC0(p, scratch, 31, c0_scratch);
  1109. build_tlb_write_entry(p, l, r, tlb_random);
  1110. uasm_l_leave(l, *p);
  1111. rv.restore_scratch = 1;
  1112. } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
  1113. build_tlb_write_entry(p, l, r, tlb_random);
  1114. uasm_l_leave(l, *p);
  1115. UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
  1116. } else {
  1117. UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
  1118. build_tlb_write_entry(p, l, r, tlb_random);
  1119. uasm_l_leave(l, *p);
  1120. rv.restore_scratch = 1;
  1121. }
  1122. uasm_i_eret(p); /* return from trap */
  1123. return rv;
  1124. }
  1125. /*
  1126. * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
  1127. * because EXL == 0. If we wrap, we can also use the 32 instruction
  1128. * slots before the XTLB refill exception handler which belong to the
  1129. * unused TLB refill exception.
  1130. */
  1131. #define MIPS64_REFILL_INSNS 32
  1132. static void __cpuinit build_r4000_tlb_refill_handler(void)
  1133. {
  1134. u32 *p = tlb_handler;
  1135. struct uasm_label *l = labels;
  1136. struct uasm_reloc *r = relocs;
  1137. u32 *f;
  1138. unsigned int final_len;
  1139. struct mips_huge_tlb_info htlb_info __maybe_unused;
  1140. enum vmalloc64_mode vmalloc_mode __maybe_unused;
  1141. memset(tlb_handler, 0, sizeof(tlb_handler));
  1142. memset(labels, 0, sizeof(labels));
  1143. memset(relocs, 0, sizeof(relocs));
  1144. memset(final_handler, 0, sizeof(final_handler));
  1145. if ((scratch_reg > 0 || scratchpad_available()) && use_bbit_insns()) {
  1146. htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
  1147. scratch_reg);
  1148. vmalloc_mode = refill_scratch;
  1149. } else {
  1150. htlb_info.huge_pte = K0;
  1151. htlb_info.restore_scratch = 0;
  1152. vmalloc_mode = refill_noscratch;
  1153. /*
  1154. * create the plain linear handler
  1155. */
  1156. if (bcm1250_m3_war()) {
  1157. unsigned int segbits = 44;
  1158. uasm_i_dmfc0(&p, K0, C0_BADVADDR);
  1159. uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
  1160. uasm_i_xor(&p, K0, K0, K1);
  1161. uasm_i_dsrl_safe(&p, K1, K0, 62);
  1162. uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
  1163. uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
  1164. uasm_i_or(&p, K0, K0, K1);
  1165. uasm_il_bnez(&p, &r, K0, label_leave);
  1166. /* No need for uasm_i_nop */
  1167. }
  1168. #ifdef CONFIG_64BIT
  1169. build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
  1170. #else
  1171. build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
  1172. #endif
  1173. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1174. build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
  1175. #endif
  1176. build_get_ptep(&p, K0, K1);
  1177. build_update_entries(&p, K0, K1);
  1178. build_tlb_write_entry(&p, &l, &r, tlb_random);
  1179. uasm_l_leave(&l, p);
  1180. uasm_i_eret(&p); /* return from trap */
  1181. }
  1182. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1183. uasm_l_tlb_huge_update(&l, p);
  1184. build_huge_update_entries(&p, htlb_info.huge_pte, K1);
  1185. build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
  1186. htlb_info.restore_scratch);
  1187. #endif
  1188. #ifdef CONFIG_64BIT
  1189. build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
  1190. #endif
  1191. /*
  1192. * Overflow check: For the 64bit handler, we need at least one
  1193. * free instruction slot for the wrap-around branch. In worst
  1194. * case, if the intended insertion point is a delay slot, we
  1195. * need three, with the second nop'ed and the third being
  1196. * unused.
  1197. */
  1198. /* Loongson2 ebase is different than r4k, we have more space */
  1199. #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
  1200. if ((p - tlb_handler) > 64)
  1201. panic("TLB refill handler space exceeded");
  1202. #else
  1203. if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
  1204. || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
  1205. && uasm_insn_has_bdelay(relocs,
  1206. tlb_handler + MIPS64_REFILL_INSNS - 3)))
  1207. panic("TLB refill handler space exceeded");
  1208. #endif
  1209. /*
  1210. * Now fold the handler in the TLB refill handler space.
  1211. */
  1212. #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
  1213. f = final_handler;
  1214. /* Simplest case, just copy the handler. */
  1215. uasm_copy_handler(relocs, labels, tlb_handler, p, f);
  1216. final_len = p - tlb_handler;
  1217. #else /* CONFIG_64BIT */
  1218. f = final_handler + MIPS64_REFILL_INSNS;
  1219. if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
  1220. /* Just copy the handler. */
  1221. uasm_copy_handler(relocs, labels, tlb_handler, p, f);
  1222. final_len = p - tlb_handler;
  1223. } else {
  1224. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1225. const enum label_id ls = label_tlb_huge_update;
  1226. #else
  1227. const enum label_id ls = label_vmalloc;
  1228. #endif
  1229. u32 *split;
  1230. int ov = 0;
  1231. int i;
  1232. for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
  1233. ;
  1234. BUG_ON(i == ARRAY_SIZE(labels));
  1235. split = labels[i].addr;
  1236. /*
  1237. * See if we have overflown one way or the other.
  1238. */
  1239. if (split > tlb_handler + MIPS64_REFILL_INSNS ||
  1240. split < p - MIPS64_REFILL_INSNS)
  1241. ov = 1;
  1242. if (ov) {
  1243. /*
  1244. * Split two instructions before the end. One
  1245. * for the branch and one for the instruction
  1246. * in the delay slot.
  1247. */
  1248. split = tlb_handler + MIPS64_REFILL_INSNS - 2;
  1249. /*
  1250. * If the branch would fall in a delay slot,
  1251. * we must back up an additional instruction
  1252. * so that it is no longer in a delay slot.
  1253. */
  1254. if (uasm_insn_has_bdelay(relocs, split - 1))
  1255. split--;
  1256. }
  1257. /* Copy first part of the handler. */
  1258. uasm_copy_handler(relocs, labels, tlb_handler, split, f);
  1259. f += split - tlb_handler;
  1260. if (ov) {
  1261. /* Insert branch. */
  1262. uasm_l_split(&l, final_handler);
  1263. uasm_il_b(&f, &r, label_split);
  1264. if (uasm_insn_has_bdelay(relocs, split))
  1265. uasm_i_nop(&f);
  1266. else {
  1267. uasm_copy_handler(relocs, labels,
  1268. split, split + 1, f);
  1269. uasm_move_labels(labels, f, f + 1, -1);
  1270. f++;
  1271. split++;
  1272. }
  1273. }
  1274. /* Copy the rest of the handler. */
  1275. uasm_copy_handler(relocs, labels, split, p, final_handler);
  1276. final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
  1277. (p - split);
  1278. }
  1279. #endif /* CONFIG_64BIT */
  1280. uasm_resolve_relocs(relocs, labels);
  1281. pr_debug("Wrote TLB refill handler (%u instructions).\n",
  1282. final_len);
  1283. memcpy((void *)ebase, final_handler, 0x100);
  1284. dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
  1285. }
  1286. /*
  1287. * 128 instructions for the fastpath handler is generous and should
  1288. * never be exceeded.
  1289. */
  1290. #define FASTPATH_SIZE 128
  1291. u32 handle_tlbl[FASTPATH_SIZE] __cacheline_aligned;
  1292. u32 handle_tlbs[FASTPATH_SIZE] __cacheline_aligned;
  1293. u32 handle_tlbm[FASTPATH_SIZE] __cacheline_aligned;
  1294. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  1295. u32 tlbmiss_handler_setup_pgd[16] __cacheline_aligned;
  1296. static void __cpuinit build_r4000_setup_pgd(void)
  1297. {
  1298. const int a0 = 4;
  1299. const int a1 = 5;
  1300. u32 *p = tlbmiss_handler_setup_pgd;
  1301. struct uasm_label *l = labels;
  1302. struct uasm_reloc *r = relocs;
  1303. memset(tlbmiss_handler_setup_pgd, 0, sizeof(tlbmiss_handler_setup_pgd));
  1304. memset(labels, 0, sizeof(labels));
  1305. memset(relocs, 0, sizeof(relocs));
  1306. pgd_reg = allocate_kscratch();
  1307. if (pgd_reg == -1) {
  1308. /* PGD << 11 in c0_Context */
  1309. /*
  1310. * If it is a ckseg0 address, convert to a physical
  1311. * address. Shifting right by 29 and adding 4 will
  1312. * result in zero for these addresses.
  1313. *
  1314. */
  1315. UASM_i_SRA(&p, a1, a0, 29);
  1316. UASM_i_ADDIU(&p, a1, a1, 4);
  1317. uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
  1318. uasm_i_nop(&p);
  1319. uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
  1320. uasm_l_tlbl_goaround1(&l, p);
  1321. UASM_i_SLL(&p, a0, a0, 11);
  1322. uasm_i_jr(&p, 31);
  1323. UASM_i_MTC0(&p, a0, C0_CONTEXT);
  1324. } else {
  1325. /* PGD in c0_KScratch */
  1326. uasm_i_jr(&p, 31);
  1327. UASM_i_MTC0(&p, a0, 31, pgd_reg);
  1328. }
  1329. if (p - tlbmiss_handler_setup_pgd > ARRAY_SIZE(tlbmiss_handler_setup_pgd))
  1330. panic("tlbmiss_handler_setup_pgd space exceeded");
  1331. uasm_resolve_relocs(relocs, labels);
  1332. pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
  1333. (unsigned int)(p - tlbmiss_handler_setup_pgd));
  1334. dump_handler("tlbmiss_handler",
  1335. tlbmiss_handler_setup_pgd,
  1336. ARRAY_SIZE(tlbmiss_handler_setup_pgd));
  1337. }
  1338. #endif
  1339. static void __cpuinit
  1340. iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
  1341. {
  1342. #ifdef CONFIG_SMP
  1343. # ifdef CONFIG_64BIT_PHYS_ADDR
  1344. if (cpu_has_64bits)
  1345. uasm_i_lld(p, pte, 0, ptr);
  1346. else
  1347. # endif
  1348. UASM_i_LL(p, pte, 0, ptr);
  1349. #else
  1350. # ifdef CONFIG_64BIT_PHYS_ADDR
  1351. if (cpu_has_64bits)
  1352. uasm_i_ld(p, pte, 0, ptr);
  1353. else
  1354. # endif
  1355. UASM_i_LW(p, pte, 0, ptr);
  1356. #endif
  1357. }
  1358. static void __cpuinit
  1359. iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
  1360. unsigned int mode)
  1361. {
  1362. #ifdef CONFIG_64BIT_PHYS_ADDR
  1363. unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
  1364. #endif
  1365. uasm_i_ori(p, pte, pte, mode);
  1366. #ifdef CONFIG_SMP
  1367. # ifdef CONFIG_64BIT_PHYS_ADDR
  1368. if (cpu_has_64bits)
  1369. uasm_i_scd(p, pte, 0, ptr);
  1370. else
  1371. # endif
  1372. UASM_i_SC(p, pte, 0, ptr);
  1373. if (r10000_llsc_war())
  1374. uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
  1375. else
  1376. uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
  1377. # ifdef CONFIG_64BIT_PHYS_ADDR
  1378. if (!cpu_has_64bits) {
  1379. /* no uasm_i_nop needed */
  1380. uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
  1381. uasm_i_ori(p, pte, pte, hwmode);
  1382. uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
  1383. uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
  1384. /* no uasm_i_nop needed */
  1385. uasm_i_lw(p, pte, 0, ptr);
  1386. } else
  1387. uasm_i_nop(p);
  1388. # else
  1389. uasm_i_nop(p);
  1390. # endif
  1391. #else
  1392. # ifdef CONFIG_64BIT_PHYS_ADDR
  1393. if (cpu_has_64bits)
  1394. uasm_i_sd(p, pte, 0, ptr);
  1395. else
  1396. # endif
  1397. UASM_i_SW(p, pte, 0, ptr);
  1398. # ifdef CONFIG_64BIT_PHYS_ADDR
  1399. if (!cpu_has_64bits) {
  1400. uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
  1401. uasm_i_ori(p, pte, pte, hwmode);
  1402. uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
  1403. uasm_i_lw(p, pte, 0, ptr);
  1404. }
  1405. # endif
  1406. #endif
  1407. }
  1408. /*
  1409. * Check if PTE is present, if not then jump to LABEL. PTR points to
  1410. * the page table where this PTE is located, PTE will be re-loaded
  1411. * with it's original value.
  1412. */
  1413. static void __cpuinit
  1414. build_pte_present(u32 **p, struct uasm_reloc **r,
  1415. int pte, int ptr, int scratch, enum label_id lid)
  1416. {
  1417. int t = scratch >= 0 ? scratch : pte;
  1418. if (cpu_has_rixi) {
  1419. if (use_bbit_insns()) {
  1420. uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
  1421. uasm_i_nop(p);
  1422. } else {
  1423. uasm_i_andi(p, t, pte, _PAGE_PRESENT);
  1424. uasm_il_beqz(p, r, t, lid);
  1425. if (pte == t)
  1426. /* You lose the SMP race :-(*/
  1427. iPTE_LW(p, pte, ptr);
  1428. }
  1429. } else {
  1430. uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
  1431. uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
  1432. uasm_il_bnez(p, r, t, lid);
  1433. if (pte == t)
  1434. /* You lose the SMP race :-(*/
  1435. iPTE_LW(p, pte, ptr);
  1436. }
  1437. }
  1438. /* Make PTE valid, store result in PTR. */
  1439. static void __cpuinit
  1440. build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
  1441. unsigned int ptr)
  1442. {
  1443. unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
  1444. iPTE_SW(p, r, pte, ptr, mode);
  1445. }
  1446. /*
  1447. * Check if PTE can be written to, if not branch to LABEL. Regardless
  1448. * restore PTE with value from PTR when done.
  1449. */
  1450. static void __cpuinit
  1451. build_pte_writable(u32 **p, struct uasm_reloc **r,
  1452. unsigned int pte, unsigned int ptr, int scratch,
  1453. enum label_id lid)
  1454. {
  1455. int t = scratch >= 0 ? scratch : pte;
  1456. uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
  1457. uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
  1458. uasm_il_bnez(p, r, t, lid);
  1459. if (pte == t)
  1460. /* You lose the SMP race :-(*/
  1461. iPTE_LW(p, pte, ptr);
  1462. else
  1463. uasm_i_nop(p);
  1464. }
  1465. /* Make PTE writable, update software status bits as well, then store
  1466. * at PTR.
  1467. */
  1468. static void __cpuinit
  1469. build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
  1470. unsigned int ptr)
  1471. {
  1472. unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
  1473. | _PAGE_DIRTY);
  1474. iPTE_SW(p, r, pte, ptr, mode);
  1475. }
  1476. /*
  1477. * Check if PTE can be modified, if not branch to LABEL. Regardless
  1478. * restore PTE with value from PTR when done.
  1479. */
  1480. static void __cpuinit
  1481. build_pte_modifiable(u32 **p, struct uasm_reloc **r,
  1482. unsigned int pte, unsigned int ptr, int scratch,
  1483. enum label_id lid)
  1484. {
  1485. if (use_bbit_insns()) {
  1486. uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
  1487. uasm_i_nop(p);
  1488. } else {
  1489. int t = scratch >= 0 ? scratch : pte;
  1490. uasm_i_andi(p, t, pte, _PAGE_WRITE);
  1491. uasm_il_beqz(p, r, t, lid);
  1492. if (pte == t)
  1493. /* You lose the SMP race :-(*/
  1494. iPTE_LW(p, pte, ptr);
  1495. }
  1496. }
  1497. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  1498. /*
  1499. * R3000 style TLB load/store/modify handlers.
  1500. */
  1501. /*
  1502. * This places the pte into ENTRYLO0 and writes it with tlbwi.
  1503. * Then it returns.
  1504. */
  1505. static void __cpuinit
  1506. build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
  1507. {
  1508. uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  1509. uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
  1510. uasm_i_tlbwi(p);
  1511. uasm_i_jr(p, tmp);
  1512. uasm_i_rfe(p); /* branch delay */
  1513. }
  1514. /*
  1515. * This places the pte into ENTRYLO0 and writes it with tlbwi
  1516. * or tlbwr as appropriate. This is because the index register
  1517. * may have the probe fail bit set as a result of a trap on a
  1518. * kseg2 access, i.e. without refill. Then it returns.
  1519. */
  1520. static void __cpuinit
  1521. build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
  1522. struct uasm_reloc **r, unsigned int pte,
  1523. unsigned int tmp)
  1524. {
  1525. uasm_i_mfc0(p, tmp, C0_INDEX);
  1526. uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  1527. uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
  1528. uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
  1529. uasm_i_tlbwi(p); /* cp0 delay */
  1530. uasm_i_jr(p, tmp);
  1531. uasm_i_rfe(p); /* branch delay */
  1532. uasm_l_r3000_write_probe_fail(l, *p);
  1533. uasm_i_tlbwr(p); /* cp0 delay */
  1534. uasm_i_jr(p, tmp);
  1535. uasm_i_rfe(p); /* branch delay */
  1536. }
  1537. static void __cpuinit
  1538. build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
  1539. unsigned int ptr)
  1540. {
  1541. long pgdc = (long)pgd_current;
  1542. uasm_i_mfc0(p, pte, C0_BADVADDR);
  1543. uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
  1544. uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
  1545. uasm_i_srl(p, pte, pte, 22); /* load delay */
  1546. uasm_i_sll(p, pte, pte, 2);
  1547. uasm_i_addu(p, ptr, ptr, pte);
  1548. uasm_i_mfc0(p, pte, C0_CONTEXT);
  1549. uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
  1550. uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
  1551. uasm_i_addu(p, ptr, ptr, pte);
  1552. uasm_i_lw(p, pte, 0, ptr);
  1553. uasm_i_tlbp(p); /* load delay */
  1554. }
  1555. static void __cpuinit build_r3000_tlb_load_handler(void)
  1556. {
  1557. u32 *p = handle_tlbl;
  1558. struct uasm_label *l = labels;
  1559. struct uasm_reloc *r = relocs;
  1560. memset(handle_tlbl, 0, sizeof(handle_tlbl));
  1561. memset(labels, 0, sizeof(labels));
  1562. memset(relocs, 0, sizeof(relocs));
  1563. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1564. build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
  1565. uasm_i_nop(&p); /* load delay */
  1566. build_make_valid(&p, &r, K0, K1);
  1567. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  1568. uasm_l_nopage_tlbl(&l, p);
  1569. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1570. uasm_i_nop(&p);
  1571. if ((p - handle_tlbl) > FASTPATH_SIZE)
  1572. panic("TLB load handler fastpath space exceeded");
  1573. uasm_resolve_relocs(relocs, labels);
  1574. pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
  1575. (unsigned int)(p - handle_tlbl));
  1576. dump_handler("r3000_tlb_load", handle_tlbl, ARRAY_SIZE(handle_tlbl));
  1577. }
  1578. static void __cpuinit build_r3000_tlb_store_handler(void)
  1579. {
  1580. u32 *p = handle_tlbs;
  1581. struct uasm_label *l = labels;
  1582. struct uasm_reloc *r = relocs;
  1583. memset(handle_tlbs, 0, sizeof(handle_tlbs));
  1584. memset(labels, 0, sizeof(labels));
  1585. memset(relocs, 0, sizeof(relocs));
  1586. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1587. build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
  1588. uasm_i_nop(&p); /* load delay */
  1589. build_make_write(&p, &r, K0, K1);
  1590. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  1591. uasm_l_nopage_tlbs(&l, p);
  1592. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1593. uasm_i_nop(&p);
  1594. if ((p - handle_tlbs) > FASTPATH_SIZE)
  1595. panic("TLB store handler fastpath space exceeded");
  1596. uasm_resolve_relocs(relocs, labels);
  1597. pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
  1598. (unsigned int)(p - handle_tlbs));
  1599. dump_handler("r3000_tlb_store", handle_tlbs, ARRAY_SIZE(handle_tlbs));
  1600. }
  1601. static void __cpuinit build_r3000_tlb_modify_handler(void)
  1602. {
  1603. u32 *p = handle_tlbm;
  1604. struct uasm_label *l = labels;
  1605. struct uasm_reloc *r = relocs;
  1606. memset(handle_tlbm, 0, sizeof(handle_tlbm));
  1607. memset(labels, 0, sizeof(labels));
  1608. memset(relocs, 0, sizeof(relocs));
  1609. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1610. build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
  1611. uasm_i_nop(&p); /* load delay */
  1612. build_make_write(&p, &r, K0, K1);
  1613. build_r3000_pte_reload_tlbwi(&p, K0, K1);
  1614. uasm_l_nopage_tlbm(&l, p);
  1615. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1616. uasm_i_nop(&p);
  1617. if ((p - handle_tlbm) > FASTPATH_SIZE)
  1618. panic("TLB modify handler fastpath space exceeded");
  1619. uasm_resolve_relocs(relocs, labels);
  1620. pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
  1621. (unsigned int)(p - handle_tlbm));
  1622. dump_handler("r3000_tlb_modify", handle_tlbm, ARRAY_SIZE(handle_tlbm));
  1623. }
  1624. #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
  1625. /*
  1626. * R4000 style TLB load/store/modify handlers.
  1627. */
  1628. static struct work_registers __cpuinit
  1629. build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
  1630. struct uasm_reloc **r)
  1631. {
  1632. struct work_registers wr = build_get_work_registers(p);
  1633. #ifdef CONFIG_64BIT
  1634. build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
  1635. #else
  1636. build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
  1637. #endif
  1638. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1639. /*
  1640. * For huge tlb entries, pmd doesn't contain an address but
  1641. * instead contains the tlb pte. Check the PAGE_HUGE bit and
  1642. * see if we need to jump to huge tlb processing.
  1643. */
  1644. build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
  1645. #endif
  1646. UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
  1647. UASM_i_LW(p, wr.r2, 0, wr.r2);
  1648. UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
  1649. uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
  1650. UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
  1651. #ifdef CONFIG_SMP
  1652. uasm_l_smp_pgtable_change(l, *p);
  1653. #endif
  1654. iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
  1655. if (!m4kc_tlbp_war())
  1656. build_tlb_probe_entry(p);
  1657. return wr;
  1658. }
  1659. static void __cpuinit
  1660. build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
  1661. struct uasm_reloc **r, unsigned int tmp,
  1662. unsigned int ptr)
  1663. {
  1664. uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
  1665. uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
  1666. build_update_entries(p, tmp, ptr);
  1667. build_tlb_write_entry(p, l, r, tlb_indexed);
  1668. uasm_l_leave(l, *p);
  1669. build_restore_work_registers(p);
  1670. uasm_i_eret(p); /* return from trap */
  1671. #ifdef CONFIG_64BIT
  1672. build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
  1673. #endif
  1674. }
  1675. static void __cpuinit build_r4000_tlb_load_handler(void)
  1676. {
  1677. u32 *p = handle_tlbl;
  1678. struct uasm_label *l = labels;
  1679. struct uasm_reloc *r = relocs;
  1680. struct work_registers wr;
  1681. memset(handle_tlbl, 0, sizeof(handle_tlbl));
  1682. memset(labels, 0, sizeof(labels));
  1683. memset(relocs, 0, sizeof(relocs));
  1684. if (bcm1250_m3_war()) {
  1685. unsigned int segbits = 44;
  1686. uasm_i_dmfc0(&p, K0, C0_BADVADDR);
  1687. uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
  1688. uasm_i_xor(&p, K0, K0, K1);
  1689. uasm_i_dsrl_safe(&p, K1, K0, 62);
  1690. uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
  1691. uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
  1692. uasm_i_or(&p, K0, K0, K1);
  1693. uasm_il_bnez(&p, &r, K0, label_leave);
  1694. /* No need for uasm_i_nop */
  1695. }
  1696. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1697. build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
  1698. if (m4kc_tlbp_war())
  1699. build_tlb_probe_entry(&p);
  1700. if (cpu_has_rixi) {
  1701. /*
  1702. * If the page is not _PAGE_VALID, RI or XI could not
  1703. * have triggered it. Skip the expensive test..
  1704. */
  1705. if (use_bbit_insns()) {
  1706. uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
  1707. label_tlbl_goaround1);
  1708. } else {
  1709. uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
  1710. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
  1711. }
  1712. uasm_i_nop(&p);
  1713. uasm_i_tlbr(&p);
  1714. /* Examine entrylo 0 or 1 based on ptr. */
  1715. if (use_bbit_insns()) {
  1716. uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
  1717. } else {
  1718. uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
  1719. uasm_i_beqz(&p, wr.r3, 8);
  1720. }
  1721. /* load it in the delay slot*/
  1722. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
  1723. /* load it if ptr is odd */
  1724. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
  1725. /*
  1726. * If the entryLo (now in wr.r3) is valid (bit 1), RI or
  1727. * XI must have triggered it.
  1728. */
  1729. if (use_bbit_insns()) {
  1730. uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
  1731. uasm_i_nop(&p);
  1732. uasm_l_tlbl_goaround1(&l, p);
  1733. } else {
  1734. uasm_i_andi(&p, wr.r3, wr.r3, 2);
  1735. uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
  1736. uasm_i_nop(&p);
  1737. }
  1738. uasm_l_tlbl_goaround1(&l, p);
  1739. }
  1740. build_make_valid(&p, &r, wr.r1, wr.r2);
  1741. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1742. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1743. /*
  1744. * This is the entry point when build_r4000_tlbchange_handler_head
  1745. * spots a huge page.
  1746. */
  1747. uasm_l_tlb_huge_update(&l, p);
  1748. iPTE_LW(&p, wr.r1, wr.r2);
  1749. build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
  1750. build_tlb_probe_entry(&p);
  1751. if (cpu_has_rixi) {
  1752. /*
  1753. * If the page is not _PAGE_VALID, RI or XI could not
  1754. * have triggered it. Skip the expensive test..
  1755. */
  1756. if (use_bbit_insns()) {
  1757. uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
  1758. label_tlbl_goaround2);
  1759. } else {
  1760. uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
  1761. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
  1762. }
  1763. uasm_i_nop(&p);
  1764. uasm_i_tlbr(&p);
  1765. /* Examine entrylo 0 or 1 based on ptr. */
  1766. if (use_bbit_insns()) {
  1767. uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
  1768. } else {
  1769. uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
  1770. uasm_i_beqz(&p, wr.r3, 8);
  1771. }
  1772. /* load it in the delay slot*/
  1773. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
  1774. /* load it if ptr is odd */
  1775. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
  1776. /*
  1777. * If the entryLo (now in wr.r3) is valid (bit 1), RI or
  1778. * XI must have triggered it.
  1779. */
  1780. if (use_bbit_insns()) {
  1781. uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
  1782. } else {
  1783. uasm_i_andi(&p, wr.r3, wr.r3, 2);
  1784. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
  1785. }
  1786. if (PM_DEFAULT_MASK == 0)
  1787. uasm_i_nop(&p);
  1788. /*
  1789. * We clobbered C0_PAGEMASK, restore it. On the other branch
  1790. * it is restored in build_huge_tlb_write_entry.
  1791. */
  1792. build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
  1793. uasm_l_tlbl_goaround2(&l, p);
  1794. }
  1795. uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
  1796. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1797. #endif
  1798. uasm_l_nopage_tlbl(&l, p);
  1799. build_restore_work_registers(&p);
  1800. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1801. uasm_i_nop(&p);
  1802. if ((p - handle_tlbl) > FASTPATH_SIZE)
  1803. panic("TLB load handler fastpath space exceeded");
  1804. uasm_resolve_relocs(relocs, labels);
  1805. pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
  1806. (unsigned int)(p - handle_tlbl));
  1807. dump_handler("r4000_tlb_load", handle_tlbl, ARRAY_SIZE(handle_tlbl));
  1808. }
  1809. static void __cpuinit build_r4000_tlb_store_handler(void)
  1810. {
  1811. u32 *p = handle_tlbs;
  1812. struct uasm_label *l = labels;
  1813. struct uasm_reloc *r = relocs;
  1814. struct work_registers wr;
  1815. memset(handle_tlbs, 0, sizeof(handle_tlbs));
  1816. memset(labels, 0, sizeof(labels));
  1817. memset(relocs, 0, sizeof(relocs));
  1818. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1819. build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
  1820. if (m4kc_tlbp_war())
  1821. build_tlb_probe_entry(&p);
  1822. build_make_write(&p, &r, wr.r1, wr.r2);
  1823. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1824. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1825. /*
  1826. * This is the entry point when
  1827. * build_r4000_tlbchange_handler_head spots a huge page.
  1828. */
  1829. uasm_l_tlb_huge_update(&l, p);
  1830. iPTE_LW(&p, wr.r1, wr.r2);
  1831. build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
  1832. build_tlb_probe_entry(&p);
  1833. uasm_i_ori(&p, wr.r1, wr.r1,
  1834. _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
  1835. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1836. #endif
  1837. uasm_l_nopage_tlbs(&l, p);
  1838. build_restore_work_registers(&p);
  1839. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1840. uasm_i_nop(&p);
  1841. if ((p - handle_tlbs) > FASTPATH_SIZE)
  1842. panic("TLB store handler fastpath space exceeded");
  1843. uasm_resolve_relocs(relocs, labels);
  1844. pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
  1845. (unsigned int)(p - handle_tlbs));
  1846. dump_handler("r4000_tlb_store", handle_tlbs, ARRAY_SIZE(handle_tlbs));
  1847. }
  1848. static void __cpuinit build_r4000_tlb_modify_handler(void)
  1849. {
  1850. u32 *p = handle_tlbm;
  1851. struct uasm_label *l = labels;
  1852. struct uasm_reloc *r = relocs;
  1853. struct work_registers wr;
  1854. memset(handle_tlbm, 0, sizeof(handle_tlbm));
  1855. memset(labels, 0, sizeof(labels));
  1856. memset(relocs, 0, sizeof(relocs));
  1857. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1858. build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
  1859. if (m4kc_tlbp_war())
  1860. build_tlb_probe_entry(&p);
  1861. /* Present and writable bits set, set accessed and dirty bits. */
  1862. build_make_write(&p, &r, wr.r1, wr.r2);
  1863. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1864. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1865. /*
  1866. * This is the entry point when
  1867. * build_r4000_tlbchange_handler_head spots a huge page.
  1868. */
  1869. uasm_l_tlb_huge_update(&l, p);
  1870. iPTE_LW(&p, wr.r1, wr.r2);
  1871. build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
  1872. build_tlb_probe_entry(&p);
  1873. uasm_i_ori(&p, wr.r1, wr.r1,
  1874. _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
  1875. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1876. #endif
  1877. uasm_l_nopage_tlbm(&l, p);
  1878. build_restore_work_registers(&p);
  1879. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1880. uasm_i_nop(&p);
  1881. if ((p - handle_tlbm) > FASTPATH_SIZE)
  1882. panic("TLB modify handler fastpath space exceeded");
  1883. uasm_resolve_relocs(relocs, labels);
  1884. pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
  1885. (unsigned int)(p - handle_tlbm));
  1886. dump_handler("r4000_tlb_modify", handle_tlbm, ARRAY_SIZE(handle_tlbm));
  1887. }
  1888. void __cpuinit build_tlb_refill_handler(void)
  1889. {
  1890. /*
  1891. * The refill handler is generated per-CPU, multi-node systems
  1892. * may have local storage for it. The other handlers are only
  1893. * needed once.
  1894. */
  1895. static int run_once = 0;
  1896. output_pgtable_bits_defines();
  1897. #ifdef CONFIG_64BIT
  1898. check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  1899. #endif
  1900. switch (current_cpu_type()) {
  1901. case CPU_R2000:
  1902. case CPU_R3000:
  1903. case CPU_R3000A:
  1904. case CPU_R3081E:
  1905. case CPU_TX3912:
  1906. case CPU_TX3922:
  1907. case CPU_TX3927:
  1908. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  1909. build_r3000_tlb_refill_handler();
  1910. if (!run_once) {
  1911. build_r3000_tlb_load_handler();
  1912. build_r3000_tlb_store_handler();
  1913. build_r3000_tlb_modify_handler();
  1914. run_once++;
  1915. }
  1916. #else
  1917. panic("No R3000 TLB refill handler");
  1918. #endif
  1919. break;
  1920. case CPU_R6000:
  1921. case CPU_R6000A:
  1922. panic("No R6000 TLB refill handler yet");
  1923. break;
  1924. case CPU_R8000:
  1925. panic("No R8000 TLB refill handler yet");
  1926. break;
  1927. default:
  1928. if (!run_once) {
  1929. scratch_reg = allocate_kscratch();
  1930. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  1931. build_r4000_setup_pgd();
  1932. #endif
  1933. build_r4000_tlb_load_handler();
  1934. build_r4000_tlb_store_handler();
  1935. build_r4000_tlb_modify_handler();
  1936. run_once++;
  1937. }
  1938. build_r4000_tlb_refill_handler();
  1939. }
  1940. }
  1941. void __cpuinit flush_tlb_handlers(void)
  1942. {
  1943. local_flush_icache_range((unsigned long)handle_tlbl,
  1944. (unsigned long)handle_tlbl + sizeof(handle_tlbl));
  1945. local_flush_icache_range((unsigned long)handle_tlbs,
  1946. (unsigned long)handle_tlbs + sizeof(handle_tlbs));
  1947. local_flush_icache_range((unsigned long)handle_tlbm,
  1948. (unsigned long)handle_tlbm + sizeof(handle_tlbm));
  1949. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  1950. local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
  1951. (unsigned long)tlbmiss_handler_setup_pgd + sizeof(handle_tlbm));
  1952. #endif
  1953. }