process.c 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231
  1. /*
  2. * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
  3. * Copyright (C) 2008-2009 PetaLogix
  4. * Copyright (C) 2006 Atmark Techno, Inc.
  5. *
  6. * This file is subject to the terms and conditions of the GNU General Public
  7. * License. See the file "COPYING" in the main directory of this archive
  8. * for more details.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/sched.h>
  12. #include <linux/pm.h>
  13. #include <linux/tick.h>
  14. #include <linux/bitops.h>
  15. #include <linux/ptrace.h>
  16. #include <asm/pgalloc.h>
  17. #include <asm/uaccess.h> /* for USER_DS macros */
  18. #include <asm/cacheflush.h>
  19. void show_regs(struct pt_regs *regs)
  20. {
  21. printk(KERN_INFO " Registers dump: mode=%X\r\n", regs->pt_mode);
  22. printk(KERN_INFO " r1=%08lX, r2=%08lX, r3=%08lX, r4=%08lX\n",
  23. regs->r1, regs->r2, regs->r3, regs->r4);
  24. printk(KERN_INFO " r5=%08lX, r6=%08lX, r7=%08lX, r8=%08lX\n",
  25. regs->r5, regs->r6, regs->r7, regs->r8);
  26. printk(KERN_INFO " r9=%08lX, r10=%08lX, r11=%08lX, r12=%08lX\n",
  27. regs->r9, regs->r10, regs->r11, regs->r12);
  28. printk(KERN_INFO " r13=%08lX, r14=%08lX, r15=%08lX, r16=%08lX\n",
  29. regs->r13, regs->r14, regs->r15, regs->r16);
  30. printk(KERN_INFO " r17=%08lX, r18=%08lX, r19=%08lX, r20=%08lX\n",
  31. regs->r17, regs->r18, regs->r19, regs->r20);
  32. printk(KERN_INFO " r21=%08lX, r22=%08lX, r23=%08lX, r24=%08lX\n",
  33. regs->r21, regs->r22, regs->r23, regs->r24);
  34. printk(KERN_INFO " r25=%08lX, r26=%08lX, r27=%08lX, r28=%08lX\n",
  35. regs->r25, regs->r26, regs->r27, regs->r28);
  36. printk(KERN_INFO " r29=%08lX, r30=%08lX, r31=%08lX, rPC=%08lX\n",
  37. regs->r29, regs->r30, regs->r31, regs->pc);
  38. printk(KERN_INFO " msr=%08lX, ear=%08lX, esr=%08lX, fsr=%08lX\n",
  39. regs->msr, regs->ear, regs->esr, regs->fsr);
  40. }
  41. void (*pm_idle)(void);
  42. void (*pm_power_off)(void) = NULL;
  43. EXPORT_SYMBOL(pm_power_off);
  44. static int hlt_counter = 1;
  45. void disable_hlt(void)
  46. {
  47. hlt_counter++;
  48. }
  49. EXPORT_SYMBOL(disable_hlt);
  50. void enable_hlt(void)
  51. {
  52. hlt_counter--;
  53. }
  54. EXPORT_SYMBOL(enable_hlt);
  55. static int __init nohlt_setup(char *__unused)
  56. {
  57. hlt_counter = 1;
  58. return 1;
  59. }
  60. __setup("nohlt", nohlt_setup);
  61. static int __init hlt_setup(char *__unused)
  62. {
  63. hlt_counter = 0;
  64. return 1;
  65. }
  66. __setup("hlt", hlt_setup);
  67. void default_idle(void)
  68. {
  69. if (likely(hlt_counter)) {
  70. local_irq_disable();
  71. stop_critical_timings();
  72. cpu_relax();
  73. start_critical_timings();
  74. local_irq_enable();
  75. } else {
  76. clear_thread_flag(TIF_POLLING_NRFLAG);
  77. smp_mb__after_clear_bit();
  78. local_irq_disable();
  79. while (!need_resched())
  80. cpu_sleep();
  81. local_irq_enable();
  82. set_thread_flag(TIF_POLLING_NRFLAG);
  83. }
  84. }
  85. void cpu_idle(void)
  86. {
  87. set_thread_flag(TIF_POLLING_NRFLAG);
  88. /* endless idle loop with no priority at all */
  89. while (1) {
  90. void (*idle)(void) = pm_idle;
  91. if (!idle)
  92. idle = default_idle;
  93. tick_nohz_idle_enter();
  94. rcu_idle_enter();
  95. while (!need_resched())
  96. idle();
  97. rcu_idle_exit();
  98. tick_nohz_idle_exit();
  99. schedule_preempt_disabled();
  100. check_pgt_cache();
  101. }
  102. }
  103. void flush_thread(void)
  104. {
  105. }
  106. int copy_thread(unsigned long clone_flags, unsigned long usp,
  107. unsigned long arg, struct task_struct *p)
  108. {
  109. struct pt_regs *childregs = task_pt_regs(p);
  110. struct thread_info *ti = task_thread_info(p);
  111. if (unlikely(p->flags & PF_KTHREAD)) {
  112. /* if we're creating a new kernel thread then just zeroing all
  113. * the registers. That's OK for a brand new thread.*/
  114. memset(childregs, 0, sizeof(struct pt_regs));
  115. memset(&ti->cpu_context, 0, sizeof(struct cpu_context));
  116. ti->cpu_context.r1 = (unsigned long)childregs;
  117. ti->cpu_context.r20 = (unsigned long)usp; /* fn */
  118. ti->cpu_context.r19 = (unsigned long)arg;
  119. childregs->pt_mode = 1;
  120. local_save_flags(childregs->msr);
  121. #ifdef CONFIG_MMU
  122. ti->cpu_context.msr = childregs->msr & ~MSR_IE;
  123. #endif
  124. ti->cpu_context.r15 = (unsigned long)ret_from_kernel_thread - 8;
  125. return 0;
  126. }
  127. *childregs = *current_pt_regs();
  128. if (usp)
  129. childregs->r1 = usp;
  130. memset(&ti->cpu_context, 0, sizeof(struct cpu_context));
  131. ti->cpu_context.r1 = (unsigned long)childregs;
  132. #ifndef CONFIG_MMU
  133. ti->cpu_context.msr = (unsigned long)childregs->msr;
  134. #else
  135. childregs->msr |= MSR_UMS;
  136. /* we should consider the fact that childregs is a copy of the parent
  137. * regs which were saved immediately after entering the kernel state
  138. * before enabling VM. This MSR will be restored in switch_to and
  139. * RETURN() and we want to have the right machine state there
  140. * specifically this state must have INTs disabled before and enabled
  141. * after performing rtbd
  142. * compose the right MSR for RETURN(). It will work for switch_to also
  143. * excepting for VM and UMS
  144. * don't touch UMS , CARRY and cache bits
  145. * right now MSR is a copy of parent one */
  146. childregs->msr &= ~MSR_EIP;
  147. childregs->msr |= MSR_IE;
  148. childregs->msr &= ~MSR_VM;
  149. childregs->msr |= MSR_VMS;
  150. childregs->msr |= MSR_EE; /* exceptions will be enabled*/
  151. ti->cpu_context.msr = (childregs->msr|MSR_VM);
  152. ti->cpu_context.msr &= ~MSR_UMS; /* switch_to to kernel mode */
  153. ti->cpu_context.msr &= ~MSR_IE;
  154. #endif
  155. ti->cpu_context.r15 = (unsigned long)ret_from_fork - 8;
  156. /*
  157. * r21 is the thread reg, r10 is 6th arg to clone
  158. * which contains TLS area
  159. */
  160. if (clone_flags & CLONE_SETTLS)
  161. childregs->r21 = childregs->r10;
  162. return 0;
  163. }
  164. #ifndef CONFIG_MMU
  165. /*
  166. * Return saved PC of a blocked thread.
  167. */
  168. unsigned long thread_saved_pc(struct task_struct *tsk)
  169. {
  170. struct cpu_context *ctx =
  171. &(((struct thread_info *)(tsk->stack))->cpu_context);
  172. /* Check whether the thread is blocked in resume() */
  173. if (in_sched_functions(ctx->r15))
  174. return (unsigned long)ctx->r15;
  175. else
  176. return ctx->r14;
  177. }
  178. #endif
  179. unsigned long get_wchan(struct task_struct *p)
  180. {
  181. /* TBD (used by procfs) */
  182. return 0;
  183. }
  184. /* Set up a thread for executing a new program */
  185. void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long usp)
  186. {
  187. regs->pc = pc;
  188. regs->r1 = usp;
  189. regs->pt_mode = 0;
  190. #ifdef CONFIG_MMU
  191. regs->msr |= MSR_UMS;
  192. regs->msr &= ~MSR_VM;
  193. #endif
  194. }
  195. #ifdef CONFIG_MMU
  196. #include <linux/elfcore.h>
  197. /*
  198. * Set up a thread for executing a new program
  199. */
  200. int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpregs)
  201. {
  202. return 0; /* MicroBlaze has no separate FPU registers */
  203. }
  204. #endif /* CONFIG_MMU */