process.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742
  1. /*
  2. * Architecture-specific setup.
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
  7. *
  8. * 2005-10-07 Keith Owens <kaos@sgi.com>
  9. * Add notify_die() hooks.
  10. */
  11. #include <linux/cpu.h>
  12. #include <linux/pm.h>
  13. #include <linux/elf.h>
  14. #include <linux/errno.h>
  15. #include <linux/kallsyms.h>
  16. #include <linux/kernel.h>
  17. #include <linux/mm.h>
  18. #include <linux/slab.h>
  19. #include <linux/module.h>
  20. #include <linux/notifier.h>
  21. #include <linux/personality.h>
  22. #include <linux/sched.h>
  23. #include <linux/stddef.h>
  24. #include <linux/thread_info.h>
  25. #include <linux/unistd.h>
  26. #include <linux/efi.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/delay.h>
  29. #include <linux/kdebug.h>
  30. #include <linux/utsname.h>
  31. #include <linux/tracehook.h>
  32. #include <linux/rcupdate.h>
  33. #include <asm/cpu.h>
  34. #include <asm/delay.h>
  35. #include <asm/elf.h>
  36. #include <asm/irq.h>
  37. #include <asm/kexec.h>
  38. #include <asm/pgalloc.h>
  39. #include <asm/processor.h>
  40. #include <asm/sal.h>
  41. #include <asm/switch_to.h>
  42. #include <asm/tlbflush.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/unwind.h>
  45. #include <asm/user.h>
  46. #include "entry.h"
  47. #ifdef CONFIG_PERFMON
  48. # include <asm/perfmon.h>
  49. #endif
  50. #include "sigframe.h"
  51. void (*ia64_mark_idle)(int);
  52. unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  53. EXPORT_SYMBOL(boot_option_idle_override);
  54. void (*pm_idle) (void);
  55. EXPORT_SYMBOL(pm_idle);
  56. void (*pm_power_off) (void);
  57. EXPORT_SYMBOL(pm_power_off);
  58. void
  59. ia64_do_show_stack (struct unw_frame_info *info, void *arg)
  60. {
  61. unsigned long ip, sp, bsp;
  62. char buf[128]; /* don't make it so big that it overflows the stack! */
  63. printk("\nCall Trace:\n");
  64. do {
  65. unw_get_ip(info, &ip);
  66. if (ip == 0)
  67. break;
  68. unw_get_sp(info, &sp);
  69. unw_get_bsp(info, &bsp);
  70. snprintf(buf, sizeof(buf),
  71. " [<%016lx>] %%s\n"
  72. " sp=%016lx bsp=%016lx\n",
  73. ip, sp, bsp);
  74. print_symbol(buf, ip);
  75. } while (unw_unwind(info) >= 0);
  76. }
  77. void
  78. show_stack (struct task_struct *task, unsigned long *sp)
  79. {
  80. if (!task)
  81. unw_init_running(ia64_do_show_stack, NULL);
  82. else {
  83. struct unw_frame_info info;
  84. unw_init_from_blocked_task(&info, task);
  85. ia64_do_show_stack(&info, NULL);
  86. }
  87. }
  88. void
  89. dump_stack (void)
  90. {
  91. show_stack(NULL, NULL);
  92. }
  93. EXPORT_SYMBOL(dump_stack);
  94. void
  95. show_regs (struct pt_regs *regs)
  96. {
  97. unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
  98. print_modules();
  99. printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current),
  100. smp_processor_id(), current->comm);
  101. printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n",
  102. regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
  103. init_utsname()->release);
  104. print_symbol("ip is at %s\n", ip);
  105. printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
  106. regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
  107. printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
  108. regs->ar_rnat, regs->ar_bspstore, regs->pr);
  109. printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
  110. regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
  111. printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
  112. printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
  113. printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
  114. regs->f6.u.bits[1], regs->f6.u.bits[0],
  115. regs->f7.u.bits[1], regs->f7.u.bits[0]);
  116. printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
  117. regs->f8.u.bits[1], regs->f8.u.bits[0],
  118. regs->f9.u.bits[1], regs->f9.u.bits[0]);
  119. printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
  120. regs->f10.u.bits[1], regs->f10.u.bits[0],
  121. regs->f11.u.bits[1], regs->f11.u.bits[0]);
  122. printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
  123. printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
  124. printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
  125. printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
  126. printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
  127. printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
  128. printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
  129. printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
  130. printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
  131. if (user_mode(regs)) {
  132. /* print the stacked registers */
  133. unsigned long val, *bsp, ndirty;
  134. int i, sof, is_nat = 0;
  135. sof = regs->cr_ifs & 0x7f; /* size of frame */
  136. ndirty = (regs->loadrs >> 19);
  137. bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
  138. for (i = 0; i < sof; ++i) {
  139. get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
  140. printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
  141. ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
  142. }
  143. } else
  144. show_stack(NULL, NULL);
  145. }
  146. /* local support for deprecated console_print */
  147. void
  148. console_print(const char *s)
  149. {
  150. printk(KERN_EMERG "%s", s);
  151. }
  152. void
  153. do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
  154. {
  155. if (fsys_mode(current, &scr->pt)) {
  156. /*
  157. * defer signal-handling etc. until we return to
  158. * privilege-level 0.
  159. */
  160. if (!ia64_psr(&scr->pt)->lp)
  161. ia64_psr(&scr->pt)->lp = 1;
  162. return;
  163. }
  164. #ifdef CONFIG_PERFMON
  165. if (current->thread.pfm_needs_checking)
  166. /*
  167. * Note: pfm_handle_work() allow us to call it with interrupts
  168. * disabled, and may enable interrupts within the function.
  169. */
  170. pfm_handle_work();
  171. #endif
  172. /* deal with pending signal delivery */
  173. if (test_thread_flag(TIF_SIGPENDING)) {
  174. local_irq_enable(); /* force interrupt enable */
  175. ia64_do_signal(scr, in_syscall);
  176. }
  177. if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME)) {
  178. local_irq_enable(); /* force interrupt enable */
  179. tracehook_notify_resume(&scr->pt);
  180. }
  181. /* copy user rbs to kernel rbs */
  182. if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
  183. local_irq_enable(); /* force interrupt enable */
  184. ia64_sync_krbs();
  185. }
  186. local_irq_disable(); /* force interrupt disable */
  187. }
  188. static int pal_halt = 1;
  189. static int can_do_pal_halt = 1;
  190. static int __init nohalt_setup(char * str)
  191. {
  192. pal_halt = can_do_pal_halt = 0;
  193. return 1;
  194. }
  195. __setup("nohalt", nohalt_setup);
  196. void
  197. update_pal_halt_status(int status)
  198. {
  199. can_do_pal_halt = pal_halt && status;
  200. }
  201. /*
  202. * We use this if we don't have any better idle routine..
  203. */
  204. void
  205. default_idle (void)
  206. {
  207. local_irq_enable();
  208. while (!need_resched()) {
  209. if (can_do_pal_halt) {
  210. local_irq_disable();
  211. if (!need_resched()) {
  212. safe_halt();
  213. }
  214. local_irq_enable();
  215. } else
  216. cpu_relax();
  217. }
  218. }
  219. #ifdef CONFIG_HOTPLUG_CPU
  220. /* We don't actually take CPU down, just spin without interrupts. */
  221. static inline void play_dead(void)
  222. {
  223. unsigned int this_cpu = smp_processor_id();
  224. /* Ack it */
  225. __get_cpu_var(cpu_state) = CPU_DEAD;
  226. max_xtp();
  227. local_irq_disable();
  228. idle_task_exit();
  229. ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
  230. /*
  231. * The above is a point of no-return, the processor is
  232. * expected to be in SAL loop now.
  233. */
  234. BUG();
  235. }
  236. #else
  237. static inline void play_dead(void)
  238. {
  239. BUG();
  240. }
  241. #endif /* CONFIG_HOTPLUG_CPU */
  242. void __attribute__((noreturn))
  243. cpu_idle (void)
  244. {
  245. void (*mark_idle)(int) = ia64_mark_idle;
  246. int cpu = smp_processor_id();
  247. /* endless idle loop with no priority at all */
  248. while (1) {
  249. rcu_idle_enter();
  250. if (can_do_pal_halt) {
  251. current_thread_info()->status &= ~TS_POLLING;
  252. /*
  253. * TS_POLLING-cleared state must be visible before we
  254. * test NEED_RESCHED:
  255. */
  256. smp_mb();
  257. } else {
  258. current_thread_info()->status |= TS_POLLING;
  259. }
  260. if (!need_resched()) {
  261. void (*idle)(void);
  262. #ifdef CONFIG_SMP
  263. min_xtp();
  264. #endif
  265. rmb();
  266. if (mark_idle)
  267. (*mark_idle)(1);
  268. idle = pm_idle;
  269. if (!idle)
  270. idle = default_idle;
  271. (*idle)();
  272. if (mark_idle)
  273. (*mark_idle)(0);
  274. #ifdef CONFIG_SMP
  275. normal_xtp();
  276. #endif
  277. }
  278. rcu_idle_exit();
  279. schedule_preempt_disabled();
  280. check_pgt_cache();
  281. if (cpu_is_offline(cpu))
  282. play_dead();
  283. }
  284. }
  285. void
  286. ia64_save_extra (struct task_struct *task)
  287. {
  288. #ifdef CONFIG_PERFMON
  289. unsigned long info;
  290. #endif
  291. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  292. ia64_save_debug_regs(&task->thread.dbr[0]);
  293. #ifdef CONFIG_PERFMON
  294. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  295. pfm_save_regs(task);
  296. info = __get_cpu_var(pfm_syst_info);
  297. if (info & PFM_CPUINFO_SYST_WIDE)
  298. pfm_syst_wide_update_task(task, info, 0);
  299. #endif
  300. }
  301. void
  302. ia64_load_extra (struct task_struct *task)
  303. {
  304. #ifdef CONFIG_PERFMON
  305. unsigned long info;
  306. #endif
  307. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  308. ia64_load_debug_regs(&task->thread.dbr[0]);
  309. #ifdef CONFIG_PERFMON
  310. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  311. pfm_load_regs(task);
  312. info = __get_cpu_var(pfm_syst_info);
  313. if (info & PFM_CPUINFO_SYST_WIDE)
  314. pfm_syst_wide_update_task(task, info, 1);
  315. #endif
  316. }
  317. /*
  318. * Copy the state of an ia-64 thread.
  319. *
  320. * We get here through the following call chain:
  321. *
  322. * from user-level: from kernel:
  323. *
  324. * <clone syscall> <some kernel call frames>
  325. * sys_clone :
  326. * do_fork do_fork
  327. * copy_thread copy_thread
  328. *
  329. * This means that the stack layout is as follows:
  330. *
  331. * +---------------------+ (highest addr)
  332. * | struct pt_regs |
  333. * +---------------------+
  334. * | struct switch_stack |
  335. * +---------------------+
  336. * | |
  337. * | memory stack |
  338. * | | <-- sp (lowest addr)
  339. * +---------------------+
  340. *
  341. * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
  342. * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
  343. * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
  344. * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
  345. * the stack is page aligned and the page size is at least 4KB, this is always the case,
  346. * so there is nothing to worry about.
  347. */
  348. int
  349. copy_thread(unsigned long clone_flags,
  350. unsigned long user_stack_base, unsigned long user_stack_size,
  351. struct task_struct *p)
  352. {
  353. extern char ia64_ret_from_clone;
  354. struct switch_stack *child_stack, *stack;
  355. unsigned long rbs, child_rbs, rbs_size;
  356. struct pt_regs *child_ptregs;
  357. struct pt_regs *regs = current_pt_regs();
  358. int retval = 0;
  359. child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
  360. child_stack = (struct switch_stack *) child_ptregs - 1;
  361. rbs = (unsigned long) current + IA64_RBS_OFFSET;
  362. child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
  363. /* copy parts of thread_struct: */
  364. p->thread.ksp = (unsigned long) child_stack - 16;
  365. /*
  366. * NOTE: The calling convention considers all floating point
  367. * registers in the high partition (fph) to be scratch. Since
  368. * the only way to get to this point is through a system call,
  369. * we know that the values in fph are all dead. Hence, there
  370. * is no need to inherit the fph state from the parent to the
  371. * child and all we have to do is to make sure that
  372. * IA64_THREAD_FPH_VALID is cleared in the child.
  373. *
  374. * XXX We could push this optimization a bit further by
  375. * clearing IA64_THREAD_FPH_VALID on ANY system call.
  376. * However, it's not clear this is worth doing. Also, it
  377. * would be a slight deviation from the normal Linux system
  378. * call behavior where scratch registers are preserved across
  379. * system calls (unless used by the system call itself).
  380. */
  381. # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
  382. | IA64_THREAD_PM_VALID)
  383. # define THREAD_FLAGS_TO_SET 0
  384. p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
  385. | THREAD_FLAGS_TO_SET);
  386. ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
  387. if (unlikely(p->flags & PF_KTHREAD)) {
  388. if (unlikely(!user_stack_base)) {
  389. /* fork_idle() called us */
  390. return 0;
  391. }
  392. memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack));
  393. child_stack->r4 = user_stack_base; /* payload */
  394. child_stack->r5 = user_stack_size; /* argument */
  395. /*
  396. * Preserve PSR bits, except for bits 32-34 and 37-45,
  397. * which we can't read.
  398. */
  399. child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
  400. /* mark as valid, empty frame */
  401. child_ptregs->cr_ifs = 1UL << 63;
  402. child_stack->ar_fpsr = child_ptregs->ar_fpsr
  403. = ia64_getreg(_IA64_REG_AR_FPSR);
  404. child_stack->pr = (1 << PRED_KERNEL_STACK);
  405. child_stack->ar_bspstore = child_rbs;
  406. child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
  407. /* stop some PSR bits from being inherited.
  408. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
  409. * therefore we must specify them explicitly here and not include them in
  410. * IA64_PSR_BITS_TO_CLEAR.
  411. */
  412. child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
  413. & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
  414. return 0;
  415. }
  416. stack = ((struct switch_stack *) regs) - 1;
  417. /* copy parent's switch_stack & pt_regs to child: */
  418. memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
  419. /* copy the parent's register backing store to the child: */
  420. rbs_size = stack->ar_bspstore - rbs;
  421. memcpy((void *) child_rbs, (void *) rbs, rbs_size);
  422. if (clone_flags & CLONE_SETTLS)
  423. child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
  424. if (user_stack_base) {
  425. child_ptregs->r12 = user_stack_base + user_stack_size - 16;
  426. child_ptregs->ar_bspstore = user_stack_base;
  427. child_ptregs->ar_rnat = 0;
  428. child_ptregs->loadrs = 0;
  429. }
  430. child_stack->ar_bspstore = child_rbs + rbs_size;
  431. child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
  432. /* stop some PSR bits from being inherited.
  433. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
  434. * therefore we must specify them explicitly here and not include them in
  435. * IA64_PSR_BITS_TO_CLEAR.
  436. */
  437. child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
  438. & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
  439. #ifdef CONFIG_PERFMON
  440. if (current->thread.pfm_context)
  441. pfm_inherit(p, child_ptregs);
  442. #endif
  443. return retval;
  444. }
  445. static void
  446. do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
  447. {
  448. unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
  449. unsigned long uninitialized_var(ip); /* GCC be quiet */
  450. elf_greg_t *dst = arg;
  451. struct pt_regs *pt;
  452. char nat;
  453. int i;
  454. memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
  455. if (unw_unwind_to_user(info) < 0)
  456. return;
  457. unw_get_sp(info, &sp);
  458. pt = (struct pt_regs *) (sp + 16);
  459. urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
  460. if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
  461. return;
  462. ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
  463. &ar_rnat);
  464. /*
  465. * coredump format:
  466. * r0-r31
  467. * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
  468. * predicate registers (p0-p63)
  469. * b0-b7
  470. * ip cfm user-mask
  471. * ar.rsc ar.bsp ar.bspstore ar.rnat
  472. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
  473. */
  474. /* r0 is zero */
  475. for (i = 1, mask = (1UL << i); i < 32; ++i) {
  476. unw_get_gr(info, i, &dst[i], &nat);
  477. if (nat)
  478. nat_bits |= mask;
  479. mask <<= 1;
  480. }
  481. dst[32] = nat_bits;
  482. unw_get_pr(info, &dst[33]);
  483. for (i = 0; i < 8; ++i)
  484. unw_get_br(info, i, &dst[34 + i]);
  485. unw_get_rp(info, &ip);
  486. dst[42] = ip + ia64_psr(pt)->ri;
  487. dst[43] = cfm;
  488. dst[44] = pt->cr_ipsr & IA64_PSR_UM;
  489. unw_get_ar(info, UNW_AR_RSC, &dst[45]);
  490. /*
  491. * For bsp and bspstore, unw_get_ar() would return the kernel
  492. * addresses, but we need the user-level addresses instead:
  493. */
  494. dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
  495. dst[47] = pt->ar_bspstore;
  496. dst[48] = ar_rnat;
  497. unw_get_ar(info, UNW_AR_CCV, &dst[49]);
  498. unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
  499. unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
  500. dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
  501. unw_get_ar(info, UNW_AR_LC, &dst[53]);
  502. unw_get_ar(info, UNW_AR_EC, &dst[54]);
  503. unw_get_ar(info, UNW_AR_CSD, &dst[55]);
  504. unw_get_ar(info, UNW_AR_SSD, &dst[56]);
  505. }
  506. void
  507. do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
  508. {
  509. elf_fpreg_t *dst = arg;
  510. int i;
  511. memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
  512. if (unw_unwind_to_user(info) < 0)
  513. return;
  514. /* f0 is 0.0, f1 is 1.0 */
  515. for (i = 2; i < 32; ++i)
  516. unw_get_fr(info, i, dst + i);
  517. ia64_flush_fph(task);
  518. if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
  519. memcpy(dst + 32, task->thread.fph, 96*16);
  520. }
  521. void
  522. do_copy_regs (struct unw_frame_info *info, void *arg)
  523. {
  524. do_copy_task_regs(current, info, arg);
  525. }
  526. void
  527. do_dump_fpu (struct unw_frame_info *info, void *arg)
  528. {
  529. do_dump_task_fpu(current, info, arg);
  530. }
  531. void
  532. ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
  533. {
  534. unw_init_running(do_copy_regs, dst);
  535. }
  536. int
  537. dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
  538. {
  539. unw_init_running(do_dump_fpu, dst);
  540. return 1; /* f0-f31 are always valid so we always return 1 */
  541. }
  542. /*
  543. * Flush thread state. This is called when a thread does an execve().
  544. */
  545. void
  546. flush_thread (void)
  547. {
  548. /* drop floating-point and debug-register state if it exists: */
  549. current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
  550. ia64_drop_fpu(current);
  551. }
  552. /*
  553. * Clean up state associated with current thread. This is called when
  554. * the thread calls exit().
  555. */
  556. void
  557. exit_thread (void)
  558. {
  559. ia64_drop_fpu(current);
  560. #ifdef CONFIG_PERFMON
  561. /* if needed, stop monitoring and flush state to perfmon context */
  562. if (current->thread.pfm_context)
  563. pfm_exit_thread(current);
  564. /* free debug register resources */
  565. if (current->thread.flags & IA64_THREAD_DBG_VALID)
  566. pfm_release_debug_registers(current);
  567. #endif
  568. }
  569. unsigned long
  570. get_wchan (struct task_struct *p)
  571. {
  572. struct unw_frame_info info;
  573. unsigned long ip;
  574. int count = 0;
  575. if (!p || p == current || p->state == TASK_RUNNING)
  576. return 0;
  577. /*
  578. * Note: p may not be a blocked task (it could be current or
  579. * another process running on some other CPU. Rather than
  580. * trying to determine if p is really blocked, we just assume
  581. * it's blocked and rely on the unwind routines to fail
  582. * gracefully if the process wasn't really blocked after all.
  583. * --davidm 99/12/15
  584. */
  585. unw_init_from_blocked_task(&info, p);
  586. do {
  587. if (p->state == TASK_RUNNING)
  588. return 0;
  589. if (unw_unwind(&info) < 0)
  590. return 0;
  591. unw_get_ip(&info, &ip);
  592. if (!in_sched_functions(ip))
  593. return ip;
  594. } while (count++ < 16);
  595. return 0;
  596. }
  597. void
  598. cpu_halt (void)
  599. {
  600. pal_power_mgmt_info_u_t power_info[8];
  601. unsigned long min_power;
  602. int i, min_power_state;
  603. if (ia64_pal_halt_info(power_info) != 0)
  604. return;
  605. min_power_state = 0;
  606. min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
  607. for (i = 1; i < 8; ++i)
  608. if (power_info[i].pal_power_mgmt_info_s.im
  609. && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
  610. min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
  611. min_power_state = i;
  612. }
  613. while (1)
  614. ia64_pal_halt(min_power_state);
  615. }
  616. void machine_shutdown(void)
  617. {
  618. #ifdef CONFIG_HOTPLUG_CPU
  619. int cpu;
  620. for_each_online_cpu(cpu) {
  621. if (cpu != smp_processor_id())
  622. cpu_down(cpu);
  623. }
  624. #endif
  625. #ifdef CONFIG_KEXEC
  626. kexec_disable_iosapic();
  627. #endif
  628. }
  629. void
  630. machine_restart (char *restart_cmd)
  631. {
  632. (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
  633. (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
  634. }
  635. void
  636. machine_halt (void)
  637. {
  638. (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
  639. cpu_halt();
  640. }
  641. void
  642. machine_power_off (void)
  643. {
  644. if (pm_power_off)
  645. pm_power_off();
  646. machine_halt();
  647. }