fault.c 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382
  1. /*
  2. * arch/cris/mm/fault.c
  3. *
  4. * Copyright (C) 2000-2010 Axis Communications AB
  5. */
  6. #include <linux/mm.h>
  7. #include <linux/interrupt.h>
  8. #include <linux/module.h>
  9. #include <linux/wait.h>
  10. #include <asm/uaccess.h>
  11. #include <arch/system.h>
  12. extern int find_fixup_code(struct pt_regs *);
  13. extern void die_if_kernel(const char *, struct pt_regs *, long);
  14. extern void show_registers(struct pt_regs *regs);
  15. /* debug of low-level TLB reload */
  16. #undef DEBUG
  17. #ifdef DEBUG
  18. #define D(x) x
  19. #else
  20. #define D(x)
  21. #endif
  22. /* debug of higher-level faults */
  23. #define DPG(x)
  24. /* current active page directory */
  25. DEFINE_PER_CPU(pgd_t *, current_pgd);
  26. unsigned long cris_signal_return_page;
  27. /*
  28. * This routine handles page faults. It determines the address,
  29. * and the problem, and then passes it off to one of the appropriate
  30. * routines.
  31. *
  32. * Notice that the address we're given is aligned to the page the fault
  33. * occurred in, since we only get the PFN in R_MMU_CAUSE not the complete
  34. * address.
  35. *
  36. * error_code:
  37. * bit 0 == 0 means no page found, 1 means protection fault
  38. * bit 1 == 0 means read, 1 means write
  39. *
  40. * If this routine detects a bad access, it returns 1, otherwise it
  41. * returns 0.
  42. */
  43. asmlinkage void
  44. do_page_fault(unsigned long address, struct pt_regs *regs,
  45. int protection, int writeaccess)
  46. {
  47. struct task_struct *tsk;
  48. struct mm_struct *mm;
  49. struct vm_area_struct * vma;
  50. siginfo_t info;
  51. int fault;
  52. unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
  53. ((writeaccess & 1) ? FAULT_FLAG_WRITE : 0);
  54. D(printk(KERN_DEBUG
  55. "Page fault for %lX on %X at %lX, prot %d write %d\n",
  56. address, smp_processor_id(), instruction_pointer(regs),
  57. protection, writeaccess));
  58. tsk = current;
  59. /*
  60. * We fault-in kernel-space virtual memory on-demand. The
  61. * 'reference' page table is init_mm.pgd.
  62. *
  63. * NOTE! We MUST NOT take any locks for this case. We may
  64. * be in an interrupt or a critical region, and should
  65. * only copy the information from the master page table,
  66. * nothing more.
  67. *
  68. * NOTE2: This is done so that, when updating the vmalloc
  69. * mappings we don't have to walk all processes pgdirs and
  70. * add the high mappings all at once. Instead we do it as they
  71. * are used. However vmalloc'ed page entries have the PAGE_GLOBAL
  72. * bit set so sometimes the TLB can use a lingering entry.
  73. *
  74. * This verifies that the fault happens in kernel space
  75. * and that the fault was not a protection error (error_code & 1).
  76. */
  77. if (address >= VMALLOC_START &&
  78. !protection &&
  79. !user_mode(regs))
  80. goto vmalloc_fault;
  81. /* When stack execution is not allowed we store the signal
  82. * trampolines in the reserved cris_signal_return_page.
  83. * Handle this in the exact same way as vmalloc (we know
  84. * that the mapping is there and is valid so no need to
  85. * call handle_mm_fault).
  86. */
  87. if (cris_signal_return_page &&
  88. address == cris_signal_return_page &&
  89. !protection && user_mode(regs))
  90. goto vmalloc_fault;
  91. /* we can and should enable interrupts at this point */
  92. local_irq_enable();
  93. mm = tsk->mm;
  94. info.si_code = SEGV_MAPERR;
  95. /*
  96. * If we're in an interrupt or "atomic" operation or have no
  97. * user context, we must not take the fault.
  98. */
  99. if (in_atomic() || !mm)
  100. goto no_context;
  101. retry:
  102. down_read(&mm->mmap_sem);
  103. vma = find_vma(mm, address);
  104. if (!vma)
  105. goto bad_area;
  106. if (vma->vm_start <= address)
  107. goto good_area;
  108. if (!(vma->vm_flags & VM_GROWSDOWN))
  109. goto bad_area;
  110. if (user_mode(regs)) {
  111. /*
  112. * accessing the stack below usp is always a bug.
  113. * we get page-aligned addresses so we can only check
  114. * if we're within a page from usp, but that might be
  115. * enough to catch brutal errors at least.
  116. */
  117. if (address + PAGE_SIZE < rdusp())
  118. goto bad_area;
  119. }
  120. if (expand_stack(vma, address))
  121. goto bad_area;
  122. /*
  123. * Ok, we have a good vm_area for this memory access, so
  124. * we can handle it..
  125. */
  126. good_area:
  127. info.si_code = SEGV_ACCERR;
  128. /* first do some preliminary protection checks */
  129. if (writeaccess == 2){
  130. if (!(vma->vm_flags & VM_EXEC))
  131. goto bad_area;
  132. } else if (writeaccess == 1) {
  133. if (!(vma->vm_flags & VM_WRITE))
  134. goto bad_area;
  135. } else {
  136. if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
  137. goto bad_area;
  138. }
  139. /*
  140. * If for any reason at all we couldn't handle the fault,
  141. * make sure we exit gracefully rather than endlessly redo
  142. * the fault.
  143. */
  144. fault = handle_mm_fault(mm, vma, address, flags);
  145. if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
  146. return;
  147. if (unlikely(fault & VM_FAULT_ERROR)) {
  148. if (fault & VM_FAULT_OOM)
  149. goto out_of_memory;
  150. else if (fault & VM_FAULT_SIGBUS)
  151. goto do_sigbus;
  152. BUG();
  153. }
  154. if (flags & FAULT_FLAG_ALLOW_RETRY) {
  155. if (fault & VM_FAULT_MAJOR)
  156. tsk->maj_flt++;
  157. else
  158. tsk->min_flt++;
  159. if (fault & VM_FAULT_RETRY) {
  160. flags &= ~FAULT_FLAG_ALLOW_RETRY;
  161. flags |= FAULT_FLAG_TRIED;
  162. /*
  163. * No need to up_read(&mm->mmap_sem) as we would
  164. * have already released it in __lock_page_or_retry
  165. * in mm/filemap.c.
  166. */
  167. goto retry;
  168. }
  169. }
  170. up_read(&mm->mmap_sem);
  171. return;
  172. /*
  173. * Something tried to access memory that isn't in our memory map..
  174. * Fix it, but check if it's kernel or user first..
  175. */
  176. bad_area:
  177. up_read(&mm->mmap_sem);
  178. bad_area_nosemaphore:
  179. DPG(show_registers(regs));
  180. /* User mode accesses just cause a SIGSEGV */
  181. if (user_mode(regs)) {
  182. printk(KERN_NOTICE "%s (pid %d) segfaults for page "
  183. "address %08lx at pc %08lx\n",
  184. tsk->comm, tsk->pid,
  185. address, instruction_pointer(regs));
  186. /* With DPG on, we've already dumped registers above. */
  187. DPG(if (0))
  188. show_registers(regs);
  189. #ifdef CONFIG_NO_SEGFAULT_TERMINATION
  190. DECLARE_WAIT_QUEUE_HEAD(wq);
  191. wait_event_interruptible(wq, 0 == 1);
  192. #else
  193. info.si_signo = SIGSEGV;
  194. info.si_errno = 0;
  195. /* info.si_code has been set above */
  196. info.si_addr = (void *)address;
  197. force_sig_info(SIGSEGV, &info, tsk);
  198. #endif
  199. return;
  200. }
  201. no_context:
  202. /* Are we prepared to handle this kernel fault?
  203. *
  204. * (The kernel has valid exception-points in the source
  205. * when it accesses user-memory. When it fails in one
  206. * of those points, we find it in a table and do a jump
  207. * to some fixup code that loads an appropriate error
  208. * code)
  209. */
  210. if (find_fixup_code(regs))
  211. return;
  212. /*
  213. * Oops. The kernel tried to access some bad page. We'll have to
  214. * terminate things with extreme prejudice.
  215. */
  216. if (!oops_in_progress) {
  217. oops_in_progress = 1;
  218. if ((unsigned long) (address) < PAGE_SIZE)
  219. printk(KERN_ALERT "Unable to handle kernel NULL "
  220. "pointer dereference");
  221. else
  222. printk(KERN_ALERT "Unable to handle kernel access"
  223. " at virtual address %08lx\n", address);
  224. die_if_kernel("Oops", regs, (writeaccess << 1) | protection);
  225. oops_in_progress = 0;
  226. }
  227. do_exit(SIGKILL);
  228. /*
  229. * We ran out of memory, or some other thing happened to us that made
  230. * us unable to handle the page fault gracefully.
  231. */
  232. out_of_memory:
  233. up_read(&mm->mmap_sem);
  234. if (!user_mode(regs))
  235. goto no_context;
  236. pagefault_out_of_memory();
  237. return;
  238. do_sigbus:
  239. up_read(&mm->mmap_sem);
  240. /*
  241. * Send a sigbus, regardless of whether we were in kernel
  242. * or user mode.
  243. */
  244. info.si_signo = SIGBUS;
  245. info.si_errno = 0;
  246. info.si_code = BUS_ADRERR;
  247. info.si_addr = (void *)address;
  248. force_sig_info(SIGBUS, &info, tsk);
  249. /* Kernel mode? Handle exceptions or die */
  250. if (!user_mode(regs))
  251. goto no_context;
  252. return;
  253. vmalloc_fault:
  254. {
  255. /*
  256. * Synchronize this task's top level page-table
  257. * with the 'reference' page table.
  258. *
  259. * Use current_pgd instead of tsk->active_mm->pgd
  260. * since the latter might be unavailable if this
  261. * code is executed in a misfortunately run irq
  262. * (like inside schedule() between switch_mm and
  263. * switch_to...).
  264. */
  265. int offset = pgd_index(address);
  266. pgd_t *pgd, *pgd_k;
  267. pud_t *pud, *pud_k;
  268. pmd_t *pmd, *pmd_k;
  269. pte_t *pte_k;
  270. pgd = (pgd_t *)per_cpu(current_pgd, smp_processor_id()) + offset;
  271. pgd_k = init_mm.pgd + offset;
  272. /* Since we're two-level, we don't need to do both
  273. * set_pgd and set_pmd (they do the same thing). If
  274. * we go three-level at some point, do the right thing
  275. * with pgd_present and set_pgd here.
  276. *
  277. * Also, since the vmalloc area is global, we don't
  278. * need to copy individual PTE's, it is enough to
  279. * copy the pgd pointer into the pte page of the
  280. * root task. If that is there, we'll find our pte if
  281. * it exists.
  282. */
  283. pud = pud_offset(pgd, address);
  284. pud_k = pud_offset(pgd_k, address);
  285. if (!pud_present(*pud_k))
  286. goto no_context;
  287. pmd = pmd_offset(pud, address);
  288. pmd_k = pmd_offset(pud_k, address);
  289. if (!pmd_present(*pmd_k))
  290. goto bad_area_nosemaphore;
  291. set_pmd(pmd, *pmd_k);
  292. /* Make sure the actual PTE exists as well to
  293. * catch kernel vmalloc-area accesses to non-mapped
  294. * addresses. If we don't do this, this will just
  295. * silently loop forever.
  296. */
  297. pte_k = pte_offset_kernel(pmd_k, address);
  298. if (!pte_present(*pte_k))
  299. goto no_context;
  300. return;
  301. }
  302. }
  303. /* Find fixup code. */
  304. int
  305. find_fixup_code(struct pt_regs *regs)
  306. {
  307. const struct exception_table_entry *fixup;
  308. /* in case of delay slot fault (v32) */
  309. unsigned long ip = (instruction_pointer(regs) & ~0x1);
  310. fixup = search_exception_tables(ip);
  311. if (fixup != 0) {
  312. /* Adjust the instruction pointer in the stackframe. */
  313. instruction_pointer(regs) = fixup->fixup;
  314. arch_fixup(regs);
  315. return 1;
  316. }
  317. return 0;
  318. }