tegra30_clocks.c 64 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506
  1. /*
  2. * arch/arm/mach-tegra/tegra30_clocks.c
  3. *
  4. * Copyright (c) 2010-2012 NVIDIA CORPORATION. All rights reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; version 2 of the License.
  9. *
  10. * This program is distributed in the hope that it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along
  16. * with this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  18. *
  19. */
  20. #include <linux/kernel.h>
  21. #include <linux/module.h>
  22. #include <linux/list.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/delay.h>
  25. #include <linux/err.h>
  26. #include <linux/io.h>
  27. #include <linux/clk.h>
  28. #include <linux/cpufreq.h>
  29. #include <linux/syscore_ops.h>
  30. #include <asm/clkdev.h>
  31. #include <mach/powergate.h>
  32. #include "clock.h"
  33. #include "fuse.h"
  34. #include "iomap.h"
  35. #include "tegra_cpu_car.h"
  36. #define USE_PLL_LOCK_BITS 0
  37. #define RST_DEVICES_L 0x004
  38. #define RST_DEVICES_H 0x008
  39. #define RST_DEVICES_U 0x00C
  40. #define RST_DEVICES_V 0x358
  41. #define RST_DEVICES_W 0x35C
  42. #define RST_DEVICES_SET_L 0x300
  43. #define RST_DEVICES_CLR_L 0x304
  44. #define RST_DEVICES_SET_V 0x430
  45. #define RST_DEVICES_CLR_V 0x434
  46. #define RST_DEVICES_NUM 5
  47. #define CLK_OUT_ENB_L 0x010
  48. #define CLK_OUT_ENB_H 0x014
  49. #define CLK_OUT_ENB_U 0x018
  50. #define CLK_OUT_ENB_V 0x360
  51. #define CLK_OUT_ENB_W 0x364
  52. #define CLK_OUT_ENB_SET_L 0x320
  53. #define CLK_OUT_ENB_CLR_L 0x324
  54. #define CLK_OUT_ENB_SET_V 0x440
  55. #define CLK_OUT_ENB_CLR_V 0x444
  56. #define CLK_OUT_ENB_NUM 5
  57. #define RST_DEVICES_V_SWR_CPULP_RST_DIS (0x1 << 1)
  58. #define CLK_OUT_ENB_V_CLK_ENB_CPULP_EN (0x1 << 1)
  59. #define PERIPH_CLK_TO_BIT(c) (1 << (c->u.periph.clk_num % 32))
  60. #define PERIPH_CLK_TO_RST_REG(c) \
  61. periph_clk_to_reg((c), RST_DEVICES_L, RST_DEVICES_V, 4)
  62. #define PERIPH_CLK_TO_RST_SET_REG(c) \
  63. periph_clk_to_reg((c), RST_DEVICES_SET_L, RST_DEVICES_SET_V, 8)
  64. #define PERIPH_CLK_TO_RST_CLR_REG(c) \
  65. periph_clk_to_reg((c), RST_DEVICES_CLR_L, RST_DEVICES_CLR_V, 8)
  66. #define PERIPH_CLK_TO_ENB_REG(c) \
  67. periph_clk_to_reg((c), CLK_OUT_ENB_L, CLK_OUT_ENB_V, 4)
  68. #define PERIPH_CLK_TO_ENB_SET_REG(c) \
  69. periph_clk_to_reg((c), CLK_OUT_ENB_SET_L, CLK_OUT_ENB_SET_V, 8)
  70. #define PERIPH_CLK_TO_ENB_CLR_REG(c) \
  71. periph_clk_to_reg((c), CLK_OUT_ENB_CLR_L, CLK_OUT_ENB_CLR_V, 8)
  72. #define CLK_MASK_ARM 0x44
  73. #define MISC_CLK_ENB 0x48
  74. #define OSC_CTRL 0x50
  75. #define OSC_CTRL_OSC_FREQ_MASK (0xF<<28)
  76. #define OSC_CTRL_OSC_FREQ_13MHZ (0x0<<28)
  77. #define OSC_CTRL_OSC_FREQ_19_2MHZ (0x4<<28)
  78. #define OSC_CTRL_OSC_FREQ_12MHZ (0x8<<28)
  79. #define OSC_CTRL_OSC_FREQ_26MHZ (0xC<<28)
  80. #define OSC_CTRL_OSC_FREQ_16_8MHZ (0x1<<28)
  81. #define OSC_CTRL_OSC_FREQ_38_4MHZ (0x5<<28)
  82. #define OSC_CTRL_OSC_FREQ_48MHZ (0x9<<28)
  83. #define OSC_CTRL_MASK (0x3f2 | OSC_CTRL_OSC_FREQ_MASK)
  84. #define OSC_CTRL_PLL_REF_DIV_MASK (3<<26)
  85. #define OSC_CTRL_PLL_REF_DIV_1 (0<<26)
  86. #define OSC_CTRL_PLL_REF_DIV_2 (1<<26)
  87. #define OSC_CTRL_PLL_REF_DIV_4 (2<<26)
  88. #define OSC_FREQ_DET 0x58
  89. #define OSC_FREQ_DET_TRIG (1<<31)
  90. #define OSC_FREQ_DET_STATUS 0x5C
  91. #define OSC_FREQ_DET_BUSY (1<<31)
  92. #define OSC_FREQ_DET_CNT_MASK 0xFFFF
  93. #define PERIPH_CLK_SOURCE_I2S1 0x100
  94. #define PERIPH_CLK_SOURCE_EMC 0x19c
  95. #define PERIPH_CLK_SOURCE_OSC 0x1fc
  96. #define PERIPH_CLK_SOURCE_NUM1 \
  97. ((PERIPH_CLK_SOURCE_OSC - PERIPH_CLK_SOURCE_I2S1) / 4)
  98. #define PERIPH_CLK_SOURCE_G3D2 0x3b0
  99. #define PERIPH_CLK_SOURCE_SE 0x42c
  100. #define PERIPH_CLK_SOURCE_NUM2 \
  101. ((PERIPH_CLK_SOURCE_SE - PERIPH_CLK_SOURCE_G3D2) / 4 + 1)
  102. #define AUDIO_DLY_CLK 0x49c
  103. #define AUDIO_SYNC_CLK_SPDIF 0x4b4
  104. #define PERIPH_CLK_SOURCE_NUM3 \
  105. ((AUDIO_SYNC_CLK_SPDIF - AUDIO_DLY_CLK) / 4 + 1)
  106. #define PERIPH_CLK_SOURCE_NUM (PERIPH_CLK_SOURCE_NUM1 + \
  107. PERIPH_CLK_SOURCE_NUM2 + \
  108. PERIPH_CLK_SOURCE_NUM3)
  109. #define CPU_SOFTRST_CTRL 0x380
  110. #define PERIPH_CLK_SOURCE_DIVU71_MASK 0xFF
  111. #define PERIPH_CLK_SOURCE_DIVU16_MASK 0xFFFF
  112. #define PERIPH_CLK_SOURCE_DIV_SHIFT 0
  113. #define PERIPH_CLK_SOURCE_DIVIDLE_SHIFT 8
  114. #define PERIPH_CLK_SOURCE_DIVIDLE_VAL 50
  115. #define PERIPH_CLK_UART_DIV_ENB (1<<24)
  116. #define PERIPH_CLK_VI_SEL_EX_SHIFT 24
  117. #define PERIPH_CLK_VI_SEL_EX_MASK (0x3<<PERIPH_CLK_VI_SEL_EX_SHIFT)
  118. #define PERIPH_CLK_NAND_DIV_EX_ENB (1<<8)
  119. #define PERIPH_CLK_DTV_POLARITY_INV (1<<25)
  120. #define AUDIO_SYNC_SOURCE_MASK 0x0F
  121. #define AUDIO_SYNC_DISABLE_BIT 0x10
  122. #define AUDIO_SYNC_TAP_NIBBLE_SHIFT(c) ((c->reg_shift - 24) * 4)
  123. #define PLL_BASE 0x0
  124. #define PLL_BASE_BYPASS (1<<31)
  125. #define PLL_BASE_ENABLE (1<<30)
  126. #define PLL_BASE_REF_ENABLE (1<<29)
  127. #define PLL_BASE_OVERRIDE (1<<28)
  128. #define PLL_BASE_LOCK (1<<27)
  129. #define PLL_BASE_DIVP_MASK (0x7<<20)
  130. #define PLL_BASE_DIVP_SHIFT 20
  131. #define PLL_BASE_DIVN_MASK (0x3FF<<8)
  132. #define PLL_BASE_DIVN_SHIFT 8
  133. #define PLL_BASE_DIVM_MASK (0x1F)
  134. #define PLL_BASE_DIVM_SHIFT 0
  135. #define PLL_OUT_RATIO_MASK (0xFF<<8)
  136. #define PLL_OUT_RATIO_SHIFT 8
  137. #define PLL_OUT_OVERRIDE (1<<2)
  138. #define PLL_OUT_CLKEN (1<<1)
  139. #define PLL_OUT_RESET_DISABLE (1<<0)
  140. #define PLL_MISC(c) \
  141. (((c)->flags & PLL_ALT_MISC_REG) ? 0x4 : 0xc)
  142. #define PLL_MISC_LOCK_ENABLE(c) \
  143. (((c)->flags & (PLLU | PLLD)) ? (1<<22) : (1<<18))
  144. #define PLL_MISC_DCCON_SHIFT 20
  145. #define PLL_MISC_CPCON_SHIFT 8
  146. #define PLL_MISC_CPCON_MASK (0xF<<PLL_MISC_CPCON_SHIFT)
  147. #define PLL_MISC_LFCON_SHIFT 4
  148. #define PLL_MISC_LFCON_MASK (0xF<<PLL_MISC_LFCON_SHIFT)
  149. #define PLL_MISC_VCOCON_SHIFT 0
  150. #define PLL_MISC_VCOCON_MASK (0xF<<PLL_MISC_VCOCON_SHIFT)
  151. #define PLLD_MISC_CLKENABLE (1<<30)
  152. #define PLLU_BASE_POST_DIV (1<<20)
  153. #define PLLD_BASE_DSIB_MUX_SHIFT 25
  154. #define PLLD_BASE_DSIB_MUX_MASK (1<<PLLD_BASE_DSIB_MUX_SHIFT)
  155. #define PLLD_BASE_CSI_CLKENABLE (1<<26)
  156. #define PLLD_MISC_DSI_CLKENABLE (1<<30)
  157. #define PLLD_MISC_DIV_RST (1<<23)
  158. #define PLLD_MISC_DCCON_SHIFT 12
  159. #define PLLDU_LFCON_SET_DIVN 600
  160. /* FIXME: OUT_OF_TABLE_CPCON per pll */
  161. #define OUT_OF_TABLE_CPCON 0x8
  162. #define SUPER_CLK_MUX 0x00
  163. #define SUPER_STATE_SHIFT 28
  164. #define SUPER_STATE_MASK (0xF << SUPER_STATE_SHIFT)
  165. #define SUPER_STATE_STANDBY (0x0 << SUPER_STATE_SHIFT)
  166. #define SUPER_STATE_IDLE (0x1 << SUPER_STATE_SHIFT)
  167. #define SUPER_STATE_RUN (0x2 << SUPER_STATE_SHIFT)
  168. #define SUPER_STATE_IRQ (0x3 << SUPER_STATE_SHIFT)
  169. #define SUPER_STATE_FIQ (0x4 << SUPER_STATE_SHIFT)
  170. #define SUPER_LP_DIV2_BYPASS (0x1 << 16)
  171. #define SUPER_SOURCE_MASK 0xF
  172. #define SUPER_FIQ_SOURCE_SHIFT 12
  173. #define SUPER_IRQ_SOURCE_SHIFT 8
  174. #define SUPER_RUN_SOURCE_SHIFT 4
  175. #define SUPER_IDLE_SOURCE_SHIFT 0
  176. #define SUPER_CLK_DIVIDER 0x04
  177. #define SUPER_CLOCK_DIV_U71_SHIFT 16
  178. #define SUPER_CLOCK_DIV_U71_MASK (0xff << SUPER_CLOCK_DIV_U71_SHIFT)
  179. /* guarantees safe cpu backup */
  180. #define SUPER_CLOCK_DIV_U71_MIN 0x2
  181. #define BUS_CLK_DISABLE (1<<3)
  182. #define BUS_CLK_DIV_MASK 0x3
  183. #define PMC_CTRL 0x0
  184. #define PMC_CTRL_BLINK_ENB (1 << 7)
  185. #define PMC_DPD_PADS_ORIDE 0x1c
  186. #define PMC_DPD_PADS_ORIDE_BLINK_ENB (1 << 20)
  187. #define PMC_BLINK_TIMER_DATA_ON_SHIFT 0
  188. #define PMC_BLINK_TIMER_DATA_ON_MASK 0x7fff
  189. #define PMC_BLINK_TIMER_ENB (1 << 15)
  190. #define PMC_BLINK_TIMER_DATA_OFF_SHIFT 16
  191. #define PMC_BLINK_TIMER_DATA_OFF_MASK 0xffff
  192. #define PMC_PLLP_WB0_OVERRIDE 0xf8
  193. #define PMC_PLLP_WB0_OVERRIDE_PLLM_ENABLE (1 << 12)
  194. #define UTMIP_PLL_CFG2 0x488
  195. #define UTMIP_PLL_CFG2_STABLE_COUNT(x) (((x) & 0xfff) << 6)
  196. #define UTMIP_PLL_CFG2_ACTIVE_DLY_COUNT(x) (((x) & 0x3f) << 18)
  197. #define UTMIP_PLL_CFG2_FORCE_PD_SAMP_A_POWERDOWN (1 << 0)
  198. #define UTMIP_PLL_CFG2_FORCE_PD_SAMP_B_POWERDOWN (1 << 2)
  199. #define UTMIP_PLL_CFG2_FORCE_PD_SAMP_C_POWERDOWN (1 << 4)
  200. #define UTMIP_PLL_CFG1 0x484
  201. #define UTMIP_PLL_CFG1_ENABLE_DLY_COUNT(x) (((x) & 0x1f) << 27)
  202. #define UTMIP_PLL_CFG1_XTAL_FREQ_COUNT(x) (((x) & 0xfff) << 0)
  203. #define UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERDOWN (1 << 14)
  204. #define UTMIP_PLL_CFG1_FORCE_PLL_ACTIVE_POWERDOWN (1 << 12)
  205. #define UTMIP_PLL_CFG1_FORCE_PLLU_POWERDOWN (1 << 16)
  206. #define PLLE_BASE_CML_ENABLE (1<<31)
  207. #define PLLE_BASE_ENABLE (1<<30)
  208. #define PLLE_BASE_DIVCML_SHIFT 24
  209. #define PLLE_BASE_DIVCML_MASK (0xf<<PLLE_BASE_DIVCML_SHIFT)
  210. #define PLLE_BASE_DIVP_SHIFT 16
  211. #define PLLE_BASE_DIVP_MASK (0x3f<<PLLE_BASE_DIVP_SHIFT)
  212. #define PLLE_BASE_DIVN_SHIFT 8
  213. #define PLLE_BASE_DIVN_MASK (0xFF<<PLLE_BASE_DIVN_SHIFT)
  214. #define PLLE_BASE_DIVM_SHIFT 0
  215. #define PLLE_BASE_DIVM_MASK (0xFF<<PLLE_BASE_DIVM_SHIFT)
  216. #define PLLE_BASE_DIV_MASK \
  217. (PLLE_BASE_DIVCML_MASK | PLLE_BASE_DIVP_MASK | \
  218. PLLE_BASE_DIVN_MASK | PLLE_BASE_DIVM_MASK)
  219. #define PLLE_BASE_DIV(m, n, p, cml) \
  220. (((cml)<<PLLE_BASE_DIVCML_SHIFT) | ((p)<<PLLE_BASE_DIVP_SHIFT) | \
  221. ((n)<<PLLE_BASE_DIVN_SHIFT) | ((m)<<PLLE_BASE_DIVM_SHIFT))
  222. #define PLLE_MISC_SETUP_BASE_SHIFT 16
  223. #define PLLE_MISC_SETUP_BASE_MASK (0xFFFF<<PLLE_MISC_SETUP_BASE_SHIFT)
  224. #define PLLE_MISC_READY (1<<15)
  225. #define PLLE_MISC_LOCK (1<<11)
  226. #define PLLE_MISC_LOCK_ENABLE (1<<9)
  227. #define PLLE_MISC_SETUP_EX_SHIFT 2
  228. #define PLLE_MISC_SETUP_EX_MASK (0x3<<PLLE_MISC_SETUP_EX_SHIFT)
  229. #define PLLE_MISC_SETUP_MASK \
  230. (PLLE_MISC_SETUP_BASE_MASK | PLLE_MISC_SETUP_EX_MASK)
  231. #define PLLE_MISC_SETUP_VALUE \
  232. ((0x7<<PLLE_MISC_SETUP_BASE_SHIFT) | (0x0<<PLLE_MISC_SETUP_EX_SHIFT))
  233. #define PLLE_SS_CTRL 0x68
  234. #define PLLE_SS_INCINTRV_SHIFT 24
  235. #define PLLE_SS_INCINTRV_MASK (0x3f<<PLLE_SS_INCINTRV_SHIFT)
  236. #define PLLE_SS_INC_SHIFT 16
  237. #define PLLE_SS_INC_MASK (0xff<<PLLE_SS_INC_SHIFT)
  238. #define PLLE_SS_MAX_SHIFT 0
  239. #define PLLE_SS_MAX_MASK (0x1ff<<PLLE_SS_MAX_SHIFT)
  240. #define PLLE_SS_COEFFICIENTS_MASK \
  241. (PLLE_SS_INCINTRV_MASK | PLLE_SS_INC_MASK | PLLE_SS_MAX_MASK)
  242. #define PLLE_SS_COEFFICIENTS_12MHZ \
  243. ((0x18<<PLLE_SS_INCINTRV_SHIFT) | (0x1<<PLLE_SS_INC_SHIFT) | \
  244. (0x24<<PLLE_SS_MAX_SHIFT))
  245. #define PLLE_SS_DISABLE ((1<<12) | (1<<11) | (1<<10))
  246. #define PLLE_AUX 0x48c
  247. #define PLLE_AUX_PLLP_SEL (1<<2)
  248. #define PLLE_AUX_CML_SATA_ENABLE (1<<1)
  249. #define PLLE_AUX_CML_PCIE_ENABLE (1<<0)
  250. #define PMC_SATA_PWRGT 0x1ac
  251. #define PMC_SATA_PWRGT_PLLE_IDDQ_VALUE (1<<5)
  252. #define PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL (1<<4)
  253. #define ROUND_DIVIDER_UP 0
  254. #define ROUND_DIVIDER_DOWN 1
  255. /* FIXME: recommended safety delay after lock is detected */
  256. #define PLL_POST_LOCK_DELAY 100
  257. /* Tegra CPU clock and reset control regs */
  258. #define TEGRA_CLK_RST_CONTROLLER_CLK_CPU_CMPLX 0x4c
  259. #define TEGRA_CLK_RST_CONTROLLER_RST_CPU_CMPLX_SET 0x340
  260. #define TEGRA_CLK_RST_CONTROLLER_RST_CPU_CMPLX_CLR 0x344
  261. #define TEGRA30_CLK_RST_CONTROLLER_CLK_CPU_CMPLX_CLR 0x34c
  262. #define TEGRA30_CLK_RST_CONTROLLER_CPU_CMPLX_STATUS 0x470
  263. #define CPU_CLOCK(cpu) (0x1 << (8 + cpu))
  264. #define CPU_RESET(cpu) (0x1111ul << (cpu))
  265. #define CLK_RESET_CCLK_BURST 0x20
  266. #define CLK_RESET_CCLK_DIVIDER 0x24
  267. #define CLK_RESET_PLLX_BASE 0xe0
  268. #define CLK_RESET_PLLX_MISC 0xe4
  269. #define CLK_RESET_SOURCE_CSITE 0x1d4
  270. #define CLK_RESET_CCLK_BURST_POLICY_SHIFT 28
  271. #define CLK_RESET_CCLK_RUN_POLICY_SHIFT 4
  272. #define CLK_RESET_CCLK_IDLE_POLICY_SHIFT 0
  273. #define CLK_RESET_CCLK_IDLE_POLICY 1
  274. #define CLK_RESET_CCLK_RUN_POLICY 2
  275. #define CLK_RESET_CCLK_BURST_POLICY_PLLX 8
  276. #ifdef CONFIG_PM_SLEEP
  277. static struct cpu_clk_suspend_context {
  278. u32 pllx_misc;
  279. u32 pllx_base;
  280. u32 cpu_burst;
  281. u32 clk_csite_src;
  282. u32 cclk_divider;
  283. } tegra30_cpu_clk_sctx;
  284. #endif
  285. /**
  286. * Structure defining the fields for USB UTMI clocks Parameters.
  287. */
  288. struct utmi_clk_param {
  289. /* Oscillator Frequency in KHz */
  290. u32 osc_frequency;
  291. /* UTMIP PLL Enable Delay Count */
  292. u8 enable_delay_count;
  293. /* UTMIP PLL Stable count */
  294. u8 stable_count;
  295. /* UTMIP PLL Active delay count */
  296. u8 active_delay_count;
  297. /* UTMIP PLL Xtal frequency count */
  298. u8 xtal_freq_count;
  299. };
  300. static const struct utmi_clk_param utmi_parameters[] = {
  301. {
  302. .osc_frequency = 13000000,
  303. .enable_delay_count = 0x02,
  304. .stable_count = 0x33,
  305. .active_delay_count = 0x05,
  306. .xtal_freq_count = 0x7F
  307. },
  308. {
  309. .osc_frequency = 19200000,
  310. .enable_delay_count = 0x03,
  311. .stable_count = 0x4B,
  312. .active_delay_count = 0x06,
  313. .xtal_freq_count = 0xBB},
  314. {
  315. .osc_frequency = 12000000,
  316. .enable_delay_count = 0x02,
  317. .stable_count = 0x2F,
  318. .active_delay_count = 0x04,
  319. .xtal_freq_count = 0x76
  320. },
  321. {
  322. .osc_frequency = 26000000,
  323. .enable_delay_count = 0x04,
  324. .stable_count = 0x66,
  325. .active_delay_count = 0x09,
  326. .xtal_freq_count = 0xFE
  327. },
  328. {
  329. .osc_frequency = 16800000,
  330. .enable_delay_count = 0x03,
  331. .stable_count = 0x41,
  332. .active_delay_count = 0x0A,
  333. .xtal_freq_count = 0xA4
  334. },
  335. };
  336. static void __iomem *reg_clk_base = IO_ADDRESS(TEGRA_CLK_RESET_BASE);
  337. static void __iomem *reg_pmc_base = IO_ADDRESS(TEGRA_PMC_BASE);
  338. static void __iomem *misc_gp_hidrev_base = IO_ADDRESS(TEGRA_APB_MISC_BASE);
  339. #define MISC_GP_HIDREV 0x804
  340. /*
  341. * Some peripheral clocks share an enable bit, so refcount the enable bits
  342. * in registers CLK_ENABLE_L, ... CLK_ENABLE_W
  343. */
  344. static int tegra_periph_clk_enable_refcount[CLK_OUT_ENB_NUM * 32];
  345. #define clk_writel(value, reg) \
  346. __raw_writel(value, reg_clk_base + (reg))
  347. #define clk_readl(reg) \
  348. __raw_readl(reg_clk_base + (reg))
  349. #define pmc_writel(value, reg) \
  350. __raw_writel(value, reg_pmc_base + (reg))
  351. #define pmc_readl(reg) \
  352. __raw_readl(reg_pmc_base + (reg))
  353. #define chipid_readl() \
  354. __raw_readl(misc_gp_hidrev_base + MISC_GP_HIDREV)
  355. #define clk_writel_delay(value, reg) \
  356. do { \
  357. __raw_writel((value), reg_clk_base + (reg)); \
  358. udelay(2); \
  359. } while (0)
  360. static inline int clk_set_div(struct clk_tegra *c, u32 n)
  361. {
  362. struct clk *clk = c->hw.clk;
  363. return clk_set_rate(clk,
  364. (__clk_get_rate(__clk_get_parent(clk)) + n - 1) / n);
  365. }
  366. static inline u32 periph_clk_to_reg(
  367. struct clk_tegra *c, u32 reg_L, u32 reg_V, int offs)
  368. {
  369. u32 reg = c->u.periph.clk_num / 32;
  370. BUG_ON(reg >= RST_DEVICES_NUM);
  371. if (reg < 3)
  372. reg = reg_L + (reg * offs);
  373. else
  374. reg = reg_V + ((reg - 3) * offs);
  375. return reg;
  376. }
  377. static unsigned long clk_measure_input_freq(void)
  378. {
  379. u32 clock_autodetect;
  380. clk_writel(OSC_FREQ_DET_TRIG | 1, OSC_FREQ_DET);
  381. do {} while (clk_readl(OSC_FREQ_DET_STATUS) & OSC_FREQ_DET_BUSY);
  382. clock_autodetect = clk_readl(OSC_FREQ_DET_STATUS);
  383. if (clock_autodetect >= 732 - 3 && clock_autodetect <= 732 + 3) {
  384. return 12000000;
  385. } else if (clock_autodetect >= 794 - 3 && clock_autodetect <= 794 + 3) {
  386. return 13000000;
  387. } else if (clock_autodetect >= 1172 - 3 && clock_autodetect <= 1172 + 3) {
  388. return 19200000;
  389. } else if (clock_autodetect >= 1587 - 3 && clock_autodetect <= 1587 + 3) {
  390. return 26000000;
  391. } else if (clock_autodetect >= 1025 - 3 && clock_autodetect <= 1025 + 3) {
  392. return 16800000;
  393. } else if (clock_autodetect >= 2344 - 3 && clock_autodetect <= 2344 + 3) {
  394. return 38400000;
  395. } else if (clock_autodetect >= 2928 - 3 && clock_autodetect <= 2928 + 3) {
  396. return 48000000;
  397. } else {
  398. pr_err("%s: Unexpected clock autodetect value %d", __func__,
  399. clock_autodetect);
  400. BUG();
  401. return 0;
  402. }
  403. }
  404. static int clk_div71_get_divider(unsigned long parent_rate, unsigned long rate,
  405. u32 flags, u32 round_mode)
  406. {
  407. s64 divider_u71 = parent_rate;
  408. if (!rate)
  409. return -EINVAL;
  410. if (!(flags & DIV_U71_INT))
  411. divider_u71 *= 2;
  412. if (round_mode == ROUND_DIVIDER_UP)
  413. divider_u71 += rate - 1;
  414. do_div(divider_u71, rate);
  415. if (flags & DIV_U71_INT)
  416. divider_u71 *= 2;
  417. if (divider_u71 - 2 < 0)
  418. return 0;
  419. if (divider_u71 - 2 > 255)
  420. return -EINVAL;
  421. return divider_u71 - 2;
  422. }
  423. static int clk_div16_get_divider(unsigned long parent_rate, unsigned long rate)
  424. {
  425. s64 divider_u16;
  426. divider_u16 = parent_rate;
  427. if (!rate)
  428. return -EINVAL;
  429. divider_u16 += rate - 1;
  430. do_div(divider_u16, rate);
  431. if (divider_u16 - 1 < 0)
  432. return 0;
  433. if (divider_u16 - 1 > 0xFFFF)
  434. return -EINVAL;
  435. return divider_u16 - 1;
  436. }
  437. static unsigned long tegra30_clk_fixed_recalc_rate(struct clk_hw *hw,
  438. unsigned long parent_rate)
  439. {
  440. return to_clk_tegra(hw)->fixed_rate;
  441. }
  442. struct clk_ops tegra30_clk_32k_ops = {
  443. .recalc_rate = tegra30_clk_fixed_recalc_rate,
  444. };
  445. /* clk_m functions */
  446. static unsigned long tegra30_clk_m_recalc_rate(struct clk_hw *hw,
  447. unsigned long parent_rate)
  448. {
  449. if (!to_clk_tegra(hw)->fixed_rate)
  450. to_clk_tegra(hw)->fixed_rate = clk_measure_input_freq();
  451. return to_clk_tegra(hw)->fixed_rate;
  452. }
  453. static void tegra30_clk_m_init(struct clk_hw *hw)
  454. {
  455. u32 osc_ctrl = clk_readl(OSC_CTRL);
  456. u32 auto_clock_control = osc_ctrl & ~OSC_CTRL_OSC_FREQ_MASK;
  457. u32 pll_ref_div = osc_ctrl & OSC_CTRL_PLL_REF_DIV_MASK;
  458. switch (to_clk_tegra(hw)->fixed_rate) {
  459. case 12000000:
  460. auto_clock_control |= OSC_CTRL_OSC_FREQ_12MHZ;
  461. BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_1);
  462. break;
  463. case 13000000:
  464. auto_clock_control |= OSC_CTRL_OSC_FREQ_13MHZ;
  465. BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_1);
  466. break;
  467. case 19200000:
  468. auto_clock_control |= OSC_CTRL_OSC_FREQ_19_2MHZ;
  469. BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_1);
  470. break;
  471. case 26000000:
  472. auto_clock_control |= OSC_CTRL_OSC_FREQ_26MHZ;
  473. BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_1);
  474. break;
  475. case 16800000:
  476. auto_clock_control |= OSC_CTRL_OSC_FREQ_16_8MHZ;
  477. BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_1);
  478. break;
  479. case 38400000:
  480. auto_clock_control |= OSC_CTRL_OSC_FREQ_38_4MHZ;
  481. BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_2);
  482. break;
  483. case 48000000:
  484. auto_clock_control |= OSC_CTRL_OSC_FREQ_48MHZ;
  485. BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_4);
  486. break;
  487. default:
  488. pr_err("%s: Unexpected clock rate %ld", __func__,
  489. to_clk_tegra(hw)->fixed_rate);
  490. BUG();
  491. }
  492. clk_writel(auto_clock_control, OSC_CTRL);
  493. }
  494. struct clk_ops tegra30_clk_m_ops = {
  495. .init = tegra30_clk_m_init,
  496. .recalc_rate = tegra30_clk_m_recalc_rate,
  497. };
  498. static unsigned long tegra30_clk_m_div_recalc_rate(struct clk_hw *hw,
  499. unsigned long parent_rate)
  500. {
  501. struct clk_tegra *c = to_clk_tegra(hw);
  502. u64 rate = parent_rate;
  503. if (c->mul != 0 && c->div != 0) {
  504. rate *= c->mul;
  505. rate += c->div - 1; /* round up */
  506. do_div(rate, c->div);
  507. }
  508. return rate;
  509. }
  510. struct clk_ops tegra_clk_m_div_ops = {
  511. .recalc_rate = tegra30_clk_m_div_recalc_rate,
  512. };
  513. /* PLL reference divider functions */
  514. static unsigned long tegra30_pll_ref_recalc_rate(struct clk_hw *hw,
  515. unsigned long parent_rate)
  516. {
  517. struct clk_tegra *c = to_clk_tegra(hw);
  518. unsigned long rate = parent_rate;
  519. u32 pll_ref_div = clk_readl(OSC_CTRL) & OSC_CTRL_PLL_REF_DIV_MASK;
  520. switch (pll_ref_div) {
  521. case OSC_CTRL_PLL_REF_DIV_1:
  522. c->div = 1;
  523. break;
  524. case OSC_CTRL_PLL_REF_DIV_2:
  525. c->div = 2;
  526. break;
  527. case OSC_CTRL_PLL_REF_DIV_4:
  528. c->div = 4;
  529. break;
  530. default:
  531. pr_err("%s: Invalid pll ref divider %d", __func__, pll_ref_div);
  532. BUG();
  533. }
  534. c->mul = 1;
  535. if (c->mul != 0 && c->div != 0) {
  536. rate *= c->mul;
  537. rate += c->div - 1; /* round up */
  538. do_div(rate, c->div);
  539. }
  540. return rate;
  541. }
  542. struct clk_ops tegra_pll_ref_ops = {
  543. .recalc_rate = tegra30_pll_ref_recalc_rate,
  544. };
  545. /* super clock functions */
  546. /* "super clocks" on tegra30 have two-stage muxes, fractional 7.1 divider and
  547. * clock skipping super divider. We will ignore the clock skipping divider,
  548. * since we can't lower the voltage when using the clock skip, but we can if
  549. * we lower the PLL frequency. We will use 7.1 divider for CPU super-clock
  550. * only when its parent is a fixed rate PLL, since we can't change PLL rate
  551. * in this case.
  552. */
  553. static void tegra30_super_clk_init(struct clk_hw *hw)
  554. {
  555. struct clk_tegra *c = to_clk_tegra(hw);
  556. struct clk_tegra *p =
  557. to_clk_tegra(__clk_get_hw(__clk_get_parent(hw->clk)));
  558. c->state = ON;
  559. if (c->flags & DIV_U71) {
  560. /* Init safe 7.1 divider value (does not affect PLLX path) */
  561. clk_writel(SUPER_CLOCK_DIV_U71_MIN << SUPER_CLOCK_DIV_U71_SHIFT,
  562. c->reg + SUPER_CLK_DIVIDER);
  563. c->mul = 2;
  564. c->div = 2;
  565. if (!(p->flags & PLLX))
  566. c->div += SUPER_CLOCK_DIV_U71_MIN;
  567. } else
  568. clk_writel(0, c->reg + SUPER_CLK_DIVIDER);
  569. }
  570. static u8 tegra30_super_clk_get_parent(struct clk_hw *hw)
  571. {
  572. struct clk_tegra *c = to_clk_tegra(hw);
  573. u32 val;
  574. int source;
  575. int shift;
  576. val = clk_readl(c->reg + SUPER_CLK_MUX);
  577. BUG_ON(((val & SUPER_STATE_MASK) != SUPER_STATE_RUN) &&
  578. ((val & SUPER_STATE_MASK) != SUPER_STATE_IDLE));
  579. shift = ((val & SUPER_STATE_MASK) == SUPER_STATE_IDLE) ?
  580. SUPER_IDLE_SOURCE_SHIFT : SUPER_RUN_SOURCE_SHIFT;
  581. source = (val >> shift) & SUPER_SOURCE_MASK;
  582. if (c->flags & DIV_2)
  583. source |= val & SUPER_LP_DIV2_BYPASS;
  584. return source;
  585. }
  586. static int tegra30_super_clk_set_parent(struct clk_hw *hw, u8 index)
  587. {
  588. struct clk_tegra *c = to_clk_tegra(hw);
  589. struct clk_tegra *p =
  590. to_clk_tegra(__clk_get_hw(clk_get_parent(hw->clk)));
  591. u32 val;
  592. int shift;
  593. val = clk_readl(c->reg + SUPER_CLK_MUX);
  594. BUG_ON(((val & SUPER_STATE_MASK) != SUPER_STATE_RUN) &&
  595. ((val & SUPER_STATE_MASK) != SUPER_STATE_IDLE));
  596. shift = ((val & SUPER_STATE_MASK) == SUPER_STATE_IDLE) ?
  597. SUPER_IDLE_SOURCE_SHIFT : SUPER_RUN_SOURCE_SHIFT;
  598. /* For LP mode super-clock switch between PLLX direct
  599. and divided-by-2 outputs is allowed only when other
  600. than PLLX clock source is current parent */
  601. if ((c->flags & DIV_2) && (p->flags & PLLX) &&
  602. ((index ^ val) & SUPER_LP_DIV2_BYPASS)) {
  603. if (p->flags & PLLX)
  604. return -EINVAL;
  605. val ^= SUPER_LP_DIV2_BYPASS;
  606. clk_writel_delay(val, c->reg);
  607. }
  608. val &= ~(SUPER_SOURCE_MASK << shift);
  609. val |= (index & SUPER_SOURCE_MASK) << shift;
  610. /* 7.1 divider for CPU super-clock does not affect
  611. PLLX path */
  612. if (c->flags & DIV_U71) {
  613. u32 div = 0;
  614. if (!(p->flags & PLLX)) {
  615. div = clk_readl(c->reg +
  616. SUPER_CLK_DIVIDER);
  617. div &= SUPER_CLOCK_DIV_U71_MASK;
  618. div >>= SUPER_CLOCK_DIV_U71_SHIFT;
  619. }
  620. c->div = div + 2;
  621. c->mul = 2;
  622. }
  623. clk_writel_delay(val, c->reg);
  624. return 0;
  625. }
  626. /*
  627. * Do not use super clocks "skippers", since dividing using a clock skipper
  628. * does not allow the voltage to be scaled down. Instead adjust the rate of
  629. * the parent clock. This requires that the parent of a super clock have no
  630. * other children, otherwise the rate will change underneath the other
  631. * children. Special case: if fixed rate PLL is CPU super clock parent the
  632. * rate of this PLL can't be changed, and it has many other children. In
  633. * this case use 7.1 fractional divider to adjust the super clock rate.
  634. */
  635. static int tegra30_super_clk_set_rate(struct clk_hw *hw, unsigned long rate,
  636. unsigned long parent_rate)
  637. {
  638. struct clk_tegra *c = to_clk_tegra(hw);
  639. struct clk *parent = __clk_get_parent(hw->clk);
  640. struct clk_tegra *cparent = to_clk_tegra(__clk_get_hw(parent));
  641. if ((c->flags & DIV_U71) && (cparent->flags & PLL_FIXED)) {
  642. int div = clk_div71_get_divider(parent_rate,
  643. rate, c->flags, ROUND_DIVIDER_DOWN);
  644. div = max(div, SUPER_CLOCK_DIV_U71_MIN);
  645. clk_writel(div << SUPER_CLOCK_DIV_U71_SHIFT,
  646. c->reg + SUPER_CLK_DIVIDER);
  647. c->div = div + 2;
  648. c->mul = 2;
  649. return 0;
  650. }
  651. return 0;
  652. }
  653. static unsigned long tegra30_super_clk_recalc_rate(struct clk_hw *hw,
  654. unsigned long parent_rate)
  655. {
  656. struct clk_tegra *c = to_clk_tegra(hw);
  657. u64 rate = parent_rate;
  658. if (c->mul != 0 && c->div != 0) {
  659. rate *= c->mul;
  660. rate += c->div - 1; /* round up */
  661. do_div(rate, c->div);
  662. }
  663. return rate;
  664. }
  665. static long tegra30_super_clk_round_rate(struct clk_hw *hw, unsigned long rate,
  666. unsigned long *prate)
  667. {
  668. struct clk_tegra *c = to_clk_tegra(hw);
  669. struct clk *parent = __clk_get_parent(hw->clk);
  670. struct clk_tegra *cparent = to_clk_tegra(__clk_get_hw(parent));
  671. int mul = 2;
  672. int div;
  673. if ((c->flags & DIV_U71) && (cparent->flags & PLL_FIXED)) {
  674. div = clk_div71_get_divider(*prate,
  675. rate, c->flags, ROUND_DIVIDER_DOWN);
  676. div = max(div, SUPER_CLOCK_DIV_U71_MIN) + 2;
  677. rate = *prate * mul;
  678. rate += div - 1; /* round up */
  679. do_div(rate, c->div);
  680. return rate;
  681. }
  682. return *prate;
  683. }
  684. struct clk_ops tegra30_super_ops = {
  685. .init = tegra30_super_clk_init,
  686. .set_parent = tegra30_super_clk_set_parent,
  687. .get_parent = tegra30_super_clk_get_parent,
  688. .recalc_rate = tegra30_super_clk_recalc_rate,
  689. .round_rate = tegra30_super_clk_round_rate,
  690. .set_rate = tegra30_super_clk_set_rate,
  691. };
  692. static unsigned long tegra30_twd_clk_recalc_rate(struct clk_hw *hw,
  693. unsigned long parent_rate)
  694. {
  695. struct clk_tegra *c = to_clk_tegra(hw);
  696. u64 rate = parent_rate;
  697. if (c->mul != 0 && c->div != 0) {
  698. rate *= c->mul;
  699. rate += c->div - 1; /* round up */
  700. do_div(rate, c->div);
  701. }
  702. return rate;
  703. }
  704. struct clk_ops tegra30_twd_ops = {
  705. .recalc_rate = tegra30_twd_clk_recalc_rate,
  706. };
  707. /* bus clock functions */
  708. static int tegra30_bus_clk_is_enabled(struct clk_hw *hw)
  709. {
  710. struct clk_tegra *c = to_clk_tegra(hw);
  711. u32 val = clk_readl(c->reg);
  712. c->state = ((val >> c->reg_shift) & BUS_CLK_DISABLE) ? OFF : ON;
  713. return c->state;
  714. }
  715. static int tegra30_bus_clk_enable(struct clk_hw *hw)
  716. {
  717. struct clk_tegra *c = to_clk_tegra(hw);
  718. u32 val;
  719. val = clk_readl(c->reg);
  720. val &= ~(BUS_CLK_DISABLE << c->reg_shift);
  721. clk_writel(val, c->reg);
  722. return 0;
  723. }
  724. static void tegra30_bus_clk_disable(struct clk_hw *hw)
  725. {
  726. struct clk_tegra *c = to_clk_tegra(hw);
  727. u32 val;
  728. val = clk_readl(c->reg);
  729. val |= BUS_CLK_DISABLE << c->reg_shift;
  730. clk_writel(val, c->reg);
  731. }
  732. static unsigned long tegra30_bus_clk_recalc_rate(struct clk_hw *hw,
  733. unsigned long prate)
  734. {
  735. struct clk_tegra *c = to_clk_tegra(hw);
  736. u32 val = clk_readl(c->reg);
  737. u64 rate = prate;
  738. c->div = ((val >> c->reg_shift) & BUS_CLK_DIV_MASK) + 1;
  739. c->mul = 1;
  740. if (c->mul != 0 && c->div != 0) {
  741. rate *= c->mul;
  742. rate += c->div - 1; /* round up */
  743. do_div(rate, c->div);
  744. }
  745. return rate;
  746. }
  747. static int tegra30_bus_clk_set_rate(struct clk_hw *hw, unsigned long rate,
  748. unsigned long parent_rate)
  749. {
  750. struct clk_tegra *c = to_clk_tegra(hw);
  751. int ret = -EINVAL;
  752. u32 val;
  753. int i;
  754. val = clk_readl(c->reg);
  755. for (i = 1; i <= 4; i++) {
  756. if (rate == parent_rate / i) {
  757. val &= ~(BUS_CLK_DIV_MASK << c->reg_shift);
  758. val |= (i - 1) << c->reg_shift;
  759. clk_writel(val, c->reg);
  760. c->div = i;
  761. c->mul = 1;
  762. ret = 0;
  763. break;
  764. }
  765. }
  766. return ret;
  767. }
  768. static long tegra30_bus_clk_round_rate(struct clk_hw *hw, unsigned long rate,
  769. unsigned long *prate)
  770. {
  771. unsigned long parent_rate = *prate;
  772. s64 divider;
  773. if (rate >= parent_rate)
  774. return parent_rate;
  775. divider = parent_rate;
  776. divider += rate - 1;
  777. do_div(divider, rate);
  778. if (divider < 0)
  779. return divider;
  780. if (divider > 4)
  781. divider = 4;
  782. do_div(parent_rate, divider);
  783. return parent_rate;
  784. }
  785. struct clk_ops tegra30_bus_ops = {
  786. .is_enabled = tegra30_bus_clk_is_enabled,
  787. .enable = tegra30_bus_clk_enable,
  788. .disable = tegra30_bus_clk_disable,
  789. .set_rate = tegra30_bus_clk_set_rate,
  790. .round_rate = tegra30_bus_clk_round_rate,
  791. .recalc_rate = tegra30_bus_clk_recalc_rate,
  792. };
  793. /* Blink output functions */
  794. static int tegra30_blink_clk_is_enabled(struct clk_hw *hw)
  795. {
  796. struct clk_tegra *c = to_clk_tegra(hw);
  797. u32 val;
  798. val = pmc_readl(PMC_CTRL);
  799. c->state = (val & PMC_CTRL_BLINK_ENB) ? ON : OFF;
  800. return c->state;
  801. }
  802. static int tegra30_blink_clk_enable(struct clk_hw *hw)
  803. {
  804. u32 val;
  805. val = pmc_readl(PMC_DPD_PADS_ORIDE);
  806. pmc_writel(val | PMC_DPD_PADS_ORIDE_BLINK_ENB, PMC_DPD_PADS_ORIDE);
  807. val = pmc_readl(PMC_CTRL);
  808. pmc_writel(val | PMC_CTRL_BLINK_ENB, PMC_CTRL);
  809. return 0;
  810. }
  811. static void tegra30_blink_clk_disable(struct clk_hw *hw)
  812. {
  813. u32 val;
  814. val = pmc_readl(PMC_CTRL);
  815. pmc_writel(val & ~PMC_CTRL_BLINK_ENB, PMC_CTRL);
  816. val = pmc_readl(PMC_DPD_PADS_ORIDE);
  817. pmc_writel(val & ~PMC_DPD_PADS_ORIDE_BLINK_ENB, PMC_DPD_PADS_ORIDE);
  818. }
  819. static int tegra30_blink_clk_set_rate(struct clk_hw *hw, unsigned long rate,
  820. unsigned long parent_rate)
  821. {
  822. struct clk_tegra *c = to_clk_tegra(hw);
  823. if (rate >= parent_rate) {
  824. c->div = 1;
  825. pmc_writel(0, c->reg);
  826. } else {
  827. unsigned int on_off;
  828. u32 val;
  829. on_off = DIV_ROUND_UP(parent_rate / 8, rate);
  830. c->div = on_off * 8;
  831. val = (on_off & PMC_BLINK_TIMER_DATA_ON_MASK) <<
  832. PMC_BLINK_TIMER_DATA_ON_SHIFT;
  833. on_off &= PMC_BLINK_TIMER_DATA_OFF_MASK;
  834. on_off <<= PMC_BLINK_TIMER_DATA_OFF_SHIFT;
  835. val |= on_off;
  836. val |= PMC_BLINK_TIMER_ENB;
  837. pmc_writel(val, c->reg);
  838. }
  839. return 0;
  840. }
  841. static unsigned long tegra30_blink_clk_recalc_rate(struct clk_hw *hw,
  842. unsigned long parent_rate)
  843. {
  844. struct clk_tegra *c = to_clk_tegra(hw);
  845. u64 rate = parent_rate;
  846. u32 val;
  847. u32 mul;
  848. u32 div;
  849. u32 on_off;
  850. mul = 1;
  851. val = pmc_readl(c->reg);
  852. if (val & PMC_BLINK_TIMER_ENB) {
  853. on_off = (val >> PMC_BLINK_TIMER_DATA_ON_SHIFT) &
  854. PMC_BLINK_TIMER_DATA_ON_MASK;
  855. val >>= PMC_BLINK_TIMER_DATA_OFF_SHIFT;
  856. val &= PMC_BLINK_TIMER_DATA_OFF_MASK;
  857. on_off += val;
  858. /* each tick in the blink timer is 4 32KHz clocks */
  859. div = on_off * 4;
  860. } else {
  861. div = 1;
  862. }
  863. if (mul != 0 && div != 0) {
  864. rate *= mul;
  865. rate += div - 1; /* round up */
  866. do_div(rate, div);
  867. }
  868. return rate;
  869. }
  870. static long tegra30_blink_clk_round_rate(struct clk_hw *hw, unsigned long rate,
  871. unsigned long *prate)
  872. {
  873. int div;
  874. int mul;
  875. long round_rate = *prate;
  876. mul = 1;
  877. if (rate >= *prate) {
  878. div = 1;
  879. } else {
  880. div = DIV_ROUND_UP(*prate / 8, rate);
  881. div *= 8;
  882. }
  883. round_rate *= mul;
  884. round_rate += div - 1;
  885. do_div(round_rate, div);
  886. return round_rate;
  887. }
  888. struct clk_ops tegra30_blink_clk_ops = {
  889. .is_enabled = tegra30_blink_clk_is_enabled,
  890. .enable = tegra30_blink_clk_enable,
  891. .disable = tegra30_blink_clk_disable,
  892. .recalc_rate = tegra30_blink_clk_recalc_rate,
  893. .round_rate = tegra30_blink_clk_round_rate,
  894. .set_rate = tegra30_blink_clk_set_rate,
  895. };
  896. static void tegra30_utmi_param_configure(struct clk_hw *hw)
  897. {
  898. unsigned long main_rate =
  899. __clk_get_rate(__clk_get_parent(__clk_get_parent(hw->clk)));
  900. u32 reg;
  901. int i;
  902. for (i = 0; i < ARRAY_SIZE(utmi_parameters); i++) {
  903. if (main_rate == utmi_parameters[i].osc_frequency)
  904. break;
  905. }
  906. if (i >= ARRAY_SIZE(utmi_parameters)) {
  907. pr_err("%s: Unexpected main rate %lu\n", __func__, main_rate);
  908. return;
  909. }
  910. reg = clk_readl(UTMIP_PLL_CFG2);
  911. /* Program UTMIP PLL stable and active counts */
  912. /* [FIXME] arclk_rst.h says WRONG! This should be 1ms -> 0x50 Check! */
  913. reg &= ~UTMIP_PLL_CFG2_STABLE_COUNT(~0);
  914. reg |= UTMIP_PLL_CFG2_STABLE_COUNT(
  915. utmi_parameters[i].stable_count);
  916. reg &= ~UTMIP_PLL_CFG2_ACTIVE_DLY_COUNT(~0);
  917. reg |= UTMIP_PLL_CFG2_ACTIVE_DLY_COUNT(
  918. utmi_parameters[i].active_delay_count);
  919. /* Remove power downs from UTMIP PLL control bits */
  920. reg &= ~UTMIP_PLL_CFG2_FORCE_PD_SAMP_A_POWERDOWN;
  921. reg &= ~UTMIP_PLL_CFG2_FORCE_PD_SAMP_B_POWERDOWN;
  922. reg &= ~UTMIP_PLL_CFG2_FORCE_PD_SAMP_C_POWERDOWN;
  923. clk_writel(reg, UTMIP_PLL_CFG2);
  924. /* Program UTMIP PLL delay and oscillator frequency counts */
  925. reg = clk_readl(UTMIP_PLL_CFG1);
  926. reg &= ~UTMIP_PLL_CFG1_ENABLE_DLY_COUNT(~0);
  927. reg |= UTMIP_PLL_CFG1_ENABLE_DLY_COUNT(
  928. utmi_parameters[i].enable_delay_count);
  929. reg &= ~UTMIP_PLL_CFG1_XTAL_FREQ_COUNT(~0);
  930. reg |= UTMIP_PLL_CFG1_XTAL_FREQ_COUNT(
  931. utmi_parameters[i].xtal_freq_count);
  932. /* Remove power downs from UTMIP PLL control bits */
  933. reg &= ~UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERDOWN;
  934. reg &= ~UTMIP_PLL_CFG1_FORCE_PLL_ACTIVE_POWERDOWN;
  935. reg &= ~UTMIP_PLL_CFG1_FORCE_PLLU_POWERDOWN;
  936. clk_writel(reg, UTMIP_PLL_CFG1);
  937. }
  938. /* PLL Functions */
  939. static int tegra30_pll_clk_wait_for_lock(struct clk_tegra *c, u32 lock_reg,
  940. u32 lock_bit)
  941. {
  942. int ret = 0;
  943. #if USE_PLL_LOCK_BITS
  944. int i;
  945. for (i = 0; i < c->u.pll.lock_delay; i++) {
  946. if (clk_readl(lock_reg) & lock_bit) {
  947. udelay(PLL_POST_LOCK_DELAY);
  948. return 0;
  949. }
  950. udelay(2); /* timeout = 2 * lock time */
  951. }
  952. pr_err("Timed out waiting for lock bit on pll %s",
  953. __clk_get_name(hw->clk));
  954. ret = -1;
  955. #else
  956. udelay(c->u.pll.lock_delay);
  957. #endif
  958. return ret;
  959. }
  960. static int tegra30_pll_clk_is_enabled(struct clk_hw *hw)
  961. {
  962. struct clk_tegra *c = to_clk_tegra(hw);
  963. u32 val = clk_readl(c->reg + PLL_BASE);
  964. c->state = (val & PLL_BASE_ENABLE) ? ON : OFF;
  965. return c->state;
  966. }
  967. static void tegra30_pll_clk_init(struct clk_hw *hw)
  968. {
  969. struct clk_tegra *c = to_clk_tegra(hw);
  970. if (c->flags & PLLU)
  971. tegra30_utmi_param_configure(hw);
  972. }
  973. static int tegra30_pll_clk_enable(struct clk_hw *hw)
  974. {
  975. struct clk_tegra *c = to_clk_tegra(hw);
  976. u32 val;
  977. pr_debug("%s on clock %s\n", __func__, __clk_get_name(hw->clk));
  978. #if USE_PLL_LOCK_BITS
  979. val = clk_readl(c->reg + PLL_MISC(c));
  980. val |= PLL_MISC_LOCK_ENABLE(c);
  981. clk_writel(val, c->reg + PLL_MISC(c));
  982. #endif
  983. val = clk_readl(c->reg + PLL_BASE);
  984. val &= ~PLL_BASE_BYPASS;
  985. val |= PLL_BASE_ENABLE;
  986. clk_writel(val, c->reg + PLL_BASE);
  987. if (c->flags & PLLM) {
  988. val = pmc_readl(PMC_PLLP_WB0_OVERRIDE);
  989. val |= PMC_PLLP_WB0_OVERRIDE_PLLM_ENABLE;
  990. pmc_writel(val, PMC_PLLP_WB0_OVERRIDE);
  991. }
  992. tegra30_pll_clk_wait_for_lock(c, c->reg + PLL_BASE, PLL_BASE_LOCK);
  993. return 0;
  994. }
  995. static void tegra30_pll_clk_disable(struct clk_hw *hw)
  996. {
  997. struct clk_tegra *c = to_clk_tegra(hw);
  998. u32 val;
  999. pr_debug("%s on clock %s\n", __func__, __clk_get_name(hw->clk));
  1000. val = clk_readl(c->reg);
  1001. val &= ~(PLL_BASE_BYPASS | PLL_BASE_ENABLE);
  1002. clk_writel(val, c->reg);
  1003. if (c->flags & PLLM) {
  1004. val = pmc_readl(PMC_PLLP_WB0_OVERRIDE);
  1005. val &= ~PMC_PLLP_WB0_OVERRIDE_PLLM_ENABLE;
  1006. pmc_writel(val, PMC_PLLP_WB0_OVERRIDE);
  1007. }
  1008. }
  1009. static int tegra30_pll_clk_set_rate(struct clk_hw *hw, unsigned long rate,
  1010. unsigned long parent_rate)
  1011. {
  1012. struct clk_tegra *c = to_clk_tegra(hw);
  1013. u32 val, p_div, old_base;
  1014. unsigned long input_rate;
  1015. const struct clk_pll_freq_table *sel;
  1016. struct clk_pll_freq_table cfg;
  1017. if (c->flags & PLL_FIXED) {
  1018. int ret = 0;
  1019. if (rate != c->u.pll.fixed_rate) {
  1020. pr_err("%s: Can not change %s fixed rate %lu to %lu\n",
  1021. __func__, __clk_get_name(hw->clk),
  1022. c->u.pll.fixed_rate, rate);
  1023. ret = -EINVAL;
  1024. }
  1025. return ret;
  1026. }
  1027. if (c->flags & PLLM) {
  1028. if (rate != __clk_get_rate(hw->clk)) {
  1029. pr_err("%s: Can not change memory %s rate in flight\n",
  1030. __func__, __clk_get_name(hw->clk));
  1031. return -EINVAL;
  1032. }
  1033. }
  1034. p_div = 0;
  1035. input_rate = parent_rate;
  1036. /* Check if the target rate is tabulated */
  1037. for (sel = c->u.pll.freq_table; sel->input_rate != 0; sel++) {
  1038. if (sel->input_rate == input_rate && sel->output_rate == rate) {
  1039. if (c->flags & PLLU) {
  1040. BUG_ON(sel->p < 1 || sel->p > 2);
  1041. if (sel->p == 1)
  1042. p_div = PLLU_BASE_POST_DIV;
  1043. } else {
  1044. BUG_ON(sel->p < 1);
  1045. for (val = sel->p; val > 1; val >>= 1)
  1046. p_div++;
  1047. p_div <<= PLL_BASE_DIVP_SHIFT;
  1048. }
  1049. break;
  1050. }
  1051. }
  1052. /* Configure out-of-table rate */
  1053. if (sel->input_rate == 0) {
  1054. unsigned long cfreq;
  1055. BUG_ON(c->flags & PLLU);
  1056. sel = &cfg;
  1057. switch (input_rate) {
  1058. case 12000000:
  1059. case 26000000:
  1060. cfreq = (rate <= 1000000 * 1000) ? 1000000 : 2000000;
  1061. break;
  1062. case 13000000:
  1063. cfreq = (rate <= 1000000 * 1000) ? 1000000 : 2600000;
  1064. break;
  1065. case 16800000:
  1066. case 19200000:
  1067. cfreq = (rate <= 1200000 * 1000) ? 1200000 : 2400000;
  1068. break;
  1069. default:
  1070. pr_err("%s: Unexpected reference rate %lu\n",
  1071. __func__, input_rate);
  1072. BUG();
  1073. }
  1074. /* Raise VCO to guarantee 0.5% accuracy */
  1075. for (cfg.output_rate = rate; cfg.output_rate < 200 * cfreq;
  1076. cfg.output_rate <<= 1)
  1077. p_div++;
  1078. cfg.p = 0x1 << p_div;
  1079. cfg.m = input_rate / cfreq;
  1080. cfg.n = cfg.output_rate / cfreq;
  1081. cfg.cpcon = OUT_OF_TABLE_CPCON;
  1082. if ((cfg.m > (PLL_BASE_DIVM_MASK >> PLL_BASE_DIVM_SHIFT)) ||
  1083. (cfg.n > (PLL_BASE_DIVN_MASK >> PLL_BASE_DIVN_SHIFT)) ||
  1084. (p_div > (PLL_BASE_DIVP_MASK >> PLL_BASE_DIVP_SHIFT)) ||
  1085. (cfg.output_rate > c->u.pll.vco_max)) {
  1086. pr_err("%s: Failed to set %s out-of-table rate %lu\n",
  1087. __func__, __clk_get_name(hw->clk), rate);
  1088. return -EINVAL;
  1089. }
  1090. p_div <<= PLL_BASE_DIVP_SHIFT;
  1091. }
  1092. c->mul = sel->n;
  1093. c->div = sel->m * sel->p;
  1094. old_base = val = clk_readl(c->reg + PLL_BASE);
  1095. val &= ~(PLL_BASE_DIVM_MASK | PLL_BASE_DIVN_MASK |
  1096. ((c->flags & PLLU) ? PLLU_BASE_POST_DIV : PLL_BASE_DIVP_MASK));
  1097. val |= (sel->m << PLL_BASE_DIVM_SHIFT) |
  1098. (sel->n << PLL_BASE_DIVN_SHIFT) | p_div;
  1099. if (val == old_base)
  1100. return 0;
  1101. if (c->state == ON) {
  1102. tegra30_pll_clk_disable(hw);
  1103. val &= ~(PLL_BASE_BYPASS | PLL_BASE_ENABLE);
  1104. }
  1105. clk_writel(val, c->reg + PLL_BASE);
  1106. if (c->flags & PLL_HAS_CPCON) {
  1107. val = clk_readl(c->reg + PLL_MISC(c));
  1108. val &= ~PLL_MISC_CPCON_MASK;
  1109. val |= sel->cpcon << PLL_MISC_CPCON_SHIFT;
  1110. if (c->flags & (PLLU | PLLD)) {
  1111. val &= ~PLL_MISC_LFCON_MASK;
  1112. if (sel->n >= PLLDU_LFCON_SET_DIVN)
  1113. val |= 0x1 << PLL_MISC_LFCON_SHIFT;
  1114. } else if (c->flags & (PLLX | PLLM)) {
  1115. val &= ~(0x1 << PLL_MISC_DCCON_SHIFT);
  1116. if (rate >= (c->u.pll.vco_max >> 1))
  1117. val |= 0x1 << PLL_MISC_DCCON_SHIFT;
  1118. }
  1119. clk_writel(val, c->reg + PLL_MISC(c));
  1120. }
  1121. if (c->state == ON)
  1122. tegra30_pll_clk_enable(hw);
  1123. c->u.pll.fixed_rate = rate;
  1124. return 0;
  1125. }
  1126. static long tegra30_pll_round_rate(struct clk_hw *hw, unsigned long rate,
  1127. unsigned long *prate)
  1128. {
  1129. struct clk_tegra *c = to_clk_tegra(hw);
  1130. unsigned long input_rate = *prate;
  1131. u64 output_rate = *prate;
  1132. const struct clk_pll_freq_table *sel;
  1133. struct clk_pll_freq_table cfg;
  1134. int mul;
  1135. int div;
  1136. u32 p_div;
  1137. u32 val;
  1138. if (c->flags & PLL_FIXED)
  1139. return c->u.pll.fixed_rate;
  1140. if (c->flags & PLLM)
  1141. return __clk_get_rate(hw->clk);
  1142. p_div = 0;
  1143. /* Check if the target rate is tabulated */
  1144. for (sel = c->u.pll.freq_table; sel->input_rate != 0; sel++) {
  1145. if (sel->input_rate == input_rate && sel->output_rate == rate) {
  1146. if (c->flags & PLLU) {
  1147. BUG_ON(sel->p < 1 || sel->p > 2);
  1148. if (sel->p == 1)
  1149. p_div = PLLU_BASE_POST_DIV;
  1150. } else {
  1151. BUG_ON(sel->p < 1);
  1152. for (val = sel->p; val > 1; val >>= 1)
  1153. p_div++;
  1154. p_div <<= PLL_BASE_DIVP_SHIFT;
  1155. }
  1156. break;
  1157. }
  1158. }
  1159. if (sel->input_rate == 0) {
  1160. unsigned long cfreq;
  1161. BUG_ON(c->flags & PLLU);
  1162. sel = &cfg;
  1163. switch (input_rate) {
  1164. case 12000000:
  1165. case 26000000:
  1166. cfreq = (rate <= 1000000 * 1000) ? 1000000 : 2000000;
  1167. break;
  1168. case 13000000:
  1169. cfreq = (rate <= 1000000 * 1000) ? 1000000 : 2600000;
  1170. break;
  1171. case 16800000:
  1172. case 19200000:
  1173. cfreq = (rate <= 1200000 * 1000) ? 1200000 : 2400000;
  1174. break;
  1175. default:
  1176. pr_err("%s: Unexpected reference rate %lu\n",
  1177. __func__, input_rate);
  1178. BUG();
  1179. }
  1180. /* Raise VCO to guarantee 0.5% accuracy */
  1181. for (cfg.output_rate = rate; cfg.output_rate < 200 * cfreq;
  1182. cfg.output_rate <<= 1)
  1183. p_div++;
  1184. cfg.p = 0x1 << p_div;
  1185. cfg.m = input_rate / cfreq;
  1186. cfg.n = cfg.output_rate / cfreq;
  1187. }
  1188. mul = sel->n;
  1189. div = sel->m * sel->p;
  1190. output_rate *= mul;
  1191. output_rate += div - 1; /* round up */
  1192. do_div(output_rate, div);
  1193. return output_rate;
  1194. }
  1195. static unsigned long tegra30_pll_recalc_rate(struct clk_hw *hw,
  1196. unsigned long parent_rate)
  1197. {
  1198. struct clk_tegra *c = to_clk_tegra(hw);
  1199. u64 rate = parent_rate;
  1200. u32 val = clk_readl(c->reg + PLL_BASE);
  1201. if (c->flags & PLL_FIXED && !(val & PLL_BASE_OVERRIDE)) {
  1202. const struct clk_pll_freq_table *sel;
  1203. for (sel = c->u.pll.freq_table; sel->input_rate != 0; sel++) {
  1204. if (sel->input_rate == parent_rate &&
  1205. sel->output_rate == c->u.pll.fixed_rate) {
  1206. c->mul = sel->n;
  1207. c->div = sel->m * sel->p;
  1208. break;
  1209. }
  1210. }
  1211. pr_err("Clock %s has unknown fixed frequency\n",
  1212. __clk_get_name(hw->clk));
  1213. BUG();
  1214. } else if (val & PLL_BASE_BYPASS) {
  1215. c->mul = 1;
  1216. c->div = 1;
  1217. } else {
  1218. c->mul = (val & PLL_BASE_DIVN_MASK) >> PLL_BASE_DIVN_SHIFT;
  1219. c->div = (val & PLL_BASE_DIVM_MASK) >> PLL_BASE_DIVM_SHIFT;
  1220. if (c->flags & PLLU)
  1221. c->div *= (val & PLLU_BASE_POST_DIV) ? 1 : 2;
  1222. else
  1223. c->div *= (0x1 << ((val & PLL_BASE_DIVP_MASK) >>
  1224. PLL_BASE_DIVP_SHIFT));
  1225. }
  1226. if (c->mul != 0 && c->div != 0) {
  1227. rate *= c->mul;
  1228. rate += c->div - 1; /* round up */
  1229. do_div(rate, c->div);
  1230. }
  1231. return rate;
  1232. }
  1233. struct clk_ops tegra30_pll_ops = {
  1234. .is_enabled = tegra30_pll_clk_is_enabled,
  1235. .init = tegra30_pll_clk_init,
  1236. .enable = tegra30_pll_clk_enable,
  1237. .disable = tegra30_pll_clk_disable,
  1238. .recalc_rate = tegra30_pll_recalc_rate,
  1239. .round_rate = tegra30_pll_round_rate,
  1240. .set_rate = tegra30_pll_clk_set_rate,
  1241. };
  1242. int tegra30_plld_clk_cfg_ex(struct clk_hw *hw,
  1243. enum tegra_clk_ex_param p, u32 setting)
  1244. {
  1245. struct clk_tegra *c = to_clk_tegra(hw);
  1246. u32 val, mask, reg;
  1247. switch (p) {
  1248. case TEGRA_CLK_PLLD_CSI_OUT_ENB:
  1249. mask = PLLD_BASE_CSI_CLKENABLE;
  1250. reg = c->reg + PLL_BASE;
  1251. break;
  1252. case TEGRA_CLK_PLLD_DSI_OUT_ENB:
  1253. mask = PLLD_MISC_DSI_CLKENABLE;
  1254. reg = c->reg + PLL_MISC(c);
  1255. break;
  1256. case TEGRA_CLK_PLLD_MIPI_MUX_SEL:
  1257. if (!(c->flags & PLL_ALT_MISC_REG)) {
  1258. mask = PLLD_BASE_DSIB_MUX_MASK;
  1259. reg = c->reg + PLL_BASE;
  1260. break;
  1261. }
  1262. /* fall through - error since PLLD2 does not have MUX_SEL control */
  1263. default:
  1264. return -EINVAL;
  1265. }
  1266. val = clk_readl(reg);
  1267. if (setting)
  1268. val |= mask;
  1269. else
  1270. val &= ~mask;
  1271. clk_writel(val, reg);
  1272. return 0;
  1273. }
  1274. static int tegra30_plle_clk_is_enabled(struct clk_hw *hw)
  1275. {
  1276. struct clk_tegra *c = to_clk_tegra(hw);
  1277. u32 val;
  1278. val = clk_readl(c->reg + PLL_BASE);
  1279. c->state = (val & PLLE_BASE_ENABLE) ? ON : OFF;
  1280. return c->state;
  1281. }
  1282. static void tegra30_plle_clk_disable(struct clk_hw *hw)
  1283. {
  1284. struct clk_tegra *c = to_clk_tegra(hw);
  1285. u32 val;
  1286. val = clk_readl(c->reg + PLL_BASE);
  1287. val &= ~(PLLE_BASE_CML_ENABLE | PLLE_BASE_ENABLE);
  1288. clk_writel(val, c->reg + PLL_BASE);
  1289. }
  1290. static void tegra30_plle_training(struct clk_tegra *c)
  1291. {
  1292. u32 val;
  1293. /* PLLE is already disabled, and setup cleared;
  1294. * create falling edge on PLLE IDDQ input */
  1295. val = pmc_readl(PMC_SATA_PWRGT);
  1296. val |= PMC_SATA_PWRGT_PLLE_IDDQ_VALUE;
  1297. pmc_writel(val, PMC_SATA_PWRGT);
  1298. val = pmc_readl(PMC_SATA_PWRGT);
  1299. val |= PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL;
  1300. pmc_writel(val, PMC_SATA_PWRGT);
  1301. val = pmc_readl(PMC_SATA_PWRGT);
  1302. val &= ~PMC_SATA_PWRGT_PLLE_IDDQ_VALUE;
  1303. pmc_writel(val, PMC_SATA_PWRGT);
  1304. do {
  1305. val = clk_readl(c->reg + PLL_MISC(c));
  1306. } while (!(val & PLLE_MISC_READY));
  1307. }
  1308. static int tegra30_plle_configure(struct clk_hw *hw, bool force_training)
  1309. {
  1310. struct clk_tegra *c = to_clk_tegra(hw);
  1311. struct clk *parent = __clk_get_parent(hw->clk);
  1312. const struct clk_pll_freq_table *sel;
  1313. u32 val;
  1314. unsigned long rate = c->u.pll.fixed_rate;
  1315. unsigned long input_rate = __clk_get_rate(parent);
  1316. for (sel = c->u.pll.freq_table; sel->input_rate != 0; sel++) {
  1317. if (sel->input_rate == input_rate && sel->output_rate == rate)
  1318. break;
  1319. }
  1320. if (sel->input_rate == 0)
  1321. return -ENOSYS;
  1322. /* disable PLLE, clear setup fiels */
  1323. tegra30_plle_clk_disable(hw);
  1324. val = clk_readl(c->reg + PLL_MISC(c));
  1325. val &= ~(PLLE_MISC_LOCK_ENABLE | PLLE_MISC_SETUP_MASK);
  1326. clk_writel(val, c->reg + PLL_MISC(c));
  1327. /* training */
  1328. val = clk_readl(c->reg + PLL_MISC(c));
  1329. if (force_training || (!(val & PLLE_MISC_READY)))
  1330. tegra30_plle_training(c);
  1331. /* configure dividers, setup, disable SS */
  1332. val = clk_readl(c->reg + PLL_BASE);
  1333. val &= ~PLLE_BASE_DIV_MASK;
  1334. val |= PLLE_BASE_DIV(sel->m, sel->n, sel->p, sel->cpcon);
  1335. clk_writel(val, c->reg + PLL_BASE);
  1336. c->mul = sel->n;
  1337. c->div = sel->m * sel->p;
  1338. val = clk_readl(c->reg + PLL_MISC(c));
  1339. val |= PLLE_MISC_SETUP_VALUE;
  1340. val |= PLLE_MISC_LOCK_ENABLE;
  1341. clk_writel(val, c->reg + PLL_MISC(c));
  1342. val = clk_readl(PLLE_SS_CTRL);
  1343. val |= PLLE_SS_DISABLE;
  1344. clk_writel(val, PLLE_SS_CTRL);
  1345. /* enable and lock PLLE*/
  1346. val = clk_readl(c->reg + PLL_BASE);
  1347. val |= (PLLE_BASE_CML_ENABLE | PLLE_BASE_ENABLE);
  1348. clk_writel(val, c->reg + PLL_BASE);
  1349. tegra30_pll_clk_wait_for_lock(c, c->reg + PLL_MISC(c), PLLE_MISC_LOCK);
  1350. return 0;
  1351. }
  1352. static int tegra30_plle_clk_enable(struct clk_hw *hw)
  1353. {
  1354. struct clk_tegra *c = to_clk_tegra(hw);
  1355. return tegra30_plle_configure(hw, !c->set);
  1356. }
  1357. static unsigned long tegra30_plle_clk_recalc_rate(struct clk_hw *hw,
  1358. unsigned long parent_rate)
  1359. {
  1360. struct clk_tegra *c = to_clk_tegra(hw);
  1361. unsigned long rate = parent_rate;
  1362. u32 val;
  1363. val = clk_readl(c->reg + PLL_BASE);
  1364. c->mul = (val & PLLE_BASE_DIVN_MASK) >> PLLE_BASE_DIVN_SHIFT;
  1365. c->div = (val & PLLE_BASE_DIVM_MASK) >> PLLE_BASE_DIVM_SHIFT;
  1366. c->div *= (val & PLLE_BASE_DIVP_MASK) >> PLLE_BASE_DIVP_SHIFT;
  1367. if (c->mul != 0 && c->div != 0) {
  1368. rate *= c->mul;
  1369. rate += c->div - 1; /* round up */
  1370. do_div(rate, c->div);
  1371. }
  1372. return rate;
  1373. }
  1374. struct clk_ops tegra30_plle_ops = {
  1375. .is_enabled = tegra30_plle_clk_is_enabled,
  1376. .enable = tegra30_plle_clk_enable,
  1377. .disable = tegra30_plle_clk_disable,
  1378. .recalc_rate = tegra30_plle_clk_recalc_rate,
  1379. };
  1380. /* Clock divider ops */
  1381. static int tegra30_pll_div_clk_is_enabled(struct clk_hw *hw)
  1382. {
  1383. struct clk_tegra *c = to_clk_tegra(hw);
  1384. if (c->flags & DIV_U71) {
  1385. u32 val = clk_readl(c->reg);
  1386. val >>= c->reg_shift;
  1387. c->state = (val & PLL_OUT_CLKEN) ? ON : OFF;
  1388. if (!(val & PLL_OUT_RESET_DISABLE))
  1389. c->state = OFF;
  1390. } else {
  1391. c->state = ON;
  1392. }
  1393. return c->state;
  1394. }
  1395. static int tegra30_pll_div_clk_enable(struct clk_hw *hw)
  1396. {
  1397. struct clk_tegra *c = to_clk_tegra(hw);
  1398. u32 val;
  1399. u32 new_val;
  1400. pr_debug("%s: %s\n", __func__, __clk_get_name(hw->clk));
  1401. if (c->flags & DIV_U71) {
  1402. val = clk_readl(c->reg);
  1403. new_val = val >> c->reg_shift;
  1404. new_val &= 0xFFFF;
  1405. new_val |= PLL_OUT_CLKEN | PLL_OUT_RESET_DISABLE;
  1406. val &= ~(0xFFFF << c->reg_shift);
  1407. val |= new_val << c->reg_shift;
  1408. clk_writel_delay(val, c->reg);
  1409. return 0;
  1410. } else if (c->flags & DIV_2) {
  1411. return 0;
  1412. }
  1413. return -EINVAL;
  1414. }
  1415. static void tegra30_pll_div_clk_disable(struct clk_hw *hw)
  1416. {
  1417. struct clk_tegra *c = to_clk_tegra(hw);
  1418. u32 val;
  1419. u32 new_val;
  1420. pr_debug("%s: %s\n", __func__, __clk_get_name(hw->clk));
  1421. if (c->flags & DIV_U71) {
  1422. val = clk_readl(c->reg);
  1423. new_val = val >> c->reg_shift;
  1424. new_val &= 0xFFFF;
  1425. new_val &= ~(PLL_OUT_CLKEN | PLL_OUT_RESET_DISABLE);
  1426. val &= ~(0xFFFF << c->reg_shift);
  1427. val |= new_val << c->reg_shift;
  1428. clk_writel_delay(val, c->reg);
  1429. }
  1430. }
  1431. static int tegra30_pll_div_clk_set_rate(struct clk_hw *hw, unsigned long rate,
  1432. unsigned long parent_rate)
  1433. {
  1434. struct clk_tegra *c = to_clk_tegra(hw);
  1435. u32 val;
  1436. u32 new_val;
  1437. int divider_u71;
  1438. if (c->flags & DIV_U71) {
  1439. divider_u71 = clk_div71_get_divider(
  1440. parent_rate, rate, c->flags, ROUND_DIVIDER_UP);
  1441. if (divider_u71 >= 0) {
  1442. val = clk_readl(c->reg);
  1443. new_val = val >> c->reg_shift;
  1444. new_val &= 0xFFFF;
  1445. if (c->flags & DIV_U71_FIXED)
  1446. new_val |= PLL_OUT_OVERRIDE;
  1447. new_val &= ~PLL_OUT_RATIO_MASK;
  1448. new_val |= divider_u71 << PLL_OUT_RATIO_SHIFT;
  1449. val &= ~(0xFFFF << c->reg_shift);
  1450. val |= new_val << c->reg_shift;
  1451. clk_writel_delay(val, c->reg);
  1452. c->div = divider_u71 + 2;
  1453. c->mul = 2;
  1454. c->fixed_rate = rate;
  1455. return 0;
  1456. }
  1457. } else if (c->flags & DIV_2) {
  1458. c->fixed_rate = rate;
  1459. return 0;
  1460. }
  1461. return -EINVAL;
  1462. }
  1463. static unsigned long tegra30_pll_div_clk_recalc_rate(struct clk_hw *hw,
  1464. unsigned long parent_rate)
  1465. {
  1466. struct clk_tegra *c = to_clk_tegra(hw);
  1467. u64 rate = parent_rate;
  1468. if (c->flags & DIV_U71) {
  1469. u32 divu71;
  1470. u32 val = clk_readl(c->reg);
  1471. val >>= c->reg_shift;
  1472. divu71 = (val & PLL_OUT_RATIO_MASK) >> PLL_OUT_RATIO_SHIFT;
  1473. c->div = (divu71 + 2);
  1474. c->mul = 2;
  1475. } else if (c->flags & DIV_2) {
  1476. if (c->flags & (PLLD | PLLX)) {
  1477. c->div = 2;
  1478. c->mul = 1;
  1479. } else
  1480. BUG();
  1481. } else {
  1482. c->div = 1;
  1483. c->mul = 1;
  1484. }
  1485. if (c->mul != 0 && c->div != 0) {
  1486. rate *= c->mul;
  1487. rate += c->div - 1; /* round up */
  1488. do_div(rate, c->div);
  1489. }
  1490. return rate;
  1491. }
  1492. static long tegra30_pll_div_clk_round_rate(struct clk_hw *hw,
  1493. unsigned long rate, unsigned long *prate)
  1494. {
  1495. struct clk_tegra *c = to_clk_tegra(hw);
  1496. unsigned long parent_rate = __clk_get_rate(__clk_get_parent(hw->clk));
  1497. int divider;
  1498. if (prate)
  1499. parent_rate = *prate;
  1500. if (c->flags & DIV_U71) {
  1501. divider = clk_div71_get_divider(
  1502. parent_rate, rate, c->flags, ROUND_DIVIDER_UP);
  1503. if (divider < 0)
  1504. return divider;
  1505. return DIV_ROUND_UP(parent_rate * 2, divider + 2);
  1506. } else if (c->flags & DIV_2) {
  1507. *prate = rate * 2;
  1508. return rate;
  1509. }
  1510. return -EINVAL;
  1511. }
  1512. struct clk_ops tegra30_pll_div_ops = {
  1513. .is_enabled = tegra30_pll_div_clk_is_enabled,
  1514. .enable = tegra30_pll_div_clk_enable,
  1515. .disable = tegra30_pll_div_clk_disable,
  1516. .set_rate = tegra30_pll_div_clk_set_rate,
  1517. .recalc_rate = tegra30_pll_div_clk_recalc_rate,
  1518. .round_rate = tegra30_pll_div_clk_round_rate,
  1519. };
  1520. /* Periph clk ops */
  1521. static inline u32 periph_clk_source_mask(struct clk_tegra *c)
  1522. {
  1523. if (c->flags & MUX8)
  1524. return 7 << 29;
  1525. else if (c->flags & MUX_PWM)
  1526. return 3 << 28;
  1527. else if (c->flags & MUX_CLK_OUT)
  1528. return 3 << (c->u.periph.clk_num + 4);
  1529. else if (c->flags & PLLD)
  1530. return PLLD_BASE_DSIB_MUX_MASK;
  1531. else
  1532. return 3 << 30;
  1533. }
  1534. static inline u32 periph_clk_source_shift(struct clk_tegra *c)
  1535. {
  1536. if (c->flags & MUX8)
  1537. return 29;
  1538. else if (c->flags & MUX_PWM)
  1539. return 28;
  1540. else if (c->flags & MUX_CLK_OUT)
  1541. return c->u.periph.clk_num + 4;
  1542. else if (c->flags & PLLD)
  1543. return PLLD_BASE_DSIB_MUX_SHIFT;
  1544. else
  1545. return 30;
  1546. }
  1547. static int tegra30_periph_clk_is_enabled(struct clk_hw *hw)
  1548. {
  1549. struct clk_tegra *c = to_clk_tegra(hw);
  1550. c->state = ON;
  1551. if (!(clk_readl(PERIPH_CLK_TO_ENB_REG(c)) & PERIPH_CLK_TO_BIT(c)))
  1552. c->state = OFF;
  1553. if (!(c->flags & PERIPH_NO_RESET))
  1554. if (clk_readl(PERIPH_CLK_TO_RST_REG(c)) & PERIPH_CLK_TO_BIT(c))
  1555. c->state = OFF;
  1556. return c->state;
  1557. }
  1558. static int tegra30_periph_clk_enable(struct clk_hw *hw)
  1559. {
  1560. struct clk_tegra *c = to_clk_tegra(hw);
  1561. tegra_periph_clk_enable_refcount[c->u.periph.clk_num]++;
  1562. if (tegra_periph_clk_enable_refcount[c->u.periph.clk_num] > 1)
  1563. return 0;
  1564. clk_writel_delay(PERIPH_CLK_TO_BIT(c), PERIPH_CLK_TO_ENB_SET_REG(c));
  1565. if (!(c->flags & PERIPH_NO_RESET) &&
  1566. !(c->flags & PERIPH_MANUAL_RESET)) {
  1567. if (clk_readl(PERIPH_CLK_TO_RST_REG(c)) &
  1568. PERIPH_CLK_TO_BIT(c)) {
  1569. udelay(5); /* reset propagation delay */
  1570. clk_writel(PERIPH_CLK_TO_BIT(c),
  1571. PERIPH_CLK_TO_RST_CLR_REG(c));
  1572. }
  1573. }
  1574. return 0;
  1575. }
  1576. static void tegra30_periph_clk_disable(struct clk_hw *hw)
  1577. {
  1578. struct clk_tegra *c = to_clk_tegra(hw);
  1579. unsigned long val;
  1580. tegra_periph_clk_enable_refcount[c->u.periph.clk_num]--;
  1581. if (tegra_periph_clk_enable_refcount[c->u.periph.clk_num] > 0)
  1582. return;
  1583. /* If peripheral is in the APB bus then read the APB bus to
  1584. * flush the write operation in apb bus. This will avoid the
  1585. * peripheral access after disabling clock*/
  1586. if (c->flags & PERIPH_ON_APB)
  1587. val = chipid_readl();
  1588. clk_writel_delay(PERIPH_CLK_TO_BIT(c), PERIPH_CLK_TO_ENB_CLR_REG(c));
  1589. }
  1590. void tegra30_periph_clk_reset(struct clk_hw *hw, bool assert)
  1591. {
  1592. struct clk_tegra *c = to_clk_tegra(hw);
  1593. unsigned long val;
  1594. if (!(c->flags & PERIPH_NO_RESET)) {
  1595. if (assert) {
  1596. /* If peripheral is in the APB bus then read the APB
  1597. * bus to flush the write operation in apb bus. This
  1598. * will avoid the peripheral access after disabling
  1599. * clock */
  1600. if (c->flags & PERIPH_ON_APB)
  1601. val = chipid_readl();
  1602. clk_writel(PERIPH_CLK_TO_BIT(c),
  1603. PERIPH_CLK_TO_RST_SET_REG(c));
  1604. } else
  1605. clk_writel(PERIPH_CLK_TO_BIT(c),
  1606. PERIPH_CLK_TO_RST_CLR_REG(c));
  1607. }
  1608. }
  1609. static int tegra30_periph_clk_set_parent(struct clk_hw *hw, u8 index)
  1610. {
  1611. struct clk_tegra *c = to_clk_tegra(hw);
  1612. u32 val;
  1613. if (!(c->flags & MUX))
  1614. return (index == 0) ? 0 : (-EINVAL);
  1615. val = clk_readl(c->reg);
  1616. val &= ~periph_clk_source_mask(c);
  1617. val |= (index << periph_clk_source_shift(c));
  1618. clk_writel_delay(val, c->reg);
  1619. return 0;
  1620. }
  1621. static u8 tegra30_periph_clk_get_parent(struct clk_hw *hw)
  1622. {
  1623. struct clk_tegra *c = to_clk_tegra(hw);
  1624. u32 val = clk_readl(c->reg);
  1625. int source = (val & periph_clk_source_mask(c)) >>
  1626. periph_clk_source_shift(c);
  1627. if (!(c->flags & MUX))
  1628. return 0;
  1629. return source;
  1630. }
  1631. static int tegra30_periph_clk_set_rate(struct clk_hw *hw, unsigned long rate,
  1632. unsigned long parent_rate)
  1633. {
  1634. struct clk_tegra *c = to_clk_tegra(hw);
  1635. u32 val;
  1636. int divider;
  1637. if (c->flags & DIV_U71) {
  1638. divider = clk_div71_get_divider(
  1639. parent_rate, rate, c->flags, ROUND_DIVIDER_UP);
  1640. if (divider >= 0) {
  1641. val = clk_readl(c->reg);
  1642. val &= ~PERIPH_CLK_SOURCE_DIVU71_MASK;
  1643. val |= divider;
  1644. if (c->flags & DIV_U71_UART) {
  1645. if (divider)
  1646. val |= PERIPH_CLK_UART_DIV_ENB;
  1647. else
  1648. val &= ~PERIPH_CLK_UART_DIV_ENB;
  1649. }
  1650. clk_writel_delay(val, c->reg);
  1651. c->div = divider + 2;
  1652. c->mul = 2;
  1653. return 0;
  1654. }
  1655. } else if (c->flags & DIV_U16) {
  1656. divider = clk_div16_get_divider(parent_rate, rate);
  1657. if (divider >= 0) {
  1658. val = clk_readl(c->reg);
  1659. val &= ~PERIPH_CLK_SOURCE_DIVU16_MASK;
  1660. val |= divider;
  1661. clk_writel_delay(val, c->reg);
  1662. c->div = divider + 1;
  1663. c->mul = 1;
  1664. return 0;
  1665. }
  1666. } else if (parent_rate <= rate) {
  1667. c->div = 1;
  1668. c->mul = 1;
  1669. return 0;
  1670. }
  1671. return -EINVAL;
  1672. }
  1673. static long tegra30_periph_clk_round_rate(struct clk_hw *hw, unsigned long rate,
  1674. unsigned long *prate)
  1675. {
  1676. struct clk_tegra *c = to_clk_tegra(hw);
  1677. unsigned long parent_rate = __clk_get_rate(__clk_get_parent(hw->clk));
  1678. int divider;
  1679. if (prate)
  1680. parent_rate = *prate;
  1681. if (c->flags & DIV_U71) {
  1682. divider = clk_div71_get_divider(
  1683. parent_rate, rate, c->flags, ROUND_DIVIDER_UP);
  1684. if (divider < 0)
  1685. return divider;
  1686. return DIV_ROUND_UP(parent_rate * 2, divider + 2);
  1687. } else if (c->flags & DIV_U16) {
  1688. divider = clk_div16_get_divider(parent_rate, rate);
  1689. if (divider < 0)
  1690. return divider;
  1691. return DIV_ROUND_UP(parent_rate, divider + 1);
  1692. }
  1693. return -EINVAL;
  1694. }
  1695. static unsigned long tegra30_periph_clk_recalc_rate(struct clk_hw *hw,
  1696. unsigned long parent_rate)
  1697. {
  1698. struct clk_tegra *c = to_clk_tegra(hw);
  1699. u64 rate = parent_rate;
  1700. u32 val = clk_readl(c->reg);
  1701. if (c->flags & DIV_U71) {
  1702. u32 divu71 = val & PERIPH_CLK_SOURCE_DIVU71_MASK;
  1703. if ((c->flags & DIV_U71_UART) &&
  1704. (!(val & PERIPH_CLK_UART_DIV_ENB))) {
  1705. divu71 = 0;
  1706. }
  1707. if (c->flags & DIV_U71_IDLE) {
  1708. val &= ~(PERIPH_CLK_SOURCE_DIVU71_MASK <<
  1709. PERIPH_CLK_SOURCE_DIVIDLE_SHIFT);
  1710. val |= (PERIPH_CLK_SOURCE_DIVIDLE_VAL <<
  1711. PERIPH_CLK_SOURCE_DIVIDLE_SHIFT);
  1712. clk_writel(val, c->reg);
  1713. }
  1714. c->div = divu71 + 2;
  1715. c->mul = 2;
  1716. } else if (c->flags & DIV_U16) {
  1717. u32 divu16 = val & PERIPH_CLK_SOURCE_DIVU16_MASK;
  1718. c->div = divu16 + 1;
  1719. c->mul = 1;
  1720. } else {
  1721. c->div = 1;
  1722. c->mul = 1;
  1723. }
  1724. if (c->mul != 0 && c->div != 0) {
  1725. rate *= c->mul;
  1726. rate += c->div - 1; /* round up */
  1727. do_div(rate, c->div);
  1728. }
  1729. return rate;
  1730. }
  1731. struct clk_ops tegra30_periph_clk_ops = {
  1732. .is_enabled = tegra30_periph_clk_is_enabled,
  1733. .enable = tegra30_periph_clk_enable,
  1734. .disable = tegra30_periph_clk_disable,
  1735. .set_parent = tegra30_periph_clk_set_parent,
  1736. .get_parent = tegra30_periph_clk_get_parent,
  1737. .set_rate = tegra30_periph_clk_set_rate,
  1738. .round_rate = tegra30_periph_clk_round_rate,
  1739. .recalc_rate = tegra30_periph_clk_recalc_rate,
  1740. };
  1741. static int tegra30_dsib_clk_set_parent(struct clk_hw *hw, u8 index)
  1742. {
  1743. struct clk *d = clk_get_sys(NULL, "pll_d");
  1744. /* The DSIB parent selection bit is in PLLD base register */
  1745. tegra_clk_cfg_ex(
  1746. d, TEGRA_CLK_PLLD_MIPI_MUX_SEL, index);
  1747. return 0;
  1748. }
  1749. struct clk_ops tegra30_dsib_clk_ops = {
  1750. .is_enabled = tegra30_periph_clk_is_enabled,
  1751. .enable = &tegra30_periph_clk_enable,
  1752. .disable = &tegra30_periph_clk_disable,
  1753. .set_parent = &tegra30_dsib_clk_set_parent,
  1754. .get_parent = &tegra30_periph_clk_get_parent,
  1755. .set_rate = &tegra30_periph_clk_set_rate,
  1756. .round_rate = &tegra30_periph_clk_round_rate,
  1757. .recalc_rate = &tegra30_periph_clk_recalc_rate,
  1758. };
  1759. /* Periph extended clock configuration ops */
  1760. int tegra30_vi_clk_cfg_ex(struct clk_hw *hw,
  1761. enum tegra_clk_ex_param p, u32 setting)
  1762. {
  1763. struct clk_tegra *c = to_clk_tegra(hw);
  1764. if (p == TEGRA_CLK_VI_INP_SEL) {
  1765. u32 val = clk_readl(c->reg);
  1766. val &= ~PERIPH_CLK_VI_SEL_EX_MASK;
  1767. val |= (setting << PERIPH_CLK_VI_SEL_EX_SHIFT) &
  1768. PERIPH_CLK_VI_SEL_EX_MASK;
  1769. clk_writel(val, c->reg);
  1770. return 0;
  1771. }
  1772. return -EINVAL;
  1773. }
  1774. int tegra30_nand_clk_cfg_ex(struct clk_hw *hw,
  1775. enum tegra_clk_ex_param p, u32 setting)
  1776. {
  1777. struct clk_tegra *c = to_clk_tegra(hw);
  1778. if (p == TEGRA_CLK_NAND_PAD_DIV2_ENB) {
  1779. u32 val = clk_readl(c->reg);
  1780. if (setting)
  1781. val |= PERIPH_CLK_NAND_DIV_EX_ENB;
  1782. else
  1783. val &= ~PERIPH_CLK_NAND_DIV_EX_ENB;
  1784. clk_writel(val, c->reg);
  1785. return 0;
  1786. }
  1787. return -EINVAL;
  1788. }
  1789. int tegra30_dtv_clk_cfg_ex(struct clk_hw *hw,
  1790. enum tegra_clk_ex_param p, u32 setting)
  1791. {
  1792. struct clk_tegra *c = to_clk_tegra(hw);
  1793. if (p == TEGRA_CLK_DTV_INVERT) {
  1794. u32 val = clk_readl(c->reg);
  1795. if (setting)
  1796. val |= PERIPH_CLK_DTV_POLARITY_INV;
  1797. else
  1798. val &= ~PERIPH_CLK_DTV_POLARITY_INV;
  1799. clk_writel(val, c->reg);
  1800. return 0;
  1801. }
  1802. return -EINVAL;
  1803. }
  1804. /* Output clock ops */
  1805. static DEFINE_SPINLOCK(clk_out_lock);
  1806. static int tegra30_clk_out_is_enabled(struct clk_hw *hw)
  1807. {
  1808. struct clk_tegra *c = to_clk_tegra(hw);
  1809. u32 val = pmc_readl(c->reg);
  1810. c->state = (val & (0x1 << c->u.periph.clk_num)) ? ON : OFF;
  1811. c->mul = 1;
  1812. c->div = 1;
  1813. return c->state;
  1814. }
  1815. static int tegra30_clk_out_enable(struct clk_hw *hw)
  1816. {
  1817. struct clk_tegra *c = to_clk_tegra(hw);
  1818. u32 val;
  1819. unsigned long flags;
  1820. spin_lock_irqsave(&clk_out_lock, flags);
  1821. val = pmc_readl(c->reg);
  1822. val |= (0x1 << c->u.periph.clk_num);
  1823. pmc_writel(val, c->reg);
  1824. spin_unlock_irqrestore(&clk_out_lock, flags);
  1825. return 0;
  1826. }
  1827. static void tegra30_clk_out_disable(struct clk_hw *hw)
  1828. {
  1829. struct clk_tegra *c = to_clk_tegra(hw);
  1830. u32 val;
  1831. unsigned long flags;
  1832. spin_lock_irqsave(&clk_out_lock, flags);
  1833. val = pmc_readl(c->reg);
  1834. val &= ~(0x1 << c->u.periph.clk_num);
  1835. pmc_writel(val, c->reg);
  1836. spin_unlock_irqrestore(&clk_out_lock, flags);
  1837. }
  1838. static int tegra30_clk_out_set_parent(struct clk_hw *hw, u8 index)
  1839. {
  1840. struct clk_tegra *c = to_clk_tegra(hw);
  1841. u32 val;
  1842. unsigned long flags;
  1843. spin_lock_irqsave(&clk_out_lock, flags);
  1844. val = pmc_readl(c->reg);
  1845. val &= ~periph_clk_source_mask(c);
  1846. val |= (index << periph_clk_source_shift(c));
  1847. pmc_writel(val, c->reg);
  1848. spin_unlock_irqrestore(&clk_out_lock, flags);
  1849. return 0;
  1850. }
  1851. static u8 tegra30_clk_out_get_parent(struct clk_hw *hw)
  1852. {
  1853. struct clk_tegra *c = to_clk_tegra(hw);
  1854. u32 val = pmc_readl(c->reg);
  1855. int source;
  1856. source = (val & periph_clk_source_mask(c)) >>
  1857. periph_clk_source_shift(c);
  1858. return source;
  1859. }
  1860. struct clk_ops tegra_clk_out_ops = {
  1861. .is_enabled = tegra30_clk_out_is_enabled,
  1862. .enable = tegra30_clk_out_enable,
  1863. .disable = tegra30_clk_out_disable,
  1864. .set_parent = tegra30_clk_out_set_parent,
  1865. .get_parent = tegra30_clk_out_get_parent,
  1866. .recalc_rate = tegra30_clk_fixed_recalc_rate,
  1867. };
  1868. /* Clock doubler ops */
  1869. static int tegra30_clk_double_is_enabled(struct clk_hw *hw)
  1870. {
  1871. struct clk_tegra *c = to_clk_tegra(hw);
  1872. c->state = ON;
  1873. if (!(clk_readl(PERIPH_CLK_TO_ENB_REG(c)) & PERIPH_CLK_TO_BIT(c)))
  1874. c->state = OFF;
  1875. return c->state;
  1876. };
  1877. static int tegra30_clk_double_set_rate(struct clk_hw *hw, unsigned long rate,
  1878. unsigned long parent_rate)
  1879. {
  1880. struct clk_tegra *c = to_clk_tegra(hw);
  1881. u32 val;
  1882. if (rate == parent_rate) {
  1883. val = clk_readl(c->reg) | (0x1 << c->reg_shift);
  1884. clk_writel(val, c->reg);
  1885. c->mul = 1;
  1886. c->div = 1;
  1887. return 0;
  1888. } else if (rate == 2 * parent_rate) {
  1889. val = clk_readl(c->reg) & (~(0x1 << c->reg_shift));
  1890. clk_writel(val, c->reg);
  1891. c->mul = 2;
  1892. c->div = 1;
  1893. return 0;
  1894. }
  1895. return -EINVAL;
  1896. }
  1897. static unsigned long tegra30_clk_double_recalc_rate(struct clk_hw *hw,
  1898. unsigned long parent_rate)
  1899. {
  1900. struct clk_tegra *c = to_clk_tegra(hw);
  1901. u64 rate = parent_rate;
  1902. u32 val = clk_readl(c->reg);
  1903. c->mul = val & (0x1 << c->reg_shift) ? 1 : 2;
  1904. c->div = 1;
  1905. if (c->mul != 0 && c->div != 0) {
  1906. rate *= c->mul;
  1907. rate += c->div - 1; /* round up */
  1908. do_div(rate, c->div);
  1909. }
  1910. return rate;
  1911. }
  1912. static long tegra30_clk_double_round_rate(struct clk_hw *hw, unsigned long rate,
  1913. unsigned long *prate)
  1914. {
  1915. unsigned long output_rate = *prate;
  1916. do_div(output_rate, 2);
  1917. return output_rate;
  1918. }
  1919. struct clk_ops tegra30_clk_double_ops = {
  1920. .is_enabled = tegra30_clk_double_is_enabled,
  1921. .enable = tegra30_periph_clk_enable,
  1922. .disable = tegra30_periph_clk_disable,
  1923. .recalc_rate = tegra30_clk_double_recalc_rate,
  1924. .round_rate = tegra30_clk_double_round_rate,
  1925. .set_rate = tegra30_clk_double_set_rate,
  1926. };
  1927. /* Audio sync clock ops */
  1928. struct clk_ops tegra_sync_source_ops = {
  1929. .recalc_rate = tegra30_clk_fixed_recalc_rate,
  1930. };
  1931. static int tegra30_audio_sync_clk_is_enabled(struct clk_hw *hw)
  1932. {
  1933. struct clk_tegra *c = to_clk_tegra(hw);
  1934. u32 val = clk_readl(c->reg);
  1935. c->state = (val & AUDIO_SYNC_DISABLE_BIT) ? OFF : ON;
  1936. return c->state;
  1937. }
  1938. static int tegra30_audio_sync_clk_enable(struct clk_hw *hw)
  1939. {
  1940. struct clk_tegra *c = to_clk_tegra(hw);
  1941. u32 val = clk_readl(c->reg);
  1942. clk_writel((val & (~AUDIO_SYNC_DISABLE_BIT)), c->reg);
  1943. return 0;
  1944. }
  1945. static void tegra30_audio_sync_clk_disable(struct clk_hw *hw)
  1946. {
  1947. struct clk_tegra *c = to_clk_tegra(hw);
  1948. u32 val = clk_readl(c->reg);
  1949. clk_writel((val | AUDIO_SYNC_DISABLE_BIT), c->reg);
  1950. }
  1951. static int tegra30_audio_sync_clk_set_parent(struct clk_hw *hw, u8 index)
  1952. {
  1953. struct clk_tegra *c = to_clk_tegra(hw);
  1954. u32 val;
  1955. val = clk_readl(c->reg);
  1956. val &= ~AUDIO_SYNC_SOURCE_MASK;
  1957. val |= index;
  1958. clk_writel(val, c->reg);
  1959. return 0;
  1960. }
  1961. static u8 tegra30_audio_sync_clk_get_parent(struct clk_hw *hw)
  1962. {
  1963. struct clk_tegra *c = to_clk_tegra(hw);
  1964. u32 val = clk_readl(c->reg);
  1965. int source;
  1966. source = val & AUDIO_SYNC_SOURCE_MASK;
  1967. return source;
  1968. }
  1969. struct clk_ops tegra30_audio_sync_clk_ops = {
  1970. .is_enabled = tegra30_audio_sync_clk_is_enabled,
  1971. .enable = tegra30_audio_sync_clk_enable,
  1972. .disable = tegra30_audio_sync_clk_disable,
  1973. .set_parent = tegra30_audio_sync_clk_set_parent,
  1974. .get_parent = tegra30_audio_sync_clk_get_parent,
  1975. .recalc_rate = tegra30_clk_fixed_recalc_rate,
  1976. };
  1977. /* cml0 (pcie), and cml1 (sata) clock ops */
  1978. static int tegra30_cml_clk_is_enabled(struct clk_hw *hw)
  1979. {
  1980. struct clk_tegra *c = to_clk_tegra(hw);
  1981. u32 val = clk_readl(c->reg);
  1982. c->state = val & (0x1 << c->u.periph.clk_num) ? ON : OFF;
  1983. return c->state;
  1984. }
  1985. static int tegra30_cml_clk_enable(struct clk_hw *hw)
  1986. {
  1987. struct clk_tegra *c = to_clk_tegra(hw);
  1988. u32 val = clk_readl(c->reg);
  1989. val |= (0x1 << c->u.periph.clk_num);
  1990. clk_writel(val, c->reg);
  1991. return 0;
  1992. }
  1993. static void tegra30_cml_clk_disable(struct clk_hw *hw)
  1994. {
  1995. struct clk_tegra *c = to_clk_tegra(hw);
  1996. u32 val = clk_readl(c->reg);
  1997. val &= ~(0x1 << c->u.periph.clk_num);
  1998. clk_writel(val, c->reg);
  1999. }
  2000. struct clk_ops tegra_cml_clk_ops = {
  2001. .is_enabled = tegra30_cml_clk_is_enabled,
  2002. .enable = tegra30_cml_clk_enable,
  2003. .disable = tegra30_cml_clk_disable,
  2004. .recalc_rate = tegra30_clk_fixed_recalc_rate,
  2005. };
  2006. struct clk_ops tegra_pciex_clk_ops = {
  2007. .recalc_rate = tegra30_clk_fixed_recalc_rate,
  2008. };
  2009. /* Tegra30 CPU clock and reset control functions */
  2010. static void tegra30_wait_cpu_in_reset(u32 cpu)
  2011. {
  2012. unsigned int reg;
  2013. do {
  2014. reg = readl(reg_clk_base +
  2015. TEGRA30_CLK_RST_CONTROLLER_CPU_CMPLX_STATUS);
  2016. cpu_relax();
  2017. } while (!(reg & (1 << cpu))); /* check CPU been reset or not */
  2018. return;
  2019. }
  2020. static void tegra30_put_cpu_in_reset(u32 cpu)
  2021. {
  2022. writel(CPU_RESET(cpu),
  2023. reg_clk_base + TEGRA_CLK_RST_CONTROLLER_RST_CPU_CMPLX_SET);
  2024. dmb();
  2025. }
  2026. static void tegra30_cpu_out_of_reset(u32 cpu)
  2027. {
  2028. writel(CPU_RESET(cpu),
  2029. reg_clk_base + TEGRA_CLK_RST_CONTROLLER_RST_CPU_CMPLX_CLR);
  2030. wmb();
  2031. }
  2032. static void tegra30_enable_cpu_clock(u32 cpu)
  2033. {
  2034. unsigned int reg;
  2035. writel(CPU_CLOCK(cpu),
  2036. reg_clk_base + TEGRA30_CLK_RST_CONTROLLER_CLK_CPU_CMPLX_CLR);
  2037. reg = readl(reg_clk_base +
  2038. TEGRA30_CLK_RST_CONTROLLER_CLK_CPU_CMPLX_CLR);
  2039. }
  2040. static void tegra30_disable_cpu_clock(u32 cpu)
  2041. {
  2042. unsigned int reg;
  2043. reg = readl(reg_clk_base + TEGRA_CLK_RST_CONTROLLER_CLK_CPU_CMPLX);
  2044. writel(reg | CPU_CLOCK(cpu),
  2045. reg_clk_base + TEGRA_CLK_RST_CONTROLLER_CLK_CPU_CMPLX);
  2046. }
  2047. #ifdef CONFIG_PM_SLEEP
  2048. static bool tegra30_cpu_rail_off_ready(void)
  2049. {
  2050. unsigned int cpu_rst_status;
  2051. int cpu_pwr_status;
  2052. cpu_rst_status = readl(reg_clk_base +
  2053. TEGRA30_CLK_RST_CONTROLLER_CPU_CMPLX_STATUS);
  2054. cpu_pwr_status = tegra_powergate_is_powered(TEGRA_POWERGATE_CPU1) ||
  2055. tegra_powergate_is_powered(TEGRA_POWERGATE_CPU2) ||
  2056. tegra_powergate_is_powered(TEGRA_POWERGATE_CPU3);
  2057. if (((cpu_rst_status & 0xE) != 0xE) || cpu_pwr_status)
  2058. return false;
  2059. return true;
  2060. }
  2061. static void tegra30_cpu_clock_suspend(void)
  2062. {
  2063. /* switch coresite to clk_m, save off original source */
  2064. tegra30_cpu_clk_sctx.clk_csite_src =
  2065. readl(reg_clk_base + CLK_RESET_SOURCE_CSITE);
  2066. writel(3<<30, reg_clk_base + CLK_RESET_SOURCE_CSITE);
  2067. tegra30_cpu_clk_sctx.cpu_burst =
  2068. readl(reg_clk_base + CLK_RESET_CCLK_BURST);
  2069. tegra30_cpu_clk_sctx.pllx_base =
  2070. readl(reg_clk_base + CLK_RESET_PLLX_BASE);
  2071. tegra30_cpu_clk_sctx.pllx_misc =
  2072. readl(reg_clk_base + CLK_RESET_PLLX_MISC);
  2073. tegra30_cpu_clk_sctx.cclk_divider =
  2074. readl(reg_clk_base + CLK_RESET_CCLK_DIVIDER);
  2075. }
  2076. static void tegra30_cpu_clock_resume(void)
  2077. {
  2078. unsigned int reg, policy;
  2079. /* Is CPU complex already running on PLLX? */
  2080. reg = readl(reg_clk_base + CLK_RESET_CCLK_BURST);
  2081. policy = (reg >> CLK_RESET_CCLK_BURST_POLICY_SHIFT) & 0xF;
  2082. if (policy == CLK_RESET_CCLK_IDLE_POLICY)
  2083. reg = (reg >> CLK_RESET_CCLK_IDLE_POLICY_SHIFT) & 0xF;
  2084. else if (policy == CLK_RESET_CCLK_RUN_POLICY)
  2085. reg = (reg >> CLK_RESET_CCLK_RUN_POLICY_SHIFT) & 0xF;
  2086. else
  2087. BUG();
  2088. if (reg != CLK_RESET_CCLK_BURST_POLICY_PLLX) {
  2089. /* restore PLLX settings if CPU is on different PLL */
  2090. writel(tegra30_cpu_clk_sctx.pllx_misc,
  2091. reg_clk_base + CLK_RESET_PLLX_MISC);
  2092. writel(tegra30_cpu_clk_sctx.pllx_base,
  2093. reg_clk_base + CLK_RESET_PLLX_BASE);
  2094. /* wait for PLL stabilization if PLLX was enabled */
  2095. if (tegra30_cpu_clk_sctx.pllx_base & (1 << 30))
  2096. udelay(300);
  2097. }
  2098. /*
  2099. * Restore original burst policy setting for calls resulting from CPU
  2100. * LP2 in idle or system suspend.
  2101. */
  2102. writel(tegra30_cpu_clk_sctx.cclk_divider,
  2103. reg_clk_base + CLK_RESET_CCLK_DIVIDER);
  2104. writel(tegra30_cpu_clk_sctx.cpu_burst,
  2105. reg_clk_base + CLK_RESET_CCLK_BURST);
  2106. writel(tegra30_cpu_clk_sctx.clk_csite_src,
  2107. reg_clk_base + CLK_RESET_SOURCE_CSITE);
  2108. }
  2109. #endif
  2110. static struct tegra_cpu_car_ops tegra30_cpu_car_ops = {
  2111. .wait_for_reset = tegra30_wait_cpu_in_reset,
  2112. .put_in_reset = tegra30_put_cpu_in_reset,
  2113. .out_of_reset = tegra30_cpu_out_of_reset,
  2114. .enable_clock = tegra30_enable_cpu_clock,
  2115. .disable_clock = tegra30_disable_cpu_clock,
  2116. #ifdef CONFIG_PM_SLEEP
  2117. .rail_off_ready = tegra30_cpu_rail_off_ready,
  2118. .suspend = tegra30_cpu_clock_suspend,
  2119. .resume = tegra30_cpu_clock_resume,
  2120. #endif
  2121. };
  2122. void __init tegra30_cpu_car_ops_init(void)
  2123. {
  2124. tegra_cpu_car_ops = &tegra30_cpu_car_ops;
  2125. }