timer.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318
  1. /*
  2. * Copyright (C) 2000-2001 Deep Blue Solutions
  3. * Copyright (C) 2002 Shane Nay (shane@minirl.com)
  4. * Copyright (C) 2006-2007 Pavel Pisa (ppisa@pikron.com)
  5. * Copyright (C) 2008 Juergen Beisert (kernel@pengutronix.de)
  6. * Copyright (C) 2010 Freescale Semiconductor, Inc. All Rights Reserved.
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version 2
  11. * of the License, or (at your option) any later version.
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
  20. * MA 02110-1301, USA.
  21. */
  22. #include <linux/err.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/irq.h>
  25. #include <linux/clockchips.h>
  26. #include <linux/clk.h>
  27. #include <linux/of.h>
  28. #include <linux/of_irq.h>
  29. #include <asm/mach/time.h>
  30. #include <asm/sched_clock.h>
  31. #include <mach/mxs.h>
  32. #include <mach/common.h>
  33. /*
  34. * There are 2 versions of the timrot on Freescale MXS-based SoCs.
  35. * The v1 on MX23 only gets 16 bits counter, while v2 on MX28
  36. * extends the counter to 32 bits.
  37. *
  38. * The implementation uses two timers, one for clock_event and
  39. * another for clocksource. MX28 uses timrot 0 and 1, while MX23
  40. * uses 0 and 2.
  41. */
  42. #define MX23_TIMROT_VERSION_OFFSET 0x0a0
  43. #define MX28_TIMROT_VERSION_OFFSET 0x120
  44. #define BP_TIMROT_MAJOR_VERSION 24
  45. #define BV_TIMROT_VERSION_1 0x01
  46. #define BV_TIMROT_VERSION_2 0x02
  47. #define timrot_is_v1() (timrot_major_version == BV_TIMROT_VERSION_1)
  48. /*
  49. * There are 4 registers for each timrotv2 instance, and 2 registers
  50. * for each timrotv1. So address step 0x40 in macros below strides
  51. * one instance of timrotv2 while two instances of timrotv1.
  52. *
  53. * As the result, HW_TIMROT_XXXn(1) defines the address of timrot1
  54. * on MX28 while timrot2 on MX23.
  55. */
  56. /* common between v1 and v2 */
  57. #define HW_TIMROT_ROTCTRL 0x00
  58. #define HW_TIMROT_TIMCTRLn(n) (0x20 + (n) * 0x40)
  59. /* v1 only */
  60. #define HW_TIMROT_TIMCOUNTn(n) (0x30 + (n) * 0x40)
  61. /* v2 only */
  62. #define HW_TIMROT_RUNNING_COUNTn(n) (0x30 + (n) * 0x40)
  63. #define HW_TIMROT_FIXED_COUNTn(n) (0x40 + (n) * 0x40)
  64. #define BM_TIMROT_TIMCTRLn_RELOAD (1 << 6)
  65. #define BM_TIMROT_TIMCTRLn_UPDATE (1 << 7)
  66. #define BM_TIMROT_TIMCTRLn_IRQ_EN (1 << 14)
  67. #define BM_TIMROT_TIMCTRLn_IRQ (1 << 15)
  68. #define BP_TIMROT_TIMCTRLn_SELECT 0
  69. #define BV_TIMROTv1_TIMCTRLn_SELECT__32KHZ_XTAL 0x8
  70. #define BV_TIMROTv2_TIMCTRLn_SELECT__32KHZ_XTAL 0xb
  71. static struct clock_event_device mxs_clockevent_device;
  72. static enum clock_event_mode mxs_clockevent_mode = CLOCK_EVT_MODE_UNUSED;
  73. static void __iomem *mxs_timrot_base = MXS_IO_ADDRESS(MXS_TIMROT_BASE_ADDR);
  74. static u32 timrot_major_version;
  75. static inline void timrot_irq_disable(void)
  76. {
  77. __mxs_clrl(BM_TIMROT_TIMCTRLn_IRQ_EN,
  78. mxs_timrot_base + HW_TIMROT_TIMCTRLn(0));
  79. }
  80. static inline void timrot_irq_enable(void)
  81. {
  82. __mxs_setl(BM_TIMROT_TIMCTRLn_IRQ_EN,
  83. mxs_timrot_base + HW_TIMROT_TIMCTRLn(0));
  84. }
  85. static void timrot_irq_acknowledge(void)
  86. {
  87. __mxs_clrl(BM_TIMROT_TIMCTRLn_IRQ,
  88. mxs_timrot_base + HW_TIMROT_TIMCTRLn(0));
  89. }
  90. static cycle_t timrotv1_get_cycles(struct clocksource *cs)
  91. {
  92. return ~((__raw_readl(mxs_timrot_base + HW_TIMROT_TIMCOUNTn(1))
  93. & 0xffff0000) >> 16);
  94. }
  95. static int timrotv1_set_next_event(unsigned long evt,
  96. struct clock_event_device *dev)
  97. {
  98. /* timrot decrements the count */
  99. __raw_writel(evt, mxs_timrot_base + HW_TIMROT_TIMCOUNTn(0));
  100. return 0;
  101. }
  102. static int timrotv2_set_next_event(unsigned long evt,
  103. struct clock_event_device *dev)
  104. {
  105. /* timrot decrements the count */
  106. __raw_writel(evt, mxs_timrot_base + HW_TIMROT_FIXED_COUNTn(0));
  107. return 0;
  108. }
  109. static irqreturn_t mxs_timer_interrupt(int irq, void *dev_id)
  110. {
  111. struct clock_event_device *evt = dev_id;
  112. timrot_irq_acknowledge();
  113. evt->event_handler(evt);
  114. return IRQ_HANDLED;
  115. }
  116. static struct irqaction mxs_timer_irq = {
  117. .name = "MXS Timer Tick",
  118. .dev_id = &mxs_clockevent_device,
  119. .flags = IRQF_TIMER | IRQF_IRQPOLL,
  120. .handler = mxs_timer_interrupt,
  121. };
  122. #ifdef DEBUG
  123. static const char *clock_event_mode_label[] const = {
  124. [CLOCK_EVT_MODE_PERIODIC] = "CLOCK_EVT_MODE_PERIODIC",
  125. [CLOCK_EVT_MODE_ONESHOT] = "CLOCK_EVT_MODE_ONESHOT",
  126. [CLOCK_EVT_MODE_SHUTDOWN] = "CLOCK_EVT_MODE_SHUTDOWN",
  127. [CLOCK_EVT_MODE_UNUSED] = "CLOCK_EVT_MODE_UNUSED"
  128. };
  129. #endif /* DEBUG */
  130. static void mxs_set_mode(enum clock_event_mode mode,
  131. struct clock_event_device *evt)
  132. {
  133. /* Disable interrupt in timer module */
  134. timrot_irq_disable();
  135. if (mode != mxs_clockevent_mode) {
  136. /* Set event time into the furthest future */
  137. if (timrot_is_v1())
  138. __raw_writel(0xffff,
  139. mxs_timrot_base + HW_TIMROT_TIMCOUNTn(1));
  140. else
  141. __raw_writel(0xffffffff,
  142. mxs_timrot_base + HW_TIMROT_FIXED_COUNTn(1));
  143. /* Clear pending interrupt */
  144. timrot_irq_acknowledge();
  145. }
  146. #ifdef DEBUG
  147. pr_info("%s: changing mode from %s to %s\n", __func__,
  148. clock_event_mode_label[mxs_clockevent_mode],
  149. clock_event_mode_label[mode]);
  150. #endif /* DEBUG */
  151. /* Remember timer mode */
  152. mxs_clockevent_mode = mode;
  153. switch (mode) {
  154. case CLOCK_EVT_MODE_PERIODIC:
  155. pr_err("%s: Periodic mode is not implemented\n", __func__);
  156. break;
  157. case CLOCK_EVT_MODE_ONESHOT:
  158. timrot_irq_enable();
  159. break;
  160. case CLOCK_EVT_MODE_SHUTDOWN:
  161. case CLOCK_EVT_MODE_UNUSED:
  162. case CLOCK_EVT_MODE_RESUME:
  163. /* Left event sources disabled, no more interrupts appear */
  164. break;
  165. }
  166. }
  167. static struct clock_event_device mxs_clockevent_device = {
  168. .name = "mxs_timrot",
  169. .features = CLOCK_EVT_FEAT_ONESHOT,
  170. .shift = 32,
  171. .set_mode = mxs_set_mode,
  172. .set_next_event = timrotv2_set_next_event,
  173. .rating = 200,
  174. };
  175. static int __init mxs_clockevent_init(struct clk *timer_clk)
  176. {
  177. unsigned int c = clk_get_rate(timer_clk);
  178. mxs_clockevent_device.mult =
  179. div_sc(c, NSEC_PER_SEC, mxs_clockevent_device.shift);
  180. mxs_clockevent_device.cpumask = cpumask_of(0);
  181. if (timrot_is_v1()) {
  182. mxs_clockevent_device.set_next_event = timrotv1_set_next_event;
  183. mxs_clockevent_device.max_delta_ns =
  184. clockevent_delta2ns(0xfffe, &mxs_clockevent_device);
  185. mxs_clockevent_device.min_delta_ns =
  186. clockevent_delta2ns(0xf, &mxs_clockevent_device);
  187. } else {
  188. mxs_clockevent_device.max_delta_ns =
  189. clockevent_delta2ns(0xfffffffe, &mxs_clockevent_device);
  190. mxs_clockevent_device.min_delta_ns =
  191. clockevent_delta2ns(0xf, &mxs_clockevent_device);
  192. }
  193. clockevents_register_device(&mxs_clockevent_device);
  194. return 0;
  195. }
  196. static struct clocksource clocksource_mxs = {
  197. .name = "mxs_timer",
  198. .rating = 200,
  199. .read = timrotv1_get_cycles,
  200. .mask = CLOCKSOURCE_MASK(16),
  201. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  202. };
  203. static u32 notrace mxs_read_sched_clock_v2(void)
  204. {
  205. return ~readl_relaxed(mxs_timrot_base + HW_TIMROT_RUNNING_COUNTn(1));
  206. }
  207. static int __init mxs_clocksource_init(struct clk *timer_clk)
  208. {
  209. unsigned int c = clk_get_rate(timer_clk);
  210. if (timrot_is_v1())
  211. clocksource_register_hz(&clocksource_mxs, c);
  212. else {
  213. clocksource_mmio_init(mxs_timrot_base + HW_TIMROT_RUNNING_COUNTn(1),
  214. "mxs_timer", c, 200, 32, clocksource_mmio_readl_down);
  215. setup_sched_clock(mxs_read_sched_clock_v2, 32, c);
  216. }
  217. return 0;
  218. }
  219. void __init mxs_timer_init(void)
  220. {
  221. struct device_node *np;
  222. struct clk *timer_clk;
  223. int irq;
  224. np = of_find_compatible_node(NULL, NULL, "fsl,timrot");
  225. if (!np) {
  226. pr_err("%s: failed find timrot node\n", __func__);
  227. return;
  228. }
  229. timer_clk = clk_get_sys("timrot", NULL);
  230. if (IS_ERR(timer_clk)) {
  231. pr_err("%s: failed to get clk\n", __func__);
  232. return;
  233. }
  234. clk_prepare_enable(timer_clk);
  235. /*
  236. * Initialize timers to a known state
  237. */
  238. mxs_reset_block(mxs_timrot_base + HW_TIMROT_ROTCTRL);
  239. /* get timrot version */
  240. timrot_major_version = __raw_readl(mxs_timrot_base +
  241. (cpu_is_mx23() ? MX23_TIMROT_VERSION_OFFSET :
  242. MX28_TIMROT_VERSION_OFFSET));
  243. timrot_major_version >>= BP_TIMROT_MAJOR_VERSION;
  244. /* one for clock_event */
  245. __raw_writel((timrot_is_v1() ?
  246. BV_TIMROTv1_TIMCTRLn_SELECT__32KHZ_XTAL :
  247. BV_TIMROTv2_TIMCTRLn_SELECT__32KHZ_XTAL) |
  248. BM_TIMROT_TIMCTRLn_UPDATE |
  249. BM_TIMROT_TIMCTRLn_IRQ_EN,
  250. mxs_timrot_base + HW_TIMROT_TIMCTRLn(0));
  251. /* another for clocksource */
  252. __raw_writel((timrot_is_v1() ?
  253. BV_TIMROTv1_TIMCTRLn_SELECT__32KHZ_XTAL :
  254. BV_TIMROTv2_TIMCTRLn_SELECT__32KHZ_XTAL) |
  255. BM_TIMROT_TIMCTRLn_RELOAD,
  256. mxs_timrot_base + HW_TIMROT_TIMCTRLn(1));
  257. /* set clocksource timer fixed count to the maximum */
  258. if (timrot_is_v1())
  259. __raw_writel(0xffff,
  260. mxs_timrot_base + HW_TIMROT_TIMCOUNTn(1));
  261. else
  262. __raw_writel(0xffffffff,
  263. mxs_timrot_base + HW_TIMROT_FIXED_COUNTn(1));
  264. /* init and register the timer to the framework */
  265. mxs_clocksource_init(timer_clk);
  266. mxs_clockevent_init(timer_clk);
  267. /* Make irqs happen */
  268. irq = irq_of_parse_and_map(np, 0);
  269. setup_irq(irq, &mxs_timer_irq);
  270. }