smp.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731
  1. /*
  2. * linux/arch/arm/kernel/smp.c
  3. *
  4. * Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/sched.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/cache.h>
  17. #include <linux/profile.h>
  18. #include <linux/errno.h>
  19. #include <linux/mm.h>
  20. #include <linux/err.h>
  21. #include <linux/cpu.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/irq.h>
  24. #include <linux/percpu.h>
  25. #include <linux/clockchips.h>
  26. #include <linux/completion.h>
  27. #include <linux/cpufreq.h>
  28. #include <linux/atomic.h>
  29. #include <asm/smp.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/cpu.h>
  32. #include <asm/cputype.h>
  33. #include <asm/exception.h>
  34. #include <asm/idmap.h>
  35. #include <asm/topology.h>
  36. #include <asm/mmu_context.h>
  37. #include <asm/pgtable.h>
  38. #include <asm/pgalloc.h>
  39. #include <asm/processor.h>
  40. #include <asm/sections.h>
  41. #include <asm/tlbflush.h>
  42. #include <asm/ptrace.h>
  43. #include <asm/localtimer.h>
  44. #include <asm/smp_plat.h>
  45. #include <asm/virt.h>
  46. #include <asm/mach/arch.h>
  47. /*
  48. * as from 2.5, kernels no longer have an init_tasks structure
  49. * so we need some other way of telling a new secondary core
  50. * where to place its SVC stack
  51. */
  52. struct secondary_data secondary_data;
  53. /*
  54. * control for which core is the next to come out of the secondary
  55. * boot "holding pen"
  56. */
  57. volatile int __cpuinitdata pen_release = -1;
  58. enum ipi_msg_type {
  59. IPI_WAKEUP,
  60. IPI_TIMER,
  61. IPI_RESCHEDULE,
  62. IPI_CALL_FUNC,
  63. IPI_CALL_FUNC_SINGLE,
  64. IPI_CPU_STOP,
  65. };
  66. static DECLARE_COMPLETION(cpu_running);
  67. static struct smp_operations smp_ops;
  68. void __init smp_set_ops(struct smp_operations *ops)
  69. {
  70. if (ops)
  71. smp_ops = *ops;
  72. };
  73. int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
  74. {
  75. int ret;
  76. /*
  77. * We need to tell the secondary core where to find
  78. * its stack and the page tables.
  79. */
  80. secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
  81. secondary_data.pgdir = virt_to_phys(idmap_pgd);
  82. secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
  83. __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
  84. outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
  85. /*
  86. * Now bring the CPU into our world.
  87. */
  88. ret = boot_secondary(cpu, idle);
  89. if (ret == 0) {
  90. /*
  91. * CPU was successfully started, wait for it
  92. * to come online or time out.
  93. */
  94. wait_for_completion_timeout(&cpu_running,
  95. msecs_to_jiffies(1000));
  96. if (!cpu_online(cpu)) {
  97. pr_crit("CPU%u: failed to come online\n", cpu);
  98. ret = -EIO;
  99. }
  100. } else {
  101. pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
  102. }
  103. secondary_data.stack = NULL;
  104. secondary_data.pgdir = 0;
  105. return ret;
  106. }
  107. /* platform specific SMP operations */
  108. void __init smp_init_cpus(void)
  109. {
  110. if (smp_ops.smp_init_cpus)
  111. smp_ops.smp_init_cpus();
  112. }
  113. static void __init platform_smp_prepare_cpus(unsigned int max_cpus)
  114. {
  115. if (smp_ops.smp_prepare_cpus)
  116. smp_ops.smp_prepare_cpus(max_cpus);
  117. }
  118. static void __cpuinit platform_secondary_init(unsigned int cpu)
  119. {
  120. if (smp_ops.smp_secondary_init)
  121. smp_ops.smp_secondary_init(cpu);
  122. }
  123. int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
  124. {
  125. if (smp_ops.smp_boot_secondary)
  126. return smp_ops.smp_boot_secondary(cpu, idle);
  127. return -ENOSYS;
  128. }
  129. #ifdef CONFIG_HOTPLUG_CPU
  130. static void percpu_timer_stop(void);
  131. static int platform_cpu_kill(unsigned int cpu)
  132. {
  133. if (smp_ops.cpu_kill)
  134. return smp_ops.cpu_kill(cpu);
  135. return 1;
  136. }
  137. static void platform_cpu_die(unsigned int cpu)
  138. {
  139. if (smp_ops.cpu_die)
  140. smp_ops.cpu_die(cpu);
  141. }
  142. static int platform_cpu_disable(unsigned int cpu)
  143. {
  144. if (smp_ops.cpu_disable)
  145. return smp_ops.cpu_disable(cpu);
  146. /*
  147. * By default, allow disabling all CPUs except the first one,
  148. * since this is special on a lot of platforms, e.g. because
  149. * of clock tick interrupts.
  150. */
  151. return cpu == 0 ? -EPERM : 0;
  152. }
  153. /*
  154. * __cpu_disable runs on the processor to be shutdown.
  155. */
  156. int __cpuinit __cpu_disable(void)
  157. {
  158. unsigned int cpu = smp_processor_id();
  159. int ret;
  160. ret = platform_cpu_disable(cpu);
  161. if (ret)
  162. return ret;
  163. /*
  164. * Take this CPU offline. Once we clear this, we can't return,
  165. * and we must not schedule until we're ready to give up the cpu.
  166. */
  167. set_cpu_online(cpu, false);
  168. /*
  169. * OK - migrate IRQs away from this CPU
  170. */
  171. migrate_irqs();
  172. /*
  173. * Stop the local timer for this CPU.
  174. */
  175. percpu_timer_stop();
  176. /*
  177. * Flush user cache and TLB mappings, and then remove this CPU
  178. * from the vm mask set of all processes.
  179. *
  180. * Caches are flushed to the Level of Unification Inner Shareable
  181. * to write-back dirty lines to unified caches shared by all CPUs.
  182. */
  183. flush_cache_louis();
  184. local_flush_tlb_all();
  185. clear_tasks_mm_cpumask(cpu);
  186. return 0;
  187. }
  188. static DECLARE_COMPLETION(cpu_died);
  189. /*
  190. * called on the thread which is asking for a CPU to be shutdown -
  191. * waits until shutdown has completed, or it is timed out.
  192. */
  193. void __cpuinit __cpu_die(unsigned int cpu)
  194. {
  195. if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
  196. pr_err("CPU%u: cpu didn't die\n", cpu);
  197. return;
  198. }
  199. printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
  200. if (!platform_cpu_kill(cpu))
  201. printk("CPU%u: unable to kill\n", cpu);
  202. }
  203. /*
  204. * Called from the idle thread for the CPU which has been shutdown.
  205. *
  206. * Note that we disable IRQs here, but do not re-enable them
  207. * before returning to the caller. This is also the behaviour
  208. * of the other hotplug-cpu capable cores, so presumably coming
  209. * out of idle fixes this.
  210. */
  211. void __ref cpu_die(void)
  212. {
  213. unsigned int cpu = smp_processor_id();
  214. idle_task_exit();
  215. local_irq_disable();
  216. mb();
  217. /* Tell __cpu_die() that this CPU is now safe to dispose of */
  218. RCU_NONIDLE(complete(&cpu_died));
  219. /*
  220. * actual CPU shutdown procedure is at least platform (if not
  221. * CPU) specific.
  222. */
  223. platform_cpu_die(cpu);
  224. /*
  225. * Do not return to the idle loop - jump back to the secondary
  226. * cpu initialisation. There's some initialisation which needs
  227. * to be repeated to undo the effects of taking the CPU offline.
  228. */
  229. __asm__("mov sp, %0\n"
  230. " mov fp, #0\n"
  231. " b secondary_start_kernel"
  232. :
  233. : "r" (task_stack_page(current) + THREAD_SIZE - 8));
  234. }
  235. #endif /* CONFIG_HOTPLUG_CPU */
  236. /*
  237. * Called by both boot and secondaries to move global data into
  238. * per-processor storage.
  239. */
  240. static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
  241. {
  242. struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
  243. cpu_info->loops_per_jiffy = loops_per_jiffy;
  244. cpu_info->cpuid = read_cpuid_id();
  245. store_cpu_topology(cpuid);
  246. }
  247. static void percpu_timer_setup(void);
  248. /*
  249. * This is the secondary CPU boot entry. We're using this CPUs
  250. * idle thread stack, but a set of temporary page tables.
  251. */
  252. asmlinkage void __cpuinit secondary_start_kernel(void)
  253. {
  254. struct mm_struct *mm = &init_mm;
  255. unsigned int cpu;
  256. /*
  257. * The identity mapping is uncached (strongly ordered), so
  258. * switch away from it before attempting any exclusive accesses.
  259. */
  260. cpu_switch_mm(mm->pgd, mm);
  261. enter_lazy_tlb(mm, current);
  262. local_flush_tlb_all();
  263. /*
  264. * All kernel threads share the same mm context; grab a
  265. * reference and switch to it.
  266. */
  267. cpu = smp_processor_id();
  268. atomic_inc(&mm->mm_count);
  269. current->active_mm = mm;
  270. cpumask_set_cpu(cpu, mm_cpumask(mm));
  271. cpu_init();
  272. printk("CPU%u: Booted secondary processor\n", cpu);
  273. preempt_disable();
  274. trace_hardirqs_off();
  275. /*
  276. * Give the platform a chance to do its own initialisation.
  277. */
  278. platform_secondary_init(cpu);
  279. notify_cpu_starting(cpu);
  280. calibrate_delay();
  281. smp_store_cpu_info(cpu);
  282. /*
  283. * OK, now it's safe to let the boot CPU continue. Wait for
  284. * the CPU migration code to notice that the CPU is online
  285. * before we continue - which happens after __cpu_up returns.
  286. */
  287. set_cpu_online(cpu, true);
  288. complete(&cpu_running);
  289. /*
  290. * Setup the percpu timer for this CPU.
  291. */
  292. percpu_timer_setup();
  293. local_irq_enable();
  294. local_fiq_enable();
  295. /*
  296. * OK, it's off to the idle thread for us
  297. */
  298. cpu_idle();
  299. }
  300. void __init smp_cpus_done(unsigned int max_cpus)
  301. {
  302. int cpu;
  303. unsigned long bogosum = 0;
  304. for_each_online_cpu(cpu)
  305. bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
  306. printk(KERN_INFO "SMP: Total of %d processors activated "
  307. "(%lu.%02lu BogoMIPS).\n",
  308. num_online_cpus(),
  309. bogosum / (500000/HZ),
  310. (bogosum / (5000/HZ)) % 100);
  311. hyp_mode_check();
  312. }
  313. void __init smp_prepare_boot_cpu(void)
  314. {
  315. set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
  316. }
  317. void __init smp_prepare_cpus(unsigned int max_cpus)
  318. {
  319. unsigned int ncores = num_possible_cpus();
  320. init_cpu_topology();
  321. smp_store_cpu_info(smp_processor_id());
  322. /*
  323. * are we trying to boot more cores than exist?
  324. */
  325. if (max_cpus > ncores)
  326. max_cpus = ncores;
  327. if (ncores > 1 && max_cpus) {
  328. /*
  329. * Enable the local timer or broadcast device for the
  330. * boot CPU, but only if we have more than one CPU.
  331. */
  332. percpu_timer_setup();
  333. /*
  334. * Initialise the present map, which describes the set of CPUs
  335. * actually populated at the present time. A platform should
  336. * re-initialize the map in platform_smp_prepare_cpus() if
  337. * present != possible (e.g. physical hotplug).
  338. */
  339. init_cpu_present(cpu_possible_mask);
  340. /*
  341. * Initialise the SCU if there are more than one CPU
  342. * and let them know where to start.
  343. */
  344. platform_smp_prepare_cpus(max_cpus);
  345. }
  346. }
  347. static void (*smp_cross_call)(const struct cpumask *, unsigned int);
  348. void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
  349. {
  350. smp_cross_call = fn;
  351. }
  352. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  353. {
  354. smp_cross_call(mask, IPI_CALL_FUNC);
  355. }
  356. void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
  357. {
  358. smp_cross_call(mask, IPI_WAKEUP);
  359. }
  360. void arch_send_call_function_single_ipi(int cpu)
  361. {
  362. smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
  363. }
  364. static const char *ipi_types[NR_IPI] = {
  365. #define S(x,s) [x] = s
  366. S(IPI_WAKEUP, "CPU wakeup interrupts"),
  367. S(IPI_TIMER, "Timer broadcast interrupts"),
  368. S(IPI_RESCHEDULE, "Rescheduling interrupts"),
  369. S(IPI_CALL_FUNC, "Function call interrupts"),
  370. S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
  371. S(IPI_CPU_STOP, "CPU stop interrupts"),
  372. };
  373. void show_ipi_list(struct seq_file *p, int prec)
  374. {
  375. unsigned int cpu, i;
  376. for (i = 0; i < NR_IPI; i++) {
  377. seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
  378. for_each_online_cpu(cpu)
  379. seq_printf(p, "%10u ",
  380. __get_irq_stat(cpu, ipi_irqs[i]));
  381. seq_printf(p, " %s\n", ipi_types[i]);
  382. }
  383. }
  384. u64 smp_irq_stat_cpu(unsigned int cpu)
  385. {
  386. u64 sum = 0;
  387. int i;
  388. for (i = 0; i < NR_IPI; i++)
  389. sum += __get_irq_stat(cpu, ipi_irqs[i]);
  390. return sum;
  391. }
  392. /*
  393. * Timer (local or broadcast) support
  394. */
  395. static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
  396. static void ipi_timer(void)
  397. {
  398. struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
  399. evt->event_handler(evt);
  400. }
  401. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  402. static void smp_timer_broadcast(const struct cpumask *mask)
  403. {
  404. smp_cross_call(mask, IPI_TIMER);
  405. }
  406. #else
  407. #define smp_timer_broadcast NULL
  408. #endif
  409. static void broadcast_timer_set_mode(enum clock_event_mode mode,
  410. struct clock_event_device *evt)
  411. {
  412. }
  413. static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
  414. {
  415. evt->name = "dummy_timer";
  416. evt->features = CLOCK_EVT_FEAT_ONESHOT |
  417. CLOCK_EVT_FEAT_PERIODIC |
  418. CLOCK_EVT_FEAT_DUMMY;
  419. evt->rating = 400;
  420. evt->mult = 1;
  421. evt->set_mode = broadcast_timer_set_mode;
  422. clockevents_register_device(evt);
  423. }
  424. static struct local_timer_ops *lt_ops;
  425. #ifdef CONFIG_LOCAL_TIMERS
  426. int local_timer_register(struct local_timer_ops *ops)
  427. {
  428. if (!is_smp() || !setup_max_cpus)
  429. return -ENXIO;
  430. if (lt_ops)
  431. return -EBUSY;
  432. lt_ops = ops;
  433. return 0;
  434. }
  435. #endif
  436. static void __cpuinit percpu_timer_setup(void)
  437. {
  438. unsigned int cpu = smp_processor_id();
  439. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  440. evt->cpumask = cpumask_of(cpu);
  441. evt->broadcast = smp_timer_broadcast;
  442. if (!lt_ops || lt_ops->setup(evt))
  443. broadcast_timer_setup(evt);
  444. }
  445. #ifdef CONFIG_HOTPLUG_CPU
  446. /*
  447. * The generic clock events code purposely does not stop the local timer
  448. * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
  449. * manually here.
  450. */
  451. static void percpu_timer_stop(void)
  452. {
  453. unsigned int cpu = smp_processor_id();
  454. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  455. if (lt_ops)
  456. lt_ops->stop(evt);
  457. }
  458. #endif
  459. static DEFINE_RAW_SPINLOCK(stop_lock);
  460. /*
  461. * ipi_cpu_stop - handle IPI from smp_send_stop()
  462. */
  463. static void ipi_cpu_stop(unsigned int cpu)
  464. {
  465. if (system_state == SYSTEM_BOOTING ||
  466. system_state == SYSTEM_RUNNING) {
  467. raw_spin_lock(&stop_lock);
  468. printk(KERN_CRIT "CPU%u: stopping\n", cpu);
  469. dump_stack();
  470. raw_spin_unlock(&stop_lock);
  471. }
  472. set_cpu_online(cpu, false);
  473. local_fiq_disable();
  474. local_irq_disable();
  475. while (1)
  476. cpu_relax();
  477. }
  478. /*
  479. * Main handler for inter-processor interrupts
  480. */
  481. asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
  482. {
  483. handle_IPI(ipinr, regs);
  484. }
  485. void handle_IPI(int ipinr, struct pt_regs *regs)
  486. {
  487. unsigned int cpu = smp_processor_id();
  488. struct pt_regs *old_regs = set_irq_regs(regs);
  489. if (ipinr < NR_IPI)
  490. __inc_irq_stat(cpu, ipi_irqs[ipinr]);
  491. switch (ipinr) {
  492. case IPI_WAKEUP:
  493. break;
  494. case IPI_TIMER:
  495. irq_enter();
  496. ipi_timer();
  497. irq_exit();
  498. break;
  499. case IPI_RESCHEDULE:
  500. scheduler_ipi();
  501. break;
  502. case IPI_CALL_FUNC:
  503. irq_enter();
  504. generic_smp_call_function_interrupt();
  505. irq_exit();
  506. break;
  507. case IPI_CALL_FUNC_SINGLE:
  508. irq_enter();
  509. generic_smp_call_function_single_interrupt();
  510. irq_exit();
  511. break;
  512. case IPI_CPU_STOP:
  513. irq_enter();
  514. ipi_cpu_stop(cpu);
  515. irq_exit();
  516. break;
  517. default:
  518. printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
  519. cpu, ipinr);
  520. break;
  521. }
  522. set_irq_regs(old_regs);
  523. }
  524. void smp_send_reschedule(int cpu)
  525. {
  526. smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
  527. }
  528. #ifdef CONFIG_HOTPLUG_CPU
  529. static void smp_kill_cpus(cpumask_t *mask)
  530. {
  531. unsigned int cpu;
  532. for_each_cpu(cpu, mask)
  533. platform_cpu_kill(cpu);
  534. }
  535. #else
  536. static void smp_kill_cpus(cpumask_t *mask) { }
  537. #endif
  538. void smp_send_stop(void)
  539. {
  540. unsigned long timeout;
  541. struct cpumask mask;
  542. cpumask_copy(&mask, cpu_online_mask);
  543. cpumask_clear_cpu(smp_processor_id(), &mask);
  544. if (!cpumask_empty(&mask))
  545. smp_cross_call(&mask, IPI_CPU_STOP);
  546. /* Wait up to one second for other CPUs to stop */
  547. timeout = USEC_PER_SEC;
  548. while (num_online_cpus() > 1 && timeout--)
  549. udelay(1);
  550. if (num_online_cpus() > 1)
  551. pr_warning("SMP: failed to stop secondary CPUs\n");
  552. smp_kill_cpus(&mask);
  553. }
  554. /*
  555. * not supported here
  556. */
  557. int setup_profiling_timer(unsigned int multiplier)
  558. {
  559. return -EINVAL;
  560. }
  561. #ifdef CONFIG_CPU_FREQ
  562. static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
  563. static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
  564. static unsigned long global_l_p_j_ref;
  565. static unsigned long global_l_p_j_ref_freq;
  566. static int cpufreq_callback(struct notifier_block *nb,
  567. unsigned long val, void *data)
  568. {
  569. struct cpufreq_freqs *freq = data;
  570. int cpu = freq->cpu;
  571. if (freq->flags & CPUFREQ_CONST_LOOPS)
  572. return NOTIFY_OK;
  573. if (!per_cpu(l_p_j_ref, cpu)) {
  574. per_cpu(l_p_j_ref, cpu) =
  575. per_cpu(cpu_data, cpu).loops_per_jiffy;
  576. per_cpu(l_p_j_ref_freq, cpu) = freq->old;
  577. if (!global_l_p_j_ref) {
  578. global_l_p_j_ref = loops_per_jiffy;
  579. global_l_p_j_ref_freq = freq->old;
  580. }
  581. }
  582. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  583. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  584. (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
  585. loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
  586. global_l_p_j_ref_freq,
  587. freq->new);
  588. per_cpu(cpu_data, cpu).loops_per_jiffy =
  589. cpufreq_scale(per_cpu(l_p_j_ref, cpu),
  590. per_cpu(l_p_j_ref_freq, cpu),
  591. freq->new);
  592. }
  593. return NOTIFY_OK;
  594. }
  595. static struct notifier_block cpufreq_notifier = {
  596. .notifier_call = cpufreq_callback,
  597. };
  598. static int __init register_cpufreq_notifier(void)
  599. {
  600. return cpufreq_register_notifier(&cpufreq_notifier,
  601. CPUFREQ_TRANSITION_NOTIFIER);
  602. }
  603. core_initcall(register_cpufreq_notifier);
  604. #endif