page-io.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437
  1. /*
  2. * linux/fs/ext4/page-io.c
  3. *
  4. * This contains the new page_io functions for ext4
  5. *
  6. * Written by Theodore Ts'o, 2010.
  7. */
  8. #include <linux/fs.h>
  9. #include <linux/time.h>
  10. #include <linux/jbd2.h>
  11. #include <linux/highuid.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/quotaops.h>
  14. #include <linux/string.h>
  15. #include <linux/buffer_head.h>
  16. #include <linux/writeback.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/mpage.h>
  19. #include <linux/namei.h>
  20. #include <linux/uio.h>
  21. #include <linux/bio.h>
  22. #include <linux/workqueue.h>
  23. #include <linux/kernel.h>
  24. #include <linux/slab.h>
  25. #include "ext4_jbd2.h"
  26. #include "xattr.h"
  27. #include "acl.h"
  28. #include "ext4_extents.h"
  29. static struct kmem_cache *io_page_cachep, *io_end_cachep;
  30. int __init ext4_init_pageio(void)
  31. {
  32. io_page_cachep = KMEM_CACHE(ext4_io_page, SLAB_RECLAIM_ACCOUNT);
  33. if (io_page_cachep == NULL)
  34. return -ENOMEM;
  35. io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
  36. if (io_end_cachep == NULL) {
  37. kmem_cache_destroy(io_page_cachep);
  38. return -ENOMEM;
  39. }
  40. return 0;
  41. }
  42. void ext4_exit_pageio(void)
  43. {
  44. kmem_cache_destroy(io_end_cachep);
  45. kmem_cache_destroy(io_page_cachep);
  46. }
  47. void ext4_ioend_wait(struct inode *inode)
  48. {
  49. wait_queue_head_t *wq = ext4_ioend_wq(inode);
  50. wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_ioend_count) == 0));
  51. }
  52. static void put_io_page(struct ext4_io_page *io_page)
  53. {
  54. if (atomic_dec_and_test(&io_page->p_count)) {
  55. end_page_writeback(io_page->p_page);
  56. put_page(io_page->p_page);
  57. kmem_cache_free(io_page_cachep, io_page);
  58. }
  59. }
  60. void ext4_free_io_end(ext4_io_end_t *io)
  61. {
  62. int i;
  63. BUG_ON(!io);
  64. BUG_ON(io->flag & EXT4_IO_END_UNWRITTEN);
  65. if (io->page)
  66. put_page(io->page);
  67. for (i = 0; i < io->num_io_pages; i++)
  68. put_io_page(io->pages[i]);
  69. io->num_io_pages = 0;
  70. if (atomic_dec_and_test(&EXT4_I(io->inode)->i_ioend_count))
  71. wake_up_all(ext4_ioend_wq(io->inode));
  72. kmem_cache_free(io_end_cachep, io);
  73. }
  74. /*
  75. * check a range of space and convert unwritten extents to written.
  76. *
  77. * Called with inode->i_mutex; we depend on this when we manipulate
  78. * io->flag, since we could otherwise race with ext4_flush_completed_IO()
  79. */
  80. int ext4_end_io_nolock(ext4_io_end_t *io)
  81. {
  82. struct inode *inode = io->inode;
  83. loff_t offset = io->offset;
  84. ssize_t size = io->size;
  85. int ret = 0;
  86. BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
  87. ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
  88. "list->prev 0x%p\n",
  89. io, inode->i_ino, io->list.next, io->list.prev);
  90. ret = ext4_convert_unwritten_extents(inode, offset, size);
  91. if (ret < 0) {
  92. ext4_msg(inode->i_sb, KERN_EMERG,
  93. "failed to convert unwritten extents to written "
  94. "extents -- potential data loss! "
  95. "(inode %lu, offset %llu, size %zd, error %d)",
  96. inode->i_ino, offset, size, ret);
  97. }
  98. io->flag &= ~EXT4_IO_END_UNWRITTEN;
  99. if (io->iocb)
  100. aio_complete(io->iocb, io->result, 0);
  101. if (io->flag & EXT4_IO_END_DIRECT)
  102. inode_dio_done(inode);
  103. /* Wake up anyone waiting on unwritten extent conversion */
  104. if (atomic_dec_and_test(&EXT4_I(inode)->i_unwritten))
  105. wake_up_all(ext4_ioend_wq(io->inode));
  106. return ret;
  107. }
  108. /*
  109. * work on completed aio dio IO, to convert unwritten extents to extents
  110. */
  111. static void ext4_end_io_work(struct work_struct *work)
  112. {
  113. ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
  114. struct inode *inode = io->inode;
  115. struct ext4_inode_info *ei = EXT4_I(inode);
  116. unsigned long flags;
  117. spin_lock_irqsave(&ei->i_completed_io_lock, flags);
  118. if (io->flag & EXT4_IO_END_IN_FSYNC)
  119. goto requeue;
  120. if (list_empty(&io->list)) {
  121. spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
  122. goto free;
  123. }
  124. if (!mutex_trylock(&inode->i_mutex)) {
  125. bool was_queued;
  126. requeue:
  127. was_queued = !!(io->flag & EXT4_IO_END_QUEUED);
  128. io->flag |= EXT4_IO_END_QUEUED;
  129. spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
  130. /*
  131. * Requeue the work instead of waiting so that the work
  132. * items queued after this can be processed.
  133. */
  134. queue_work(EXT4_SB(inode->i_sb)->dio_unwritten_wq, &io->work);
  135. /*
  136. * To prevent the ext4-dio-unwritten thread from keeping
  137. * requeueing end_io requests and occupying cpu for too long,
  138. * yield the cpu if it sees an end_io request that has already
  139. * been requeued.
  140. */
  141. if (was_queued)
  142. yield();
  143. return;
  144. }
  145. list_del_init(&io->list);
  146. spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
  147. (void) ext4_end_io_nolock(io);
  148. mutex_unlock(&inode->i_mutex);
  149. free:
  150. ext4_free_io_end(io);
  151. }
  152. ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
  153. {
  154. ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
  155. if (io) {
  156. atomic_inc(&EXT4_I(inode)->i_ioend_count);
  157. io->inode = inode;
  158. INIT_WORK(&io->work, ext4_end_io_work);
  159. INIT_LIST_HEAD(&io->list);
  160. }
  161. return io;
  162. }
  163. /*
  164. * Print an buffer I/O error compatible with the fs/buffer.c. This
  165. * provides compatibility with dmesg scrapers that look for a specific
  166. * buffer I/O error message. We really need a unified error reporting
  167. * structure to userspace ala Digital Unix's uerf system, but it's
  168. * probably not going to happen in my lifetime, due to LKML politics...
  169. */
  170. static void buffer_io_error(struct buffer_head *bh)
  171. {
  172. char b[BDEVNAME_SIZE];
  173. printk(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n",
  174. bdevname(bh->b_bdev, b),
  175. (unsigned long long)bh->b_blocknr);
  176. }
  177. static void ext4_end_bio(struct bio *bio, int error)
  178. {
  179. ext4_io_end_t *io_end = bio->bi_private;
  180. struct workqueue_struct *wq;
  181. struct inode *inode;
  182. unsigned long flags;
  183. int i;
  184. sector_t bi_sector = bio->bi_sector;
  185. BUG_ON(!io_end);
  186. bio->bi_private = NULL;
  187. bio->bi_end_io = NULL;
  188. if (test_bit(BIO_UPTODATE, &bio->bi_flags))
  189. error = 0;
  190. bio_put(bio);
  191. for (i = 0; i < io_end->num_io_pages; i++) {
  192. struct page *page = io_end->pages[i]->p_page;
  193. struct buffer_head *bh, *head;
  194. loff_t offset;
  195. loff_t io_end_offset;
  196. if (error) {
  197. SetPageError(page);
  198. set_bit(AS_EIO, &page->mapping->flags);
  199. head = page_buffers(page);
  200. BUG_ON(!head);
  201. io_end_offset = io_end->offset + io_end->size;
  202. offset = (sector_t) page->index << PAGE_CACHE_SHIFT;
  203. bh = head;
  204. do {
  205. if ((offset >= io_end->offset) &&
  206. (offset+bh->b_size <= io_end_offset))
  207. buffer_io_error(bh);
  208. offset += bh->b_size;
  209. bh = bh->b_this_page;
  210. } while (bh != head);
  211. }
  212. put_io_page(io_end->pages[i]);
  213. }
  214. io_end->num_io_pages = 0;
  215. inode = io_end->inode;
  216. if (error) {
  217. io_end->flag |= EXT4_IO_END_ERROR;
  218. ext4_warning(inode->i_sb, "I/O error writing to inode %lu "
  219. "(offset %llu size %ld starting block %llu)",
  220. inode->i_ino,
  221. (unsigned long long) io_end->offset,
  222. (long) io_end->size,
  223. (unsigned long long)
  224. bi_sector >> (inode->i_blkbits - 9));
  225. }
  226. if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
  227. ext4_free_io_end(io_end);
  228. return;
  229. }
  230. /* Add the io_end to per-inode completed io list*/
  231. spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
  232. list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
  233. spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
  234. wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
  235. /* queue the work to convert unwritten extents to written */
  236. queue_work(wq, &io_end->work);
  237. }
  238. void ext4_io_submit(struct ext4_io_submit *io)
  239. {
  240. struct bio *bio = io->io_bio;
  241. if (bio) {
  242. bio_get(io->io_bio);
  243. submit_bio(io->io_op, io->io_bio);
  244. BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP));
  245. bio_put(io->io_bio);
  246. }
  247. io->io_bio = NULL;
  248. io->io_op = 0;
  249. io->io_end = NULL;
  250. }
  251. static int io_submit_init(struct ext4_io_submit *io,
  252. struct inode *inode,
  253. struct writeback_control *wbc,
  254. struct buffer_head *bh)
  255. {
  256. ext4_io_end_t *io_end;
  257. struct page *page = bh->b_page;
  258. int nvecs = bio_get_nr_vecs(bh->b_bdev);
  259. struct bio *bio;
  260. io_end = ext4_init_io_end(inode, GFP_NOFS);
  261. if (!io_end)
  262. return -ENOMEM;
  263. bio = bio_alloc(GFP_NOIO, min(nvecs, BIO_MAX_PAGES));
  264. bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
  265. bio->bi_bdev = bh->b_bdev;
  266. bio->bi_private = io->io_end = io_end;
  267. bio->bi_end_io = ext4_end_bio;
  268. io_end->offset = (page->index << PAGE_CACHE_SHIFT) + bh_offset(bh);
  269. io->io_bio = bio;
  270. io->io_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE);
  271. io->io_next_block = bh->b_blocknr;
  272. return 0;
  273. }
  274. static int io_submit_add_bh(struct ext4_io_submit *io,
  275. struct ext4_io_page *io_page,
  276. struct inode *inode,
  277. struct writeback_control *wbc,
  278. struct buffer_head *bh)
  279. {
  280. ext4_io_end_t *io_end;
  281. int ret;
  282. if (buffer_new(bh)) {
  283. clear_buffer_new(bh);
  284. unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
  285. }
  286. if (!buffer_mapped(bh) || buffer_delay(bh)) {
  287. if (!buffer_mapped(bh))
  288. clear_buffer_dirty(bh);
  289. if (io->io_bio)
  290. ext4_io_submit(io);
  291. return 0;
  292. }
  293. if (io->io_bio && bh->b_blocknr != io->io_next_block) {
  294. submit_and_retry:
  295. ext4_io_submit(io);
  296. }
  297. if (io->io_bio == NULL) {
  298. ret = io_submit_init(io, inode, wbc, bh);
  299. if (ret)
  300. return ret;
  301. }
  302. io_end = io->io_end;
  303. if ((io_end->num_io_pages >= MAX_IO_PAGES) &&
  304. (io_end->pages[io_end->num_io_pages-1] != io_page))
  305. goto submit_and_retry;
  306. if (buffer_uninit(bh))
  307. ext4_set_io_unwritten_flag(inode, io_end);
  308. io->io_end->size += bh->b_size;
  309. io->io_next_block++;
  310. ret = bio_add_page(io->io_bio, bh->b_page, bh->b_size, bh_offset(bh));
  311. if (ret != bh->b_size)
  312. goto submit_and_retry;
  313. if ((io_end->num_io_pages == 0) ||
  314. (io_end->pages[io_end->num_io_pages-1] != io_page)) {
  315. io_end->pages[io_end->num_io_pages++] = io_page;
  316. atomic_inc(&io_page->p_count);
  317. }
  318. return 0;
  319. }
  320. int ext4_bio_write_page(struct ext4_io_submit *io,
  321. struct page *page,
  322. int len,
  323. struct writeback_control *wbc)
  324. {
  325. struct inode *inode = page->mapping->host;
  326. unsigned block_start, block_end, blocksize;
  327. struct ext4_io_page *io_page;
  328. struct buffer_head *bh, *head;
  329. int ret = 0;
  330. blocksize = 1 << inode->i_blkbits;
  331. BUG_ON(!PageLocked(page));
  332. BUG_ON(PageWriteback(page));
  333. io_page = kmem_cache_alloc(io_page_cachep, GFP_NOFS);
  334. if (!io_page) {
  335. set_page_dirty(page);
  336. unlock_page(page);
  337. return -ENOMEM;
  338. }
  339. io_page->p_page = page;
  340. atomic_set(&io_page->p_count, 1);
  341. get_page(page);
  342. set_page_writeback(page);
  343. ClearPageError(page);
  344. for (bh = head = page_buffers(page), block_start = 0;
  345. bh != head || !block_start;
  346. block_start = block_end, bh = bh->b_this_page) {
  347. block_end = block_start + blocksize;
  348. if (block_start >= len) {
  349. /*
  350. * Comments copied from block_write_full_page_endio:
  351. *
  352. * The page straddles i_size. It must be zeroed out on
  353. * each and every writepage invocation because it may
  354. * be mmapped. "A file is mapped in multiples of the
  355. * page size. For a file that is not a multiple of
  356. * the page size, the remaining memory is zeroed when
  357. * mapped, and writes to that region are not written
  358. * out to the file."
  359. */
  360. zero_user_segment(page, block_start, block_end);
  361. clear_buffer_dirty(bh);
  362. set_buffer_uptodate(bh);
  363. continue;
  364. }
  365. clear_buffer_dirty(bh);
  366. ret = io_submit_add_bh(io, io_page, inode, wbc, bh);
  367. if (ret) {
  368. /*
  369. * We only get here on ENOMEM. Not much else
  370. * we can do but mark the page as dirty, and
  371. * better luck next time.
  372. */
  373. set_page_dirty(page);
  374. break;
  375. }
  376. }
  377. unlock_page(page);
  378. /*
  379. * If the page was truncated before we could do the writeback,
  380. * or we had a memory allocation error while trying to write
  381. * the first buffer head, we won't have submitted any pages for
  382. * I/O. In that case we need to make sure we've cleared the
  383. * PageWriteback bit from the page to prevent the system from
  384. * wedging later on.
  385. */
  386. put_io_page(io_page);
  387. return ret;
  388. }