svm.c 96 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * AMD SVM support
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  8. *
  9. * Authors:
  10. * Yaniv Kamay <yaniv@qumranet.com>
  11. * Avi Kivity <avi@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include <linux/kvm_host.h>
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include "kvm_cache_regs.h"
  21. #include "x86.h"
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/highmem.h>
  26. #include <linux/sched.h>
  27. #include <linux/ftrace_event.h>
  28. #include <linux/slab.h>
  29. #include <asm/tlbflush.h>
  30. #include <asm/desc.h>
  31. #include <asm/kvm_para.h>
  32. #include <asm/virtext.h>
  33. #include "trace.h"
  34. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  35. MODULE_AUTHOR("Qumranet");
  36. MODULE_LICENSE("GPL");
  37. #define IOPM_ALLOC_ORDER 2
  38. #define MSRPM_ALLOC_ORDER 1
  39. #define SEG_TYPE_LDT 2
  40. #define SEG_TYPE_BUSY_TSS16 3
  41. #define SVM_FEATURE_NPT (1 << 0)
  42. #define SVM_FEATURE_LBRV (1 << 1)
  43. #define SVM_FEATURE_SVML (1 << 2)
  44. #define SVM_FEATURE_NRIP (1 << 3)
  45. #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
  46. #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
  47. #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
  48. #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
  49. #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
  50. static bool erratum_383_found __read_mostly;
  51. static const u32 host_save_user_msrs[] = {
  52. #ifdef CONFIG_X86_64
  53. MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
  54. MSR_FS_BASE,
  55. #endif
  56. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  57. };
  58. #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
  59. struct kvm_vcpu;
  60. struct nested_state {
  61. struct vmcb *hsave;
  62. u64 hsave_msr;
  63. u64 vm_cr_msr;
  64. u64 vmcb;
  65. /* These are the merged vectors */
  66. u32 *msrpm;
  67. /* gpa pointers to the real vectors */
  68. u64 vmcb_msrpm;
  69. u64 vmcb_iopm;
  70. /* A VMEXIT is required but not yet emulated */
  71. bool exit_required;
  72. /*
  73. * If we vmexit during an instruction emulation we need this to restore
  74. * the l1 guest rip after the emulation
  75. */
  76. unsigned long vmexit_rip;
  77. unsigned long vmexit_rsp;
  78. unsigned long vmexit_rax;
  79. /* cache for intercepts of the guest */
  80. u16 intercept_cr_read;
  81. u16 intercept_cr_write;
  82. u16 intercept_dr_read;
  83. u16 intercept_dr_write;
  84. u32 intercept_exceptions;
  85. u64 intercept;
  86. /* Nested Paging related state */
  87. u64 nested_cr3;
  88. };
  89. #define MSRPM_OFFSETS 16
  90. static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
  91. struct vcpu_svm {
  92. struct kvm_vcpu vcpu;
  93. struct vmcb *vmcb;
  94. unsigned long vmcb_pa;
  95. struct svm_cpu_data *svm_data;
  96. uint64_t asid_generation;
  97. uint64_t sysenter_esp;
  98. uint64_t sysenter_eip;
  99. u64 next_rip;
  100. u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
  101. struct {
  102. u16 fs;
  103. u16 gs;
  104. u16 ldt;
  105. u64 gs_base;
  106. } host;
  107. u32 *msrpm;
  108. struct nested_state nested;
  109. bool nmi_singlestep;
  110. unsigned int3_injected;
  111. unsigned long int3_rip;
  112. u32 apf_reason;
  113. };
  114. #define MSR_INVALID 0xffffffffU
  115. static struct svm_direct_access_msrs {
  116. u32 index; /* Index of the MSR */
  117. bool always; /* True if intercept is always on */
  118. } direct_access_msrs[] = {
  119. { .index = MSR_STAR, .always = true },
  120. { .index = MSR_IA32_SYSENTER_CS, .always = true },
  121. #ifdef CONFIG_X86_64
  122. { .index = MSR_GS_BASE, .always = true },
  123. { .index = MSR_FS_BASE, .always = true },
  124. { .index = MSR_KERNEL_GS_BASE, .always = true },
  125. { .index = MSR_LSTAR, .always = true },
  126. { .index = MSR_CSTAR, .always = true },
  127. { .index = MSR_SYSCALL_MASK, .always = true },
  128. #endif
  129. { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
  130. { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
  131. { .index = MSR_IA32_LASTINTFROMIP, .always = false },
  132. { .index = MSR_IA32_LASTINTTOIP, .always = false },
  133. { .index = MSR_INVALID, .always = false },
  134. };
  135. /* enable NPT for AMD64 and X86 with PAE */
  136. #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
  137. static bool npt_enabled = true;
  138. #else
  139. static bool npt_enabled;
  140. #endif
  141. static int npt = 1;
  142. module_param(npt, int, S_IRUGO);
  143. static int nested = 1;
  144. module_param(nested, int, S_IRUGO);
  145. static void svm_flush_tlb(struct kvm_vcpu *vcpu);
  146. static void svm_complete_interrupts(struct vcpu_svm *svm);
  147. static int nested_svm_exit_handled(struct vcpu_svm *svm);
  148. static int nested_svm_intercept(struct vcpu_svm *svm);
  149. static int nested_svm_vmexit(struct vcpu_svm *svm);
  150. static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
  151. bool has_error_code, u32 error_code);
  152. static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
  153. {
  154. return container_of(vcpu, struct vcpu_svm, vcpu);
  155. }
  156. static inline bool is_nested(struct vcpu_svm *svm)
  157. {
  158. return svm->nested.vmcb;
  159. }
  160. static inline void enable_gif(struct vcpu_svm *svm)
  161. {
  162. svm->vcpu.arch.hflags |= HF_GIF_MASK;
  163. }
  164. static inline void disable_gif(struct vcpu_svm *svm)
  165. {
  166. svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
  167. }
  168. static inline bool gif_set(struct vcpu_svm *svm)
  169. {
  170. return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
  171. }
  172. static unsigned long iopm_base;
  173. struct kvm_ldttss_desc {
  174. u16 limit0;
  175. u16 base0;
  176. unsigned base1:8, type:5, dpl:2, p:1;
  177. unsigned limit1:4, zero0:3, g:1, base2:8;
  178. u32 base3;
  179. u32 zero1;
  180. } __attribute__((packed));
  181. struct svm_cpu_data {
  182. int cpu;
  183. u64 asid_generation;
  184. u32 max_asid;
  185. u32 next_asid;
  186. struct kvm_ldttss_desc *tss_desc;
  187. struct page *save_area;
  188. };
  189. static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
  190. static uint32_t svm_features;
  191. struct svm_init_data {
  192. int cpu;
  193. int r;
  194. };
  195. static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
  196. #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
  197. #define MSRS_RANGE_SIZE 2048
  198. #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
  199. static u32 svm_msrpm_offset(u32 msr)
  200. {
  201. u32 offset;
  202. int i;
  203. for (i = 0; i < NUM_MSR_MAPS; i++) {
  204. if (msr < msrpm_ranges[i] ||
  205. msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
  206. continue;
  207. offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
  208. offset += (i * MSRS_RANGE_SIZE); /* add range offset */
  209. /* Now we have the u8 offset - but need the u32 offset */
  210. return offset / 4;
  211. }
  212. /* MSR not in any range */
  213. return MSR_INVALID;
  214. }
  215. #define MAX_INST_SIZE 15
  216. static inline u32 svm_has(u32 feat)
  217. {
  218. return svm_features & feat;
  219. }
  220. static inline void clgi(void)
  221. {
  222. asm volatile (__ex(SVM_CLGI));
  223. }
  224. static inline void stgi(void)
  225. {
  226. asm volatile (__ex(SVM_STGI));
  227. }
  228. static inline void invlpga(unsigned long addr, u32 asid)
  229. {
  230. asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
  231. }
  232. static inline void force_new_asid(struct kvm_vcpu *vcpu)
  233. {
  234. to_svm(vcpu)->asid_generation--;
  235. }
  236. static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
  237. {
  238. force_new_asid(vcpu);
  239. }
  240. static int get_npt_level(void)
  241. {
  242. #ifdef CONFIG_X86_64
  243. return PT64_ROOT_LEVEL;
  244. #else
  245. return PT32E_ROOT_LEVEL;
  246. #endif
  247. }
  248. static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  249. {
  250. vcpu->arch.efer = efer;
  251. if (!npt_enabled && !(efer & EFER_LMA))
  252. efer &= ~EFER_LME;
  253. to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
  254. }
  255. static int is_external_interrupt(u32 info)
  256. {
  257. info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
  258. return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
  259. }
  260. static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  261. {
  262. struct vcpu_svm *svm = to_svm(vcpu);
  263. u32 ret = 0;
  264. if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
  265. ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
  266. return ret & mask;
  267. }
  268. static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  269. {
  270. struct vcpu_svm *svm = to_svm(vcpu);
  271. if (mask == 0)
  272. svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
  273. else
  274. svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
  275. }
  276. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  277. {
  278. struct vcpu_svm *svm = to_svm(vcpu);
  279. if (svm->vmcb->control.next_rip != 0)
  280. svm->next_rip = svm->vmcb->control.next_rip;
  281. if (!svm->next_rip) {
  282. if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
  283. EMULATE_DONE)
  284. printk(KERN_DEBUG "%s: NOP\n", __func__);
  285. return;
  286. }
  287. if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
  288. printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
  289. __func__, kvm_rip_read(vcpu), svm->next_rip);
  290. kvm_rip_write(vcpu, svm->next_rip);
  291. svm_set_interrupt_shadow(vcpu, 0);
  292. }
  293. static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  294. bool has_error_code, u32 error_code,
  295. bool reinject)
  296. {
  297. struct vcpu_svm *svm = to_svm(vcpu);
  298. /*
  299. * If we are within a nested VM we'd better #VMEXIT and let the guest
  300. * handle the exception
  301. */
  302. if (!reinject &&
  303. nested_svm_check_exception(svm, nr, has_error_code, error_code))
  304. return;
  305. if (nr == BP_VECTOR && !svm_has(SVM_FEATURE_NRIP)) {
  306. unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
  307. /*
  308. * For guest debugging where we have to reinject #BP if some
  309. * INT3 is guest-owned:
  310. * Emulate nRIP by moving RIP forward. Will fail if injection
  311. * raises a fault that is not intercepted. Still better than
  312. * failing in all cases.
  313. */
  314. skip_emulated_instruction(&svm->vcpu);
  315. rip = kvm_rip_read(&svm->vcpu);
  316. svm->int3_rip = rip + svm->vmcb->save.cs.base;
  317. svm->int3_injected = rip - old_rip;
  318. }
  319. svm->vmcb->control.event_inj = nr
  320. | SVM_EVTINJ_VALID
  321. | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
  322. | SVM_EVTINJ_TYPE_EXEPT;
  323. svm->vmcb->control.event_inj_err = error_code;
  324. }
  325. static void svm_init_erratum_383(void)
  326. {
  327. u32 low, high;
  328. int err;
  329. u64 val;
  330. if (!cpu_has_amd_erratum(amd_erratum_383))
  331. return;
  332. /* Use _safe variants to not break nested virtualization */
  333. val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
  334. if (err)
  335. return;
  336. val |= (1ULL << 47);
  337. low = lower_32_bits(val);
  338. high = upper_32_bits(val);
  339. native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
  340. erratum_383_found = true;
  341. }
  342. static int has_svm(void)
  343. {
  344. const char *msg;
  345. if (!cpu_has_svm(&msg)) {
  346. printk(KERN_INFO "has_svm: %s\n", msg);
  347. return 0;
  348. }
  349. return 1;
  350. }
  351. static void svm_hardware_disable(void *garbage)
  352. {
  353. cpu_svm_disable();
  354. }
  355. static int svm_hardware_enable(void *garbage)
  356. {
  357. struct svm_cpu_data *sd;
  358. uint64_t efer;
  359. struct desc_ptr gdt_descr;
  360. struct desc_struct *gdt;
  361. int me = raw_smp_processor_id();
  362. rdmsrl(MSR_EFER, efer);
  363. if (efer & EFER_SVME)
  364. return -EBUSY;
  365. if (!has_svm()) {
  366. printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
  367. me);
  368. return -EINVAL;
  369. }
  370. sd = per_cpu(svm_data, me);
  371. if (!sd) {
  372. printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
  373. me);
  374. return -EINVAL;
  375. }
  376. sd->asid_generation = 1;
  377. sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
  378. sd->next_asid = sd->max_asid + 1;
  379. native_store_gdt(&gdt_descr);
  380. gdt = (struct desc_struct *)gdt_descr.address;
  381. sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
  382. wrmsrl(MSR_EFER, efer | EFER_SVME);
  383. wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
  384. svm_init_erratum_383();
  385. return 0;
  386. }
  387. static void svm_cpu_uninit(int cpu)
  388. {
  389. struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
  390. if (!sd)
  391. return;
  392. per_cpu(svm_data, raw_smp_processor_id()) = NULL;
  393. __free_page(sd->save_area);
  394. kfree(sd);
  395. }
  396. static int svm_cpu_init(int cpu)
  397. {
  398. struct svm_cpu_data *sd;
  399. int r;
  400. sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
  401. if (!sd)
  402. return -ENOMEM;
  403. sd->cpu = cpu;
  404. sd->save_area = alloc_page(GFP_KERNEL);
  405. r = -ENOMEM;
  406. if (!sd->save_area)
  407. goto err_1;
  408. per_cpu(svm_data, cpu) = sd;
  409. return 0;
  410. err_1:
  411. kfree(sd);
  412. return r;
  413. }
  414. static bool valid_msr_intercept(u32 index)
  415. {
  416. int i;
  417. for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
  418. if (direct_access_msrs[i].index == index)
  419. return true;
  420. return false;
  421. }
  422. static void set_msr_interception(u32 *msrpm, unsigned msr,
  423. int read, int write)
  424. {
  425. u8 bit_read, bit_write;
  426. unsigned long tmp;
  427. u32 offset;
  428. /*
  429. * If this warning triggers extend the direct_access_msrs list at the
  430. * beginning of the file
  431. */
  432. WARN_ON(!valid_msr_intercept(msr));
  433. offset = svm_msrpm_offset(msr);
  434. bit_read = 2 * (msr & 0x0f);
  435. bit_write = 2 * (msr & 0x0f) + 1;
  436. tmp = msrpm[offset];
  437. BUG_ON(offset == MSR_INVALID);
  438. read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
  439. write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
  440. msrpm[offset] = tmp;
  441. }
  442. static void svm_vcpu_init_msrpm(u32 *msrpm)
  443. {
  444. int i;
  445. memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
  446. for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
  447. if (!direct_access_msrs[i].always)
  448. continue;
  449. set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
  450. }
  451. }
  452. static void add_msr_offset(u32 offset)
  453. {
  454. int i;
  455. for (i = 0; i < MSRPM_OFFSETS; ++i) {
  456. /* Offset already in list? */
  457. if (msrpm_offsets[i] == offset)
  458. return;
  459. /* Slot used by another offset? */
  460. if (msrpm_offsets[i] != MSR_INVALID)
  461. continue;
  462. /* Add offset to list */
  463. msrpm_offsets[i] = offset;
  464. return;
  465. }
  466. /*
  467. * If this BUG triggers the msrpm_offsets table has an overflow. Just
  468. * increase MSRPM_OFFSETS in this case.
  469. */
  470. BUG();
  471. }
  472. static void init_msrpm_offsets(void)
  473. {
  474. int i;
  475. memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
  476. for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
  477. u32 offset;
  478. offset = svm_msrpm_offset(direct_access_msrs[i].index);
  479. BUG_ON(offset == MSR_INVALID);
  480. add_msr_offset(offset);
  481. }
  482. }
  483. static void svm_enable_lbrv(struct vcpu_svm *svm)
  484. {
  485. u32 *msrpm = svm->msrpm;
  486. svm->vmcb->control.lbr_ctl = 1;
  487. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
  488. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
  489. set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
  490. set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
  491. }
  492. static void svm_disable_lbrv(struct vcpu_svm *svm)
  493. {
  494. u32 *msrpm = svm->msrpm;
  495. svm->vmcb->control.lbr_ctl = 0;
  496. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
  497. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
  498. set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
  499. set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
  500. }
  501. static __init int svm_hardware_setup(void)
  502. {
  503. int cpu;
  504. struct page *iopm_pages;
  505. void *iopm_va;
  506. int r;
  507. iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
  508. if (!iopm_pages)
  509. return -ENOMEM;
  510. iopm_va = page_address(iopm_pages);
  511. memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
  512. iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
  513. init_msrpm_offsets();
  514. if (boot_cpu_has(X86_FEATURE_NX))
  515. kvm_enable_efer_bits(EFER_NX);
  516. if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
  517. kvm_enable_efer_bits(EFER_FFXSR);
  518. if (nested) {
  519. printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
  520. kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
  521. }
  522. for_each_possible_cpu(cpu) {
  523. r = svm_cpu_init(cpu);
  524. if (r)
  525. goto err;
  526. }
  527. svm_features = cpuid_edx(SVM_CPUID_FUNC);
  528. if (!svm_has(SVM_FEATURE_NPT))
  529. npt_enabled = false;
  530. if (npt_enabled && !npt) {
  531. printk(KERN_INFO "kvm: Nested Paging disabled\n");
  532. npt_enabled = false;
  533. }
  534. if (npt_enabled) {
  535. printk(KERN_INFO "kvm: Nested Paging enabled\n");
  536. kvm_enable_tdp();
  537. } else
  538. kvm_disable_tdp();
  539. return 0;
  540. err:
  541. __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
  542. iopm_base = 0;
  543. return r;
  544. }
  545. static __exit void svm_hardware_unsetup(void)
  546. {
  547. int cpu;
  548. for_each_possible_cpu(cpu)
  549. svm_cpu_uninit(cpu);
  550. __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
  551. iopm_base = 0;
  552. }
  553. static void init_seg(struct vmcb_seg *seg)
  554. {
  555. seg->selector = 0;
  556. seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
  557. SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
  558. seg->limit = 0xffff;
  559. seg->base = 0;
  560. }
  561. static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
  562. {
  563. seg->selector = 0;
  564. seg->attrib = SVM_SELECTOR_P_MASK | type;
  565. seg->limit = 0xffff;
  566. seg->base = 0;
  567. }
  568. static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  569. {
  570. struct vcpu_svm *svm = to_svm(vcpu);
  571. u64 g_tsc_offset = 0;
  572. if (is_nested(svm)) {
  573. g_tsc_offset = svm->vmcb->control.tsc_offset -
  574. svm->nested.hsave->control.tsc_offset;
  575. svm->nested.hsave->control.tsc_offset = offset;
  576. }
  577. svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
  578. }
  579. static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
  580. {
  581. struct vcpu_svm *svm = to_svm(vcpu);
  582. svm->vmcb->control.tsc_offset += adjustment;
  583. if (is_nested(svm))
  584. svm->nested.hsave->control.tsc_offset += adjustment;
  585. }
  586. static void init_vmcb(struct vcpu_svm *svm)
  587. {
  588. struct vmcb_control_area *control = &svm->vmcb->control;
  589. struct vmcb_save_area *save = &svm->vmcb->save;
  590. svm->vcpu.fpu_active = 1;
  591. control->intercept_cr_read = INTERCEPT_CR0_MASK |
  592. INTERCEPT_CR3_MASK |
  593. INTERCEPT_CR4_MASK;
  594. control->intercept_cr_write = INTERCEPT_CR0_MASK |
  595. INTERCEPT_CR3_MASK |
  596. INTERCEPT_CR4_MASK |
  597. INTERCEPT_CR8_MASK;
  598. control->intercept_dr_read = INTERCEPT_DR0_MASK |
  599. INTERCEPT_DR1_MASK |
  600. INTERCEPT_DR2_MASK |
  601. INTERCEPT_DR3_MASK |
  602. INTERCEPT_DR4_MASK |
  603. INTERCEPT_DR5_MASK |
  604. INTERCEPT_DR6_MASK |
  605. INTERCEPT_DR7_MASK;
  606. control->intercept_dr_write = INTERCEPT_DR0_MASK |
  607. INTERCEPT_DR1_MASK |
  608. INTERCEPT_DR2_MASK |
  609. INTERCEPT_DR3_MASK |
  610. INTERCEPT_DR4_MASK |
  611. INTERCEPT_DR5_MASK |
  612. INTERCEPT_DR6_MASK |
  613. INTERCEPT_DR7_MASK;
  614. control->intercept_exceptions = (1 << PF_VECTOR) |
  615. (1 << UD_VECTOR) |
  616. (1 << MC_VECTOR);
  617. control->intercept = (1ULL << INTERCEPT_INTR) |
  618. (1ULL << INTERCEPT_NMI) |
  619. (1ULL << INTERCEPT_SMI) |
  620. (1ULL << INTERCEPT_SELECTIVE_CR0) |
  621. (1ULL << INTERCEPT_CPUID) |
  622. (1ULL << INTERCEPT_INVD) |
  623. (1ULL << INTERCEPT_HLT) |
  624. (1ULL << INTERCEPT_INVLPG) |
  625. (1ULL << INTERCEPT_INVLPGA) |
  626. (1ULL << INTERCEPT_IOIO_PROT) |
  627. (1ULL << INTERCEPT_MSR_PROT) |
  628. (1ULL << INTERCEPT_TASK_SWITCH) |
  629. (1ULL << INTERCEPT_SHUTDOWN) |
  630. (1ULL << INTERCEPT_VMRUN) |
  631. (1ULL << INTERCEPT_VMMCALL) |
  632. (1ULL << INTERCEPT_VMLOAD) |
  633. (1ULL << INTERCEPT_VMSAVE) |
  634. (1ULL << INTERCEPT_STGI) |
  635. (1ULL << INTERCEPT_CLGI) |
  636. (1ULL << INTERCEPT_SKINIT) |
  637. (1ULL << INTERCEPT_WBINVD) |
  638. (1ULL << INTERCEPT_MONITOR) |
  639. (1ULL << INTERCEPT_MWAIT);
  640. control->iopm_base_pa = iopm_base;
  641. control->msrpm_base_pa = __pa(svm->msrpm);
  642. control->int_ctl = V_INTR_MASKING_MASK;
  643. init_seg(&save->es);
  644. init_seg(&save->ss);
  645. init_seg(&save->ds);
  646. init_seg(&save->fs);
  647. init_seg(&save->gs);
  648. save->cs.selector = 0xf000;
  649. /* Executable/Readable Code Segment */
  650. save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
  651. SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
  652. save->cs.limit = 0xffff;
  653. /*
  654. * cs.base should really be 0xffff0000, but vmx can't handle that, so
  655. * be consistent with it.
  656. *
  657. * Replace when we have real mode working for vmx.
  658. */
  659. save->cs.base = 0xf0000;
  660. save->gdtr.limit = 0xffff;
  661. save->idtr.limit = 0xffff;
  662. init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
  663. init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
  664. svm_set_efer(&svm->vcpu, 0);
  665. save->dr6 = 0xffff0ff0;
  666. save->dr7 = 0x400;
  667. save->rflags = 2;
  668. save->rip = 0x0000fff0;
  669. svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
  670. /*
  671. * This is the guest-visible cr0 value.
  672. * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
  673. */
  674. svm->vcpu.arch.cr0 = 0;
  675. (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
  676. save->cr4 = X86_CR4_PAE;
  677. /* rdx = ?? */
  678. if (npt_enabled) {
  679. /* Setup VMCB for Nested Paging */
  680. control->nested_ctl = 1;
  681. control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
  682. (1ULL << INTERCEPT_INVLPG));
  683. control->intercept_exceptions &= ~(1 << PF_VECTOR);
  684. control->intercept_cr_read &= ~INTERCEPT_CR3_MASK;
  685. control->intercept_cr_write &= ~INTERCEPT_CR3_MASK;
  686. save->g_pat = 0x0007040600070406ULL;
  687. save->cr3 = 0;
  688. save->cr4 = 0;
  689. }
  690. force_new_asid(&svm->vcpu);
  691. svm->nested.vmcb = 0;
  692. svm->vcpu.arch.hflags = 0;
  693. if (svm_has(SVM_FEATURE_PAUSE_FILTER)) {
  694. control->pause_filter_count = 3000;
  695. control->intercept |= (1ULL << INTERCEPT_PAUSE);
  696. }
  697. enable_gif(svm);
  698. }
  699. static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
  700. {
  701. struct vcpu_svm *svm = to_svm(vcpu);
  702. init_vmcb(svm);
  703. if (!kvm_vcpu_is_bsp(vcpu)) {
  704. kvm_rip_write(vcpu, 0);
  705. svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
  706. svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
  707. }
  708. vcpu->arch.regs_avail = ~0;
  709. vcpu->arch.regs_dirty = ~0;
  710. return 0;
  711. }
  712. static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
  713. {
  714. struct vcpu_svm *svm;
  715. struct page *page;
  716. struct page *msrpm_pages;
  717. struct page *hsave_page;
  718. struct page *nested_msrpm_pages;
  719. int err;
  720. svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  721. if (!svm) {
  722. err = -ENOMEM;
  723. goto out;
  724. }
  725. err = kvm_vcpu_init(&svm->vcpu, kvm, id);
  726. if (err)
  727. goto free_svm;
  728. err = -ENOMEM;
  729. page = alloc_page(GFP_KERNEL);
  730. if (!page)
  731. goto uninit;
  732. msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
  733. if (!msrpm_pages)
  734. goto free_page1;
  735. nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
  736. if (!nested_msrpm_pages)
  737. goto free_page2;
  738. hsave_page = alloc_page(GFP_KERNEL);
  739. if (!hsave_page)
  740. goto free_page3;
  741. svm->nested.hsave = page_address(hsave_page);
  742. svm->msrpm = page_address(msrpm_pages);
  743. svm_vcpu_init_msrpm(svm->msrpm);
  744. svm->nested.msrpm = page_address(nested_msrpm_pages);
  745. svm_vcpu_init_msrpm(svm->nested.msrpm);
  746. svm->vmcb = page_address(page);
  747. clear_page(svm->vmcb);
  748. svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
  749. svm->asid_generation = 0;
  750. init_vmcb(svm);
  751. kvm_write_tsc(&svm->vcpu, 0);
  752. err = fx_init(&svm->vcpu);
  753. if (err)
  754. goto free_page4;
  755. svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  756. if (kvm_vcpu_is_bsp(&svm->vcpu))
  757. svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
  758. return &svm->vcpu;
  759. free_page4:
  760. __free_page(hsave_page);
  761. free_page3:
  762. __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
  763. free_page2:
  764. __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
  765. free_page1:
  766. __free_page(page);
  767. uninit:
  768. kvm_vcpu_uninit(&svm->vcpu);
  769. free_svm:
  770. kmem_cache_free(kvm_vcpu_cache, svm);
  771. out:
  772. return ERR_PTR(err);
  773. }
  774. static void svm_free_vcpu(struct kvm_vcpu *vcpu)
  775. {
  776. struct vcpu_svm *svm = to_svm(vcpu);
  777. __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
  778. __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
  779. __free_page(virt_to_page(svm->nested.hsave));
  780. __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
  781. kvm_vcpu_uninit(vcpu);
  782. kmem_cache_free(kvm_vcpu_cache, svm);
  783. }
  784. static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  785. {
  786. struct vcpu_svm *svm = to_svm(vcpu);
  787. int i;
  788. if (unlikely(cpu != vcpu->cpu)) {
  789. svm->asid_generation = 0;
  790. }
  791. #ifdef CONFIG_X86_64
  792. rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
  793. #endif
  794. savesegment(fs, svm->host.fs);
  795. savesegment(gs, svm->host.gs);
  796. svm->host.ldt = kvm_read_ldt();
  797. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  798. rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
  799. }
  800. static void svm_vcpu_put(struct kvm_vcpu *vcpu)
  801. {
  802. struct vcpu_svm *svm = to_svm(vcpu);
  803. int i;
  804. ++vcpu->stat.host_state_reload;
  805. kvm_load_ldt(svm->host.ldt);
  806. #ifdef CONFIG_X86_64
  807. loadsegment(fs, svm->host.fs);
  808. load_gs_index(svm->host.gs);
  809. wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
  810. #else
  811. loadsegment(gs, svm->host.gs);
  812. #endif
  813. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  814. wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
  815. }
  816. static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
  817. {
  818. return to_svm(vcpu)->vmcb->save.rflags;
  819. }
  820. static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  821. {
  822. to_svm(vcpu)->vmcb->save.rflags = rflags;
  823. }
  824. static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  825. {
  826. switch (reg) {
  827. case VCPU_EXREG_PDPTR:
  828. BUG_ON(!npt_enabled);
  829. load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
  830. break;
  831. default:
  832. BUG();
  833. }
  834. }
  835. static void svm_set_vintr(struct vcpu_svm *svm)
  836. {
  837. svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
  838. }
  839. static void svm_clear_vintr(struct vcpu_svm *svm)
  840. {
  841. svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
  842. }
  843. static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
  844. {
  845. struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
  846. switch (seg) {
  847. case VCPU_SREG_CS: return &save->cs;
  848. case VCPU_SREG_DS: return &save->ds;
  849. case VCPU_SREG_ES: return &save->es;
  850. case VCPU_SREG_FS: return &save->fs;
  851. case VCPU_SREG_GS: return &save->gs;
  852. case VCPU_SREG_SS: return &save->ss;
  853. case VCPU_SREG_TR: return &save->tr;
  854. case VCPU_SREG_LDTR: return &save->ldtr;
  855. }
  856. BUG();
  857. return NULL;
  858. }
  859. static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  860. {
  861. struct vmcb_seg *s = svm_seg(vcpu, seg);
  862. return s->base;
  863. }
  864. static void svm_get_segment(struct kvm_vcpu *vcpu,
  865. struct kvm_segment *var, int seg)
  866. {
  867. struct vmcb_seg *s = svm_seg(vcpu, seg);
  868. var->base = s->base;
  869. var->limit = s->limit;
  870. var->selector = s->selector;
  871. var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
  872. var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
  873. var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
  874. var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
  875. var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
  876. var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
  877. var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
  878. var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
  879. /*
  880. * AMD's VMCB does not have an explicit unusable field, so emulate it
  881. * for cross vendor migration purposes by "not present"
  882. */
  883. var->unusable = !var->present || (var->type == 0);
  884. switch (seg) {
  885. case VCPU_SREG_CS:
  886. /*
  887. * SVM always stores 0 for the 'G' bit in the CS selector in
  888. * the VMCB on a VMEXIT. This hurts cross-vendor migration:
  889. * Intel's VMENTRY has a check on the 'G' bit.
  890. */
  891. var->g = s->limit > 0xfffff;
  892. break;
  893. case VCPU_SREG_TR:
  894. /*
  895. * Work around a bug where the busy flag in the tr selector
  896. * isn't exposed
  897. */
  898. var->type |= 0x2;
  899. break;
  900. case VCPU_SREG_DS:
  901. case VCPU_SREG_ES:
  902. case VCPU_SREG_FS:
  903. case VCPU_SREG_GS:
  904. /*
  905. * The accessed bit must always be set in the segment
  906. * descriptor cache, although it can be cleared in the
  907. * descriptor, the cached bit always remains at 1. Since
  908. * Intel has a check on this, set it here to support
  909. * cross-vendor migration.
  910. */
  911. if (!var->unusable)
  912. var->type |= 0x1;
  913. break;
  914. case VCPU_SREG_SS:
  915. /*
  916. * On AMD CPUs sometimes the DB bit in the segment
  917. * descriptor is left as 1, although the whole segment has
  918. * been made unusable. Clear it here to pass an Intel VMX
  919. * entry check when cross vendor migrating.
  920. */
  921. if (var->unusable)
  922. var->db = 0;
  923. break;
  924. }
  925. }
  926. static int svm_get_cpl(struct kvm_vcpu *vcpu)
  927. {
  928. struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
  929. return save->cpl;
  930. }
  931. static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  932. {
  933. struct vcpu_svm *svm = to_svm(vcpu);
  934. dt->size = svm->vmcb->save.idtr.limit;
  935. dt->address = svm->vmcb->save.idtr.base;
  936. }
  937. static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  938. {
  939. struct vcpu_svm *svm = to_svm(vcpu);
  940. svm->vmcb->save.idtr.limit = dt->size;
  941. svm->vmcb->save.idtr.base = dt->address ;
  942. }
  943. static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  944. {
  945. struct vcpu_svm *svm = to_svm(vcpu);
  946. dt->size = svm->vmcb->save.gdtr.limit;
  947. dt->address = svm->vmcb->save.gdtr.base;
  948. }
  949. static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  950. {
  951. struct vcpu_svm *svm = to_svm(vcpu);
  952. svm->vmcb->save.gdtr.limit = dt->size;
  953. svm->vmcb->save.gdtr.base = dt->address ;
  954. }
  955. static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  956. {
  957. }
  958. static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  959. {
  960. }
  961. static void update_cr0_intercept(struct vcpu_svm *svm)
  962. {
  963. struct vmcb *vmcb = svm->vmcb;
  964. ulong gcr0 = svm->vcpu.arch.cr0;
  965. u64 *hcr0 = &svm->vmcb->save.cr0;
  966. if (!svm->vcpu.fpu_active)
  967. *hcr0 |= SVM_CR0_SELECTIVE_MASK;
  968. else
  969. *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
  970. | (gcr0 & SVM_CR0_SELECTIVE_MASK);
  971. if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
  972. vmcb->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
  973. vmcb->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
  974. if (is_nested(svm)) {
  975. struct vmcb *hsave = svm->nested.hsave;
  976. hsave->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
  977. hsave->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
  978. vmcb->control.intercept_cr_read |= svm->nested.intercept_cr_read;
  979. vmcb->control.intercept_cr_write |= svm->nested.intercept_cr_write;
  980. }
  981. } else {
  982. svm->vmcb->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
  983. svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
  984. if (is_nested(svm)) {
  985. struct vmcb *hsave = svm->nested.hsave;
  986. hsave->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
  987. hsave->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
  988. }
  989. }
  990. }
  991. static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  992. {
  993. struct vcpu_svm *svm = to_svm(vcpu);
  994. if (is_nested(svm)) {
  995. /*
  996. * We are here because we run in nested mode, the host kvm
  997. * intercepts cr0 writes but the l1 hypervisor does not.
  998. * But the L1 hypervisor may intercept selective cr0 writes.
  999. * This needs to be checked here.
  1000. */
  1001. unsigned long old, new;
  1002. /* Remove bits that would trigger a real cr0 write intercept */
  1003. old = vcpu->arch.cr0 & SVM_CR0_SELECTIVE_MASK;
  1004. new = cr0 & SVM_CR0_SELECTIVE_MASK;
  1005. if (old == new) {
  1006. /* cr0 write with ts and mp unchanged */
  1007. svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
  1008. if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE) {
  1009. svm->nested.vmexit_rip = kvm_rip_read(vcpu);
  1010. svm->nested.vmexit_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  1011. svm->nested.vmexit_rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  1012. return;
  1013. }
  1014. }
  1015. }
  1016. #ifdef CONFIG_X86_64
  1017. if (vcpu->arch.efer & EFER_LME) {
  1018. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  1019. vcpu->arch.efer |= EFER_LMA;
  1020. svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
  1021. }
  1022. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
  1023. vcpu->arch.efer &= ~EFER_LMA;
  1024. svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
  1025. }
  1026. }
  1027. #endif
  1028. vcpu->arch.cr0 = cr0;
  1029. if (!npt_enabled)
  1030. cr0 |= X86_CR0_PG | X86_CR0_WP;
  1031. if (!vcpu->fpu_active)
  1032. cr0 |= X86_CR0_TS;
  1033. /*
  1034. * re-enable caching here because the QEMU bios
  1035. * does not do it - this results in some delay at
  1036. * reboot
  1037. */
  1038. cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
  1039. svm->vmcb->save.cr0 = cr0;
  1040. update_cr0_intercept(svm);
  1041. }
  1042. static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1043. {
  1044. unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
  1045. unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
  1046. if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
  1047. force_new_asid(vcpu);
  1048. vcpu->arch.cr4 = cr4;
  1049. if (!npt_enabled)
  1050. cr4 |= X86_CR4_PAE;
  1051. cr4 |= host_cr4_mce;
  1052. to_svm(vcpu)->vmcb->save.cr4 = cr4;
  1053. }
  1054. static void svm_set_segment(struct kvm_vcpu *vcpu,
  1055. struct kvm_segment *var, int seg)
  1056. {
  1057. struct vcpu_svm *svm = to_svm(vcpu);
  1058. struct vmcb_seg *s = svm_seg(vcpu, seg);
  1059. s->base = var->base;
  1060. s->limit = var->limit;
  1061. s->selector = var->selector;
  1062. if (var->unusable)
  1063. s->attrib = 0;
  1064. else {
  1065. s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
  1066. s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
  1067. s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
  1068. s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
  1069. s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
  1070. s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
  1071. s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
  1072. s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
  1073. }
  1074. if (seg == VCPU_SREG_CS)
  1075. svm->vmcb->save.cpl
  1076. = (svm->vmcb->save.cs.attrib
  1077. >> SVM_SELECTOR_DPL_SHIFT) & 3;
  1078. }
  1079. static void update_db_intercept(struct kvm_vcpu *vcpu)
  1080. {
  1081. struct vcpu_svm *svm = to_svm(vcpu);
  1082. svm->vmcb->control.intercept_exceptions &=
  1083. ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
  1084. if (svm->nmi_singlestep)
  1085. svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
  1086. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  1087. if (vcpu->guest_debug &
  1088. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  1089. svm->vmcb->control.intercept_exceptions |=
  1090. 1 << DB_VECTOR;
  1091. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  1092. svm->vmcb->control.intercept_exceptions |=
  1093. 1 << BP_VECTOR;
  1094. } else
  1095. vcpu->guest_debug = 0;
  1096. }
  1097. static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  1098. {
  1099. struct vcpu_svm *svm = to_svm(vcpu);
  1100. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  1101. svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
  1102. else
  1103. svm->vmcb->save.dr7 = vcpu->arch.dr7;
  1104. update_db_intercept(vcpu);
  1105. }
  1106. static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
  1107. {
  1108. if (sd->next_asid > sd->max_asid) {
  1109. ++sd->asid_generation;
  1110. sd->next_asid = 1;
  1111. svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
  1112. }
  1113. svm->asid_generation = sd->asid_generation;
  1114. svm->vmcb->control.asid = sd->next_asid++;
  1115. }
  1116. static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
  1117. {
  1118. struct vcpu_svm *svm = to_svm(vcpu);
  1119. svm->vmcb->save.dr7 = value;
  1120. }
  1121. static int pf_interception(struct vcpu_svm *svm)
  1122. {
  1123. u64 fault_address = svm->vmcb->control.exit_info_2;
  1124. u32 error_code;
  1125. int r = 1;
  1126. switch (svm->apf_reason) {
  1127. default:
  1128. error_code = svm->vmcb->control.exit_info_1;
  1129. trace_kvm_page_fault(fault_address, error_code);
  1130. if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
  1131. kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
  1132. r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
  1133. break;
  1134. case KVM_PV_REASON_PAGE_NOT_PRESENT:
  1135. svm->apf_reason = 0;
  1136. local_irq_disable();
  1137. kvm_async_pf_task_wait(fault_address);
  1138. local_irq_enable();
  1139. break;
  1140. case KVM_PV_REASON_PAGE_READY:
  1141. svm->apf_reason = 0;
  1142. local_irq_disable();
  1143. kvm_async_pf_task_wake(fault_address);
  1144. local_irq_enable();
  1145. break;
  1146. }
  1147. return r;
  1148. }
  1149. static int db_interception(struct vcpu_svm *svm)
  1150. {
  1151. struct kvm_run *kvm_run = svm->vcpu.run;
  1152. if (!(svm->vcpu.guest_debug &
  1153. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
  1154. !svm->nmi_singlestep) {
  1155. kvm_queue_exception(&svm->vcpu, DB_VECTOR);
  1156. return 1;
  1157. }
  1158. if (svm->nmi_singlestep) {
  1159. svm->nmi_singlestep = false;
  1160. if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
  1161. svm->vmcb->save.rflags &=
  1162. ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1163. update_db_intercept(&svm->vcpu);
  1164. }
  1165. if (svm->vcpu.guest_debug &
  1166. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
  1167. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1168. kvm_run->debug.arch.pc =
  1169. svm->vmcb->save.cs.base + svm->vmcb->save.rip;
  1170. kvm_run->debug.arch.exception = DB_VECTOR;
  1171. return 0;
  1172. }
  1173. return 1;
  1174. }
  1175. static int bp_interception(struct vcpu_svm *svm)
  1176. {
  1177. struct kvm_run *kvm_run = svm->vcpu.run;
  1178. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1179. kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
  1180. kvm_run->debug.arch.exception = BP_VECTOR;
  1181. return 0;
  1182. }
  1183. static int ud_interception(struct vcpu_svm *svm)
  1184. {
  1185. int er;
  1186. er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
  1187. if (er != EMULATE_DONE)
  1188. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  1189. return 1;
  1190. }
  1191. static void svm_fpu_activate(struct kvm_vcpu *vcpu)
  1192. {
  1193. struct vcpu_svm *svm = to_svm(vcpu);
  1194. u32 excp;
  1195. if (is_nested(svm)) {
  1196. u32 h_excp, n_excp;
  1197. h_excp = svm->nested.hsave->control.intercept_exceptions;
  1198. n_excp = svm->nested.intercept_exceptions;
  1199. h_excp &= ~(1 << NM_VECTOR);
  1200. excp = h_excp | n_excp;
  1201. } else {
  1202. excp = svm->vmcb->control.intercept_exceptions;
  1203. excp &= ~(1 << NM_VECTOR);
  1204. }
  1205. svm->vmcb->control.intercept_exceptions = excp;
  1206. svm->vcpu.fpu_active = 1;
  1207. update_cr0_intercept(svm);
  1208. }
  1209. static int nm_interception(struct vcpu_svm *svm)
  1210. {
  1211. svm_fpu_activate(&svm->vcpu);
  1212. return 1;
  1213. }
  1214. static bool is_erratum_383(void)
  1215. {
  1216. int err, i;
  1217. u64 value;
  1218. if (!erratum_383_found)
  1219. return false;
  1220. value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
  1221. if (err)
  1222. return false;
  1223. /* Bit 62 may or may not be set for this mce */
  1224. value &= ~(1ULL << 62);
  1225. if (value != 0xb600000000010015ULL)
  1226. return false;
  1227. /* Clear MCi_STATUS registers */
  1228. for (i = 0; i < 6; ++i)
  1229. native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
  1230. value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
  1231. if (!err) {
  1232. u32 low, high;
  1233. value &= ~(1ULL << 2);
  1234. low = lower_32_bits(value);
  1235. high = upper_32_bits(value);
  1236. native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
  1237. }
  1238. /* Flush tlb to evict multi-match entries */
  1239. __flush_tlb_all();
  1240. return true;
  1241. }
  1242. static void svm_handle_mce(struct vcpu_svm *svm)
  1243. {
  1244. if (is_erratum_383()) {
  1245. /*
  1246. * Erratum 383 triggered. Guest state is corrupt so kill the
  1247. * guest.
  1248. */
  1249. pr_err("KVM: Guest triggered AMD Erratum 383\n");
  1250. kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
  1251. return;
  1252. }
  1253. /*
  1254. * On an #MC intercept the MCE handler is not called automatically in
  1255. * the host. So do it by hand here.
  1256. */
  1257. asm volatile (
  1258. "int $0x12\n");
  1259. /* not sure if we ever come back to this point */
  1260. return;
  1261. }
  1262. static int mc_interception(struct vcpu_svm *svm)
  1263. {
  1264. return 1;
  1265. }
  1266. static int shutdown_interception(struct vcpu_svm *svm)
  1267. {
  1268. struct kvm_run *kvm_run = svm->vcpu.run;
  1269. /*
  1270. * VMCB is undefined after a SHUTDOWN intercept
  1271. * so reinitialize it.
  1272. */
  1273. clear_page(svm->vmcb);
  1274. init_vmcb(svm);
  1275. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1276. return 0;
  1277. }
  1278. static int io_interception(struct vcpu_svm *svm)
  1279. {
  1280. struct kvm_vcpu *vcpu = &svm->vcpu;
  1281. u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
  1282. int size, in, string;
  1283. unsigned port;
  1284. ++svm->vcpu.stat.io_exits;
  1285. string = (io_info & SVM_IOIO_STR_MASK) != 0;
  1286. in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
  1287. if (string || in)
  1288. return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
  1289. port = io_info >> 16;
  1290. size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
  1291. svm->next_rip = svm->vmcb->control.exit_info_2;
  1292. skip_emulated_instruction(&svm->vcpu);
  1293. return kvm_fast_pio_out(vcpu, size, port);
  1294. }
  1295. static int nmi_interception(struct vcpu_svm *svm)
  1296. {
  1297. return 1;
  1298. }
  1299. static int intr_interception(struct vcpu_svm *svm)
  1300. {
  1301. ++svm->vcpu.stat.irq_exits;
  1302. return 1;
  1303. }
  1304. static int nop_on_interception(struct vcpu_svm *svm)
  1305. {
  1306. return 1;
  1307. }
  1308. static int halt_interception(struct vcpu_svm *svm)
  1309. {
  1310. svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
  1311. skip_emulated_instruction(&svm->vcpu);
  1312. return kvm_emulate_halt(&svm->vcpu);
  1313. }
  1314. static int vmmcall_interception(struct vcpu_svm *svm)
  1315. {
  1316. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1317. skip_emulated_instruction(&svm->vcpu);
  1318. kvm_emulate_hypercall(&svm->vcpu);
  1319. return 1;
  1320. }
  1321. static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
  1322. {
  1323. struct vcpu_svm *svm = to_svm(vcpu);
  1324. return svm->nested.nested_cr3;
  1325. }
  1326. static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
  1327. unsigned long root)
  1328. {
  1329. struct vcpu_svm *svm = to_svm(vcpu);
  1330. svm->vmcb->control.nested_cr3 = root;
  1331. force_new_asid(vcpu);
  1332. }
  1333. static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu)
  1334. {
  1335. struct vcpu_svm *svm = to_svm(vcpu);
  1336. svm->vmcb->control.exit_code = SVM_EXIT_NPF;
  1337. svm->vmcb->control.exit_code_hi = 0;
  1338. svm->vmcb->control.exit_info_1 = vcpu->arch.fault.error_code;
  1339. svm->vmcb->control.exit_info_2 = vcpu->arch.fault.address;
  1340. nested_svm_vmexit(svm);
  1341. }
  1342. static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
  1343. {
  1344. int r;
  1345. r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
  1346. vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
  1347. vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
  1348. vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
  1349. vcpu->arch.mmu.shadow_root_level = get_npt_level();
  1350. vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
  1351. return r;
  1352. }
  1353. static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
  1354. {
  1355. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  1356. }
  1357. static int nested_svm_check_permissions(struct vcpu_svm *svm)
  1358. {
  1359. if (!(svm->vcpu.arch.efer & EFER_SVME)
  1360. || !is_paging(&svm->vcpu)) {
  1361. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  1362. return 1;
  1363. }
  1364. if (svm->vmcb->save.cpl) {
  1365. kvm_inject_gp(&svm->vcpu, 0);
  1366. return 1;
  1367. }
  1368. return 0;
  1369. }
  1370. static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
  1371. bool has_error_code, u32 error_code)
  1372. {
  1373. int vmexit;
  1374. if (!is_nested(svm))
  1375. return 0;
  1376. svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
  1377. svm->vmcb->control.exit_code_hi = 0;
  1378. svm->vmcb->control.exit_info_1 = error_code;
  1379. svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
  1380. vmexit = nested_svm_intercept(svm);
  1381. if (vmexit == NESTED_EXIT_DONE)
  1382. svm->nested.exit_required = true;
  1383. return vmexit;
  1384. }
  1385. /* This function returns true if it is save to enable the irq window */
  1386. static inline bool nested_svm_intr(struct vcpu_svm *svm)
  1387. {
  1388. if (!is_nested(svm))
  1389. return true;
  1390. if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
  1391. return true;
  1392. if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
  1393. return false;
  1394. /*
  1395. * if vmexit was already requested (by intercepted exception
  1396. * for instance) do not overwrite it with "external interrupt"
  1397. * vmexit.
  1398. */
  1399. if (svm->nested.exit_required)
  1400. return false;
  1401. svm->vmcb->control.exit_code = SVM_EXIT_INTR;
  1402. svm->vmcb->control.exit_info_1 = 0;
  1403. svm->vmcb->control.exit_info_2 = 0;
  1404. if (svm->nested.intercept & 1ULL) {
  1405. /*
  1406. * The #vmexit can't be emulated here directly because this
  1407. * code path runs with irqs and preemtion disabled. A
  1408. * #vmexit emulation might sleep. Only signal request for
  1409. * the #vmexit here.
  1410. */
  1411. svm->nested.exit_required = true;
  1412. trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
  1413. return false;
  1414. }
  1415. return true;
  1416. }
  1417. /* This function returns true if it is save to enable the nmi window */
  1418. static inline bool nested_svm_nmi(struct vcpu_svm *svm)
  1419. {
  1420. if (!is_nested(svm))
  1421. return true;
  1422. if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
  1423. return true;
  1424. svm->vmcb->control.exit_code = SVM_EXIT_NMI;
  1425. svm->nested.exit_required = true;
  1426. return false;
  1427. }
  1428. static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
  1429. {
  1430. struct page *page;
  1431. might_sleep();
  1432. page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
  1433. if (is_error_page(page))
  1434. goto error;
  1435. *_page = page;
  1436. return kmap(page);
  1437. error:
  1438. kvm_release_page_clean(page);
  1439. kvm_inject_gp(&svm->vcpu, 0);
  1440. return NULL;
  1441. }
  1442. static void nested_svm_unmap(struct page *page)
  1443. {
  1444. kunmap(page);
  1445. kvm_release_page_dirty(page);
  1446. }
  1447. static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
  1448. {
  1449. unsigned port;
  1450. u8 val, bit;
  1451. u64 gpa;
  1452. if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
  1453. return NESTED_EXIT_HOST;
  1454. port = svm->vmcb->control.exit_info_1 >> 16;
  1455. gpa = svm->nested.vmcb_iopm + (port / 8);
  1456. bit = port % 8;
  1457. val = 0;
  1458. if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
  1459. val &= (1 << bit);
  1460. return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
  1461. }
  1462. static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
  1463. {
  1464. u32 offset, msr, value;
  1465. int write, mask;
  1466. if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
  1467. return NESTED_EXIT_HOST;
  1468. msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  1469. offset = svm_msrpm_offset(msr);
  1470. write = svm->vmcb->control.exit_info_1 & 1;
  1471. mask = 1 << ((2 * (msr & 0xf)) + write);
  1472. if (offset == MSR_INVALID)
  1473. return NESTED_EXIT_DONE;
  1474. /* Offset is in 32 bit units but need in 8 bit units */
  1475. offset *= 4;
  1476. if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
  1477. return NESTED_EXIT_DONE;
  1478. return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
  1479. }
  1480. static int nested_svm_exit_special(struct vcpu_svm *svm)
  1481. {
  1482. u32 exit_code = svm->vmcb->control.exit_code;
  1483. switch (exit_code) {
  1484. case SVM_EXIT_INTR:
  1485. case SVM_EXIT_NMI:
  1486. case SVM_EXIT_EXCP_BASE + MC_VECTOR:
  1487. return NESTED_EXIT_HOST;
  1488. case SVM_EXIT_NPF:
  1489. /* For now we are always handling NPFs when using them */
  1490. if (npt_enabled)
  1491. return NESTED_EXIT_HOST;
  1492. break;
  1493. case SVM_EXIT_EXCP_BASE + PF_VECTOR:
  1494. /* When we're shadowing, trap PFs, but not async PF */
  1495. if (!npt_enabled && svm->apf_reason == 0)
  1496. return NESTED_EXIT_HOST;
  1497. break;
  1498. case SVM_EXIT_EXCP_BASE + NM_VECTOR:
  1499. nm_interception(svm);
  1500. break;
  1501. default:
  1502. break;
  1503. }
  1504. return NESTED_EXIT_CONTINUE;
  1505. }
  1506. /*
  1507. * If this function returns true, this #vmexit was already handled
  1508. */
  1509. static int nested_svm_intercept(struct vcpu_svm *svm)
  1510. {
  1511. u32 exit_code = svm->vmcb->control.exit_code;
  1512. int vmexit = NESTED_EXIT_HOST;
  1513. switch (exit_code) {
  1514. case SVM_EXIT_MSR:
  1515. vmexit = nested_svm_exit_handled_msr(svm);
  1516. break;
  1517. case SVM_EXIT_IOIO:
  1518. vmexit = nested_svm_intercept_ioio(svm);
  1519. break;
  1520. case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
  1521. u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
  1522. if (svm->nested.intercept_cr_read & cr_bits)
  1523. vmexit = NESTED_EXIT_DONE;
  1524. break;
  1525. }
  1526. case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
  1527. u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
  1528. if (svm->nested.intercept_cr_write & cr_bits)
  1529. vmexit = NESTED_EXIT_DONE;
  1530. break;
  1531. }
  1532. case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
  1533. u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
  1534. if (svm->nested.intercept_dr_read & dr_bits)
  1535. vmexit = NESTED_EXIT_DONE;
  1536. break;
  1537. }
  1538. case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
  1539. u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
  1540. if (svm->nested.intercept_dr_write & dr_bits)
  1541. vmexit = NESTED_EXIT_DONE;
  1542. break;
  1543. }
  1544. case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
  1545. u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
  1546. if (svm->nested.intercept_exceptions & excp_bits)
  1547. vmexit = NESTED_EXIT_DONE;
  1548. /* async page fault always cause vmexit */
  1549. else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
  1550. svm->apf_reason != 0)
  1551. vmexit = NESTED_EXIT_DONE;
  1552. break;
  1553. }
  1554. case SVM_EXIT_ERR: {
  1555. vmexit = NESTED_EXIT_DONE;
  1556. break;
  1557. }
  1558. default: {
  1559. u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
  1560. if (svm->nested.intercept & exit_bits)
  1561. vmexit = NESTED_EXIT_DONE;
  1562. }
  1563. }
  1564. return vmexit;
  1565. }
  1566. static int nested_svm_exit_handled(struct vcpu_svm *svm)
  1567. {
  1568. int vmexit;
  1569. vmexit = nested_svm_intercept(svm);
  1570. if (vmexit == NESTED_EXIT_DONE)
  1571. nested_svm_vmexit(svm);
  1572. return vmexit;
  1573. }
  1574. static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
  1575. {
  1576. struct vmcb_control_area *dst = &dst_vmcb->control;
  1577. struct vmcb_control_area *from = &from_vmcb->control;
  1578. dst->intercept_cr_read = from->intercept_cr_read;
  1579. dst->intercept_cr_write = from->intercept_cr_write;
  1580. dst->intercept_dr_read = from->intercept_dr_read;
  1581. dst->intercept_dr_write = from->intercept_dr_write;
  1582. dst->intercept_exceptions = from->intercept_exceptions;
  1583. dst->intercept = from->intercept;
  1584. dst->iopm_base_pa = from->iopm_base_pa;
  1585. dst->msrpm_base_pa = from->msrpm_base_pa;
  1586. dst->tsc_offset = from->tsc_offset;
  1587. dst->asid = from->asid;
  1588. dst->tlb_ctl = from->tlb_ctl;
  1589. dst->int_ctl = from->int_ctl;
  1590. dst->int_vector = from->int_vector;
  1591. dst->int_state = from->int_state;
  1592. dst->exit_code = from->exit_code;
  1593. dst->exit_code_hi = from->exit_code_hi;
  1594. dst->exit_info_1 = from->exit_info_1;
  1595. dst->exit_info_2 = from->exit_info_2;
  1596. dst->exit_int_info = from->exit_int_info;
  1597. dst->exit_int_info_err = from->exit_int_info_err;
  1598. dst->nested_ctl = from->nested_ctl;
  1599. dst->event_inj = from->event_inj;
  1600. dst->event_inj_err = from->event_inj_err;
  1601. dst->nested_cr3 = from->nested_cr3;
  1602. dst->lbr_ctl = from->lbr_ctl;
  1603. }
  1604. static int nested_svm_vmexit(struct vcpu_svm *svm)
  1605. {
  1606. struct vmcb *nested_vmcb;
  1607. struct vmcb *hsave = svm->nested.hsave;
  1608. struct vmcb *vmcb = svm->vmcb;
  1609. struct page *page;
  1610. trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
  1611. vmcb->control.exit_info_1,
  1612. vmcb->control.exit_info_2,
  1613. vmcb->control.exit_int_info,
  1614. vmcb->control.exit_int_info_err);
  1615. nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
  1616. if (!nested_vmcb)
  1617. return 1;
  1618. /* Exit nested SVM mode */
  1619. svm->nested.vmcb = 0;
  1620. /* Give the current vmcb to the guest */
  1621. disable_gif(svm);
  1622. nested_vmcb->save.es = vmcb->save.es;
  1623. nested_vmcb->save.cs = vmcb->save.cs;
  1624. nested_vmcb->save.ss = vmcb->save.ss;
  1625. nested_vmcb->save.ds = vmcb->save.ds;
  1626. nested_vmcb->save.gdtr = vmcb->save.gdtr;
  1627. nested_vmcb->save.idtr = vmcb->save.idtr;
  1628. nested_vmcb->save.efer = svm->vcpu.arch.efer;
  1629. nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
  1630. nested_vmcb->save.cr3 = svm->vcpu.arch.cr3;
  1631. nested_vmcb->save.cr2 = vmcb->save.cr2;
  1632. nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
  1633. nested_vmcb->save.rflags = vmcb->save.rflags;
  1634. nested_vmcb->save.rip = vmcb->save.rip;
  1635. nested_vmcb->save.rsp = vmcb->save.rsp;
  1636. nested_vmcb->save.rax = vmcb->save.rax;
  1637. nested_vmcb->save.dr7 = vmcb->save.dr7;
  1638. nested_vmcb->save.dr6 = vmcb->save.dr6;
  1639. nested_vmcb->save.cpl = vmcb->save.cpl;
  1640. nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
  1641. nested_vmcb->control.int_vector = vmcb->control.int_vector;
  1642. nested_vmcb->control.int_state = vmcb->control.int_state;
  1643. nested_vmcb->control.exit_code = vmcb->control.exit_code;
  1644. nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
  1645. nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
  1646. nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
  1647. nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
  1648. nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
  1649. nested_vmcb->control.next_rip = vmcb->control.next_rip;
  1650. /*
  1651. * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
  1652. * to make sure that we do not lose injected events. So check event_inj
  1653. * here and copy it to exit_int_info if it is valid.
  1654. * Exit_int_info and event_inj can't be both valid because the case
  1655. * below only happens on a VMRUN instruction intercept which has
  1656. * no valid exit_int_info set.
  1657. */
  1658. if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
  1659. struct vmcb_control_area *nc = &nested_vmcb->control;
  1660. nc->exit_int_info = vmcb->control.event_inj;
  1661. nc->exit_int_info_err = vmcb->control.event_inj_err;
  1662. }
  1663. nested_vmcb->control.tlb_ctl = 0;
  1664. nested_vmcb->control.event_inj = 0;
  1665. nested_vmcb->control.event_inj_err = 0;
  1666. /* We always set V_INTR_MASKING and remember the old value in hflags */
  1667. if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
  1668. nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
  1669. /* Restore the original control entries */
  1670. copy_vmcb_control_area(vmcb, hsave);
  1671. kvm_clear_exception_queue(&svm->vcpu);
  1672. kvm_clear_interrupt_queue(&svm->vcpu);
  1673. svm->nested.nested_cr3 = 0;
  1674. /* Restore selected save entries */
  1675. svm->vmcb->save.es = hsave->save.es;
  1676. svm->vmcb->save.cs = hsave->save.cs;
  1677. svm->vmcb->save.ss = hsave->save.ss;
  1678. svm->vmcb->save.ds = hsave->save.ds;
  1679. svm->vmcb->save.gdtr = hsave->save.gdtr;
  1680. svm->vmcb->save.idtr = hsave->save.idtr;
  1681. svm->vmcb->save.rflags = hsave->save.rflags;
  1682. svm_set_efer(&svm->vcpu, hsave->save.efer);
  1683. svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
  1684. svm_set_cr4(&svm->vcpu, hsave->save.cr4);
  1685. if (npt_enabled) {
  1686. svm->vmcb->save.cr3 = hsave->save.cr3;
  1687. svm->vcpu.arch.cr3 = hsave->save.cr3;
  1688. } else {
  1689. (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
  1690. }
  1691. kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
  1692. kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
  1693. kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
  1694. svm->vmcb->save.dr7 = 0;
  1695. svm->vmcb->save.cpl = 0;
  1696. svm->vmcb->control.exit_int_info = 0;
  1697. nested_svm_unmap(page);
  1698. nested_svm_uninit_mmu_context(&svm->vcpu);
  1699. kvm_mmu_reset_context(&svm->vcpu);
  1700. kvm_mmu_load(&svm->vcpu);
  1701. return 0;
  1702. }
  1703. static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
  1704. {
  1705. /*
  1706. * This function merges the msr permission bitmaps of kvm and the
  1707. * nested vmcb. It is omptimized in that it only merges the parts where
  1708. * the kvm msr permission bitmap may contain zero bits
  1709. */
  1710. int i;
  1711. if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
  1712. return true;
  1713. for (i = 0; i < MSRPM_OFFSETS; i++) {
  1714. u32 value, p;
  1715. u64 offset;
  1716. if (msrpm_offsets[i] == 0xffffffff)
  1717. break;
  1718. p = msrpm_offsets[i];
  1719. offset = svm->nested.vmcb_msrpm + (p * 4);
  1720. if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
  1721. return false;
  1722. svm->nested.msrpm[p] = svm->msrpm[p] | value;
  1723. }
  1724. svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
  1725. return true;
  1726. }
  1727. static bool nested_vmcb_checks(struct vmcb *vmcb)
  1728. {
  1729. if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
  1730. return false;
  1731. if (vmcb->control.asid == 0)
  1732. return false;
  1733. if (vmcb->control.nested_ctl && !npt_enabled)
  1734. return false;
  1735. return true;
  1736. }
  1737. static bool nested_svm_vmrun(struct vcpu_svm *svm)
  1738. {
  1739. struct vmcb *nested_vmcb;
  1740. struct vmcb *hsave = svm->nested.hsave;
  1741. struct vmcb *vmcb = svm->vmcb;
  1742. struct page *page;
  1743. u64 vmcb_gpa;
  1744. vmcb_gpa = svm->vmcb->save.rax;
  1745. nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
  1746. if (!nested_vmcb)
  1747. return false;
  1748. if (!nested_vmcb_checks(nested_vmcb)) {
  1749. nested_vmcb->control.exit_code = SVM_EXIT_ERR;
  1750. nested_vmcb->control.exit_code_hi = 0;
  1751. nested_vmcb->control.exit_info_1 = 0;
  1752. nested_vmcb->control.exit_info_2 = 0;
  1753. nested_svm_unmap(page);
  1754. return false;
  1755. }
  1756. trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
  1757. nested_vmcb->save.rip,
  1758. nested_vmcb->control.int_ctl,
  1759. nested_vmcb->control.event_inj,
  1760. nested_vmcb->control.nested_ctl);
  1761. trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr_read,
  1762. nested_vmcb->control.intercept_cr_write,
  1763. nested_vmcb->control.intercept_exceptions,
  1764. nested_vmcb->control.intercept);
  1765. /* Clear internal status */
  1766. kvm_clear_exception_queue(&svm->vcpu);
  1767. kvm_clear_interrupt_queue(&svm->vcpu);
  1768. /*
  1769. * Save the old vmcb, so we don't need to pick what we save, but can
  1770. * restore everything when a VMEXIT occurs
  1771. */
  1772. hsave->save.es = vmcb->save.es;
  1773. hsave->save.cs = vmcb->save.cs;
  1774. hsave->save.ss = vmcb->save.ss;
  1775. hsave->save.ds = vmcb->save.ds;
  1776. hsave->save.gdtr = vmcb->save.gdtr;
  1777. hsave->save.idtr = vmcb->save.idtr;
  1778. hsave->save.efer = svm->vcpu.arch.efer;
  1779. hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
  1780. hsave->save.cr4 = svm->vcpu.arch.cr4;
  1781. hsave->save.rflags = vmcb->save.rflags;
  1782. hsave->save.rip = kvm_rip_read(&svm->vcpu);
  1783. hsave->save.rsp = vmcb->save.rsp;
  1784. hsave->save.rax = vmcb->save.rax;
  1785. if (npt_enabled)
  1786. hsave->save.cr3 = vmcb->save.cr3;
  1787. else
  1788. hsave->save.cr3 = svm->vcpu.arch.cr3;
  1789. copy_vmcb_control_area(hsave, vmcb);
  1790. if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
  1791. svm->vcpu.arch.hflags |= HF_HIF_MASK;
  1792. else
  1793. svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
  1794. if (nested_vmcb->control.nested_ctl) {
  1795. kvm_mmu_unload(&svm->vcpu);
  1796. svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
  1797. nested_svm_init_mmu_context(&svm->vcpu);
  1798. }
  1799. /* Load the nested guest state */
  1800. svm->vmcb->save.es = nested_vmcb->save.es;
  1801. svm->vmcb->save.cs = nested_vmcb->save.cs;
  1802. svm->vmcb->save.ss = nested_vmcb->save.ss;
  1803. svm->vmcb->save.ds = nested_vmcb->save.ds;
  1804. svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
  1805. svm->vmcb->save.idtr = nested_vmcb->save.idtr;
  1806. svm->vmcb->save.rflags = nested_vmcb->save.rflags;
  1807. svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
  1808. svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
  1809. svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
  1810. if (npt_enabled) {
  1811. svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
  1812. svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
  1813. } else
  1814. (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
  1815. /* Guest paging mode is active - reset mmu */
  1816. kvm_mmu_reset_context(&svm->vcpu);
  1817. svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
  1818. kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
  1819. kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
  1820. kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
  1821. /* In case we don't even reach vcpu_run, the fields are not updated */
  1822. svm->vmcb->save.rax = nested_vmcb->save.rax;
  1823. svm->vmcb->save.rsp = nested_vmcb->save.rsp;
  1824. svm->vmcb->save.rip = nested_vmcb->save.rip;
  1825. svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
  1826. svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
  1827. svm->vmcb->save.cpl = nested_vmcb->save.cpl;
  1828. svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
  1829. svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
  1830. /* cache intercepts */
  1831. svm->nested.intercept_cr_read = nested_vmcb->control.intercept_cr_read;
  1832. svm->nested.intercept_cr_write = nested_vmcb->control.intercept_cr_write;
  1833. svm->nested.intercept_dr_read = nested_vmcb->control.intercept_dr_read;
  1834. svm->nested.intercept_dr_write = nested_vmcb->control.intercept_dr_write;
  1835. svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
  1836. svm->nested.intercept = nested_vmcb->control.intercept;
  1837. force_new_asid(&svm->vcpu);
  1838. svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
  1839. if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
  1840. svm->vcpu.arch.hflags |= HF_VINTR_MASK;
  1841. else
  1842. svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
  1843. if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
  1844. /* We only want the cr8 intercept bits of the guest */
  1845. svm->vmcb->control.intercept_cr_read &= ~INTERCEPT_CR8_MASK;
  1846. svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
  1847. }
  1848. /* We don't want to see VMMCALLs from a nested guest */
  1849. svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMMCALL);
  1850. /*
  1851. * We don't want a nested guest to be more powerful than the guest, so
  1852. * all intercepts are ORed
  1853. */
  1854. svm->vmcb->control.intercept_cr_read |=
  1855. nested_vmcb->control.intercept_cr_read;
  1856. svm->vmcb->control.intercept_cr_write |=
  1857. nested_vmcb->control.intercept_cr_write;
  1858. svm->vmcb->control.intercept_dr_read |=
  1859. nested_vmcb->control.intercept_dr_read;
  1860. svm->vmcb->control.intercept_dr_write |=
  1861. nested_vmcb->control.intercept_dr_write;
  1862. svm->vmcb->control.intercept_exceptions |=
  1863. nested_vmcb->control.intercept_exceptions;
  1864. svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
  1865. svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
  1866. svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
  1867. svm->vmcb->control.int_state = nested_vmcb->control.int_state;
  1868. svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
  1869. svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
  1870. svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
  1871. nested_svm_unmap(page);
  1872. /* nested_vmcb is our indicator if nested SVM is activated */
  1873. svm->nested.vmcb = vmcb_gpa;
  1874. enable_gif(svm);
  1875. return true;
  1876. }
  1877. static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
  1878. {
  1879. to_vmcb->save.fs = from_vmcb->save.fs;
  1880. to_vmcb->save.gs = from_vmcb->save.gs;
  1881. to_vmcb->save.tr = from_vmcb->save.tr;
  1882. to_vmcb->save.ldtr = from_vmcb->save.ldtr;
  1883. to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
  1884. to_vmcb->save.star = from_vmcb->save.star;
  1885. to_vmcb->save.lstar = from_vmcb->save.lstar;
  1886. to_vmcb->save.cstar = from_vmcb->save.cstar;
  1887. to_vmcb->save.sfmask = from_vmcb->save.sfmask;
  1888. to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
  1889. to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
  1890. to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
  1891. }
  1892. static int vmload_interception(struct vcpu_svm *svm)
  1893. {
  1894. struct vmcb *nested_vmcb;
  1895. struct page *page;
  1896. if (nested_svm_check_permissions(svm))
  1897. return 1;
  1898. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1899. skip_emulated_instruction(&svm->vcpu);
  1900. nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
  1901. if (!nested_vmcb)
  1902. return 1;
  1903. nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
  1904. nested_svm_unmap(page);
  1905. return 1;
  1906. }
  1907. static int vmsave_interception(struct vcpu_svm *svm)
  1908. {
  1909. struct vmcb *nested_vmcb;
  1910. struct page *page;
  1911. if (nested_svm_check_permissions(svm))
  1912. return 1;
  1913. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1914. skip_emulated_instruction(&svm->vcpu);
  1915. nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
  1916. if (!nested_vmcb)
  1917. return 1;
  1918. nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
  1919. nested_svm_unmap(page);
  1920. return 1;
  1921. }
  1922. static int vmrun_interception(struct vcpu_svm *svm)
  1923. {
  1924. if (nested_svm_check_permissions(svm))
  1925. return 1;
  1926. /* Save rip after vmrun instruction */
  1927. kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
  1928. if (!nested_svm_vmrun(svm))
  1929. return 1;
  1930. if (!nested_svm_vmrun_msrpm(svm))
  1931. goto failed;
  1932. return 1;
  1933. failed:
  1934. svm->vmcb->control.exit_code = SVM_EXIT_ERR;
  1935. svm->vmcb->control.exit_code_hi = 0;
  1936. svm->vmcb->control.exit_info_1 = 0;
  1937. svm->vmcb->control.exit_info_2 = 0;
  1938. nested_svm_vmexit(svm);
  1939. return 1;
  1940. }
  1941. static int stgi_interception(struct vcpu_svm *svm)
  1942. {
  1943. if (nested_svm_check_permissions(svm))
  1944. return 1;
  1945. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1946. skip_emulated_instruction(&svm->vcpu);
  1947. kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
  1948. enable_gif(svm);
  1949. return 1;
  1950. }
  1951. static int clgi_interception(struct vcpu_svm *svm)
  1952. {
  1953. if (nested_svm_check_permissions(svm))
  1954. return 1;
  1955. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1956. skip_emulated_instruction(&svm->vcpu);
  1957. disable_gif(svm);
  1958. /* After a CLGI no interrupts should come */
  1959. svm_clear_vintr(svm);
  1960. svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
  1961. return 1;
  1962. }
  1963. static int invlpga_interception(struct vcpu_svm *svm)
  1964. {
  1965. struct kvm_vcpu *vcpu = &svm->vcpu;
  1966. trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
  1967. vcpu->arch.regs[VCPU_REGS_RAX]);
  1968. /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
  1969. kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
  1970. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1971. skip_emulated_instruction(&svm->vcpu);
  1972. return 1;
  1973. }
  1974. static int skinit_interception(struct vcpu_svm *svm)
  1975. {
  1976. trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
  1977. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  1978. return 1;
  1979. }
  1980. static int invalid_op_interception(struct vcpu_svm *svm)
  1981. {
  1982. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  1983. return 1;
  1984. }
  1985. static int task_switch_interception(struct vcpu_svm *svm)
  1986. {
  1987. u16 tss_selector;
  1988. int reason;
  1989. int int_type = svm->vmcb->control.exit_int_info &
  1990. SVM_EXITINTINFO_TYPE_MASK;
  1991. int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
  1992. uint32_t type =
  1993. svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
  1994. uint32_t idt_v =
  1995. svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
  1996. bool has_error_code = false;
  1997. u32 error_code = 0;
  1998. tss_selector = (u16)svm->vmcb->control.exit_info_1;
  1999. if (svm->vmcb->control.exit_info_2 &
  2000. (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
  2001. reason = TASK_SWITCH_IRET;
  2002. else if (svm->vmcb->control.exit_info_2 &
  2003. (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
  2004. reason = TASK_SWITCH_JMP;
  2005. else if (idt_v)
  2006. reason = TASK_SWITCH_GATE;
  2007. else
  2008. reason = TASK_SWITCH_CALL;
  2009. if (reason == TASK_SWITCH_GATE) {
  2010. switch (type) {
  2011. case SVM_EXITINTINFO_TYPE_NMI:
  2012. svm->vcpu.arch.nmi_injected = false;
  2013. break;
  2014. case SVM_EXITINTINFO_TYPE_EXEPT:
  2015. if (svm->vmcb->control.exit_info_2 &
  2016. (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
  2017. has_error_code = true;
  2018. error_code =
  2019. (u32)svm->vmcb->control.exit_info_2;
  2020. }
  2021. kvm_clear_exception_queue(&svm->vcpu);
  2022. break;
  2023. case SVM_EXITINTINFO_TYPE_INTR:
  2024. kvm_clear_interrupt_queue(&svm->vcpu);
  2025. break;
  2026. default:
  2027. break;
  2028. }
  2029. }
  2030. if (reason != TASK_SWITCH_GATE ||
  2031. int_type == SVM_EXITINTINFO_TYPE_SOFT ||
  2032. (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
  2033. (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
  2034. skip_emulated_instruction(&svm->vcpu);
  2035. if (kvm_task_switch(&svm->vcpu, tss_selector, reason,
  2036. has_error_code, error_code) == EMULATE_FAIL) {
  2037. svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2038. svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2039. svm->vcpu.run->internal.ndata = 0;
  2040. return 0;
  2041. }
  2042. return 1;
  2043. }
  2044. static int cpuid_interception(struct vcpu_svm *svm)
  2045. {
  2046. svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
  2047. kvm_emulate_cpuid(&svm->vcpu);
  2048. return 1;
  2049. }
  2050. static int iret_interception(struct vcpu_svm *svm)
  2051. {
  2052. ++svm->vcpu.stat.nmi_window_exits;
  2053. svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
  2054. svm->vcpu.arch.hflags |= HF_IRET_MASK;
  2055. return 1;
  2056. }
  2057. static int invlpg_interception(struct vcpu_svm *svm)
  2058. {
  2059. return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
  2060. }
  2061. static int emulate_on_interception(struct vcpu_svm *svm)
  2062. {
  2063. return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
  2064. }
  2065. static int cr0_write_interception(struct vcpu_svm *svm)
  2066. {
  2067. struct kvm_vcpu *vcpu = &svm->vcpu;
  2068. int r;
  2069. r = emulate_instruction(&svm->vcpu, 0, 0, 0);
  2070. if (svm->nested.vmexit_rip) {
  2071. kvm_register_write(vcpu, VCPU_REGS_RIP, svm->nested.vmexit_rip);
  2072. kvm_register_write(vcpu, VCPU_REGS_RSP, svm->nested.vmexit_rsp);
  2073. kvm_register_write(vcpu, VCPU_REGS_RAX, svm->nested.vmexit_rax);
  2074. svm->nested.vmexit_rip = 0;
  2075. }
  2076. return r == EMULATE_DONE;
  2077. }
  2078. static int cr8_write_interception(struct vcpu_svm *svm)
  2079. {
  2080. struct kvm_run *kvm_run = svm->vcpu.run;
  2081. u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
  2082. /* instruction emulation calls kvm_set_cr8() */
  2083. emulate_instruction(&svm->vcpu, 0, 0, 0);
  2084. if (irqchip_in_kernel(svm->vcpu.kvm)) {
  2085. svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
  2086. return 1;
  2087. }
  2088. if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
  2089. return 1;
  2090. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2091. return 0;
  2092. }
  2093. static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
  2094. {
  2095. struct vcpu_svm *svm = to_svm(vcpu);
  2096. switch (ecx) {
  2097. case MSR_IA32_TSC: {
  2098. u64 tsc_offset;
  2099. if (is_nested(svm))
  2100. tsc_offset = svm->nested.hsave->control.tsc_offset;
  2101. else
  2102. tsc_offset = svm->vmcb->control.tsc_offset;
  2103. *data = tsc_offset + native_read_tsc();
  2104. break;
  2105. }
  2106. case MSR_STAR:
  2107. *data = svm->vmcb->save.star;
  2108. break;
  2109. #ifdef CONFIG_X86_64
  2110. case MSR_LSTAR:
  2111. *data = svm->vmcb->save.lstar;
  2112. break;
  2113. case MSR_CSTAR:
  2114. *data = svm->vmcb->save.cstar;
  2115. break;
  2116. case MSR_KERNEL_GS_BASE:
  2117. *data = svm->vmcb->save.kernel_gs_base;
  2118. break;
  2119. case MSR_SYSCALL_MASK:
  2120. *data = svm->vmcb->save.sfmask;
  2121. break;
  2122. #endif
  2123. case MSR_IA32_SYSENTER_CS:
  2124. *data = svm->vmcb->save.sysenter_cs;
  2125. break;
  2126. case MSR_IA32_SYSENTER_EIP:
  2127. *data = svm->sysenter_eip;
  2128. break;
  2129. case MSR_IA32_SYSENTER_ESP:
  2130. *data = svm->sysenter_esp;
  2131. break;
  2132. /*
  2133. * Nobody will change the following 5 values in the VMCB so we can
  2134. * safely return them on rdmsr. They will always be 0 until LBRV is
  2135. * implemented.
  2136. */
  2137. case MSR_IA32_DEBUGCTLMSR:
  2138. *data = svm->vmcb->save.dbgctl;
  2139. break;
  2140. case MSR_IA32_LASTBRANCHFROMIP:
  2141. *data = svm->vmcb->save.br_from;
  2142. break;
  2143. case MSR_IA32_LASTBRANCHTOIP:
  2144. *data = svm->vmcb->save.br_to;
  2145. break;
  2146. case MSR_IA32_LASTINTFROMIP:
  2147. *data = svm->vmcb->save.last_excp_from;
  2148. break;
  2149. case MSR_IA32_LASTINTTOIP:
  2150. *data = svm->vmcb->save.last_excp_to;
  2151. break;
  2152. case MSR_VM_HSAVE_PA:
  2153. *data = svm->nested.hsave_msr;
  2154. break;
  2155. case MSR_VM_CR:
  2156. *data = svm->nested.vm_cr_msr;
  2157. break;
  2158. case MSR_IA32_UCODE_REV:
  2159. *data = 0x01000065;
  2160. break;
  2161. default:
  2162. return kvm_get_msr_common(vcpu, ecx, data);
  2163. }
  2164. return 0;
  2165. }
  2166. static int rdmsr_interception(struct vcpu_svm *svm)
  2167. {
  2168. u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  2169. u64 data;
  2170. if (svm_get_msr(&svm->vcpu, ecx, &data)) {
  2171. trace_kvm_msr_read_ex(ecx);
  2172. kvm_inject_gp(&svm->vcpu, 0);
  2173. } else {
  2174. trace_kvm_msr_read(ecx, data);
  2175. svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
  2176. svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
  2177. svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
  2178. skip_emulated_instruction(&svm->vcpu);
  2179. }
  2180. return 1;
  2181. }
  2182. static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
  2183. {
  2184. struct vcpu_svm *svm = to_svm(vcpu);
  2185. int svm_dis, chg_mask;
  2186. if (data & ~SVM_VM_CR_VALID_MASK)
  2187. return 1;
  2188. chg_mask = SVM_VM_CR_VALID_MASK;
  2189. if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
  2190. chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
  2191. svm->nested.vm_cr_msr &= ~chg_mask;
  2192. svm->nested.vm_cr_msr |= (data & chg_mask);
  2193. svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
  2194. /* check for svm_disable while efer.svme is set */
  2195. if (svm_dis && (vcpu->arch.efer & EFER_SVME))
  2196. return 1;
  2197. return 0;
  2198. }
  2199. static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
  2200. {
  2201. struct vcpu_svm *svm = to_svm(vcpu);
  2202. switch (ecx) {
  2203. case MSR_IA32_TSC:
  2204. kvm_write_tsc(vcpu, data);
  2205. break;
  2206. case MSR_STAR:
  2207. svm->vmcb->save.star = data;
  2208. break;
  2209. #ifdef CONFIG_X86_64
  2210. case MSR_LSTAR:
  2211. svm->vmcb->save.lstar = data;
  2212. break;
  2213. case MSR_CSTAR:
  2214. svm->vmcb->save.cstar = data;
  2215. break;
  2216. case MSR_KERNEL_GS_BASE:
  2217. svm->vmcb->save.kernel_gs_base = data;
  2218. break;
  2219. case MSR_SYSCALL_MASK:
  2220. svm->vmcb->save.sfmask = data;
  2221. break;
  2222. #endif
  2223. case MSR_IA32_SYSENTER_CS:
  2224. svm->vmcb->save.sysenter_cs = data;
  2225. break;
  2226. case MSR_IA32_SYSENTER_EIP:
  2227. svm->sysenter_eip = data;
  2228. svm->vmcb->save.sysenter_eip = data;
  2229. break;
  2230. case MSR_IA32_SYSENTER_ESP:
  2231. svm->sysenter_esp = data;
  2232. svm->vmcb->save.sysenter_esp = data;
  2233. break;
  2234. case MSR_IA32_DEBUGCTLMSR:
  2235. if (!svm_has(SVM_FEATURE_LBRV)) {
  2236. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
  2237. __func__, data);
  2238. break;
  2239. }
  2240. if (data & DEBUGCTL_RESERVED_BITS)
  2241. return 1;
  2242. svm->vmcb->save.dbgctl = data;
  2243. if (data & (1ULL<<0))
  2244. svm_enable_lbrv(svm);
  2245. else
  2246. svm_disable_lbrv(svm);
  2247. break;
  2248. case MSR_VM_HSAVE_PA:
  2249. svm->nested.hsave_msr = data;
  2250. break;
  2251. case MSR_VM_CR:
  2252. return svm_set_vm_cr(vcpu, data);
  2253. case MSR_VM_IGNNE:
  2254. pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
  2255. break;
  2256. default:
  2257. return kvm_set_msr_common(vcpu, ecx, data);
  2258. }
  2259. return 0;
  2260. }
  2261. static int wrmsr_interception(struct vcpu_svm *svm)
  2262. {
  2263. u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  2264. u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
  2265. | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2266. svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
  2267. if (svm_set_msr(&svm->vcpu, ecx, data)) {
  2268. trace_kvm_msr_write_ex(ecx, data);
  2269. kvm_inject_gp(&svm->vcpu, 0);
  2270. } else {
  2271. trace_kvm_msr_write(ecx, data);
  2272. skip_emulated_instruction(&svm->vcpu);
  2273. }
  2274. return 1;
  2275. }
  2276. static int msr_interception(struct vcpu_svm *svm)
  2277. {
  2278. if (svm->vmcb->control.exit_info_1)
  2279. return wrmsr_interception(svm);
  2280. else
  2281. return rdmsr_interception(svm);
  2282. }
  2283. static int interrupt_window_interception(struct vcpu_svm *svm)
  2284. {
  2285. struct kvm_run *kvm_run = svm->vcpu.run;
  2286. kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
  2287. svm_clear_vintr(svm);
  2288. svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
  2289. /*
  2290. * If the user space waits to inject interrupts, exit as soon as
  2291. * possible
  2292. */
  2293. if (!irqchip_in_kernel(svm->vcpu.kvm) &&
  2294. kvm_run->request_interrupt_window &&
  2295. !kvm_cpu_has_interrupt(&svm->vcpu)) {
  2296. ++svm->vcpu.stat.irq_window_exits;
  2297. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2298. return 0;
  2299. }
  2300. return 1;
  2301. }
  2302. static int pause_interception(struct vcpu_svm *svm)
  2303. {
  2304. kvm_vcpu_on_spin(&(svm->vcpu));
  2305. return 1;
  2306. }
  2307. static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
  2308. [SVM_EXIT_READ_CR0] = emulate_on_interception,
  2309. [SVM_EXIT_READ_CR3] = emulate_on_interception,
  2310. [SVM_EXIT_READ_CR4] = emulate_on_interception,
  2311. [SVM_EXIT_READ_CR8] = emulate_on_interception,
  2312. [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception,
  2313. [SVM_EXIT_WRITE_CR0] = cr0_write_interception,
  2314. [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
  2315. [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
  2316. [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
  2317. [SVM_EXIT_READ_DR0] = emulate_on_interception,
  2318. [SVM_EXIT_READ_DR1] = emulate_on_interception,
  2319. [SVM_EXIT_READ_DR2] = emulate_on_interception,
  2320. [SVM_EXIT_READ_DR3] = emulate_on_interception,
  2321. [SVM_EXIT_READ_DR4] = emulate_on_interception,
  2322. [SVM_EXIT_READ_DR5] = emulate_on_interception,
  2323. [SVM_EXIT_READ_DR6] = emulate_on_interception,
  2324. [SVM_EXIT_READ_DR7] = emulate_on_interception,
  2325. [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
  2326. [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
  2327. [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
  2328. [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
  2329. [SVM_EXIT_WRITE_DR4] = emulate_on_interception,
  2330. [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
  2331. [SVM_EXIT_WRITE_DR6] = emulate_on_interception,
  2332. [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
  2333. [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
  2334. [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
  2335. [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
  2336. [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
  2337. [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
  2338. [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
  2339. [SVM_EXIT_INTR] = intr_interception,
  2340. [SVM_EXIT_NMI] = nmi_interception,
  2341. [SVM_EXIT_SMI] = nop_on_interception,
  2342. [SVM_EXIT_INIT] = nop_on_interception,
  2343. [SVM_EXIT_VINTR] = interrupt_window_interception,
  2344. [SVM_EXIT_CPUID] = cpuid_interception,
  2345. [SVM_EXIT_IRET] = iret_interception,
  2346. [SVM_EXIT_INVD] = emulate_on_interception,
  2347. [SVM_EXIT_PAUSE] = pause_interception,
  2348. [SVM_EXIT_HLT] = halt_interception,
  2349. [SVM_EXIT_INVLPG] = invlpg_interception,
  2350. [SVM_EXIT_INVLPGA] = invlpga_interception,
  2351. [SVM_EXIT_IOIO] = io_interception,
  2352. [SVM_EXIT_MSR] = msr_interception,
  2353. [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
  2354. [SVM_EXIT_SHUTDOWN] = shutdown_interception,
  2355. [SVM_EXIT_VMRUN] = vmrun_interception,
  2356. [SVM_EXIT_VMMCALL] = vmmcall_interception,
  2357. [SVM_EXIT_VMLOAD] = vmload_interception,
  2358. [SVM_EXIT_VMSAVE] = vmsave_interception,
  2359. [SVM_EXIT_STGI] = stgi_interception,
  2360. [SVM_EXIT_CLGI] = clgi_interception,
  2361. [SVM_EXIT_SKINIT] = skinit_interception,
  2362. [SVM_EXIT_WBINVD] = emulate_on_interception,
  2363. [SVM_EXIT_MONITOR] = invalid_op_interception,
  2364. [SVM_EXIT_MWAIT] = invalid_op_interception,
  2365. [SVM_EXIT_NPF] = pf_interception,
  2366. };
  2367. void dump_vmcb(struct kvm_vcpu *vcpu)
  2368. {
  2369. struct vcpu_svm *svm = to_svm(vcpu);
  2370. struct vmcb_control_area *control = &svm->vmcb->control;
  2371. struct vmcb_save_area *save = &svm->vmcb->save;
  2372. pr_err("VMCB Control Area:\n");
  2373. pr_err("cr_read: %04x\n", control->intercept_cr_read);
  2374. pr_err("cr_write: %04x\n", control->intercept_cr_write);
  2375. pr_err("dr_read: %04x\n", control->intercept_dr_read);
  2376. pr_err("dr_write: %04x\n", control->intercept_dr_write);
  2377. pr_err("exceptions: %08x\n", control->intercept_exceptions);
  2378. pr_err("intercepts: %016llx\n", control->intercept);
  2379. pr_err("pause filter count: %d\n", control->pause_filter_count);
  2380. pr_err("iopm_base_pa: %016llx\n", control->iopm_base_pa);
  2381. pr_err("msrpm_base_pa: %016llx\n", control->msrpm_base_pa);
  2382. pr_err("tsc_offset: %016llx\n", control->tsc_offset);
  2383. pr_err("asid: %d\n", control->asid);
  2384. pr_err("tlb_ctl: %d\n", control->tlb_ctl);
  2385. pr_err("int_ctl: %08x\n", control->int_ctl);
  2386. pr_err("int_vector: %08x\n", control->int_vector);
  2387. pr_err("int_state: %08x\n", control->int_state);
  2388. pr_err("exit_code: %08x\n", control->exit_code);
  2389. pr_err("exit_info1: %016llx\n", control->exit_info_1);
  2390. pr_err("exit_info2: %016llx\n", control->exit_info_2);
  2391. pr_err("exit_int_info: %08x\n", control->exit_int_info);
  2392. pr_err("exit_int_info_err: %08x\n", control->exit_int_info_err);
  2393. pr_err("nested_ctl: %lld\n", control->nested_ctl);
  2394. pr_err("nested_cr3: %016llx\n", control->nested_cr3);
  2395. pr_err("event_inj: %08x\n", control->event_inj);
  2396. pr_err("event_inj_err: %08x\n", control->event_inj_err);
  2397. pr_err("lbr_ctl: %lld\n", control->lbr_ctl);
  2398. pr_err("next_rip: %016llx\n", control->next_rip);
  2399. pr_err("VMCB State Save Area:\n");
  2400. pr_err("es: s: %04x a: %04x l: %08x b: %016llx\n",
  2401. save->es.selector, save->es.attrib,
  2402. save->es.limit, save->es.base);
  2403. pr_err("cs: s: %04x a: %04x l: %08x b: %016llx\n",
  2404. save->cs.selector, save->cs.attrib,
  2405. save->cs.limit, save->cs.base);
  2406. pr_err("ss: s: %04x a: %04x l: %08x b: %016llx\n",
  2407. save->ss.selector, save->ss.attrib,
  2408. save->ss.limit, save->ss.base);
  2409. pr_err("ds: s: %04x a: %04x l: %08x b: %016llx\n",
  2410. save->ds.selector, save->ds.attrib,
  2411. save->ds.limit, save->ds.base);
  2412. pr_err("fs: s: %04x a: %04x l: %08x b: %016llx\n",
  2413. save->fs.selector, save->fs.attrib,
  2414. save->fs.limit, save->fs.base);
  2415. pr_err("gs: s: %04x a: %04x l: %08x b: %016llx\n",
  2416. save->gs.selector, save->gs.attrib,
  2417. save->gs.limit, save->gs.base);
  2418. pr_err("gdtr: s: %04x a: %04x l: %08x b: %016llx\n",
  2419. save->gdtr.selector, save->gdtr.attrib,
  2420. save->gdtr.limit, save->gdtr.base);
  2421. pr_err("ldtr: s: %04x a: %04x l: %08x b: %016llx\n",
  2422. save->ldtr.selector, save->ldtr.attrib,
  2423. save->ldtr.limit, save->ldtr.base);
  2424. pr_err("idtr: s: %04x a: %04x l: %08x b: %016llx\n",
  2425. save->idtr.selector, save->idtr.attrib,
  2426. save->idtr.limit, save->idtr.base);
  2427. pr_err("tr: s: %04x a: %04x l: %08x b: %016llx\n",
  2428. save->tr.selector, save->tr.attrib,
  2429. save->tr.limit, save->tr.base);
  2430. pr_err("cpl: %d efer: %016llx\n",
  2431. save->cpl, save->efer);
  2432. pr_err("cr0: %016llx cr2: %016llx\n",
  2433. save->cr0, save->cr2);
  2434. pr_err("cr3: %016llx cr4: %016llx\n",
  2435. save->cr3, save->cr4);
  2436. pr_err("dr6: %016llx dr7: %016llx\n",
  2437. save->dr6, save->dr7);
  2438. pr_err("rip: %016llx rflags: %016llx\n",
  2439. save->rip, save->rflags);
  2440. pr_err("rsp: %016llx rax: %016llx\n",
  2441. save->rsp, save->rax);
  2442. pr_err("star: %016llx lstar: %016llx\n",
  2443. save->star, save->lstar);
  2444. pr_err("cstar: %016llx sfmask: %016llx\n",
  2445. save->cstar, save->sfmask);
  2446. pr_err("kernel_gs_base: %016llx sysenter_cs: %016llx\n",
  2447. save->kernel_gs_base, save->sysenter_cs);
  2448. pr_err("sysenter_esp: %016llx sysenter_eip: %016llx\n",
  2449. save->sysenter_esp, save->sysenter_eip);
  2450. pr_err("gpat: %016llx dbgctl: %016llx\n",
  2451. save->g_pat, save->dbgctl);
  2452. pr_err("br_from: %016llx br_to: %016llx\n",
  2453. save->br_from, save->br_to);
  2454. pr_err("excp_from: %016llx excp_to: %016llx\n",
  2455. save->last_excp_from, save->last_excp_to);
  2456. }
  2457. static int handle_exit(struct kvm_vcpu *vcpu)
  2458. {
  2459. struct vcpu_svm *svm = to_svm(vcpu);
  2460. struct kvm_run *kvm_run = vcpu->run;
  2461. u32 exit_code = svm->vmcb->control.exit_code;
  2462. trace_kvm_exit(exit_code, vcpu);
  2463. if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR0_MASK))
  2464. vcpu->arch.cr0 = svm->vmcb->save.cr0;
  2465. if (npt_enabled)
  2466. vcpu->arch.cr3 = svm->vmcb->save.cr3;
  2467. if (unlikely(svm->nested.exit_required)) {
  2468. nested_svm_vmexit(svm);
  2469. svm->nested.exit_required = false;
  2470. return 1;
  2471. }
  2472. if (is_nested(svm)) {
  2473. int vmexit;
  2474. trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
  2475. svm->vmcb->control.exit_info_1,
  2476. svm->vmcb->control.exit_info_2,
  2477. svm->vmcb->control.exit_int_info,
  2478. svm->vmcb->control.exit_int_info_err);
  2479. vmexit = nested_svm_exit_special(svm);
  2480. if (vmexit == NESTED_EXIT_CONTINUE)
  2481. vmexit = nested_svm_exit_handled(svm);
  2482. if (vmexit == NESTED_EXIT_DONE)
  2483. return 1;
  2484. }
  2485. svm_complete_interrupts(svm);
  2486. if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
  2487. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2488. kvm_run->fail_entry.hardware_entry_failure_reason
  2489. = svm->vmcb->control.exit_code;
  2490. pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
  2491. dump_vmcb(vcpu);
  2492. return 0;
  2493. }
  2494. if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
  2495. exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
  2496. exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
  2497. exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
  2498. printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
  2499. "exit_code 0x%x\n",
  2500. __func__, svm->vmcb->control.exit_int_info,
  2501. exit_code);
  2502. if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
  2503. || !svm_exit_handlers[exit_code]) {
  2504. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2505. kvm_run->hw.hardware_exit_reason = exit_code;
  2506. return 0;
  2507. }
  2508. return svm_exit_handlers[exit_code](svm);
  2509. }
  2510. static void reload_tss(struct kvm_vcpu *vcpu)
  2511. {
  2512. int cpu = raw_smp_processor_id();
  2513. struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
  2514. sd->tss_desc->type = 9; /* available 32/64-bit TSS */
  2515. load_TR_desc();
  2516. }
  2517. static void pre_svm_run(struct vcpu_svm *svm)
  2518. {
  2519. int cpu = raw_smp_processor_id();
  2520. struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
  2521. svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
  2522. /* FIXME: handle wraparound of asid_generation */
  2523. if (svm->asid_generation != sd->asid_generation)
  2524. new_asid(svm, sd);
  2525. }
  2526. static void svm_inject_nmi(struct kvm_vcpu *vcpu)
  2527. {
  2528. struct vcpu_svm *svm = to_svm(vcpu);
  2529. svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
  2530. vcpu->arch.hflags |= HF_NMI_MASK;
  2531. svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
  2532. ++vcpu->stat.nmi_injections;
  2533. }
  2534. static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
  2535. {
  2536. struct vmcb_control_area *control;
  2537. control = &svm->vmcb->control;
  2538. control->int_vector = irq;
  2539. control->int_ctl &= ~V_INTR_PRIO_MASK;
  2540. control->int_ctl |= V_IRQ_MASK |
  2541. ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
  2542. }
  2543. static void svm_set_irq(struct kvm_vcpu *vcpu)
  2544. {
  2545. struct vcpu_svm *svm = to_svm(vcpu);
  2546. BUG_ON(!(gif_set(svm)));
  2547. trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
  2548. ++vcpu->stat.irq_injections;
  2549. svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
  2550. SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
  2551. }
  2552. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  2553. {
  2554. struct vcpu_svm *svm = to_svm(vcpu);
  2555. if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
  2556. return;
  2557. if (irr == -1)
  2558. return;
  2559. if (tpr >= irr)
  2560. svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
  2561. }
  2562. static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
  2563. {
  2564. struct vcpu_svm *svm = to_svm(vcpu);
  2565. struct vmcb *vmcb = svm->vmcb;
  2566. int ret;
  2567. ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
  2568. !(svm->vcpu.arch.hflags & HF_NMI_MASK);
  2569. ret = ret && gif_set(svm) && nested_svm_nmi(svm);
  2570. return ret;
  2571. }
  2572. static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
  2573. {
  2574. struct vcpu_svm *svm = to_svm(vcpu);
  2575. return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
  2576. }
  2577. static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  2578. {
  2579. struct vcpu_svm *svm = to_svm(vcpu);
  2580. if (masked) {
  2581. svm->vcpu.arch.hflags |= HF_NMI_MASK;
  2582. svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
  2583. } else {
  2584. svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
  2585. svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
  2586. }
  2587. }
  2588. static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
  2589. {
  2590. struct vcpu_svm *svm = to_svm(vcpu);
  2591. struct vmcb *vmcb = svm->vmcb;
  2592. int ret;
  2593. if (!gif_set(svm) ||
  2594. (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
  2595. return 0;
  2596. ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
  2597. if (is_nested(svm))
  2598. return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
  2599. return ret;
  2600. }
  2601. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2602. {
  2603. struct vcpu_svm *svm = to_svm(vcpu);
  2604. /*
  2605. * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
  2606. * 1, because that's a separate STGI/VMRUN intercept. The next time we
  2607. * get that intercept, this function will be called again though and
  2608. * we'll get the vintr intercept.
  2609. */
  2610. if (gif_set(svm) && nested_svm_intr(svm)) {
  2611. svm_set_vintr(svm);
  2612. svm_inject_irq(svm, 0x0);
  2613. }
  2614. }
  2615. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2616. {
  2617. struct vcpu_svm *svm = to_svm(vcpu);
  2618. if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
  2619. == HF_NMI_MASK)
  2620. return; /* IRET will cause a vm exit */
  2621. /*
  2622. * Something prevents NMI from been injected. Single step over possible
  2623. * problem (IRET or exception injection or interrupt shadow)
  2624. */
  2625. svm->nmi_singlestep = true;
  2626. svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
  2627. update_db_intercept(vcpu);
  2628. }
  2629. static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2630. {
  2631. return 0;
  2632. }
  2633. static void svm_flush_tlb(struct kvm_vcpu *vcpu)
  2634. {
  2635. force_new_asid(vcpu);
  2636. }
  2637. static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
  2638. {
  2639. }
  2640. static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
  2641. {
  2642. struct vcpu_svm *svm = to_svm(vcpu);
  2643. if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
  2644. return;
  2645. if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
  2646. int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
  2647. kvm_set_cr8(vcpu, cr8);
  2648. }
  2649. }
  2650. static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
  2651. {
  2652. struct vcpu_svm *svm = to_svm(vcpu);
  2653. u64 cr8;
  2654. if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
  2655. return;
  2656. cr8 = kvm_get_cr8(vcpu);
  2657. svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
  2658. svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
  2659. }
  2660. static void svm_complete_interrupts(struct vcpu_svm *svm)
  2661. {
  2662. u8 vector;
  2663. int type;
  2664. u32 exitintinfo = svm->vmcb->control.exit_int_info;
  2665. unsigned int3_injected = svm->int3_injected;
  2666. svm->int3_injected = 0;
  2667. if (svm->vcpu.arch.hflags & HF_IRET_MASK) {
  2668. svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
  2669. kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
  2670. }
  2671. svm->vcpu.arch.nmi_injected = false;
  2672. kvm_clear_exception_queue(&svm->vcpu);
  2673. kvm_clear_interrupt_queue(&svm->vcpu);
  2674. if (!(exitintinfo & SVM_EXITINTINFO_VALID))
  2675. return;
  2676. kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
  2677. vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
  2678. type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
  2679. switch (type) {
  2680. case SVM_EXITINTINFO_TYPE_NMI:
  2681. svm->vcpu.arch.nmi_injected = true;
  2682. break;
  2683. case SVM_EXITINTINFO_TYPE_EXEPT:
  2684. /*
  2685. * In case of software exceptions, do not reinject the vector,
  2686. * but re-execute the instruction instead. Rewind RIP first
  2687. * if we emulated INT3 before.
  2688. */
  2689. if (kvm_exception_is_soft(vector)) {
  2690. if (vector == BP_VECTOR && int3_injected &&
  2691. kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
  2692. kvm_rip_write(&svm->vcpu,
  2693. kvm_rip_read(&svm->vcpu) -
  2694. int3_injected);
  2695. break;
  2696. }
  2697. if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
  2698. u32 err = svm->vmcb->control.exit_int_info_err;
  2699. kvm_requeue_exception_e(&svm->vcpu, vector, err);
  2700. } else
  2701. kvm_requeue_exception(&svm->vcpu, vector);
  2702. break;
  2703. case SVM_EXITINTINFO_TYPE_INTR:
  2704. kvm_queue_interrupt(&svm->vcpu, vector, false);
  2705. break;
  2706. default:
  2707. break;
  2708. }
  2709. }
  2710. static void svm_cancel_injection(struct kvm_vcpu *vcpu)
  2711. {
  2712. struct vcpu_svm *svm = to_svm(vcpu);
  2713. struct vmcb_control_area *control = &svm->vmcb->control;
  2714. control->exit_int_info = control->event_inj;
  2715. control->exit_int_info_err = control->event_inj_err;
  2716. control->event_inj = 0;
  2717. svm_complete_interrupts(svm);
  2718. }
  2719. #ifdef CONFIG_X86_64
  2720. #define R "r"
  2721. #else
  2722. #define R "e"
  2723. #endif
  2724. static void svm_vcpu_run(struct kvm_vcpu *vcpu)
  2725. {
  2726. struct vcpu_svm *svm = to_svm(vcpu);
  2727. svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
  2728. svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
  2729. svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
  2730. /*
  2731. * A vmexit emulation is required before the vcpu can be executed
  2732. * again.
  2733. */
  2734. if (unlikely(svm->nested.exit_required))
  2735. return;
  2736. pre_svm_run(svm);
  2737. sync_lapic_to_cr8(vcpu);
  2738. svm->vmcb->save.cr2 = vcpu->arch.cr2;
  2739. clgi();
  2740. local_irq_enable();
  2741. asm volatile (
  2742. "push %%"R"bp; \n\t"
  2743. "mov %c[rbx](%[svm]), %%"R"bx \n\t"
  2744. "mov %c[rcx](%[svm]), %%"R"cx \n\t"
  2745. "mov %c[rdx](%[svm]), %%"R"dx \n\t"
  2746. "mov %c[rsi](%[svm]), %%"R"si \n\t"
  2747. "mov %c[rdi](%[svm]), %%"R"di \n\t"
  2748. "mov %c[rbp](%[svm]), %%"R"bp \n\t"
  2749. #ifdef CONFIG_X86_64
  2750. "mov %c[r8](%[svm]), %%r8 \n\t"
  2751. "mov %c[r9](%[svm]), %%r9 \n\t"
  2752. "mov %c[r10](%[svm]), %%r10 \n\t"
  2753. "mov %c[r11](%[svm]), %%r11 \n\t"
  2754. "mov %c[r12](%[svm]), %%r12 \n\t"
  2755. "mov %c[r13](%[svm]), %%r13 \n\t"
  2756. "mov %c[r14](%[svm]), %%r14 \n\t"
  2757. "mov %c[r15](%[svm]), %%r15 \n\t"
  2758. #endif
  2759. /* Enter guest mode */
  2760. "push %%"R"ax \n\t"
  2761. "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
  2762. __ex(SVM_VMLOAD) "\n\t"
  2763. __ex(SVM_VMRUN) "\n\t"
  2764. __ex(SVM_VMSAVE) "\n\t"
  2765. "pop %%"R"ax \n\t"
  2766. /* Save guest registers, load host registers */
  2767. "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
  2768. "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
  2769. "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
  2770. "mov %%"R"si, %c[rsi](%[svm]) \n\t"
  2771. "mov %%"R"di, %c[rdi](%[svm]) \n\t"
  2772. "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
  2773. #ifdef CONFIG_X86_64
  2774. "mov %%r8, %c[r8](%[svm]) \n\t"
  2775. "mov %%r9, %c[r9](%[svm]) \n\t"
  2776. "mov %%r10, %c[r10](%[svm]) \n\t"
  2777. "mov %%r11, %c[r11](%[svm]) \n\t"
  2778. "mov %%r12, %c[r12](%[svm]) \n\t"
  2779. "mov %%r13, %c[r13](%[svm]) \n\t"
  2780. "mov %%r14, %c[r14](%[svm]) \n\t"
  2781. "mov %%r15, %c[r15](%[svm]) \n\t"
  2782. #endif
  2783. "pop %%"R"bp"
  2784. :
  2785. : [svm]"a"(svm),
  2786. [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
  2787. [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
  2788. [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
  2789. [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
  2790. [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
  2791. [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
  2792. [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
  2793. #ifdef CONFIG_X86_64
  2794. , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
  2795. [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
  2796. [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
  2797. [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
  2798. [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
  2799. [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
  2800. [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
  2801. [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
  2802. #endif
  2803. : "cc", "memory"
  2804. , R"bx", R"cx", R"dx", R"si", R"di"
  2805. #ifdef CONFIG_X86_64
  2806. , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
  2807. #endif
  2808. );
  2809. #ifdef CONFIG_X86_64
  2810. wrmsrl(MSR_GS_BASE, svm->host.gs_base);
  2811. #else
  2812. loadsegment(fs, svm->host.fs);
  2813. #endif
  2814. reload_tss(vcpu);
  2815. local_irq_disable();
  2816. stgi();
  2817. vcpu->arch.cr2 = svm->vmcb->save.cr2;
  2818. vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
  2819. vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
  2820. vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
  2821. sync_cr8_to_lapic(vcpu);
  2822. svm->next_rip = 0;
  2823. /* if exit due to PF check for async PF */
  2824. if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
  2825. svm->apf_reason = kvm_read_and_reset_pf_reason();
  2826. if (npt_enabled) {
  2827. vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
  2828. vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
  2829. }
  2830. /*
  2831. * We need to handle MC intercepts here before the vcpu has a chance to
  2832. * change the physical cpu
  2833. */
  2834. if (unlikely(svm->vmcb->control.exit_code ==
  2835. SVM_EXIT_EXCP_BASE + MC_VECTOR))
  2836. svm_handle_mce(svm);
  2837. }
  2838. #undef R
  2839. static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
  2840. {
  2841. struct vcpu_svm *svm = to_svm(vcpu);
  2842. svm->vmcb->save.cr3 = root;
  2843. force_new_asid(vcpu);
  2844. }
  2845. static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
  2846. {
  2847. struct vcpu_svm *svm = to_svm(vcpu);
  2848. svm->vmcb->control.nested_cr3 = root;
  2849. /* Also sync guest cr3 here in case we live migrate */
  2850. svm->vmcb->save.cr3 = vcpu->arch.cr3;
  2851. force_new_asid(vcpu);
  2852. }
  2853. static int is_disabled(void)
  2854. {
  2855. u64 vm_cr;
  2856. rdmsrl(MSR_VM_CR, vm_cr);
  2857. if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
  2858. return 1;
  2859. return 0;
  2860. }
  2861. static void
  2862. svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2863. {
  2864. /*
  2865. * Patch in the VMMCALL instruction:
  2866. */
  2867. hypercall[0] = 0x0f;
  2868. hypercall[1] = 0x01;
  2869. hypercall[2] = 0xd9;
  2870. }
  2871. static void svm_check_processor_compat(void *rtn)
  2872. {
  2873. *(int *)rtn = 0;
  2874. }
  2875. static bool svm_cpu_has_accelerated_tpr(void)
  2876. {
  2877. return false;
  2878. }
  2879. static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  2880. {
  2881. return 0;
  2882. }
  2883. static void svm_cpuid_update(struct kvm_vcpu *vcpu)
  2884. {
  2885. }
  2886. static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  2887. {
  2888. switch (func) {
  2889. case 0x00000001:
  2890. /* Mask out xsave bit as long as it is not supported by SVM */
  2891. entry->ecx &= ~(bit(X86_FEATURE_XSAVE));
  2892. break;
  2893. case 0x80000001:
  2894. if (nested)
  2895. entry->ecx |= (1 << 2); /* Set SVM bit */
  2896. break;
  2897. case 0x8000000A:
  2898. entry->eax = 1; /* SVM revision 1 */
  2899. entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
  2900. ASID emulation to nested SVM */
  2901. entry->ecx = 0; /* Reserved */
  2902. entry->edx = 0; /* Per default do not support any
  2903. additional features */
  2904. /* Support next_rip if host supports it */
  2905. if (svm_has(SVM_FEATURE_NRIP))
  2906. entry->edx |= SVM_FEATURE_NRIP;
  2907. /* Support NPT for the guest if enabled */
  2908. if (npt_enabled)
  2909. entry->edx |= SVM_FEATURE_NPT;
  2910. break;
  2911. }
  2912. }
  2913. static const struct trace_print_flags svm_exit_reasons_str[] = {
  2914. { SVM_EXIT_READ_CR0, "read_cr0" },
  2915. { SVM_EXIT_READ_CR3, "read_cr3" },
  2916. { SVM_EXIT_READ_CR4, "read_cr4" },
  2917. { SVM_EXIT_READ_CR8, "read_cr8" },
  2918. { SVM_EXIT_WRITE_CR0, "write_cr0" },
  2919. { SVM_EXIT_WRITE_CR3, "write_cr3" },
  2920. { SVM_EXIT_WRITE_CR4, "write_cr4" },
  2921. { SVM_EXIT_WRITE_CR8, "write_cr8" },
  2922. { SVM_EXIT_READ_DR0, "read_dr0" },
  2923. { SVM_EXIT_READ_DR1, "read_dr1" },
  2924. { SVM_EXIT_READ_DR2, "read_dr2" },
  2925. { SVM_EXIT_READ_DR3, "read_dr3" },
  2926. { SVM_EXIT_WRITE_DR0, "write_dr0" },
  2927. { SVM_EXIT_WRITE_DR1, "write_dr1" },
  2928. { SVM_EXIT_WRITE_DR2, "write_dr2" },
  2929. { SVM_EXIT_WRITE_DR3, "write_dr3" },
  2930. { SVM_EXIT_WRITE_DR5, "write_dr5" },
  2931. { SVM_EXIT_WRITE_DR7, "write_dr7" },
  2932. { SVM_EXIT_EXCP_BASE + DB_VECTOR, "DB excp" },
  2933. { SVM_EXIT_EXCP_BASE + BP_VECTOR, "BP excp" },
  2934. { SVM_EXIT_EXCP_BASE + UD_VECTOR, "UD excp" },
  2935. { SVM_EXIT_EXCP_BASE + PF_VECTOR, "PF excp" },
  2936. { SVM_EXIT_EXCP_BASE + NM_VECTOR, "NM excp" },
  2937. { SVM_EXIT_EXCP_BASE + MC_VECTOR, "MC excp" },
  2938. { SVM_EXIT_INTR, "interrupt" },
  2939. { SVM_EXIT_NMI, "nmi" },
  2940. { SVM_EXIT_SMI, "smi" },
  2941. { SVM_EXIT_INIT, "init" },
  2942. { SVM_EXIT_VINTR, "vintr" },
  2943. { SVM_EXIT_CPUID, "cpuid" },
  2944. { SVM_EXIT_INVD, "invd" },
  2945. { SVM_EXIT_HLT, "hlt" },
  2946. { SVM_EXIT_INVLPG, "invlpg" },
  2947. { SVM_EXIT_INVLPGA, "invlpga" },
  2948. { SVM_EXIT_IOIO, "io" },
  2949. { SVM_EXIT_MSR, "msr" },
  2950. { SVM_EXIT_TASK_SWITCH, "task_switch" },
  2951. { SVM_EXIT_SHUTDOWN, "shutdown" },
  2952. { SVM_EXIT_VMRUN, "vmrun" },
  2953. { SVM_EXIT_VMMCALL, "hypercall" },
  2954. { SVM_EXIT_VMLOAD, "vmload" },
  2955. { SVM_EXIT_VMSAVE, "vmsave" },
  2956. { SVM_EXIT_STGI, "stgi" },
  2957. { SVM_EXIT_CLGI, "clgi" },
  2958. { SVM_EXIT_SKINIT, "skinit" },
  2959. { SVM_EXIT_WBINVD, "wbinvd" },
  2960. { SVM_EXIT_MONITOR, "monitor" },
  2961. { SVM_EXIT_MWAIT, "mwait" },
  2962. { SVM_EXIT_NPF, "npf" },
  2963. { -1, NULL }
  2964. };
  2965. static int svm_get_lpage_level(void)
  2966. {
  2967. return PT_PDPE_LEVEL;
  2968. }
  2969. static bool svm_rdtscp_supported(void)
  2970. {
  2971. return false;
  2972. }
  2973. static bool svm_has_wbinvd_exit(void)
  2974. {
  2975. return true;
  2976. }
  2977. static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
  2978. {
  2979. struct vcpu_svm *svm = to_svm(vcpu);
  2980. svm->vmcb->control.intercept_exceptions |= 1 << NM_VECTOR;
  2981. if (is_nested(svm))
  2982. svm->nested.hsave->control.intercept_exceptions |= 1 << NM_VECTOR;
  2983. update_cr0_intercept(svm);
  2984. }
  2985. static struct kvm_x86_ops svm_x86_ops = {
  2986. .cpu_has_kvm_support = has_svm,
  2987. .disabled_by_bios = is_disabled,
  2988. .hardware_setup = svm_hardware_setup,
  2989. .hardware_unsetup = svm_hardware_unsetup,
  2990. .check_processor_compatibility = svm_check_processor_compat,
  2991. .hardware_enable = svm_hardware_enable,
  2992. .hardware_disable = svm_hardware_disable,
  2993. .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
  2994. .vcpu_create = svm_create_vcpu,
  2995. .vcpu_free = svm_free_vcpu,
  2996. .vcpu_reset = svm_vcpu_reset,
  2997. .prepare_guest_switch = svm_prepare_guest_switch,
  2998. .vcpu_load = svm_vcpu_load,
  2999. .vcpu_put = svm_vcpu_put,
  3000. .set_guest_debug = svm_guest_debug,
  3001. .get_msr = svm_get_msr,
  3002. .set_msr = svm_set_msr,
  3003. .get_segment_base = svm_get_segment_base,
  3004. .get_segment = svm_get_segment,
  3005. .set_segment = svm_set_segment,
  3006. .get_cpl = svm_get_cpl,
  3007. .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
  3008. .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
  3009. .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
  3010. .set_cr0 = svm_set_cr0,
  3011. .set_cr3 = svm_set_cr3,
  3012. .set_cr4 = svm_set_cr4,
  3013. .set_efer = svm_set_efer,
  3014. .get_idt = svm_get_idt,
  3015. .set_idt = svm_set_idt,
  3016. .get_gdt = svm_get_gdt,
  3017. .set_gdt = svm_set_gdt,
  3018. .set_dr7 = svm_set_dr7,
  3019. .cache_reg = svm_cache_reg,
  3020. .get_rflags = svm_get_rflags,
  3021. .set_rflags = svm_set_rflags,
  3022. .fpu_activate = svm_fpu_activate,
  3023. .fpu_deactivate = svm_fpu_deactivate,
  3024. .tlb_flush = svm_flush_tlb,
  3025. .run = svm_vcpu_run,
  3026. .handle_exit = handle_exit,
  3027. .skip_emulated_instruction = skip_emulated_instruction,
  3028. .set_interrupt_shadow = svm_set_interrupt_shadow,
  3029. .get_interrupt_shadow = svm_get_interrupt_shadow,
  3030. .patch_hypercall = svm_patch_hypercall,
  3031. .set_irq = svm_set_irq,
  3032. .set_nmi = svm_inject_nmi,
  3033. .queue_exception = svm_queue_exception,
  3034. .cancel_injection = svm_cancel_injection,
  3035. .interrupt_allowed = svm_interrupt_allowed,
  3036. .nmi_allowed = svm_nmi_allowed,
  3037. .get_nmi_mask = svm_get_nmi_mask,
  3038. .set_nmi_mask = svm_set_nmi_mask,
  3039. .enable_nmi_window = enable_nmi_window,
  3040. .enable_irq_window = enable_irq_window,
  3041. .update_cr8_intercept = update_cr8_intercept,
  3042. .set_tss_addr = svm_set_tss_addr,
  3043. .get_tdp_level = get_npt_level,
  3044. .get_mt_mask = svm_get_mt_mask,
  3045. .exit_reasons_str = svm_exit_reasons_str,
  3046. .get_lpage_level = svm_get_lpage_level,
  3047. .cpuid_update = svm_cpuid_update,
  3048. .rdtscp_supported = svm_rdtscp_supported,
  3049. .set_supported_cpuid = svm_set_supported_cpuid,
  3050. .has_wbinvd_exit = svm_has_wbinvd_exit,
  3051. .write_tsc_offset = svm_write_tsc_offset,
  3052. .adjust_tsc_offset = svm_adjust_tsc_offset,
  3053. .set_tdp_cr3 = set_tdp_cr3,
  3054. };
  3055. static int __init svm_init(void)
  3056. {
  3057. return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
  3058. __alignof__(struct vcpu_svm), THIS_MODULE);
  3059. }
  3060. static void __exit svm_exit(void)
  3061. {
  3062. kvm_exit();
  3063. }
  3064. module_init(svm_init)
  3065. module_exit(svm_exit)