i915_gem.c 122 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include <drm/drmP.h>
  28. #include <drm/i915_drm.h>
  29. #include "i915_drv.h"
  30. #include "i915_trace.h"
  31. #include "intel_drv.h"
  32. #include <linux/shmem_fs.h>
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/dma-buf.h>
  37. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
  39. bool force);
  40. static __must_check int
  41. i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
  42. struct i915_address_space *vm,
  43. unsigned alignment,
  44. bool map_and_fenceable,
  45. bool nonblocking);
  46. static int i915_gem_phys_pwrite(struct drm_device *dev,
  47. struct drm_i915_gem_object *obj,
  48. struct drm_i915_gem_pwrite *args,
  49. struct drm_file *file);
  50. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  51. struct drm_i915_gem_object *obj);
  52. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  53. struct drm_i915_fence_reg *fence,
  54. bool enable);
  55. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  56. struct shrink_control *sc);
  57. static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
  58. static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
  59. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  60. static bool cpu_cache_is_coherent(struct drm_device *dev,
  61. enum i915_cache_level level)
  62. {
  63. return HAS_LLC(dev) || level != I915_CACHE_NONE;
  64. }
  65. static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
  66. {
  67. if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
  68. return true;
  69. return obj->pin_display;
  70. }
  71. static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  72. {
  73. if (obj->tiling_mode)
  74. i915_gem_release_mmap(obj);
  75. /* As we do not have an associated fence register, we will force
  76. * a tiling change if we ever need to acquire one.
  77. */
  78. obj->fence_dirty = false;
  79. obj->fence_reg = I915_FENCE_REG_NONE;
  80. }
  81. /* some bookkeeping */
  82. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  83. size_t size)
  84. {
  85. spin_lock(&dev_priv->mm.object_stat_lock);
  86. dev_priv->mm.object_count++;
  87. dev_priv->mm.object_memory += size;
  88. spin_unlock(&dev_priv->mm.object_stat_lock);
  89. }
  90. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  91. size_t size)
  92. {
  93. spin_lock(&dev_priv->mm.object_stat_lock);
  94. dev_priv->mm.object_count--;
  95. dev_priv->mm.object_memory -= size;
  96. spin_unlock(&dev_priv->mm.object_stat_lock);
  97. }
  98. static int
  99. i915_gem_wait_for_error(struct i915_gpu_error *error)
  100. {
  101. int ret;
  102. #define EXIT_COND (!i915_reset_in_progress(error) || \
  103. i915_terminally_wedged(error))
  104. if (EXIT_COND)
  105. return 0;
  106. /*
  107. * Only wait 10 seconds for the gpu reset to complete to avoid hanging
  108. * userspace. If it takes that long something really bad is going on and
  109. * we should simply try to bail out and fail as gracefully as possible.
  110. */
  111. ret = wait_event_interruptible_timeout(error->reset_queue,
  112. EXIT_COND,
  113. 10*HZ);
  114. if (ret == 0) {
  115. DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
  116. return -EIO;
  117. } else if (ret < 0) {
  118. return ret;
  119. }
  120. #undef EXIT_COND
  121. return 0;
  122. }
  123. int i915_mutex_lock_interruptible(struct drm_device *dev)
  124. {
  125. struct drm_i915_private *dev_priv = dev->dev_private;
  126. int ret;
  127. ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
  128. if (ret)
  129. return ret;
  130. ret = mutex_lock_interruptible(&dev->struct_mutex);
  131. if (ret)
  132. return ret;
  133. WARN_ON(i915_verify_lists(dev));
  134. return 0;
  135. }
  136. static inline bool
  137. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  138. {
  139. return i915_gem_obj_bound_any(obj) && !obj->active;
  140. }
  141. int
  142. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  143. struct drm_file *file)
  144. {
  145. struct drm_i915_private *dev_priv = dev->dev_private;
  146. struct drm_i915_gem_init *args = data;
  147. if (drm_core_check_feature(dev, DRIVER_MODESET))
  148. return -ENODEV;
  149. if (args->gtt_start >= args->gtt_end ||
  150. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  151. return -EINVAL;
  152. /* GEM with user mode setting was never supported on ilk and later. */
  153. if (INTEL_INFO(dev)->gen >= 5)
  154. return -ENODEV;
  155. mutex_lock(&dev->struct_mutex);
  156. i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
  157. args->gtt_end);
  158. dev_priv->gtt.mappable_end = args->gtt_end;
  159. mutex_unlock(&dev->struct_mutex);
  160. return 0;
  161. }
  162. int
  163. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  164. struct drm_file *file)
  165. {
  166. struct drm_i915_private *dev_priv = dev->dev_private;
  167. struct drm_i915_gem_get_aperture *args = data;
  168. struct drm_i915_gem_object *obj;
  169. size_t pinned;
  170. pinned = 0;
  171. mutex_lock(&dev->struct_mutex);
  172. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
  173. if (obj->pin_count)
  174. pinned += i915_gem_obj_ggtt_size(obj);
  175. mutex_unlock(&dev->struct_mutex);
  176. args->aper_size = dev_priv->gtt.base.total;
  177. args->aper_available_size = args->aper_size - pinned;
  178. return 0;
  179. }
  180. void *i915_gem_object_alloc(struct drm_device *dev)
  181. {
  182. struct drm_i915_private *dev_priv = dev->dev_private;
  183. return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
  184. }
  185. void i915_gem_object_free(struct drm_i915_gem_object *obj)
  186. {
  187. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  188. kmem_cache_free(dev_priv->slab, obj);
  189. }
  190. static int
  191. i915_gem_create(struct drm_file *file,
  192. struct drm_device *dev,
  193. uint64_t size,
  194. uint32_t *handle_p)
  195. {
  196. struct drm_i915_gem_object *obj;
  197. int ret;
  198. u32 handle;
  199. size = roundup(size, PAGE_SIZE);
  200. if (size == 0)
  201. return -EINVAL;
  202. /* Allocate the new object */
  203. obj = i915_gem_alloc_object(dev, size);
  204. if (obj == NULL)
  205. return -ENOMEM;
  206. ret = drm_gem_handle_create(file, &obj->base, &handle);
  207. /* drop reference from allocate - handle holds it now */
  208. drm_gem_object_unreference_unlocked(&obj->base);
  209. if (ret)
  210. return ret;
  211. *handle_p = handle;
  212. return 0;
  213. }
  214. int
  215. i915_gem_dumb_create(struct drm_file *file,
  216. struct drm_device *dev,
  217. struct drm_mode_create_dumb *args)
  218. {
  219. /* have to work out size/pitch and return them */
  220. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  221. args->size = args->pitch * args->height;
  222. return i915_gem_create(file, dev,
  223. args->size, &args->handle);
  224. }
  225. int i915_gem_dumb_destroy(struct drm_file *file,
  226. struct drm_device *dev,
  227. uint32_t handle)
  228. {
  229. return drm_gem_handle_delete(file, handle);
  230. }
  231. /**
  232. * Creates a new mm object and returns a handle to it.
  233. */
  234. int
  235. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  236. struct drm_file *file)
  237. {
  238. struct drm_i915_gem_create *args = data;
  239. return i915_gem_create(file, dev,
  240. args->size, &args->handle);
  241. }
  242. static inline int
  243. __copy_to_user_swizzled(char __user *cpu_vaddr,
  244. const char *gpu_vaddr, int gpu_offset,
  245. int length)
  246. {
  247. int ret, cpu_offset = 0;
  248. while (length > 0) {
  249. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  250. int this_length = min(cacheline_end - gpu_offset, length);
  251. int swizzled_gpu_offset = gpu_offset ^ 64;
  252. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  253. gpu_vaddr + swizzled_gpu_offset,
  254. this_length);
  255. if (ret)
  256. return ret + length;
  257. cpu_offset += this_length;
  258. gpu_offset += this_length;
  259. length -= this_length;
  260. }
  261. return 0;
  262. }
  263. static inline int
  264. __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
  265. const char __user *cpu_vaddr,
  266. int length)
  267. {
  268. int ret, cpu_offset = 0;
  269. while (length > 0) {
  270. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  271. int this_length = min(cacheline_end - gpu_offset, length);
  272. int swizzled_gpu_offset = gpu_offset ^ 64;
  273. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  274. cpu_vaddr + cpu_offset,
  275. this_length);
  276. if (ret)
  277. return ret + length;
  278. cpu_offset += this_length;
  279. gpu_offset += this_length;
  280. length -= this_length;
  281. }
  282. return 0;
  283. }
  284. /* Per-page copy function for the shmem pread fastpath.
  285. * Flushes invalid cachelines before reading the target if
  286. * needs_clflush is set. */
  287. static int
  288. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  289. char __user *user_data,
  290. bool page_do_bit17_swizzling, bool needs_clflush)
  291. {
  292. char *vaddr;
  293. int ret;
  294. if (unlikely(page_do_bit17_swizzling))
  295. return -EINVAL;
  296. vaddr = kmap_atomic(page);
  297. if (needs_clflush)
  298. drm_clflush_virt_range(vaddr + shmem_page_offset,
  299. page_length);
  300. ret = __copy_to_user_inatomic(user_data,
  301. vaddr + shmem_page_offset,
  302. page_length);
  303. kunmap_atomic(vaddr);
  304. return ret ? -EFAULT : 0;
  305. }
  306. static void
  307. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  308. bool swizzled)
  309. {
  310. if (unlikely(swizzled)) {
  311. unsigned long start = (unsigned long) addr;
  312. unsigned long end = (unsigned long) addr + length;
  313. /* For swizzling simply ensure that we always flush both
  314. * channels. Lame, but simple and it works. Swizzled
  315. * pwrite/pread is far from a hotpath - current userspace
  316. * doesn't use it at all. */
  317. start = round_down(start, 128);
  318. end = round_up(end, 128);
  319. drm_clflush_virt_range((void *)start, end - start);
  320. } else {
  321. drm_clflush_virt_range(addr, length);
  322. }
  323. }
  324. /* Only difference to the fast-path function is that this can handle bit17
  325. * and uses non-atomic copy and kmap functions. */
  326. static int
  327. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  328. char __user *user_data,
  329. bool page_do_bit17_swizzling, bool needs_clflush)
  330. {
  331. char *vaddr;
  332. int ret;
  333. vaddr = kmap(page);
  334. if (needs_clflush)
  335. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  336. page_length,
  337. page_do_bit17_swizzling);
  338. if (page_do_bit17_swizzling)
  339. ret = __copy_to_user_swizzled(user_data,
  340. vaddr, shmem_page_offset,
  341. page_length);
  342. else
  343. ret = __copy_to_user(user_data,
  344. vaddr + shmem_page_offset,
  345. page_length);
  346. kunmap(page);
  347. return ret ? - EFAULT : 0;
  348. }
  349. static int
  350. i915_gem_shmem_pread(struct drm_device *dev,
  351. struct drm_i915_gem_object *obj,
  352. struct drm_i915_gem_pread *args,
  353. struct drm_file *file)
  354. {
  355. char __user *user_data;
  356. ssize_t remain;
  357. loff_t offset;
  358. int shmem_page_offset, page_length, ret = 0;
  359. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  360. int prefaulted = 0;
  361. int needs_clflush = 0;
  362. struct sg_page_iter sg_iter;
  363. user_data = to_user_ptr(args->data_ptr);
  364. remain = args->size;
  365. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  366. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  367. /* If we're not in the cpu read domain, set ourself into the gtt
  368. * read domain and manually flush cachelines (if required). This
  369. * optimizes for the case when the gpu will dirty the data
  370. * anyway again before the next pread happens. */
  371. needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
  372. if (i915_gem_obj_bound_any(obj)) {
  373. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  374. if (ret)
  375. return ret;
  376. }
  377. }
  378. ret = i915_gem_object_get_pages(obj);
  379. if (ret)
  380. return ret;
  381. i915_gem_object_pin_pages(obj);
  382. offset = args->offset;
  383. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
  384. offset >> PAGE_SHIFT) {
  385. struct page *page = sg_page_iter_page(&sg_iter);
  386. if (remain <= 0)
  387. break;
  388. /* Operation in this page
  389. *
  390. * shmem_page_offset = offset within page in shmem file
  391. * page_length = bytes to copy for this page
  392. */
  393. shmem_page_offset = offset_in_page(offset);
  394. page_length = remain;
  395. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  396. page_length = PAGE_SIZE - shmem_page_offset;
  397. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  398. (page_to_phys(page) & (1 << 17)) != 0;
  399. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  400. user_data, page_do_bit17_swizzling,
  401. needs_clflush);
  402. if (ret == 0)
  403. goto next_page;
  404. mutex_unlock(&dev->struct_mutex);
  405. if (likely(!i915_prefault_disable) && !prefaulted) {
  406. ret = fault_in_multipages_writeable(user_data, remain);
  407. /* Userspace is tricking us, but we've already clobbered
  408. * its pages with the prefault and promised to write the
  409. * data up to the first fault. Hence ignore any errors
  410. * and just continue. */
  411. (void)ret;
  412. prefaulted = 1;
  413. }
  414. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  415. user_data, page_do_bit17_swizzling,
  416. needs_clflush);
  417. mutex_lock(&dev->struct_mutex);
  418. next_page:
  419. mark_page_accessed(page);
  420. if (ret)
  421. goto out;
  422. remain -= page_length;
  423. user_data += page_length;
  424. offset += page_length;
  425. }
  426. out:
  427. i915_gem_object_unpin_pages(obj);
  428. return ret;
  429. }
  430. /**
  431. * Reads data from the object referenced by handle.
  432. *
  433. * On error, the contents of *data are undefined.
  434. */
  435. int
  436. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  437. struct drm_file *file)
  438. {
  439. struct drm_i915_gem_pread *args = data;
  440. struct drm_i915_gem_object *obj;
  441. int ret = 0;
  442. if (args->size == 0)
  443. return 0;
  444. if (!access_ok(VERIFY_WRITE,
  445. to_user_ptr(args->data_ptr),
  446. args->size))
  447. return -EFAULT;
  448. ret = i915_mutex_lock_interruptible(dev);
  449. if (ret)
  450. return ret;
  451. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  452. if (&obj->base == NULL) {
  453. ret = -ENOENT;
  454. goto unlock;
  455. }
  456. /* Bounds check source. */
  457. if (args->offset > obj->base.size ||
  458. args->size > obj->base.size - args->offset) {
  459. ret = -EINVAL;
  460. goto out;
  461. }
  462. /* prime objects have no backing filp to GEM pread/pwrite
  463. * pages from.
  464. */
  465. if (!obj->base.filp) {
  466. ret = -EINVAL;
  467. goto out;
  468. }
  469. trace_i915_gem_object_pread(obj, args->offset, args->size);
  470. ret = i915_gem_shmem_pread(dev, obj, args, file);
  471. out:
  472. drm_gem_object_unreference(&obj->base);
  473. unlock:
  474. mutex_unlock(&dev->struct_mutex);
  475. return ret;
  476. }
  477. /* This is the fast write path which cannot handle
  478. * page faults in the source data
  479. */
  480. static inline int
  481. fast_user_write(struct io_mapping *mapping,
  482. loff_t page_base, int page_offset,
  483. char __user *user_data,
  484. int length)
  485. {
  486. void __iomem *vaddr_atomic;
  487. void *vaddr;
  488. unsigned long unwritten;
  489. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  490. /* We can use the cpu mem copy function because this is X86. */
  491. vaddr = (void __force*)vaddr_atomic + page_offset;
  492. unwritten = __copy_from_user_inatomic_nocache(vaddr,
  493. user_data, length);
  494. io_mapping_unmap_atomic(vaddr_atomic);
  495. return unwritten;
  496. }
  497. /**
  498. * This is the fast pwrite path, where we copy the data directly from the
  499. * user into the GTT, uncached.
  500. */
  501. static int
  502. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  503. struct drm_i915_gem_object *obj,
  504. struct drm_i915_gem_pwrite *args,
  505. struct drm_file *file)
  506. {
  507. drm_i915_private_t *dev_priv = dev->dev_private;
  508. ssize_t remain;
  509. loff_t offset, page_base;
  510. char __user *user_data;
  511. int page_offset, page_length, ret;
  512. ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
  513. if (ret)
  514. goto out;
  515. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  516. if (ret)
  517. goto out_unpin;
  518. ret = i915_gem_object_put_fence(obj);
  519. if (ret)
  520. goto out_unpin;
  521. user_data = to_user_ptr(args->data_ptr);
  522. remain = args->size;
  523. offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
  524. while (remain > 0) {
  525. /* Operation in this page
  526. *
  527. * page_base = page offset within aperture
  528. * page_offset = offset within page
  529. * page_length = bytes to copy for this page
  530. */
  531. page_base = offset & PAGE_MASK;
  532. page_offset = offset_in_page(offset);
  533. page_length = remain;
  534. if ((page_offset + remain) > PAGE_SIZE)
  535. page_length = PAGE_SIZE - page_offset;
  536. /* If we get a fault while copying data, then (presumably) our
  537. * source page isn't available. Return the error and we'll
  538. * retry in the slow path.
  539. */
  540. if (fast_user_write(dev_priv->gtt.mappable, page_base,
  541. page_offset, user_data, page_length)) {
  542. ret = -EFAULT;
  543. goto out_unpin;
  544. }
  545. remain -= page_length;
  546. user_data += page_length;
  547. offset += page_length;
  548. }
  549. out_unpin:
  550. i915_gem_object_unpin(obj);
  551. out:
  552. return ret;
  553. }
  554. /* Per-page copy function for the shmem pwrite fastpath.
  555. * Flushes invalid cachelines before writing to the target if
  556. * needs_clflush_before is set and flushes out any written cachelines after
  557. * writing if needs_clflush is set. */
  558. static int
  559. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  560. char __user *user_data,
  561. bool page_do_bit17_swizzling,
  562. bool needs_clflush_before,
  563. bool needs_clflush_after)
  564. {
  565. char *vaddr;
  566. int ret;
  567. if (unlikely(page_do_bit17_swizzling))
  568. return -EINVAL;
  569. vaddr = kmap_atomic(page);
  570. if (needs_clflush_before)
  571. drm_clflush_virt_range(vaddr + shmem_page_offset,
  572. page_length);
  573. ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
  574. user_data,
  575. page_length);
  576. if (needs_clflush_after)
  577. drm_clflush_virt_range(vaddr + shmem_page_offset,
  578. page_length);
  579. kunmap_atomic(vaddr);
  580. return ret ? -EFAULT : 0;
  581. }
  582. /* Only difference to the fast-path function is that this can handle bit17
  583. * and uses non-atomic copy and kmap functions. */
  584. static int
  585. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  586. char __user *user_data,
  587. bool page_do_bit17_swizzling,
  588. bool needs_clflush_before,
  589. bool needs_clflush_after)
  590. {
  591. char *vaddr;
  592. int ret;
  593. vaddr = kmap(page);
  594. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  595. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  596. page_length,
  597. page_do_bit17_swizzling);
  598. if (page_do_bit17_swizzling)
  599. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  600. user_data,
  601. page_length);
  602. else
  603. ret = __copy_from_user(vaddr + shmem_page_offset,
  604. user_data,
  605. page_length);
  606. if (needs_clflush_after)
  607. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  608. page_length,
  609. page_do_bit17_swizzling);
  610. kunmap(page);
  611. return ret ? -EFAULT : 0;
  612. }
  613. static int
  614. i915_gem_shmem_pwrite(struct drm_device *dev,
  615. struct drm_i915_gem_object *obj,
  616. struct drm_i915_gem_pwrite *args,
  617. struct drm_file *file)
  618. {
  619. ssize_t remain;
  620. loff_t offset;
  621. char __user *user_data;
  622. int shmem_page_offset, page_length, ret = 0;
  623. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  624. int hit_slowpath = 0;
  625. int needs_clflush_after = 0;
  626. int needs_clflush_before = 0;
  627. struct sg_page_iter sg_iter;
  628. user_data = to_user_ptr(args->data_ptr);
  629. remain = args->size;
  630. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  631. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  632. /* If we're not in the cpu write domain, set ourself into the gtt
  633. * write domain and manually flush cachelines (if required). This
  634. * optimizes for the case when the gpu will use the data
  635. * right away and we therefore have to clflush anyway. */
  636. needs_clflush_after = cpu_write_needs_clflush(obj);
  637. if (i915_gem_obj_bound_any(obj)) {
  638. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  639. if (ret)
  640. return ret;
  641. }
  642. }
  643. /* Same trick applies to invalidate partially written cachelines read
  644. * before writing. */
  645. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  646. needs_clflush_before =
  647. !cpu_cache_is_coherent(dev, obj->cache_level);
  648. ret = i915_gem_object_get_pages(obj);
  649. if (ret)
  650. return ret;
  651. i915_gem_object_pin_pages(obj);
  652. offset = args->offset;
  653. obj->dirty = 1;
  654. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
  655. offset >> PAGE_SHIFT) {
  656. struct page *page = sg_page_iter_page(&sg_iter);
  657. int partial_cacheline_write;
  658. if (remain <= 0)
  659. break;
  660. /* Operation in this page
  661. *
  662. * shmem_page_offset = offset within page in shmem file
  663. * page_length = bytes to copy for this page
  664. */
  665. shmem_page_offset = offset_in_page(offset);
  666. page_length = remain;
  667. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  668. page_length = PAGE_SIZE - shmem_page_offset;
  669. /* If we don't overwrite a cacheline completely we need to be
  670. * careful to have up-to-date data by first clflushing. Don't
  671. * overcomplicate things and flush the entire patch. */
  672. partial_cacheline_write = needs_clflush_before &&
  673. ((shmem_page_offset | page_length)
  674. & (boot_cpu_data.x86_clflush_size - 1));
  675. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  676. (page_to_phys(page) & (1 << 17)) != 0;
  677. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  678. user_data, page_do_bit17_swizzling,
  679. partial_cacheline_write,
  680. needs_clflush_after);
  681. if (ret == 0)
  682. goto next_page;
  683. hit_slowpath = 1;
  684. mutex_unlock(&dev->struct_mutex);
  685. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  686. user_data, page_do_bit17_swizzling,
  687. partial_cacheline_write,
  688. needs_clflush_after);
  689. mutex_lock(&dev->struct_mutex);
  690. next_page:
  691. set_page_dirty(page);
  692. mark_page_accessed(page);
  693. if (ret)
  694. goto out;
  695. remain -= page_length;
  696. user_data += page_length;
  697. offset += page_length;
  698. }
  699. out:
  700. i915_gem_object_unpin_pages(obj);
  701. if (hit_slowpath) {
  702. /*
  703. * Fixup: Flush cpu caches in case we didn't flush the dirty
  704. * cachelines in-line while writing and the object moved
  705. * out of the cpu write domain while we've dropped the lock.
  706. */
  707. if (!needs_clflush_after &&
  708. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  709. if (i915_gem_clflush_object(obj, obj->pin_display))
  710. i915_gem_chipset_flush(dev);
  711. }
  712. }
  713. if (needs_clflush_after)
  714. i915_gem_chipset_flush(dev);
  715. return ret;
  716. }
  717. /**
  718. * Writes data to the object referenced by handle.
  719. *
  720. * On error, the contents of the buffer that were to be modified are undefined.
  721. */
  722. int
  723. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  724. struct drm_file *file)
  725. {
  726. struct drm_i915_gem_pwrite *args = data;
  727. struct drm_i915_gem_object *obj;
  728. int ret;
  729. if (args->size == 0)
  730. return 0;
  731. if (!access_ok(VERIFY_READ,
  732. to_user_ptr(args->data_ptr),
  733. args->size))
  734. return -EFAULT;
  735. if (likely(!i915_prefault_disable)) {
  736. ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
  737. args->size);
  738. if (ret)
  739. return -EFAULT;
  740. }
  741. ret = i915_mutex_lock_interruptible(dev);
  742. if (ret)
  743. return ret;
  744. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  745. if (&obj->base == NULL) {
  746. ret = -ENOENT;
  747. goto unlock;
  748. }
  749. /* Bounds check destination. */
  750. if (args->offset > obj->base.size ||
  751. args->size > obj->base.size - args->offset) {
  752. ret = -EINVAL;
  753. goto out;
  754. }
  755. /* prime objects have no backing filp to GEM pread/pwrite
  756. * pages from.
  757. */
  758. if (!obj->base.filp) {
  759. ret = -EINVAL;
  760. goto out;
  761. }
  762. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  763. ret = -EFAULT;
  764. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  765. * it would end up going through the fenced access, and we'll get
  766. * different detiling behavior between reading and writing.
  767. * pread/pwrite currently are reading and writing from the CPU
  768. * perspective, requiring manual detiling by the client.
  769. */
  770. if (obj->phys_obj) {
  771. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  772. goto out;
  773. }
  774. if (obj->tiling_mode == I915_TILING_NONE &&
  775. obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
  776. cpu_write_needs_clflush(obj)) {
  777. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  778. /* Note that the gtt paths might fail with non-page-backed user
  779. * pointers (e.g. gtt mappings when moving data between
  780. * textures). Fallback to the shmem path in that case. */
  781. }
  782. if (ret == -EFAULT || ret == -ENOSPC)
  783. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  784. out:
  785. drm_gem_object_unreference(&obj->base);
  786. unlock:
  787. mutex_unlock(&dev->struct_mutex);
  788. return ret;
  789. }
  790. int
  791. i915_gem_check_wedge(struct i915_gpu_error *error,
  792. bool interruptible)
  793. {
  794. if (i915_reset_in_progress(error)) {
  795. /* Non-interruptible callers can't handle -EAGAIN, hence return
  796. * -EIO unconditionally for these. */
  797. if (!interruptible)
  798. return -EIO;
  799. /* Recovery complete, but the reset failed ... */
  800. if (i915_terminally_wedged(error))
  801. return -EIO;
  802. return -EAGAIN;
  803. }
  804. return 0;
  805. }
  806. /*
  807. * Compare seqno against outstanding lazy request. Emit a request if they are
  808. * equal.
  809. */
  810. static int
  811. i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
  812. {
  813. int ret;
  814. BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
  815. ret = 0;
  816. if (seqno == ring->outstanding_lazy_request)
  817. ret = i915_add_request(ring, NULL);
  818. return ret;
  819. }
  820. /**
  821. * __wait_seqno - wait until execution of seqno has finished
  822. * @ring: the ring expected to report seqno
  823. * @seqno: duh!
  824. * @reset_counter: reset sequence associated with the given seqno
  825. * @interruptible: do an interruptible wait (normally yes)
  826. * @timeout: in - how long to wait (NULL forever); out - how much time remaining
  827. *
  828. * Note: It is of utmost importance that the passed in seqno and reset_counter
  829. * values have been read by the caller in an smp safe manner. Where read-side
  830. * locks are involved, it is sufficient to read the reset_counter before
  831. * unlocking the lock that protects the seqno. For lockless tricks, the
  832. * reset_counter _must_ be read before, and an appropriate smp_rmb must be
  833. * inserted.
  834. *
  835. * Returns 0 if the seqno was found within the alloted time. Else returns the
  836. * errno with remaining time filled in timeout argument.
  837. */
  838. static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
  839. unsigned reset_counter,
  840. bool interruptible, struct timespec *timeout)
  841. {
  842. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  843. struct timespec before, now, wait_time={1,0};
  844. unsigned long timeout_jiffies;
  845. long end;
  846. bool wait_forever = true;
  847. int ret;
  848. if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
  849. return 0;
  850. trace_i915_gem_request_wait_begin(ring, seqno);
  851. if (timeout != NULL) {
  852. wait_time = *timeout;
  853. wait_forever = false;
  854. }
  855. timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
  856. if (WARN_ON(!ring->irq_get(ring)))
  857. return -ENODEV;
  858. /* Record current time in case interrupted by signal, or wedged * */
  859. getrawmonotonic(&before);
  860. #define EXIT_COND \
  861. (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
  862. i915_reset_in_progress(&dev_priv->gpu_error) || \
  863. reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  864. do {
  865. if (interruptible)
  866. end = wait_event_interruptible_timeout(ring->irq_queue,
  867. EXIT_COND,
  868. timeout_jiffies);
  869. else
  870. end = wait_event_timeout(ring->irq_queue, EXIT_COND,
  871. timeout_jiffies);
  872. /* We need to check whether any gpu reset happened in between
  873. * the caller grabbing the seqno and now ... */
  874. if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  875. end = -EAGAIN;
  876. /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
  877. * gone. */
  878. ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
  879. if (ret)
  880. end = ret;
  881. } while (end == 0 && wait_forever);
  882. getrawmonotonic(&now);
  883. ring->irq_put(ring);
  884. trace_i915_gem_request_wait_end(ring, seqno);
  885. #undef EXIT_COND
  886. if (timeout) {
  887. struct timespec sleep_time = timespec_sub(now, before);
  888. *timeout = timespec_sub(*timeout, sleep_time);
  889. if (!timespec_valid(timeout)) /* i.e. negative time remains */
  890. set_normalized_timespec(timeout, 0, 0);
  891. }
  892. switch (end) {
  893. case -EIO:
  894. case -EAGAIN: /* Wedged */
  895. case -ERESTARTSYS: /* Signal */
  896. return (int)end;
  897. case 0: /* Timeout */
  898. return -ETIME;
  899. default: /* Completed */
  900. WARN_ON(end < 0); /* We're not aware of other errors */
  901. return 0;
  902. }
  903. }
  904. /**
  905. * Waits for a sequence number to be signaled, and cleans up the
  906. * request and object lists appropriately for that event.
  907. */
  908. int
  909. i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
  910. {
  911. struct drm_device *dev = ring->dev;
  912. struct drm_i915_private *dev_priv = dev->dev_private;
  913. bool interruptible = dev_priv->mm.interruptible;
  914. int ret;
  915. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  916. BUG_ON(seqno == 0);
  917. ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
  918. if (ret)
  919. return ret;
  920. ret = i915_gem_check_olr(ring, seqno);
  921. if (ret)
  922. return ret;
  923. return __wait_seqno(ring, seqno,
  924. atomic_read(&dev_priv->gpu_error.reset_counter),
  925. interruptible, NULL);
  926. }
  927. static int
  928. i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
  929. struct intel_ring_buffer *ring)
  930. {
  931. i915_gem_retire_requests_ring(ring);
  932. /* Manually manage the write flush as we may have not yet
  933. * retired the buffer.
  934. *
  935. * Note that the last_write_seqno is always the earlier of
  936. * the two (read/write) seqno, so if we haved successfully waited,
  937. * we know we have passed the last write.
  938. */
  939. obj->last_write_seqno = 0;
  940. obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
  941. return 0;
  942. }
  943. /**
  944. * Ensures that all rendering to the object has completed and the object is
  945. * safe to unbind from the GTT or access from the CPU.
  946. */
  947. static __must_check int
  948. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  949. bool readonly)
  950. {
  951. struct intel_ring_buffer *ring = obj->ring;
  952. u32 seqno;
  953. int ret;
  954. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  955. if (seqno == 0)
  956. return 0;
  957. ret = i915_wait_seqno(ring, seqno);
  958. if (ret)
  959. return ret;
  960. return i915_gem_object_wait_rendering__tail(obj, ring);
  961. }
  962. /* A nonblocking variant of the above wait. This is a highly dangerous routine
  963. * as the object state may change during this call.
  964. */
  965. static __must_check int
  966. i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
  967. bool readonly)
  968. {
  969. struct drm_device *dev = obj->base.dev;
  970. struct drm_i915_private *dev_priv = dev->dev_private;
  971. struct intel_ring_buffer *ring = obj->ring;
  972. unsigned reset_counter;
  973. u32 seqno;
  974. int ret;
  975. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  976. BUG_ON(!dev_priv->mm.interruptible);
  977. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  978. if (seqno == 0)
  979. return 0;
  980. ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
  981. if (ret)
  982. return ret;
  983. ret = i915_gem_check_olr(ring, seqno);
  984. if (ret)
  985. return ret;
  986. reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  987. mutex_unlock(&dev->struct_mutex);
  988. ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
  989. mutex_lock(&dev->struct_mutex);
  990. if (ret)
  991. return ret;
  992. return i915_gem_object_wait_rendering__tail(obj, ring);
  993. }
  994. /**
  995. * Called when user space prepares to use an object with the CPU, either
  996. * through the mmap ioctl's mapping or a GTT mapping.
  997. */
  998. int
  999. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  1000. struct drm_file *file)
  1001. {
  1002. struct drm_i915_gem_set_domain *args = data;
  1003. struct drm_i915_gem_object *obj;
  1004. uint32_t read_domains = args->read_domains;
  1005. uint32_t write_domain = args->write_domain;
  1006. int ret;
  1007. /* Only handle setting domains to types used by the CPU. */
  1008. if (write_domain & I915_GEM_GPU_DOMAINS)
  1009. return -EINVAL;
  1010. if (read_domains & I915_GEM_GPU_DOMAINS)
  1011. return -EINVAL;
  1012. /* Having something in the write domain implies it's in the read
  1013. * domain, and only that read domain. Enforce that in the request.
  1014. */
  1015. if (write_domain != 0 && read_domains != write_domain)
  1016. return -EINVAL;
  1017. ret = i915_mutex_lock_interruptible(dev);
  1018. if (ret)
  1019. return ret;
  1020. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1021. if (&obj->base == NULL) {
  1022. ret = -ENOENT;
  1023. goto unlock;
  1024. }
  1025. /* Try to flush the object off the GPU without holding the lock.
  1026. * We will repeat the flush holding the lock in the normal manner
  1027. * to catch cases where we are gazumped.
  1028. */
  1029. ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
  1030. if (ret)
  1031. goto unref;
  1032. if (read_domains & I915_GEM_DOMAIN_GTT) {
  1033. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  1034. /* Silently promote "you're not bound, there was nothing to do"
  1035. * to success, since the client was just asking us to
  1036. * make sure everything was done.
  1037. */
  1038. if (ret == -EINVAL)
  1039. ret = 0;
  1040. } else {
  1041. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  1042. }
  1043. unref:
  1044. drm_gem_object_unreference(&obj->base);
  1045. unlock:
  1046. mutex_unlock(&dev->struct_mutex);
  1047. return ret;
  1048. }
  1049. /**
  1050. * Called when user space has done writes to this buffer
  1051. */
  1052. int
  1053. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1054. struct drm_file *file)
  1055. {
  1056. struct drm_i915_gem_sw_finish *args = data;
  1057. struct drm_i915_gem_object *obj;
  1058. int ret = 0;
  1059. ret = i915_mutex_lock_interruptible(dev);
  1060. if (ret)
  1061. return ret;
  1062. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1063. if (&obj->base == NULL) {
  1064. ret = -ENOENT;
  1065. goto unlock;
  1066. }
  1067. /* Pinned buffers may be scanout, so flush the cache */
  1068. if (obj->pin_display)
  1069. i915_gem_object_flush_cpu_write_domain(obj, true);
  1070. drm_gem_object_unreference(&obj->base);
  1071. unlock:
  1072. mutex_unlock(&dev->struct_mutex);
  1073. return ret;
  1074. }
  1075. /**
  1076. * Maps the contents of an object, returning the address it is mapped
  1077. * into.
  1078. *
  1079. * While the mapping holds a reference on the contents of the object, it doesn't
  1080. * imply a ref on the object itself.
  1081. */
  1082. int
  1083. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1084. struct drm_file *file)
  1085. {
  1086. struct drm_i915_gem_mmap *args = data;
  1087. struct drm_gem_object *obj;
  1088. unsigned long addr;
  1089. obj = drm_gem_object_lookup(dev, file, args->handle);
  1090. if (obj == NULL)
  1091. return -ENOENT;
  1092. /* prime objects have no backing filp to GEM mmap
  1093. * pages from.
  1094. */
  1095. if (!obj->filp) {
  1096. drm_gem_object_unreference_unlocked(obj);
  1097. return -EINVAL;
  1098. }
  1099. addr = vm_mmap(obj->filp, 0, args->size,
  1100. PROT_READ | PROT_WRITE, MAP_SHARED,
  1101. args->offset);
  1102. drm_gem_object_unreference_unlocked(obj);
  1103. if (IS_ERR((void *)addr))
  1104. return addr;
  1105. args->addr_ptr = (uint64_t) addr;
  1106. return 0;
  1107. }
  1108. /**
  1109. * i915_gem_fault - fault a page into the GTT
  1110. * vma: VMA in question
  1111. * vmf: fault info
  1112. *
  1113. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1114. * from userspace. The fault handler takes care of binding the object to
  1115. * the GTT (if needed), allocating and programming a fence register (again,
  1116. * only if needed based on whether the old reg is still valid or the object
  1117. * is tiled) and inserting a new PTE into the faulting process.
  1118. *
  1119. * Note that the faulting process may involve evicting existing objects
  1120. * from the GTT and/or fence registers to make room. So performance may
  1121. * suffer if the GTT working set is large or there are few fence registers
  1122. * left.
  1123. */
  1124. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1125. {
  1126. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1127. struct drm_device *dev = obj->base.dev;
  1128. drm_i915_private_t *dev_priv = dev->dev_private;
  1129. pgoff_t page_offset;
  1130. unsigned long pfn;
  1131. int ret = 0;
  1132. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1133. /* We don't use vmf->pgoff since that has the fake offset */
  1134. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1135. PAGE_SHIFT;
  1136. ret = i915_mutex_lock_interruptible(dev);
  1137. if (ret)
  1138. goto out;
  1139. trace_i915_gem_object_fault(obj, page_offset, true, write);
  1140. /* Access to snoopable pages through the GTT is incoherent. */
  1141. if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
  1142. ret = -EINVAL;
  1143. goto unlock;
  1144. }
  1145. /* Now bind it into the GTT if needed */
  1146. ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
  1147. if (ret)
  1148. goto unlock;
  1149. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1150. if (ret)
  1151. goto unpin;
  1152. ret = i915_gem_object_get_fence(obj);
  1153. if (ret)
  1154. goto unpin;
  1155. obj->fault_mappable = true;
  1156. pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
  1157. pfn >>= PAGE_SHIFT;
  1158. pfn += page_offset;
  1159. /* Finally, remap it using the new GTT offset */
  1160. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1161. unpin:
  1162. i915_gem_object_unpin(obj);
  1163. unlock:
  1164. mutex_unlock(&dev->struct_mutex);
  1165. out:
  1166. switch (ret) {
  1167. case -EIO:
  1168. /* If this -EIO is due to a gpu hang, give the reset code a
  1169. * chance to clean up the mess. Otherwise return the proper
  1170. * SIGBUS. */
  1171. if (i915_terminally_wedged(&dev_priv->gpu_error))
  1172. return VM_FAULT_SIGBUS;
  1173. case -EAGAIN:
  1174. /* Give the error handler a chance to run and move the
  1175. * objects off the GPU active list. Next time we service the
  1176. * fault, we should be able to transition the page into the
  1177. * GTT without touching the GPU (and so avoid further
  1178. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  1179. * with coherency, just lost writes.
  1180. */
  1181. set_need_resched();
  1182. case 0:
  1183. case -ERESTARTSYS:
  1184. case -EINTR:
  1185. case -EBUSY:
  1186. /*
  1187. * EBUSY is ok: this just means that another thread
  1188. * already did the job.
  1189. */
  1190. return VM_FAULT_NOPAGE;
  1191. case -ENOMEM:
  1192. return VM_FAULT_OOM;
  1193. case -ENOSPC:
  1194. return VM_FAULT_SIGBUS;
  1195. default:
  1196. WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
  1197. return VM_FAULT_SIGBUS;
  1198. }
  1199. }
  1200. /**
  1201. * i915_gem_release_mmap - remove physical page mappings
  1202. * @obj: obj in question
  1203. *
  1204. * Preserve the reservation of the mmapping with the DRM core code, but
  1205. * relinquish ownership of the pages back to the system.
  1206. *
  1207. * It is vital that we remove the page mapping if we have mapped a tiled
  1208. * object through the GTT and then lose the fence register due to
  1209. * resource pressure. Similarly if the object has been moved out of the
  1210. * aperture, than pages mapped into userspace must be revoked. Removing the
  1211. * mapping will then trigger a page fault on the next user access, allowing
  1212. * fixup by i915_gem_fault().
  1213. */
  1214. void
  1215. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1216. {
  1217. if (!obj->fault_mappable)
  1218. return;
  1219. if (obj->base.dev->dev_mapping)
  1220. unmap_mapping_range(obj->base.dev->dev_mapping,
  1221. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1222. obj->base.size, 1);
  1223. obj->fault_mappable = false;
  1224. }
  1225. uint32_t
  1226. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  1227. {
  1228. uint32_t gtt_size;
  1229. if (INTEL_INFO(dev)->gen >= 4 ||
  1230. tiling_mode == I915_TILING_NONE)
  1231. return size;
  1232. /* Previous chips need a power-of-two fence region when tiling */
  1233. if (INTEL_INFO(dev)->gen == 3)
  1234. gtt_size = 1024*1024;
  1235. else
  1236. gtt_size = 512*1024;
  1237. while (gtt_size < size)
  1238. gtt_size <<= 1;
  1239. return gtt_size;
  1240. }
  1241. /**
  1242. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1243. * @obj: object to check
  1244. *
  1245. * Return the required GTT alignment for an object, taking into account
  1246. * potential fence register mapping.
  1247. */
  1248. uint32_t
  1249. i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
  1250. int tiling_mode, bool fenced)
  1251. {
  1252. /*
  1253. * Minimum alignment is 4k (GTT page size), but might be greater
  1254. * if a fence register is needed for the object.
  1255. */
  1256. if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
  1257. tiling_mode == I915_TILING_NONE)
  1258. return 4096;
  1259. /*
  1260. * Previous chips need to be aligned to the size of the smallest
  1261. * fence register that can contain the object.
  1262. */
  1263. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1264. }
  1265. static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
  1266. {
  1267. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1268. int ret;
  1269. if (obj->base.map_list.map)
  1270. return 0;
  1271. dev_priv->mm.shrinker_no_lock_stealing = true;
  1272. ret = drm_gem_create_mmap_offset(&obj->base);
  1273. if (ret != -ENOSPC)
  1274. goto out;
  1275. /* Badly fragmented mmap space? The only way we can recover
  1276. * space is by destroying unwanted objects. We can't randomly release
  1277. * mmap_offsets as userspace expects them to be persistent for the
  1278. * lifetime of the objects. The closest we can is to release the
  1279. * offsets on purgeable objects by truncating it and marking it purged,
  1280. * which prevents userspace from ever using that object again.
  1281. */
  1282. i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
  1283. ret = drm_gem_create_mmap_offset(&obj->base);
  1284. if (ret != -ENOSPC)
  1285. goto out;
  1286. i915_gem_shrink_all(dev_priv);
  1287. ret = drm_gem_create_mmap_offset(&obj->base);
  1288. out:
  1289. dev_priv->mm.shrinker_no_lock_stealing = false;
  1290. return ret;
  1291. }
  1292. static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
  1293. {
  1294. if (!obj->base.map_list.map)
  1295. return;
  1296. drm_gem_free_mmap_offset(&obj->base);
  1297. }
  1298. int
  1299. i915_gem_mmap_gtt(struct drm_file *file,
  1300. struct drm_device *dev,
  1301. uint32_t handle,
  1302. uint64_t *offset)
  1303. {
  1304. struct drm_i915_private *dev_priv = dev->dev_private;
  1305. struct drm_i915_gem_object *obj;
  1306. int ret;
  1307. ret = i915_mutex_lock_interruptible(dev);
  1308. if (ret)
  1309. return ret;
  1310. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1311. if (&obj->base == NULL) {
  1312. ret = -ENOENT;
  1313. goto unlock;
  1314. }
  1315. if (obj->base.size > dev_priv->gtt.mappable_end) {
  1316. ret = -E2BIG;
  1317. goto out;
  1318. }
  1319. if (obj->madv != I915_MADV_WILLNEED) {
  1320. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1321. ret = -EINVAL;
  1322. goto out;
  1323. }
  1324. ret = i915_gem_object_create_mmap_offset(obj);
  1325. if (ret)
  1326. goto out;
  1327. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1328. out:
  1329. drm_gem_object_unreference(&obj->base);
  1330. unlock:
  1331. mutex_unlock(&dev->struct_mutex);
  1332. return ret;
  1333. }
  1334. /**
  1335. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1336. * @dev: DRM device
  1337. * @data: GTT mapping ioctl data
  1338. * @file: GEM object info
  1339. *
  1340. * Simply returns the fake offset to userspace so it can mmap it.
  1341. * The mmap call will end up in drm_gem_mmap(), which will set things
  1342. * up so we can get faults in the handler above.
  1343. *
  1344. * The fault handler will take care of binding the object into the GTT
  1345. * (since it may have been evicted to make room for something), allocating
  1346. * a fence register, and mapping the appropriate aperture address into
  1347. * userspace.
  1348. */
  1349. int
  1350. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1351. struct drm_file *file)
  1352. {
  1353. struct drm_i915_gem_mmap_gtt *args = data;
  1354. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1355. }
  1356. /* Immediately discard the backing storage */
  1357. static void
  1358. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1359. {
  1360. struct inode *inode;
  1361. i915_gem_object_free_mmap_offset(obj);
  1362. if (obj->base.filp == NULL)
  1363. return;
  1364. /* Our goal here is to return as much of the memory as
  1365. * is possible back to the system as we are called from OOM.
  1366. * To do this we must instruct the shmfs to drop all of its
  1367. * backing pages, *now*.
  1368. */
  1369. inode = file_inode(obj->base.filp);
  1370. shmem_truncate_range(inode, 0, (loff_t)-1);
  1371. obj->madv = __I915_MADV_PURGED;
  1372. }
  1373. static inline int
  1374. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1375. {
  1376. return obj->madv == I915_MADV_DONTNEED;
  1377. }
  1378. static void
  1379. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1380. {
  1381. struct sg_page_iter sg_iter;
  1382. int ret;
  1383. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1384. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1385. if (ret) {
  1386. /* In the event of a disaster, abandon all caches and
  1387. * hope for the best.
  1388. */
  1389. WARN_ON(ret != -EIO);
  1390. i915_gem_clflush_object(obj, true);
  1391. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1392. }
  1393. if (i915_gem_object_needs_bit17_swizzle(obj))
  1394. i915_gem_object_save_bit_17_swizzle(obj);
  1395. if (obj->madv == I915_MADV_DONTNEED)
  1396. obj->dirty = 0;
  1397. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
  1398. struct page *page = sg_page_iter_page(&sg_iter);
  1399. if (obj->dirty)
  1400. set_page_dirty(page);
  1401. if (obj->madv == I915_MADV_WILLNEED)
  1402. mark_page_accessed(page);
  1403. page_cache_release(page);
  1404. }
  1405. obj->dirty = 0;
  1406. sg_free_table(obj->pages);
  1407. kfree(obj->pages);
  1408. }
  1409. int
  1410. i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
  1411. {
  1412. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1413. if (obj->pages == NULL)
  1414. return 0;
  1415. if (obj->pages_pin_count)
  1416. return -EBUSY;
  1417. BUG_ON(i915_gem_obj_bound_any(obj));
  1418. /* ->put_pages might need to allocate memory for the bit17 swizzle
  1419. * array, hence protect them from being reaped by removing them from gtt
  1420. * lists early. */
  1421. list_del(&obj->global_list);
  1422. ops->put_pages(obj);
  1423. obj->pages = NULL;
  1424. if (i915_gem_object_is_purgeable(obj))
  1425. i915_gem_object_truncate(obj);
  1426. return 0;
  1427. }
  1428. static long
  1429. __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
  1430. bool purgeable_only)
  1431. {
  1432. struct drm_i915_gem_object *obj, *next;
  1433. long count = 0;
  1434. list_for_each_entry_safe(obj, next,
  1435. &dev_priv->mm.unbound_list,
  1436. global_list) {
  1437. if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
  1438. i915_gem_object_put_pages(obj) == 0) {
  1439. count += obj->base.size >> PAGE_SHIFT;
  1440. if (count >= target)
  1441. return count;
  1442. }
  1443. }
  1444. list_for_each_entry_safe(obj, next, &dev_priv->mm.bound_list,
  1445. global_list) {
  1446. struct i915_vma *vma, *v;
  1447. if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
  1448. continue;
  1449. list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
  1450. if (i915_vma_unbind(vma))
  1451. break;
  1452. if (!i915_gem_object_put_pages(obj)) {
  1453. count += obj->base.size >> PAGE_SHIFT;
  1454. if (count >= target)
  1455. return count;
  1456. }
  1457. }
  1458. return count;
  1459. }
  1460. static long
  1461. i915_gem_purge(struct drm_i915_private *dev_priv, long target)
  1462. {
  1463. return __i915_gem_shrink(dev_priv, target, true);
  1464. }
  1465. static void
  1466. i915_gem_shrink_all(struct drm_i915_private *dev_priv)
  1467. {
  1468. struct drm_i915_gem_object *obj, *next;
  1469. i915_gem_evict_everything(dev_priv->dev);
  1470. list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
  1471. global_list)
  1472. i915_gem_object_put_pages(obj);
  1473. }
  1474. static int
  1475. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
  1476. {
  1477. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1478. int page_count, i;
  1479. struct address_space *mapping;
  1480. struct sg_table *st;
  1481. struct scatterlist *sg;
  1482. struct sg_page_iter sg_iter;
  1483. struct page *page;
  1484. unsigned long last_pfn = 0; /* suppress gcc warning */
  1485. gfp_t gfp;
  1486. /* Assert that the object is not currently in any GPU domain. As it
  1487. * wasn't in the GTT, there shouldn't be any way it could have been in
  1488. * a GPU cache
  1489. */
  1490. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  1491. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  1492. st = kmalloc(sizeof(*st), GFP_KERNEL);
  1493. if (st == NULL)
  1494. return -ENOMEM;
  1495. page_count = obj->base.size / PAGE_SIZE;
  1496. if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
  1497. sg_free_table(st);
  1498. kfree(st);
  1499. return -ENOMEM;
  1500. }
  1501. /* Get the list of pages out of our struct file. They'll be pinned
  1502. * at this point until we release them.
  1503. *
  1504. * Fail silently without starting the shrinker
  1505. */
  1506. mapping = file_inode(obj->base.filp)->i_mapping;
  1507. gfp = mapping_gfp_mask(mapping);
  1508. gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
  1509. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1510. sg = st->sgl;
  1511. st->nents = 0;
  1512. for (i = 0; i < page_count; i++) {
  1513. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1514. if (IS_ERR(page)) {
  1515. i915_gem_purge(dev_priv, page_count);
  1516. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1517. }
  1518. if (IS_ERR(page)) {
  1519. /* We've tried hard to allocate the memory by reaping
  1520. * our own buffer, now let the real VM do its job and
  1521. * go down in flames if truly OOM.
  1522. */
  1523. gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
  1524. gfp |= __GFP_IO | __GFP_WAIT;
  1525. i915_gem_shrink_all(dev_priv);
  1526. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1527. if (IS_ERR(page))
  1528. goto err_pages;
  1529. gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
  1530. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1531. }
  1532. #ifdef CONFIG_SWIOTLB
  1533. if (swiotlb_nr_tbl()) {
  1534. st->nents++;
  1535. sg_set_page(sg, page, PAGE_SIZE, 0);
  1536. sg = sg_next(sg);
  1537. continue;
  1538. }
  1539. #endif
  1540. if (!i || page_to_pfn(page) != last_pfn + 1) {
  1541. if (i)
  1542. sg = sg_next(sg);
  1543. st->nents++;
  1544. sg_set_page(sg, page, PAGE_SIZE, 0);
  1545. } else {
  1546. sg->length += PAGE_SIZE;
  1547. }
  1548. last_pfn = page_to_pfn(page);
  1549. }
  1550. #ifdef CONFIG_SWIOTLB
  1551. if (!swiotlb_nr_tbl())
  1552. #endif
  1553. sg_mark_end(sg);
  1554. obj->pages = st;
  1555. if (i915_gem_object_needs_bit17_swizzle(obj))
  1556. i915_gem_object_do_bit_17_swizzle(obj);
  1557. return 0;
  1558. err_pages:
  1559. sg_mark_end(sg);
  1560. for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
  1561. page_cache_release(sg_page_iter_page(&sg_iter));
  1562. sg_free_table(st);
  1563. kfree(st);
  1564. return PTR_ERR(page);
  1565. }
  1566. /* Ensure that the associated pages are gathered from the backing storage
  1567. * and pinned into our object. i915_gem_object_get_pages() may be called
  1568. * multiple times before they are released by a single call to
  1569. * i915_gem_object_put_pages() - once the pages are no longer referenced
  1570. * either as a result of memory pressure (reaping pages under the shrinker)
  1571. * or as the object is itself released.
  1572. */
  1573. int
  1574. i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
  1575. {
  1576. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1577. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1578. int ret;
  1579. if (obj->pages)
  1580. return 0;
  1581. if (obj->madv != I915_MADV_WILLNEED) {
  1582. DRM_ERROR("Attempting to obtain a purgeable object\n");
  1583. return -EINVAL;
  1584. }
  1585. BUG_ON(obj->pages_pin_count);
  1586. ret = ops->get_pages(obj);
  1587. if (ret)
  1588. return ret;
  1589. list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
  1590. return 0;
  1591. }
  1592. void
  1593. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1594. struct intel_ring_buffer *ring)
  1595. {
  1596. struct drm_device *dev = obj->base.dev;
  1597. struct drm_i915_private *dev_priv = dev->dev_private;
  1598. u32 seqno = intel_ring_get_seqno(ring);
  1599. BUG_ON(ring == NULL);
  1600. if (obj->ring != ring && obj->last_write_seqno) {
  1601. /* Keep the seqno relative to the current ring */
  1602. obj->last_write_seqno = seqno;
  1603. }
  1604. obj->ring = ring;
  1605. /* Add a reference if we're newly entering the active list. */
  1606. if (!obj->active) {
  1607. drm_gem_object_reference(&obj->base);
  1608. obj->active = 1;
  1609. }
  1610. list_move_tail(&obj->ring_list, &ring->active_list);
  1611. obj->last_read_seqno = seqno;
  1612. if (obj->fenced_gpu_access) {
  1613. obj->last_fenced_seqno = seqno;
  1614. /* Bump MRU to take account of the delayed flush */
  1615. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1616. struct drm_i915_fence_reg *reg;
  1617. reg = &dev_priv->fence_regs[obj->fence_reg];
  1618. list_move_tail(&reg->lru_list,
  1619. &dev_priv->mm.fence_list);
  1620. }
  1621. }
  1622. }
  1623. static void
  1624. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1625. {
  1626. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1627. struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
  1628. struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
  1629. BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
  1630. BUG_ON(!obj->active);
  1631. list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
  1632. list_del_init(&obj->ring_list);
  1633. obj->ring = NULL;
  1634. obj->last_read_seqno = 0;
  1635. obj->last_write_seqno = 0;
  1636. obj->base.write_domain = 0;
  1637. obj->last_fenced_seqno = 0;
  1638. obj->fenced_gpu_access = false;
  1639. obj->active = 0;
  1640. drm_gem_object_unreference(&obj->base);
  1641. WARN_ON(i915_verify_lists(dev));
  1642. }
  1643. static int
  1644. i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
  1645. {
  1646. struct drm_i915_private *dev_priv = dev->dev_private;
  1647. struct intel_ring_buffer *ring;
  1648. int ret, i, j;
  1649. /* Carefully retire all requests without writing to the rings */
  1650. for_each_ring(ring, dev_priv, i) {
  1651. ret = intel_ring_idle(ring);
  1652. if (ret)
  1653. return ret;
  1654. }
  1655. i915_gem_retire_requests(dev);
  1656. /* Finally reset hw state */
  1657. for_each_ring(ring, dev_priv, i) {
  1658. intel_ring_init_seqno(ring, seqno);
  1659. for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
  1660. ring->sync_seqno[j] = 0;
  1661. }
  1662. return 0;
  1663. }
  1664. int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
  1665. {
  1666. struct drm_i915_private *dev_priv = dev->dev_private;
  1667. int ret;
  1668. if (seqno == 0)
  1669. return -EINVAL;
  1670. /* HWS page needs to be set less than what we
  1671. * will inject to ring
  1672. */
  1673. ret = i915_gem_init_seqno(dev, seqno - 1);
  1674. if (ret)
  1675. return ret;
  1676. /* Carefully set the last_seqno value so that wrap
  1677. * detection still works
  1678. */
  1679. dev_priv->next_seqno = seqno;
  1680. dev_priv->last_seqno = seqno - 1;
  1681. if (dev_priv->last_seqno == 0)
  1682. dev_priv->last_seqno--;
  1683. return 0;
  1684. }
  1685. int
  1686. i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
  1687. {
  1688. struct drm_i915_private *dev_priv = dev->dev_private;
  1689. /* reserve 0 for non-seqno */
  1690. if (dev_priv->next_seqno == 0) {
  1691. int ret = i915_gem_init_seqno(dev, 0);
  1692. if (ret)
  1693. return ret;
  1694. dev_priv->next_seqno = 1;
  1695. }
  1696. *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
  1697. return 0;
  1698. }
  1699. int __i915_add_request(struct intel_ring_buffer *ring,
  1700. struct drm_file *file,
  1701. struct drm_i915_gem_object *obj,
  1702. u32 *out_seqno)
  1703. {
  1704. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1705. struct drm_i915_gem_request *request;
  1706. u32 request_ring_position, request_start;
  1707. int was_empty;
  1708. int ret;
  1709. request_start = intel_ring_get_tail(ring);
  1710. /*
  1711. * Emit any outstanding flushes - execbuf can fail to emit the flush
  1712. * after having emitted the batchbuffer command. Hence we need to fix
  1713. * things up similar to emitting the lazy request. The difference here
  1714. * is that the flush _must_ happen before the next request, no matter
  1715. * what.
  1716. */
  1717. ret = intel_ring_flush_all_caches(ring);
  1718. if (ret)
  1719. return ret;
  1720. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1721. if (request == NULL)
  1722. return -ENOMEM;
  1723. /* Record the position of the start of the request so that
  1724. * should we detect the updated seqno part-way through the
  1725. * GPU processing the request, we never over-estimate the
  1726. * position of the head.
  1727. */
  1728. request_ring_position = intel_ring_get_tail(ring);
  1729. ret = ring->add_request(ring);
  1730. if (ret) {
  1731. kfree(request);
  1732. return ret;
  1733. }
  1734. request->seqno = intel_ring_get_seqno(ring);
  1735. request->ring = ring;
  1736. request->head = request_start;
  1737. request->tail = request_ring_position;
  1738. request->ctx = ring->last_context;
  1739. request->batch_obj = obj;
  1740. /* Whilst this request exists, batch_obj will be on the
  1741. * active_list, and so will hold the active reference. Only when this
  1742. * request is retired will the the batch_obj be moved onto the
  1743. * inactive_list and lose its active reference. Hence we do not need
  1744. * to explicitly hold another reference here.
  1745. */
  1746. if (request->ctx)
  1747. i915_gem_context_reference(request->ctx);
  1748. request->emitted_jiffies = jiffies;
  1749. was_empty = list_empty(&ring->request_list);
  1750. list_add_tail(&request->list, &ring->request_list);
  1751. request->file_priv = NULL;
  1752. if (file) {
  1753. struct drm_i915_file_private *file_priv = file->driver_priv;
  1754. spin_lock(&file_priv->mm.lock);
  1755. request->file_priv = file_priv;
  1756. list_add_tail(&request->client_list,
  1757. &file_priv->mm.request_list);
  1758. spin_unlock(&file_priv->mm.lock);
  1759. }
  1760. trace_i915_gem_request_add(ring, request->seqno);
  1761. ring->outstanding_lazy_request = 0;
  1762. if (!dev_priv->ums.mm_suspended) {
  1763. i915_queue_hangcheck(ring->dev);
  1764. if (was_empty) {
  1765. queue_delayed_work(dev_priv->wq,
  1766. &dev_priv->mm.retire_work,
  1767. round_jiffies_up_relative(HZ));
  1768. intel_mark_busy(dev_priv->dev);
  1769. }
  1770. }
  1771. if (out_seqno)
  1772. *out_seqno = request->seqno;
  1773. return 0;
  1774. }
  1775. static inline void
  1776. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1777. {
  1778. struct drm_i915_file_private *file_priv = request->file_priv;
  1779. if (!file_priv)
  1780. return;
  1781. spin_lock(&file_priv->mm.lock);
  1782. if (request->file_priv) {
  1783. list_del(&request->client_list);
  1784. request->file_priv = NULL;
  1785. }
  1786. spin_unlock(&file_priv->mm.lock);
  1787. }
  1788. static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
  1789. struct i915_address_space *vm)
  1790. {
  1791. if (acthd >= i915_gem_obj_offset(obj, vm) &&
  1792. acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
  1793. return true;
  1794. return false;
  1795. }
  1796. static bool i915_head_inside_request(const u32 acthd_unmasked,
  1797. const u32 request_start,
  1798. const u32 request_end)
  1799. {
  1800. const u32 acthd = acthd_unmasked & HEAD_ADDR;
  1801. if (request_start < request_end) {
  1802. if (acthd >= request_start && acthd < request_end)
  1803. return true;
  1804. } else if (request_start > request_end) {
  1805. if (acthd >= request_start || acthd < request_end)
  1806. return true;
  1807. }
  1808. return false;
  1809. }
  1810. static struct i915_address_space *
  1811. request_to_vm(struct drm_i915_gem_request *request)
  1812. {
  1813. struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
  1814. struct i915_address_space *vm;
  1815. vm = &dev_priv->gtt.base;
  1816. return vm;
  1817. }
  1818. static bool i915_request_guilty(struct drm_i915_gem_request *request,
  1819. const u32 acthd, bool *inside)
  1820. {
  1821. /* There is a possibility that unmasked head address
  1822. * pointing inside the ring, matches the batch_obj address range.
  1823. * However this is extremely unlikely.
  1824. */
  1825. if (request->batch_obj) {
  1826. if (i915_head_inside_object(acthd, request->batch_obj,
  1827. request_to_vm(request))) {
  1828. *inside = true;
  1829. return true;
  1830. }
  1831. }
  1832. if (i915_head_inside_request(acthd, request->head, request->tail)) {
  1833. *inside = false;
  1834. return true;
  1835. }
  1836. return false;
  1837. }
  1838. static void i915_set_reset_status(struct intel_ring_buffer *ring,
  1839. struct drm_i915_gem_request *request,
  1840. u32 acthd)
  1841. {
  1842. struct i915_ctx_hang_stats *hs = NULL;
  1843. bool inside, guilty;
  1844. unsigned long offset = 0;
  1845. /* Innocent until proven guilty */
  1846. guilty = false;
  1847. if (request->batch_obj)
  1848. offset = i915_gem_obj_offset(request->batch_obj,
  1849. request_to_vm(request));
  1850. if (ring->hangcheck.action != HANGCHECK_WAIT &&
  1851. i915_request_guilty(request, acthd, &inside)) {
  1852. DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
  1853. ring->name,
  1854. inside ? "inside" : "flushing",
  1855. offset,
  1856. request->ctx ? request->ctx->id : 0,
  1857. acthd);
  1858. guilty = true;
  1859. }
  1860. /* If contexts are disabled or this is the default context, use
  1861. * file_priv->reset_state
  1862. */
  1863. if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
  1864. hs = &request->ctx->hang_stats;
  1865. else if (request->file_priv)
  1866. hs = &request->file_priv->hang_stats;
  1867. if (hs) {
  1868. if (guilty)
  1869. hs->batch_active++;
  1870. else
  1871. hs->batch_pending++;
  1872. }
  1873. }
  1874. static void i915_gem_free_request(struct drm_i915_gem_request *request)
  1875. {
  1876. list_del(&request->list);
  1877. i915_gem_request_remove_from_client(request);
  1878. if (request->ctx)
  1879. i915_gem_context_unreference(request->ctx);
  1880. kfree(request);
  1881. }
  1882. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1883. struct intel_ring_buffer *ring)
  1884. {
  1885. u32 completed_seqno;
  1886. u32 acthd;
  1887. acthd = intel_ring_get_active_head(ring);
  1888. completed_seqno = ring->get_seqno(ring, false);
  1889. while (!list_empty(&ring->request_list)) {
  1890. struct drm_i915_gem_request *request;
  1891. request = list_first_entry(&ring->request_list,
  1892. struct drm_i915_gem_request,
  1893. list);
  1894. if (request->seqno > completed_seqno)
  1895. i915_set_reset_status(ring, request, acthd);
  1896. i915_gem_free_request(request);
  1897. }
  1898. while (!list_empty(&ring->active_list)) {
  1899. struct drm_i915_gem_object *obj;
  1900. obj = list_first_entry(&ring->active_list,
  1901. struct drm_i915_gem_object,
  1902. ring_list);
  1903. i915_gem_object_move_to_inactive(obj);
  1904. }
  1905. }
  1906. void i915_gem_restore_fences(struct drm_device *dev)
  1907. {
  1908. struct drm_i915_private *dev_priv = dev->dev_private;
  1909. int i;
  1910. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1911. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1912. /*
  1913. * Commit delayed tiling changes if we have an object still
  1914. * attached to the fence, otherwise just clear the fence.
  1915. */
  1916. if (reg->obj) {
  1917. i915_gem_object_update_fence(reg->obj, reg,
  1918. reg->obj->tiling_mode);
  1919. } else {
  1920. i915_gem_write_fence(dev, i, NULL);
  1921. }
  1922. }
  1923. }
  1924. void i915_gem_reset(struct drm_device *dev)
  1925. {
  1926. struct drm_i915_private *dev_priv = dev->dev_private;
  1927. struct intel_ring_buffer *ring;
  1928. int i;
  1929. for_each_ring(ring, dev_priv, i)
  1930. i915_gem_reset_ring_lists(dev_priv, ring);
  1931. i915_gem_restore_fences(dev);
  1932. }
  1933. /**
  1934. * This function clears the request list as sequence numbers are passed.
  1935. */
  1936. void
  1937. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1938. {
  1939. uint32_t seqno;
  1940. if (list_empty(&ring->request_list))
  1941. return;
  1942. WARN_ON(i915_verify_lists(ring->dev));
  1943. seqno = ring->get_seqno(ring, true);
  1944. while (!list_empty(&ring->request_list)) {
  1945. struct drm_i915_gem_request *request;
  1946. request = list_first_entry(&ring->request_list,
  1947. struct drm_i915_gem_request,
  1948. list);
  1949. if (!i915_seqno_passed(seqno, request->seqno))
  1950. break;
  1951. trace_i915_gem_request_retire(ring, request->seqno);
  1952. /* We know the GPU must have read the request to have
  1953. * sent us the seqno + interrupt, so use the position
  1954. * of tail of the request to update the last known position
  1955. * of the GPU head.
  1956. */
  1957. ring->last_retired_head = request->tail;
  1958. i915_gem_free_request(request);
  1959. }
  1960. /* Move any buffers on the active list that are no longer referenced
  1961. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1962. */
  1963. while (!list_empty(&ring->active_list)) {
  1964. struct drm_i915_gem_object *obj;
  1965. obj = list_first_entry(&ring->active_list,
  1966. struct drm_i915_gem_object,
  1967. ring_list);
  1968. if (!i915_seqno_passed(seqno, obj->last_read_seqno))
  1969. break;
  1970. i915_gem_object_move_to_inactive(obj);
  1971. }
  1972. if (unlikely(ring->trace_irq_seqno &&
  1973. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1974. ring->irq_put(ring);
  1975. ring->trace_irq_seqno = 0;
  1976. }
  1977. WARN_ON(i915_verify_lists(ring->dev));
  1978. }
  1979. void
  1980. i915_gem_retire_requests(struct drm_device *dev)
  1981. {
  1982. drm_i915_private_t *dev_priv = dev->dev_private;
  1983. struct intel_ring_buffer *ring;
  1984. int i;
  1985. for_each_ring(ring, dev_priv, i)
  1986. i915_gem_retire_requests_ring(ring);
  1987. }
  1988. static void
  1989. i915_gem_retire_work_handler(struct work_struct *work)
  1990. {
  1991. drm_i915_private_t *dev_priv;
  1992. struct drm_device *dev;
  1993. struct intel_ring_buffer *ring;
  1994. bool idle;
  1995. int i;
  1996. dev_priv = container_of(work, drm_i915_private_t,
  1997. mm.retire_work.work);
  1998. dev = dev_priv->dev;
  1999. /* Come back later if the device is busy... */
  2000. if (!mutex_trylock(&dev->struct_mutex)) {
  2001. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
  2002. round_jiffies_up_relative(HZ));
  2003. return;
  2004. }
  2005. i915_gem_retire_requests(dev);
  2006. /* Send a periodic flush down the ring so we don't hold onto GEM
  2007. * objects indefinitely.
  2008. */
  2009. idle = true;
  2010. for_each_ring(ring, dev_priv, i) {
  2011. if (ring->gpu_caches_dirty)
  2012. i915_add_request(ring, NULL);
  2013. idle &= list_empty(&ring->request_list);
  2014. }
  2015. if (!dev_priv->ums.mm_suspended && !idle)
  2016. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
  2017. round_jiffies_up_relative(HZ));
  2018. if (idle)
  2019. intel_mark_idle(dev);
  2020. mutex_unlock(&dev->struct_mutex);
  2021. }
  2022. /**
  2023. * Ensures that an object will eventually get non-busy by flushing any required
  2024. * write domains, emitting any outstanding lazy request and retiring and
  2025. * completed requests.
  2026. */
  2027. static int
  2028. i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
  2029. {
  2030. int ret;
  2031. if (obj->active) {
  2032. ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
  2033. if (ret)
  2034. return ret;
  2035. i915_gem_retire_requests_ring(obj->ring);
  2036. }
  2037. return 0;
  2038. }
  2039. /**
  2040. * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
  2041. * @DRM_IOCTL_ARGS: standard ioctl arguments
  2042. *
  2043. * Returns 0 if successful, else an error is returned with the remaining time in
  2044. * the timeout parameter.
  2045. * -ETIME: object is still busy after timeout
  2046. * -ERESTARTSYS: signal interrupted the wait
  2047. * -ENONENT: object doesn't exist
  2048. * Also possible, but rare:
  2049. * -EAGAIN: GPU wedged
  2050. * -ENOMEM: damn
  2051. * -ENODEV: Internal IRQ fail
  2052. * -E?: The add request failed
  2053. *
  2054. * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
  2055. * non-zero timeout parameter the wait ioctl will wait for the given number of
  2056. * nanoseconds on an object becoming unbusy. Since the wait itself does so
  2057. * without holding struct_mutex the object may become re-busied before this
  2058. * function completes. A similar but shorter * race condition exists in the busy
  2059. * ioctl
  2060. */
  2061. int
  2062. i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
  2063. {
  2064. drm_i915_private_t *dev_priv = dev->dev_private;
  2065. struct drm_i915_gem_wait *args = data;
  2066. struct drm_i915_gem_object *obj;
  2067. struct intel_ring_buffer *ring = NULL;
  2068. struct timespec timeout_stack, *timeout = NULL;
  2069. unsigned reset_counter;
  2070. u32 seqno = 0;
  2071. int ret = 0;
  2072. if (args->timeout_ns >= 0) {
  2073. timeout_stack = ns_to_timespec(args->timeout_ns);
  2074. timeout = &timeout_stack;
  2075. }
  2076. ret = i915_mutex_lock_interruptible(dev);
  2077. if (ret)
  2078. return ret;
  2079. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
  2080. if (&obj->base == NULL) {
  2081. mutex_unlock(&dev->struct_mutex);
  2082. return -ENOENT;
  2083. }
  2084. /* Need to make sure the object gets inactive eventually. */
  2085. ret = i915_gem_object_flush_active(obj);
  2086. if (ret)
  2087. goto out;
  2088. if (obj->active) {
  2089. seqno = obj->last_read_seqno;
  2090. ring = obj->ring;
  2091. }
  2092. if (seqno == 0)
  2093. goto out;
  2094. /* Do this after OLR check to make sure we make forward progress polling
  2095. * on this IOCTL with a 0 timeout (like busy ioctl)
  2096. */
  2097. if (!args->timeout_ns) {
  2098. ret = -ETIME;
  2099. goto out;
  2100. }
  2101. drm_gem_object_unreference(&obj->base);
  2102. reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  2103. mutex_unlock(&dev->struct_mutex);
  2104. ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
  2105. if (timeout)
  2106. args->timeout_ns = timespec_to_ns(timeout);
  2107. return ret;
  2108. out:
  2109. drm_gem_object_unreference(&obj->base);
  2110. mutex_unlock(&dev->struct_mutex);
  2111. return ret;
  2112. }
  2113. /**
  2114. * i915_gem_object_sync - sync an object to a ring.
  2115. *
  2116. * @obj: object which may be in use on another ring.
  2117. * @to: ring we wish to use the object on. May be NULL.
  2118. *
  2119. * This code is meant to abstract object synchronization with the GPU.
  2120. * Calling with NULL implies synchronizing the object with the CPU
  2121. * rather than a particular GPU ring.
  2122. *
  2123. * Returns 0 if successful, else propagates up the lower layer error.
  2124. */
  2125. int
  2126. i915_gem_object_sync(struct drm_i915_gem_object *obj,
  2127. struct intel_ring_buffer *to)
  2128. {
  2129. struct intel_ring_buffer *from = obj->ring;
  2130. u32 seqno;
  2131. int ret, idx;
  2132. if (from == NULL || to == from)
  2133. return 0;
  2134. if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
  2135. return i915_gem_object_wait_rendering(obj, false);
  2136. idx = intel_ring_sync_index(from, to);
  2137. seqno = obj->last_read_seqno;
  2138. if (seqno <= from->sync_seqno[idx])
  2139. return 0;
  2140. ret = i915_gem_check_olr(obj->ring, seqno);
  2141. if (ret)
  2142. return ret;
  2143. ret = to->sync_to(to, from, seqno);
  2144. if (!ret)
  2145. /* We use last_read_seqno because sync_to()
  2146. * might have just caused seqno wrap under
  2147. * the radar.
  2148. */
  2149. from->sync_seqno[idx] = obj->last_read_seqno;
  2150. return ret;
  2151. }
  2152. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  2153. {
  2154. u32 old_write_domain, old_read_domains;
  2155. /* Force a pagefault for domain tracking on next user access */
  2156. i915_gem_release_mmap(obj);
  2157. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  2158. return;
  2159. /* Wait for any direct GTT access to complete */
  2160. mb();
  2161. old_read_domains = obj->base.read_domains;
  2162. old_write_domain = obj->base.write_domain;
  2163. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  2164. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  2165. trace_i915_gem_object_change_domain(obj,
  2166. old_read_domains,
  2167. old_write_domain);
  2168. }
  2169. int i915_vma_unbind(struct i915_vma *vma)
  2170. {
  2171. struct drm_i915_gem_object *obj = vma->obj;
  2172. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2173. int ret;
  2174. if (list_empty(&vma->vma_link))
  2175. return 0;
  2176. if (!drm_mm_node_allocated(&vma->node))
  2177. goto destroy;
  2178. if (obj->pin_count)
  2179. return -EBUSY;
  2180. BUG_ON(obj->pages == NULL);
  2181. ret = i915_gem_object_finish_gpu(obj);
  2182. if (ret)
  2183. return ret;
  2184. /* Continue on if we fail due to EIO, the GPU is hung so we
  2185. * should be safe and we need to cleanup or else we might
  2186. * cause memory corruption through use-after-free.
  2187. */
  2188. i915_gem_object_finish_gtt(obj);
  2189. /* release the fence reg _after_ flushing */
  2190. ret = i915_gem_object_put_fence(obj);
  2191. if (ret)
  2192. return ret;
  2193. trace_i915_vma_unbind(vma);
  2194. if (obj->has_global_gtt_mapping)
  2195. i915_gem_gtt_unbind_object(obj);
  2196. if (obj->has_aliasing_ppgtt_mapping) {
  2197. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  2198. obj->has_aliasing_ppgtt_mapping = 0;
  2199. }
  2200. i915_gem_gtt_finish_object(obj);
  2201. i915_gem_object_unpin_pages(obj);
  2202. list_del(&vma->mm_list);
  2203. /* Avoid an unnecessary call to unbind on rebind. */
  2204. if (i915_is_ggtt(vma->vm))
  2205. obj->map_and_fenceable = true;
  2206. drm_mm_remove_node(&vma->node);
  2207. destroy:
  2208. i915_gem_vma_destroy(vma);
  2209. /* Since the unbound list is global, only move to that list if
  2210. * no more VMAs exist.
  2211. * NB: Until we have real VMAs there will only ever be one */
  2212. WARN_ON(!list_empty(&obj->vma_list));
  2213. if (list_empty(&obj->vma_list))
  2214. list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
  2215. return 0;
  2216. }
  2217. /**
  2218. * Unbinds an object from the global GTT aperture.
  2219. */
  2220. int
  2221. i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
  2222. {
  2223. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2224. struct i915_address_space *ggtt = &dev_priv->gtt.base;
  2225. if (!i915_gem_obj_ggtt_bound(obj))
  2226. return 0;
  2227. if (obj->pin_count)
  2228. return -EBUSY;
  2229. BUG_ON(obj->pages == NULL);
  2230. return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
  2231. }
  2232. int i915_gpu_idle(struct drm_device *dev)
  2233. {
  2234. drm_i915_private_t *dev_priv = dev->dev_private;
  2235. struct intel_ring_buffer *ring;
  2236. int ret, i;
  2237. /* Flush everything onto the inactive list. */
  2238. for_each_ring(ring, dev_priv, i) {
  2239. ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
  2240. if (ret)
  2241. return ret;
  2242. ret = intel_ring_idle(ring);
  2243. if (ret)
  2244. return ret;
  2245. }
  2246. return 0;
  2247. }
  2248. static void i965_write_fence_reg(struct drm_device *dev, int reg,
  2249. struct drm_i915_gem_object *obj)
  2250. {
  2251. drm_i915_private_t *dev_priv = dev->dev_private;
  2252. int fence_reg;
  2253. int fence_pitch_shift;
  2254. if (INTEL_INFO(dev)->gen >= 6) {
  2255. fence_reg = FENCE_REG_SANDYBRIDGE_0;
  2256. fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
  2257. } else {
  2258. fence_reg = FENCE_REG_965_0;
  2259. fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
  2260. }
  2261. fence_reg += reg * 8;
  2262. /* To w/a incoherency with non-atomic 64-bit register updates,
  2263. * we split the 64-bit update into two 32-bit writes. In order
  2264. * for a partial fence not to be evaluated between writes, we
  2265. * precede the update with write to turn off the fence register,
  2266. * and only enable the fence as the last step.
  2267. *
  2268. * For extra levels of paranoia, we make sure each step lands
  2269. * before applying the next step.
  2270. */
  2271. I915_WRITE(fence_reg, 0);
  2272. POSTING_READ(fence_reg);
  2273. if (obj) {
  2274. u32 size = i915_gem_obj_ggtt_size(obj);
  2275. uint64_t val;
  2276. val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
  2277. 0xfffff000) << 32;
  2278. val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
  2279. val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
  2280. if (obj->tiling_mode == I915_TILING_Y)
  2281. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2282. val |= I965_FENCE_REG_VALID;
  2283. I915_WRITE(fence_reg + 4, val >> 32);
  2284. POSTING_READ(fence_reg + 4);
  2285. I915_WRITE(fence_reg + 0, val);
  2286. POSTING_READ(fence_reg);
  2287. } else {
  2288. I915_WRITE(fence_reg + 4, 0);
  2289. POSTING_READ(fence_reg + 4);
  2290. }
  2291. }
  2292. static void i915_write_fence_reg(struct drm_device *dev, int reg,
  2293. struct drm_i915_gem_object *obj)
  2294. {
  2295. drm_i915_private_t *dev_priv = dev->dev_private;
  2296. u32 val;
  2297. if (obj) {
  2298. u32 size = i915_gem_obj_ggtt_size(obj);
  2299. int pitch_val;
  2300. int tile_width;
  2301. WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
  2302. (size & -size) != size ||
  2303. (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
  2304. "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  2305. i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
  2306. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  2307. tile_width = 128;
  2308. else
  2309. tile_width = 512;
  2310. /* Note: pitch better be a power of two tile widths */
  2311. pitch_val = obj->stride / tile_width;
  2312. pitch_val = ffs(pitch_val) - 1;
  2313. val = i915_gem_obj_ggtt_offset(obj);
  2314. if (obj->tiling_mode == I915_TILING_Y)
  2315. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2316. val |= I915_FENCE_SIZE_BITS(size);
  2317. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2318. val |= I830_FENCE_REG_VALID;
  2319. } else
  2320. val = 0;
  2321. if (reg < 8)
  2322. reg = FENCE_REG_830_0 + reg * 4;
  2323. else
  2324. reg = FENCE_REG_945_8 + (reg - 8) * 4;
  2325. I915_WRITE(reg, val);
  2326. POSTING_READ(reg);
  2327. }
  2328. static void i830_write_fence_reg(struct drm_device *dev, int reg,
  2329. struct drm_i915_gem_object *obj)
  2330. {
  2331. drm_i915_private_t *dev_priv = dev->dev_private;
  2332. uint32_t val;
  2333. if (obj) {
  2334. u32 size = i915_gem_obj_ggtt_size(obj);
  2335. uint32_t pitch_val;
  2336. WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
  2337. (size & -size) != size ||
  2338. (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
  2339. "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
  2340. i915_gem_obj_ggtt_offset(obj), size);
  2341. pitch_val = obj->stride / 128;
  2342. pitch_val = ffs(pitch_val) - 1;
  2343. val = i915_gem_obj_ggtt_offset(obj);
  2344. if (obj->tiling_mode == I915_TILING_Y)
  2345. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2346. val |= I830_FENCE_SIZE_BITS(size);
  2347. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2348. val |= I830_FENCE_REG_VALID;
  2349. } else
  2350. val = 0;
  2351. I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
  2352. POSTING_READ(FENCE_REG_830_0 + reg * 4);
  2353. }
  2354. inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
  2355. {
  2356. return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
  2357. }
  2358. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  2359. struct drm_i915_gem_object *obj)
  2360. {
  2361. struct drm_i915_private *dev_priv = dev->dev_private;
  2362. /* Ensure that all CPU reads are completed before installing a fence
  2363. * and all writes before removing the fence.
  2364. */
  2365. if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
  2366. mb();
  2367. WARN(obj && (!obj->stride || !obj->tiling_mode),
  2368. "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
  2369. obj->stride, obj->tiling_mode);
  2370. switch (INTEL_INFO(dev)->gen) {
  2371. case 7:
  2372. case 6:
  2373. case 5:
  2374. case 4: i965_write_fence_reg(dev, reg, obj); break;
  2375. case 3: i915_write_fence_reg(dev, reg, obj); break;
  2376. case 2: i830_write_fence_reg(dev, reg, obj); break;
  2377. default: BUG();
  2378. }
  2379. /* And similarly be paranoid that no direct access to this region
  2380. * is reordered to before the fence is installed.
  2381. */
  2382. if (i915_gem_object_needs_mb(obj))
  2383. mb();
  2384. }
  2385. static inline int fence_number(struct drm_i915_private *dev_priv,
  2386. struct drm_i915_fence_reg *fence)
  2387. {
  2388. return fence - dev_priv->fence_regs;
  2389. }
  2390. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  2391. struct drm_i915_fence_reg *fence,
  2392. bool enable)
  2393. {
  2394. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2395. int reg = fence_number(dev_priv, fence);
  2396. i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
  2397. if (enable) {
  2398. obj->fence_reg = reg;
  2399. fence->obj = obj;
  2400. list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
  2401. } else {
  2402. obj->fence_reg = I915_FENCE_REG_NONE;
  2403. fence->obj = NULL;
  2404. list_del_init(&fence->lru_list);
  2405. }
  2406. obj->fence_dirty = false;
  2407. }
  2408. static int
  2409. i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
  2410. {
  2411. if (obj->last_fenced_seqno) {
  2412. int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
  2413. if (ret)
  2414. return ret;
  2415. obj->last_fenced_seqno = 0;
  2416. }
  2417. obj->fenced_gpu_access = false;
  2418. return 0;
  2419. }
  2420. int
  2421. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2422. {
  2423. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2424. struct drm_i915_fence_reg *fence;
  2425. int ret;
  2426. ret = i915_gem_object_wait_fence(obj);
  2427. if (ret)
  2428. return ret;
  2429. if (obj->fence_reg == I915_FENCE_REG_NONE)
  2430. return 0;
  2431. fence = &dev_priv->fence_regs[obj->fence_reg];
  2432. i915_gem_object_fence_lost(obj);
  2433. i915_gem_object_update_fence(obj, fence, false);
  2434. return 0;
  2435. }
  2436. static struct drm_i915_fence_reg *
  2437. i915_find_fence_reg(struct drm_device *dev)
  2438. {
  2439. struct drm_i915_private *dev_priv = dev->dev_private;
  2440. struct drm_i915_fence_reg *reg, *avail;
  2441. int i;
  2442. /* First try to find a free reg */
  2443. avail = NULL;
  2444. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2445. reg = &dev_priv->fence_regs[i];
  2446. if (!reg->obj)
  2447. return reg;
  2448. if (!reg->pin_count)
  2449. avail = reg;
  2450. }
  2451. if (avail == NULL)
  2452. return NULL;
  2453. /* None available, try to steal one or wait for a user to finish */
  2454. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2455. if (reg->pin_count)
  2456. continue;
  2457. return reg;
  2458. }
  2459. return NULL;
  2460. }
  2461. /**
  2462. * i915_gem_object_get_fence - set up fencing for an object
  2463. * @obj: object to map through a fence reg
  2464. *
  2465. * When mapping objects through the GTT, userspace wants to be able to write
  2466. * to them without having to worry about swizzling if the object is tiled.
  2467. * This function walks the fence regs looking for a free one for @obj,
  2468. * stealing one if it can't find any.
  2469. *
  2470. * It then sets up the reg based on the object's properties: address, pitch
  2471. * and tiling format.
  2472. *
  2473. * For an untiled surface, this removes any existing fence.
  2474. */
  2475. int
  2476. i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
  2477. {
  2478. struct drm_device *dev = obj->base.dev;
  2479. struct drm_i915_private *dev_priv = dev->dev_private;
  2480. bool enable = obj->tiling_mode != I915_TILING_NONE;
  2481. struct drm_i915_fence_reg *reg;
  2482. int ret;
  2483. /* Have we updated the tiling parameters upon the object and so
  2484. * will need to serialise the write to the associated fence register?
  2485. */
  2486. if (obj->fence_dirty) {
  2487. ret = i915_gem_object_wait_fence(obj);
  2488. if (ret)
  2489. return ret;
  2490. }
  2491. /* Just update our place in the LRU if our fence is getting reused. */
  2492. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2493. reg = &dev_priv->fence_regs[obj->fence_reg];
  2494. if (!obj->fence_dirty) {
  2495. list_move_tail(&reg->lru_list,
  2496. &dev_priv->mm.fence_list);
  2497. return 0;
  2498. }
  2499. } else if (enable) {
  2500. reg = i915_find_fence_reg(dev);
  2501. if (reg == NULL)
  2502. return -EDEADLK;
  2503. if (reg->obj) {
  2504. struct drm_i915_gem_object *old = reg->obj;
  2505. ret = i915_gem_object_wait_fence(old);
  2506. if (ret)
  2507. return ret;
  2508. i915_gem_object_fence_lost(old);
  2509. }
  2510. } else
  2511. return 0;
  2512. i915_gem_object_update_fence(obj, reg, enable);
  2513. return 0;
  2514. }
  2515. static bool i915_gem_valid_gtt_space(struct drm_device *dev,
  2516. struct drm_mm_node *gtt_space,
  2517. unsigned long cache_level)
  2518. {
  2519. struct drm_mm_node *other;
  2520. /* On non-LLC machines we have to be careful when putting differing
  2521. * types of snoopable memory together to avoid the prefetcher
  2522. * crossing memory domains and dying.
  2523. */
  2524. if (HAS_LLC(dev))
  2525. return true;
  2526. if (!drm_mm_node_allocated(gtt_space))
  2527. return true;
  2528. if (list_empty(&gtt_space->node_list))
  2529. return true;
  2530. other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
  2531. if (other->allocated && !other->hole_follows && other->color != cache_level)
  2532. return false;
  2533. other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
  2534. if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
  2535. return false;
  2536. return true;
  2537. }
  2538. static void i915_gem_verify_gtt(struct drm_device *dev)
  2539. {
  2540. #if WATCH_GTT
  2541. struct drm_i915_private *dev_priv = dev->dev_private;
  2542. struct drm_i915_gem_object *obj;
  2543. int err = 0;
  2544. list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
  2545. if (obj->gtt_space == NULL) {
  2546. printk(KERN_ERR "object found on GTT list with no space reserved\n");
  2547. err++;
  2548. continue;
  2549. }
  2550. if (obj->cache_level != obj->gtt_space->color) {
  2551. printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
  2552. i915_gem_obj_ggtt_offset(obj),
  2553. i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
  2554. obj->cache_level,
  2555. obj->gtt_space->color);
  2556. err++;
  2557. continue;
  2558. }
  2559. if (!i915_gem_valid_gtt_space(dev,
  2560. obj->gtt_space,
  2561. obj->cache_level)) {
  2562. printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
  2563. i915_gem_obj_ggtt_offset(obj),
  2564. i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
  2565. obj->cache_level);
  2566. err++;
  2567. continue;
  2568. }
  2569. }
  2570. WARN_ON(err);
  2571. #endif
  2572. }
  2573. /**
  2574. * Finds free space in the GTT aperture and binds the object there.
  2575. */
  2576. static int
  2577. i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
  2578. struct i915_address_space *vm,
  2579. unsigned alignment,
  2580. bool map_and_fenceable,
  2581. bool nonblocking)
  2582. {
  2583. struct drm_device *dev = obj->base.dev;
  2584. drm_i915_private_t *dev_priv = dev->dev_private;
  2585. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2586. size_t gtt_max =
  2587. map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
  2588. struct i915_vma *vma;
  2589. int ret;
  2590. if (WARN_ON(!list_empty(&obj->vma_list)))
  2591. return -EBUSY;
  2592. fence_size = i915_gem_get_gtt_size(dev,
  2593. obj->base.size,
  2594. obj->tiling_mode);
  2595. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2596. obj->base.size,
  2597. obj->tiling_mode, true);
  2598. unfenced_alignment =
  2599. i915_gem_get_gtt_alignment(dev,
  2600. obj->base.size,
  2601. obj->tiling_mode, false);
  2602. if (alignment == 0)
  2603. alignment = map_and_fenceable ? fence_alignment :
  2604. unfenced_alignment;
  2605. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2606. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2607. return -EINVAL;
  2608. }
  2609. size = map_and_fenceable ? fence_size : obj->base.size;
  2610. /* If the object is bigger than the entire aperture, reject it early
  2611. * before evicting everything in a vain attempt to find space.
  2612. */
  2613. if (obj->base.size > gtt_max) {
  2614. DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
  2615. obj->base.size,
  2616. map_and_fenceable ? "mappable" : "total",
  2617. gtt_max);
  2618. return -E2BIG;
  2619. }
  2620. ret = i915_gem_object_get_pages(obj);
  2621. if (ret)
  2622. return ret;
  2623. i915_gem_object_pin_pages(obj);
  2624. /* FIXME: For now we only ever use 1 VMA per object */
  2625. BUG_ON(!i915_is_ggtt(vm));
  2626. WARN_ON(!list_empty(&obj->vma_list));
  2627. vma = i915_gem_vma_create(obj, vm);
  2628. if (IS_ERR(vma)) {
  2629. ret = PTR_ERR(vma);
  2630. goto err_unpin;
  2631. }
  2632. search_free:
  2633. ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
  2634. size, alignment,
  2635. obj->cache_level, 0, gtt_max);
  2636. if (ret) {
  2637. ret = i915_gem_evict_something(dev, vm, size, alignment,
  2638. obj->cache_level,
  2639. map_and_fenceable,
  2640. nonblocking);
  2641. if (ret == 0)
  2642. goto search_free;
  2643. goto err_free_vma;
  2644. }
  2645. if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
  2646. obj->cache_level))) {
  2647. ret = -EINVAL;
  2648. goto err_remove_node;
  2649. }
  2650. ret = i915_gem_gtt_prepare_object(obj);
  2651. if (ret)
  2652. goto err_remove_node;
  2653. list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
  2654. list_add_tail(&vma->mm_list, &vm->inactive_list);
  2655. if (i915_is_ggtt(vm)) {
  2656. bool mappable, fenceable;
  2657. fenceable = (vma->node.size == fence_size &&
  2658. (vma->node.start & (fence_alignment - 1)) == 0);
  2659. mappable = (vma->node.start + obj->base.size <=
  2660. dev_priv->gtt.mappable_end);
  2661. obj->map_and_fenceable = mappable && fenceable;
  2662. }
  2663. WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
  2664. trace_i915_vma_bind(vma, map_and_fenceable);
  2665. i915_gem_verify_gtt(dev);
  2666. return 0;
  2667. err_remove_node:
  2668. drm_mm_remove_node(&vma->node);
  2669. err_free_vma:
  2670. i915_gem_vma_destroy(vma);
  2671. err_unpin:
  2672. i915_gem_object_unpin_pages(obj);
  2673. return ret;
  2674. }
  2675. bool
  2676. i915_gem_clflush_object(struct drm_i915_gem_object *obj,
  2677. bool force)
  2678. {
  2679. /* If we don't have a page list set up, then we're not pinned
  2680. * to GPU, and we can ignore the cache flush because it'll happen
  2681. * again at bind time.
  2682. */
  2683. if (obj->pages == NULL)
  2684. return false;
  2685. /*
  2686. * Stolen memory is always coherent with the GPU as it is explicitly
  2687. * marked as wc by the system, or the system is cache-coherent.
  2688. */
  2689. if (obj->stolen)
  2690. return false;
  2691. /* If the GPU is snooping the contents of the CPU cache,
  2692. * we do not need to manually clear the CPU cache lines. However,
  2693. * the caches are only snooped when the render cache is
  2694. * flushed/invalidated. As we always have to emit invalidations
  2695. * and flushes when moving into and out of the RENDER domain, correct
  2696. * snooping behaviour occurs naturally as the result of our domain
  2697. * tracking.
  2698. */
  2699. if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
  2700. return false;
  2701. trace_i915_gem_object_clflush(obj);
  2702. drm_clflush_sg(obj->pages);
  2703. return true;
  2704. }
  2705. /** Flushes the GTT write domain for the object if it's dirty. */
  2706. static void
  2707. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2708. {
  2709. uint32_t old_write_domain;
  2710. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2711. return;
  2712. /* No actual flushing is required for the GTT write domain. Writes
  2713. * to it immediately go to main memory as far as we know, so there's
  2714. * no chipset flush. It also doesn't land in render cache.
  2715. *
  2716. * However, we do have to enforce the order so that all writes through
  2717. * the GTT land before any writes to the device, such as updates to
  2718. * the GATT itself.
  2719. */
  2720. wmb();
  2721. old_write_domain = obj->base.write_domain;
  2722. obj->base.write_domain = 0;
  2723. trace_i915_gem_object_change_domain(obj,
  2724. obj->base.read_domains,
  2725. old_write_domain);
  2726. }
  2727. /** Flushes the CPU write domain for the object if it's dirty. */
  2728. static void
  2729. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
  2730. bool force)
  2731. {
  2732. uint32_t old_write_domain;
  2733. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2734. return;
  2735. if (i915_gem_clflush_object(obj, force))
  2736. i915_gem_chipset_flush(obj->base.dev);
  2737. old_write_domain = obj->base.write_domain;
  2738. obj->base.write_domain = 0;
  2739. trace_i915_gem_object_change_domain(obj,
  2740. obj->base.read_domains,
  2741. old_write_domain);
  2742. }
  2743. /**
  2744. * Moves a single object to the GTT read, and possibly write domain.
  2745. *
  2746. * This function returns when the move is complete, including waiting on
  2747. * flushes to occur.
  2748. */
  2749. int
  2750. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2751. {
  2752. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2753. uint32_t old_write_domain, old_read_domains;
  2754. int ret;
  2755. /* Not valid to be called on unbound objects. */
  2756. if (!i915_gem_obj_bound_any(obj))
  2757. return -EINVAL;
  2758. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2759. return 0;
  2760. ret = i915_gem_object_wait_rendering(obj, !write);
  2761. if (ret)
  2762. return ret;
  2763. i915_gem_object_flush_cpu_write_domain(obj, false);
  2764. /* Serialise direct access to this object with the barriers for
  2765. * coherent writes from the GPU, by effectively invalidating the
  2766. * GTT domain upon first access.
  2767. */
  2768. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  2769. mb();
  2770. old_write_domain = obj->base.write_domain;
  2771. old_read_domains = obj->base.read_domains;
  2772. /* It should now be out of any other write domains, and we can update
  2773. * the domain values for our changes.
  2774. */
  2775. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2776. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2777. if (write) {
  2778. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2779. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2780. obj->dirty = 1;
  2781. }
  2782. trace_i915_gem_object_change_domain(obj,
  2783. old_read_domains,
  2784. old_write_domain);
  2785. /* And bump the LRU for this access */
  2786. if (i915_gem_object_is_inactive(obj)) {
  2787. struct i915_vma *vma = i915_gem_obj_to_vma(obj,
  2788. &dev_priv->gtt.base);
  2789. if (vma)
  2790. list_move_tail(&vma->mm_list,
  2791. &dev_priv->gtt.base.inactive_list);
  2792. }
  2793. return 0;
  2794. }
  2795. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2796. enum i915_cache_level cache_level)
  2797. {
  2798. struct drm_device *dev = obj->base.dev;
  2799. drm_i915_private_t *dev_priv = dev->dev_private;
  2800. struct i915_vma *vma;
  2801. int ret;
  2802. if (obj->cache_level == cache_level)
  2803. return 0;
  2804. if (obj->pin_count) {
  2805. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2806. return -EBUSY;
  2807. }
  2808. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  2809. if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
  2810. ret = i915_vma_unbind(vma);
  2811. if (ret)
  2812. return ret;
  2813. break;
  2814. }
  2815. }
  2816. if (i915_gem_obj_bound_any(obj)) {
  2817. ret = i915_gem_object_finish_gpu(obj);
  2818. if (ret)
  2819. return ret;
  2820. i915_gem_object_finish_gtt(obj);
  2821. /* Before SandyBridge, you could not use tiling or fence
  2822. * registers with snooped memory, so relinquish any fences
  2823. * currently pointing to our region in the aperture.
  2824. */
  2825. if (INTEL_INFO(dev)->gen < 6) {
  2826. ret = i915_gem_object_put_fence(obj);
  2827. if (ret)
  2828. return ret;
  2829. }
  2830. if (obj->has_global_gtt_mapping)
  2831. i915_gem_gtt_bind_object(obj, cache_level);
  2832. if (obj->has_aliasing_ppgtt_mapping)
  2833. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2834. obj, cache_level);
  2835. }
  2836. list_for_each_entry(vma, &obj->vma_list, vma_link)
  2837. vma->node.color = cache_level;
  2838. obj->cache_level = cache_level;
  2839. if (cpu_write_needs_clflush(obj)) {
  2840. u32 old_read_domains, old_write_domain;
  2841. /* If we're coming from LLC cached, then we haven't
  2842. * actually been tracking whether the data is in the
  2843. * CPU cache or not, since we only allow one bit set
  2844. * in obj->write_domain and have been skipping the clflushes.
  2845. * Just set it to the CPU cache for now.
  2846. */
  2847. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2848. old_read_domains = obj->base.read_domains;
  2849. old_write_domain = obj->base.write_domain;
  2850. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2851. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2852. trace_i915_gem_object_change_domain(obj,
  2853. old_read_domains,
  2854. old_write_domain);
  2855. }
  2856. i915_gem_verify_gtt(dev);
  2857. return 0;
  2858. }
  2859. int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
  2860. struct drm_file *file)
  2861. {
  2862. struct drm_i915_gem_caching *args = data;
  2863. struct drm_i915_gem_object *obj;
  2864. int ret;
  2865. ret = i915_mutex_lock_interruptible(dev);
  2866. if (ret)
  2867. return ret;
  2868. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2869. if (&obj->base == NULL) {
  2870. ret = -ENOENT;
  2871. goto unlock;
  2872. }
  2873. switch (obj->cache_level) {
  2874. case I915_CACHE_LLC:
  2875. case I915_CACHE_L3_LLC:
  2876. args->caching = I915_CACHING_CACHED;
  2877. break;
  2878. case I915_CACHE_WT:
  2879. args->caching = I915_CACHING_DISPLAY;
  2880. break;
  2881. default:
  2882. args->caching = I915_CACHING_NONE;
  2883. break;
  2884. }
  2885. drm_gem_object_unreference(&obj->base);
  2886. unlock:
  2887. mutex_unlock(&dev->struct_mutex);
  2888. return ret;
  2889. }
  2890. int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
  2891. struct drm_file *file)
  2892. {
  2893. struct drm_i915_gem_caching *args = data;
  2894. struct drm_i915_gem_object *obj;
  2895. enum i915_cache_level level;
  2896. int ret;
  2897. switch (args->caching) {
  2898. case I915_CACHING_NONE:
  2899. level = I915_CACHE_NONE;
  2900. break;
  2901. case I915_CACHING_CACHED:
  2902. level = I915_CACHE_LLC;
  2903. break;
  2904. case I915_CACHING_DISPLAY:
  2905. level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
  2906. break;
  2907. default:
  2908. return -EINVAL;
  2909. }
  2910. ret = i915_mutex_lock_interruptible(dev);
  2911. if (ret)
  2912. return ret;
  2913. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2914. if (&obj->base == NULL) {
  2915. ret = -ENOENT;
  2916. goto unlock;
  2917. }
  2918. ret = i915_gem_object_set_cache_level(obj, level);
  2919. drm_gem_object_unreference(&obj->base);
  2920. unlock:
  2921. mutex_unlock(&dev->struct_mutex);
  2922. return ret;
  2923. }
  2924. static bool is_pin_display(struct drm_i915_gem_object *obj)
  2925. {
  2926. /* There are 3 sources that pin objects:
  2927. * 1. The display engine (scanouts, sprites, cursors);
  2928. * 2. Reservations for execbuffer;
  2929. * 3. The user.
  2930. *
  2931. * We can ignore reservations as we hold the struct_mutex and
  2932. * are only called outside of the reservation path. The user
  2933. * can only increment pin_count once, and so if after
  2934. * subtracting the potential reference by the user, any pin_count
  2935. * remains, it must be due to another use by the display engine.
  2936. */
  2937. return obj->pin_count - !!obj->user_pin_count;
  2938. }
  2939. /*
  2940. * Prepare buffer for display plane (scanout, cursors, etc).
  2941. * Can be called from an uninterruptible phase (modesetting) and allows
  2942. * any flushes to be pipelined (for pageflips).
  2943. */
  2944. int
  2945. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2946. u32 alignment,
  2947. struct intel_ring_buffer *pipelined)
  2948. {
  2949. u32 old_read_domains, old_write_domain;
  2950. int ret;
  2951. if (pipelined != obj->ring) {
  2952. ret = i915_gem_object_sync(obj, pipelined);
  2953. if (ret)
  2954. return ret;
  2955. }
  2956. /* Mark the pin_display early so that we account for the
  2957. * display coherency whilst setting up the cache domains.
  2958. */
  2959. obj->pin_display = true;
  2960. /* The display engine is not coherent with the LLC cache on gen6. As
  2961. * a result, we make sure that the pinning that is about to occur is
  2962. * done with uncached PTEs. This is lowest common denominator for all
  2963. * chipsets.
  2964. *
  2965. * However for gen6+, we could do better by using the GFDT bit instead
  2966. * of uncaching, which would allow us to flush all the LLC-cached data
  2967. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2968. */
  2969. ret = i915_gem_object_set_cache_level(obj,
  2970. HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
  2971. if (ret)
  2972. goto err_unpin_display;
  2973. /* As the user may map the buffer once pinned in the display plane
  2974. * (e.g. libkms for the bootup splash), we have to ensure that we
  2975. * always use map_and_fenceable for all scanout buffers.
  2976. */
  2977. ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
  2978. if (ret)
  2979. goto err_unpin_display;
  2980. i915_gem_object_flush_cpu_write_domain(obj, true);
  2981. old_write_domain = obj->base.write_domain;
  2982. old_read_domains = obj->base.read_domains;
  2983. /* It should now be out of any other write domains, and we can update
  2984. * the domain values for our changes.
  2985. */
  2986. obj->base.write_domain = 0;
  2987. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2988. trace_i915_gem_object_change_domain(obj,
  2989. old_read_domains,
  2990. old_write_domain);
  2991. return 0;
  2992. err_unpin_display:
  2993. obj->pin_display = is_pin_display(obj);
  2994. return ret;
  2995. }
  2996. void
  2997. i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
  2998. {
  2999. i915_gem_object_unpin(obj);
  3000. obj->pin_display = is_pin_display(obj);
  3001. }
  3002. int
  3003. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  3004. {
  3005. int ret;
  3006. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  3007. return 0;
  3008. ret = i915_gem_object_wait_rendering(obj, false);
  3009. if (ret)
  3010. return ret;
  3011. /* Ensure that we invalidate the GPU's caches and TLBs. */
  3012. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  3013. return 0;
  3014. }
  3015. /**
  3016. * Moves a single object to the CPU read, and possibly write domain.
  3017. *
  3018. * This function returns when the move is complete, including waiting on
  3019. * flushes to occur.
  3020. */
  3021. int
  3022. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  3023. {
  3024. uint32_t old_write_domain, old_read_domains;
  3025. int ret;
  3026. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  3027. return 0;
  3028. ret = i915_gem_object_wait_rendering(obj, !write);
  3029. if (ret)
  3030. return ret;
  3031. i915_gem_object_flush_gtt_write_domain(obj);
  3032. old_write_domain = obj->base.write_domain;
  3033. old_read_domains = obj->base.read_domains;
  3034. /* Flush the CPU cache if it's still invalid. */
  3035. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  3036. i915_gem_clflush_object(obj, false);
  3037. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  3038. }
  3039. /* It should now be out of any other write domains, and we can update
  3040. * the domain values for our changes.
  3041. */
  3042. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  3043. /* If we're writing through the CPU, then the GPU read domains will
  3044. * need to be invalidated at next use.
  3045. */
  3046. if (write) {
  3047. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3048. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3049. }
  3050. trace_i915_gem_object_change_domain(obj,
  3051. old_read_domains,
  3052. old_write_domain);
  3053. return 0;
  3054. }
  3055. /* Throttle our rendering by waiting until the ring has completed our requests
  3056. * emitted over 20 msec ago.
  3057. *
  3058. * Note that if we were to use the current jiffies each time around the loop,
  3059. * we wouldn't escape the function with any frames outstanding if the time to
  3060. * render a frame was over 20ms.
  3061. *
  3062. * This should get us reasonable parallelism between CPU and GPU but also
  3063. * relatively low latency when blocking on a particular request to finish.
  3064. */
  3065. static int
  3066. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  3067. {
  3068. struct drm_i915_private *dev_priv = dev->dev_private;
  3069. struct drm_i915_file_private *file_priv = file->driver_priv;
  3070. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  3071. struct drm_i915_gem_request *request;
  3072. struct intel_ring_buffer *ring = NULL;
  3073. unsigned reset_counter;
  3074. u32 seqno = 0;
  3075. int ret;
  3076. ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
  3077. if (ret)
  3078. return ret;
  3079. ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
  3080. if (ret)
  3081. return ret;
  3082. spin_lock(&file_priv->mm.lock);
  3083. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  3084. if (time_after_eq(request->emitted_jiffies, recent_enough))
  3085. break;
  3086. ring = request->ring;
  3087. seqno = request->seqno;
  3088. }
  3089. reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  3090. spin_unlock(&file_priv->mm.lock);
  3091. if (seqno == 0)
  3092. return 0;
  3093. ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
  3094. if (ret == 0)
  3095. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  3096. return ret;
  3097. }
  3098. int
  3099. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  3100. struct i915_address_space *vm,
  3101. uint32_t alignment,
  3102. bool map_and_fenceable,
  3103. bool nonblocking)
  3104. {
  3105. struct i915_vma *vma;
  3106. int ret;
  3107. if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
  3108. return -EBUSY;
  3109. WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
  3110. vma = i915_gem_obj_to_vma(obj, vm);
  3111. if (vma) {
  3112. if ((alignment &&
  3113. vma->node.start & (alignment - 1)) ||
  3114. (map_and_fenceable && !obj->map_and_fenceable)) {
  3115. WARN(obj->pin_count,
  3116. "bo is already pinned with incorrect alignment:"
  3117. " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
  3118. " obj->map_and_fenceable=%d\n",
  3119. i915_gem_obj_offset(obj, vm), alignment,
  3120. map_and_fenceable,
  3121. obj->map_and_fenceable);
  3122. ret = i915_vma_unbind(vma);
  3123. if (ret)
  3124. return ret;
  3125. }
  3126. }
  3127. if (!i915_gem_obj_bound(obj, vm)) {
  3128. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  3129. ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
  3130. map_and_fenceable,
  3131. nonblocking);
  3132. if (ret)
  3133. return ret;
  3134. if (!dev_priv->mm.aliasing_ppgtt)
  3135. i915_gem_gtt_bind_object(obj, obj->cache_level);
  3136. }
  3137. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  3138. i915_gem_gtt_bind_object(obj, obj->cache_level);
  3139. obj->pin_count++;
  3140. obj->pin_mappable |= map_and_fenceable;
  3141. return 0;
  3142. }
  3143. void
  3144. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  3145. {
  3146. BUG_ON(obj->pin_count == 0);
  3147. BUG_ON(!i915_gem_obj_bound_any(obj));
  3148. if (--obj->pin_count == 0)
  3149. obj->pin_mappable = false;
  3150. }
  3151. int
  3152. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3153. struct drm_file *file)
  3154. {
  3155. struct drm_i915_gem_pin *args = data;
  3156. struct drm_i915_gem_object *obj;
  3157. int ret;
  3158. ret = i915_mutex_lock_interruptible(dev);
  3159. if (ret)
  3160. return ret;
  3161. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3162. if (&obj->base == NULL) {
  3163. ret = -ENOENT;
  3164. goto unlock;
  3165. }
  3166. if (obj->madv != I915_MADV_WILLNEED) {
  3167. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3168. ret = -EINVAL;
  3169. goto out;
  3170. }
  3171. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  3172. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3173. args->handle);
  3174. ret = -EINVAL;
  3175. goto out;
  3176. }
  3177. if (obj->user_pin_count == 0) {
  3178. ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
  3179. if (ret)
  3180. goto out;
  3181. }
  3182. obj->user_pin_count++;
  3183. obj->pin_filp = file;
  3184. args->offset = i915_gem_obj_ggtt_offset(obj);
  3185. out:
  3186. drm_gem_object_unreference(&obj->base);
  3187. unlock:
  3188. mutex_unlock(&dev->struct_mutex);
  3189. return ret;
  3190. }
  3191. int
  3192. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3193. struct drm_file *file)
  3194. {
  3195. struct drm_i915_gem_pin *args = data;
  3196. struct drm_i915_gem_object *obj;
  3197. int ret;
  3198. ret = i915_mutex_lock_interruptible(dev);
  3199. if (ret)
  3200. return ret;
  3201. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3202. if (&obj->base == NULL) {
  3203. ret = -ENOENT;
  3204. goto unlock;
  3205. }
  3206. if (obj->pin_filp != file) {
  3207. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3208. args->handle);
  3209. ret = -EINVAL;
  3210. goto out;
  3211. }
  3212. obj->user_pin_count--;
  3213. if (obj->user_pin_count == 0) {
  3214. obj->pin_filp = NULL;
  3215. i915_gem_object_unpin(obj);
  3216. }
  3217. out:
  3218. drm_gem_object_unreference(&obj->base);
  3219. unlock:
  3220. mutex_unlock(&dev->struct_mutex);
  3221. return ret;
  3222. }
  3223. int
  3224. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3225. struct drm_file *file)
  3226. {
  3227. struct drm_i915_gem_busy *args = data;
  3228. struct drm_i915_gem_object *obj;
  3229. int ret;
  3230. ret = i915_mutex_lock_interruptible(dev);
  3231. if (ret)
  3232. return ret;
  3233. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3234. if (&obj->base == NULL) {
  3235. ret = -ENOENT;
  3236. goto unlock;
  3237. }
  3238. /* Count all active objects as busy, even if they are currently not used
  3239. * by the gpu. Users of this interface expect objects to eventually
  3240. * become non-busy without any further actions, therefore emit any
  3241. * necessary flushes here.
  3242. */
  3243. ret = i915_gem_object_flush_active(obj);
  3244. args->busy = obj->active;
  3245. if (obj->ring) {
  3246. BUILD_BUG_ON(I915_NUM_RINGS > 16);
  3247. args->busy |= intel_ring_flag(obj->ring) << 16;
  3248. }
  3249. drm_gem_object_unreference(&obj->base);
  3250. unlock:
  3251. mutex_unlock(&dev->struct_mutex);
  3252. return ret;
  3253. }
  3254. int
  3255. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3256. struct drm_file *file_priv)
  3257. {
  3258. return i915_gem_ring_throttle(dev, file_priv);
  3259. }
  3260. int
  3261. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3262. struct drm_file *file_priv)
  3263. {
  3264. struct drm_i915_gem_madvise *args = data;
  3265. struct drm_i915_gem_object *obj;
  3266. int ret;
  3267. switch (args->madv) {
  3268. case I915_MADV_DONTNEED:
  3269. case I915_MADV_WILLNEED:
  3270. break;
  3271. default:
  3272. return -EINVAL;
  3273. }
  3274. ret = i915_mutex_lock_interruptible(dev);
  3275. if (ret)
  3276. return ret;
  3277. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  3278. if (&obj->base == NULL) {
  3279. ret = -ENOENT;
  3280. goto unlock;
  3281. }
  3282. if (obj->pin_count) {
  3283. ret = -EINVAL;
  3284. goto out;
  3285. }
  3286. if (obj->madv != __I915_MADV_PURGED)
  3287. obj->madv = args->madv;
  3288. /* if the object is no longer attached, discard its backing storage */
  3289. if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
  3290. i915_gem_object_truncate(obj);
  3291. args->retained = obj->madv != __I915_MADV_PURGED;
  3292. out:
  3293. drm_gem_object_unreference(&obj->base);
  3294. unlock:
  3295. mutex_unlock(&dev->struct_mutex);
  3296. return ret;
  3297. }
  3298. void i915_gem_object_init(struct drm_i915_gem_object *obj,
  3299. const struct drm_i915_gem_object_ops *ops)
  3300. {
  3301. INIT_LIST_HEAD(&obj->global_list);
  3302. INIT_LIST_HEAD(&obj->ring_list);
  3303. INIT_LIST_HEAD(&obj->exec_list);
  3304. INIT_LIST_HEAD(&obj->obj_exec_link);
  3305. INIT_LIST_HEAD(&obj->vma_list);
  3306. obj->ops = ops;
  3307. obj->fence_reg = I915_FENCE_REG_NONE;
  3308. obj->madv = I915_MADV_WILLNEED;
  3309. /* Avoid an unnecessary call to unbind on the first bind. */
  3310. obj->map_and_fenceable = true;
  3311. i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
  3312. }
  3313. static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
  3314. .get_pages = i915_gem_object_get_pages_gtt,
  3315. .put_pages = i915_gem_object_put_pages_gtt,
  3316. };
  3317. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  3318. size_t size)
  3319. {
  3320. struct drm_i915_gem_object *obj;
  3321. struct address_space *mapping;
  3322. gfp_t mask;
  3323. obj = i915_gem_object_alloc(dev);
  3324. if (obj == NULL)
  3325. return NULL;
  3326. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3327. i915_gem_object_free(obj);
  3328. return NULL;
  3329. }
  3330. mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
  3331. if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
  3332. /* 965gm cannot relocate objects above 4GiB. */
  3333. mask &= ~__GFP_HIGHMEM;
  3334. mask |= __GFP_DMA32;
  3335. }
  3336. mapping = file_inode(obj->base.filp)->i_mapping;
  3337. mapping_set_gfp_mask(mapping, mask);
  3338. i915_gem_object_init(obj, &i915_gem_object_ops);
  3339. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3340. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3341. if (HAS_LLC(dev)) {
  3342. /* On some devices, we can have the GPU use the LLC (the CPU
  3343. * cache) for about a 10% performance improvement
  3344. * compared to uncached. Graphics requests other than
  3345. * display scanout are coherent with the CPU in
  3346. * accessing this cache. This means in this mode we
  3347. * don't need to clflush on the CPU side, and on the
  3348. * GPU side we only need to flush internal caches to
  3349. * get data visible to the CPU.
  3350. *
  3351. * However, we maintain the display planes as UC, and so
  3352. * need to rebind when first used as such.
  3353. */
  3354. obj->cache_level = I915_CACHE_LLC;
  3355. } else
  3356. obj->cache_level = I915_CACHE_NONE;
  3357. trace_i915_gem_object_create(obj);
  3358. return obj;
  3359. }
  3360. int i915_gem_init_object(struct drm_gem_object *obj)
  3361. {
  3362. BUG();
  3363. return 0;
  3364. }
  3365. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3366. {
  3367. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3368. struct drm_device *dev = obj->base.dev;
  3369. drm_i915_private_t *dev_priv = dev->dev_private;
  3370. struct i915_vma *vma, *next;
  3371. trace_i915_gem_object_destroy(obj);
  3372. if (obj->phys_obj)
  3373. i915_gem_detach_phys_object(dev, obj);
  3374. obj->pin_count = 0;
  3375. /* NB: 0 or 1 elements */
  3376. WARN_ON(!list_empty(&obj->vma_list) &&
  3377. !list_is_singular(&obj->vma_list));
  3378. list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
  3379. int ret = i915_vma_unbind(vma);
  3380. if (WARN_ON(ret == -ERESTARTSYS)) {
  3381. bool was_interruptible;
  3382. was_interruptible = dev_priv->mm.interruptible;
  3383. dev_priv->mm.interruptible = false;
  3384. WARN_ON(i915_vma_unbind(vma));
  3385. dev_priv->mm.interruptible = was_interruptible;
  3386. }
  3387. }
  3388. /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
  3389. * before progressing. */
  3390. if (obj->stolen)
  3391. i915_gem_object_unpin_pages(obj);
  3392. if (WARN_ON(obj->pages_pin_count))
  3393. obj->pages_pin_count = 0;
  3394. i915_gem_object_put_pages(obj);
  3395. i915_gem_object_free_mmap_offset(obj);
  3396. i915_gem_object_release_stolen(obj);
  3397. BUG_ON(obj->pages);
  3398. if (obj->base.import_attach)
  3399. drm_prime_gem_destroy(&obj->base, NULL);
  3400. drm_gem_object_release(&obj->base);
  3401. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3402. kfree(obj->bit_17);
  3403. i915_gem_object_free(obj);
  3404. }
  3405. struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj,
  3406. struct i915_address_space *vm)
  3407. {
  3408. struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
  3409. if (vma == NULL)
  3410. return ERR_PTR(-ENOMEM);
  3411. INIT_LIST_HEAD(&vma->vma_link);
  3412. INIT_LIST_HEAD(&vma->mm_list);
  3413. INIT_LIST_HEAD(&vma->exec_list);
  3414. vma->vm = vm;
  3415. vma->obj = obj;
  3416. /* Keep GGTT vmas first to make debug easier */
  3417. if (i915_is_ggtt(vm))
  3418. list_add(&vma->vma_link, &obj->vma_list);
  3419. else
  3420. list_add_tail(&vma->vma_link, &obj->vma_list);
  3421. return vma;
  3422. }
  3423. void i915_gem_vma_destroy(struct i915_vma *vma)
  3424. {
  3425. WARN_ON(vma->node.allocated);
  3426. list_del(&vma->vma_link);
  3427. kfree(vma);
  3428. }
  3429. int
  3430. i915_gem_idle(struct drm_device *dev)
  3431. {
  3432. drm_i915_private_t *dev_priv = dev->dev_private;
  3433. int ret;
  3434. if (dev_priv->ums.mm_suspended) {
  3435. mutex_unlock(&dev->struct_mutex);
  3436. return 0;
  3437. }
  3438. ret = i915_gpu_idle(dev);
  3439. if (ret) {
  3440. mutex_unlock(&dev->struct_mutex);
  3441. return ret;
  3442. }
  3443. i915_gem_retire_requests(dev);
  3444. /* Under UMS, be paranoid and evict. */
  3445. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3446. i915_gem_evict_everything(dev);
  3447. del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
  3448. i915_kernel_lost_context(dev);
  3449. i915_gem_cleanup_ringbuffer(dev);
  3450. /* Cancel the retire work handler, which should be idle now. */
  3451. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3452. return 0;
  3453. }
  3454. void i915_gem_l3_remap(struct drm_device *dev)
  3455. {
  3456. drm_i915_private_t *dev_priv = dev->dev_private;
  3457. u32 misccpctl;
  3458. int i;
  3459. if (!HAS_L3_GPU_CACHE(dev))
  3460. return;
  3461. if (!dev_priv->l3_parity.remap_info)
  3462. return;
  3463. misccpctl = I915_READ(GEN7_MISCCPCTL);
  3464. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  3465. POSTING_READ(GEN7_MISCCPCTL);
  3466. for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
  3467. u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
  3468. if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
  3469. DRM_DEBUG("0x%x was already programmed to %x\n",
  3470. GEN7_L3LOG_BASE + i, remap);
  3471. if (remap && !dev_priv->l3_parity.remap_info[i/4])
  3472. DRM_DEBUG_DRIVER("Clearing remapped register\n");
  3473. I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
  3474. }
  3475. /* Make sure all the writes land before disabling dop clock gating */
  3476. POSTING_READ(GEN7_L3LOG_BASE);
  3477. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  3478. }
  3479. void i915_gem_init_swizzling(struct drm_device *dev)
  3480. {
  3481. drm_i915_private_t *dev_priv = dev->dev_private;
  3482. if (INTEL_INFO(dev)->gen < 5 ||
  3483. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  3484. return;
  3485. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  3486. DISP_TILE_SURFACE_SWIZZLING);
  3487. if (IS_GEN5(dev))
  3488. return;
  3489. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  3490. if (IS_GEN6(dev))
  3491. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
  3492. else if (IS_GEN7(dev))
  3493. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
  3494. else
  3495. BUG();
  3496. }
  3497. static bool
  3498. intel_enable_blt(struct drm_device *dev)
  3499. {
  3500. if (!HAS_BLT(dev))
  3501. return false;
  3502. /* The blitter was dysfunctional on early prototypes */
  3503. if (IS_GEN6(dev) && dev->pdev->revision < 8) {
  3504. DRM_INFO("BLT not supported on this pre-production hardware;"
  3505. " graphics performance will be degraded.\n");
  3506. return false;
  3507. }
  3508. return true;
  3509. }
  3510. static int i915_gem_init_rings(struct drm_device *dev)
  3511. {
  3512. struct drm_i915_private *dev_priv = dev->dev_private;
  3513. int ret;
  3514. ret = intel_init_render_ring_buffer(dev);
  3515. if (ret)
  3516. return ret;
  3517. if (HAS_BSD(dev)) {
  3518. ret = intel_init_bsd_ring_buffer(dev);
  3519. if (ret)
  3520. goto cleanup_render_ring;
  3521. }
  3522. if (intel_enable_blt(dev)) {
  3523. ret = intel_init_blt_ring_buffer(dev);
  3524. if (ret)
  3525. goto cleanup_bsd_ring;
  3526. }
  3527. if (HAS_VEBOX(dev)) {
  3528. ret = intel_init_vebox_ring_buffer(dev);
  3529. if (ret)
  3530. goto cleanup_blt_ring;
  3531. }
  3532. ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
  3533. if (ret)
  3534. goto cleanup_vebox_ring;
  3535. return 0;
  3536. cleanup_vebox_ring:
  3537. intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
  3538. cleanup_blt_ring:
  3539. intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
  3540. cleanup_bsd_ring:
  3541. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3542. cleanup_render_ring:
  3543. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3544. return ret;
  3545. }
  3546. int
  3547. i915_gem_init_hw(struct drm_device *dev)
  3548. {
  3549. drm_i915_private_t *dev_priv = dev->dev_private;
  3550. int ret;
  3551. if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
  3552. return -EIO;
  3553. if (dev_priv->ellc_size)
  3554. I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
  3555. if (HAS_PCH_NOP(dev)) {
  3556. u32 temp = I915_READ(GEN7_MSG_CTL);
  3557. temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
  3558. I915_WRITE(GEN7_MSG_CTL, temp);
  3559. }
  3560. i915_gem_l3_remap(dev);
  3561. i915_gem_init_swizzling(dev);
  3562. ret = i915_gem_init_rings(dev);
  3563. if (ret)
  3564. return ret;
  3565. /*
  3566. * XXX: There was some w/a described somewhere suggesting loading
  3567. * contexts before PPGTT.
  3568. */
  3569. i915_gem_context_init(dev);
  3570. if (dev_priv->mm.aliasing_ppgtt) {
  3571. ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
  3572. if (ret) {
  3573. i915_gem_cleanup_aliasing_ppgtt(dev);
  3574. DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
  3575. }
  3576. }
  3577. return 0;
  3578. }
  3579. int i915_gem_init(struct drm_device *dev)
  3580. {
  3581. struct drm_i915_private *dev_priv = dev->dev_private;
  3582. int ret;
  3583. mutex_lock(&dev->struct_mutex);
  3584. if (IS_VALLEYVIEW(dev)) {
  3585. /* VLVA0 (potential hack), BIOS isn't actually waking us */
  3586. I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
  3587. if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
  3588. DRM_DEBUG_DRIVER("allow wake ack timed out\n");
  3589. }
  3590. i915_gem_init_global_gtt(dev);
  3591. ret = i915_gem_init_hw(dev);
  3592. mutex_unlock(&dev->struct_mutex);
  3593. if (ret) {
  3594. i915_gem_cleanup_aliasing_ppgtt(dev);
  3595. return ret;
  3596. }
  3597. /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
  3598. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3599. dev_priv->dri1.allow_batchbuffer = 1;
  3600. return 0;
  3601. }
  3602. void
  3603. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3604. {
  3605. drm_i915_private_t *dev_priv = dev->dev_private;
  3606. struct intel_ring_buffer *ring;
  3607. int i;
  3608. for_each_ring(ring, dev_priv, i)
  3609. intel_cleanup_ring_buffer(ring);
  3610. }
  3611. int
  3612. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3613. struct drm_file *file_priv)
  3614. {
  3615. struct drm_i915_private *dev_priv = dev->dev_private;
  3616. int ret;
  3617. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3618. return 0;
  3619. if (i915_reset_in_progress(&dev_priv->gpu_error)) {
  3620. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3621. atomic_set(&dev_priv->gpu_error.reset_counter, 0);
  3622. }
  3623. mutex_lock(&dev->struct_mutex);
  3624. dev_priv->ums.mm_suspended = 0;
  3625. ret = i915_gem_init_hw(dev);
  3626. if (ret != 0) {
  3627. mutex_unlock(&dev->struct_mutex);
  3628. return ret;
  3629. }
  3630. BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
  3631. mutex_unlock(&dev->struct_mutex);
  3632. ret = drm_irq_install(dev);
  3633. if (ret)
  3634. goto cleanup_ringbuffer;
  3635. return 0;
  3636. cleanup_ringbuffer:
  3637. mutex_lock(&dev->struct_mutex);
  3638. i915_gem_cleanup_ringbuffer(dev);
  3639. dev_priv->ums.mm_suspended = 1;
  3640. mutex_unlock(&dev->struct_mutex);
  3641. return ret;
  3642. }
  3643. int
  3644. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3645. struct drm_file *file_priv)
  3646. {
  3647. struct drm_i915_private *dev_priv = dev->dev_private;
  3648. int ret;
  3649. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3650. return 0;
  3651. drm_irq_uninstall(dev);
  3652. mutex_lock(&dev->struct_mutex);
  3653. ret = i915_gem_idle(dev);
  3654. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3655. * We need to replace this with a semaphore, or something.
  3656. * And not confound ums.mm_suspended!
  3657. */
  3658. if (ret != 0)
  3659. dev_priv->ums.mm_suspended = 1;
  3660. mutex_unlock(&dev->struct_mutex);
  3661. return ret;
  3662. }
  3663. void
  3664. i915_gem_lastclose(struct drm_device *dev)
  3665. {
  3666. int ret;
  3667. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3668. return;
  3669. mutex_lock(&dev->struct_mutex);
  3670. ret = i915_gem_idle(dev);
  3671. if (ret)
  3672. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3673. mutex_unlock(&dev->struct_mutex);
  3674. }
  3675. static void
  3676. init_ring_lists(struct intel_ring_buffer *ring)
  3677. {
  3678. INIT_LIST_HEAD(&ring->active_list);
  3679. INIT_LIST_HEAD(&ring->request_list);
  3680. }
  3681. static void i915_init_vm(struct drm_i915_private *dev_priv,
  3682. struct i915_address_space *vm)
  3683. {
  3684. vm->dev = dev_priv->dev;
  3685. INIT_LIST_HEAD(&vm->active_list);
  3686. INIT_LIST_HEAD(&vm->inactive_list);
  3687. INIT_LIST_HEAD(&vm->global_link);
  3688. list_add(&vm->global_link, &dev_priv->vm_list);
  3689. }
  3690. void
  3691. i915_gem_load(struct drm_device *dev)
  3692. {
  3693. drm_i915_private_t *dev_priv = dev->dev_private;
  3694. int i;
  3695. dev_priv->slab =
  3696. kmem_cache_create("i915_gem_object",
  3697. sizeof(struct drm_i915_gem_object), 0,
  3698. SLAB_HWCACHE_ALIGN,
  3699. NULL);
  3700. INIT_LIST_HEAD(&dev_priv->vm_list);
  3701. i915_init_vm(dev_priv, &dev_priv->gtt.base);
  3702. INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
  3703. INIT_LIST_HEAD(&dev_priv->mm.bound_list);
  3704. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3705. for (i = 0; i < I915_NUM_RINGS; i++)
  3706. init_ring_lists(&dev_priv->ring[i]);
  3707. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3708. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3709. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3710. i915_gem_retire_work_handler);
  3711. init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
  3712. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3713. if (IS_GEN3(dev)) {
  3714. I915_WRITE(MI_ARB_STATE,
  3715. _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  3716. }
  3717. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3718. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3719. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3720. dev_priv->fence_reg_start = 3;
  3721. if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
  3722. dev_priv->num_fence_regs = 32;
  3723. else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3724. dev_priv->num_fence_regs = 16;
  3725. else
  3726. dev_priv->num_fence_regs = 8;
  3727. /* Initialize fence registers to zero */
  3728. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3729. i915_gem_restore_fences(dev);
  3730. i915_gem_detect_bit_6_swizzle(dev);
  3731. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3732. dev_priv->mm.interruptible = true;
  3733. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3734. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3735. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3736. }
  3737. /*
  3738. * Create a physically contiguous memory object for this object
  3739. * e.g. for cursor + overlay regs
  3740. */
  3741. static int i915_gem_init_phys_object(struct drm_device *dev,
  3742. int id, int size, int align)
  3743. {
  3744. drm_i915_private_t *dev_priv = dev->dev_private;
  3745. struct drm_i915_gem_phys_object *phys_obj;
  3746. int ret;
  3747. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3748. return 0;
  3749. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3750. if (!phys_obj)
  3751. return -ENOMEM;
  3752. phys_obj->id = id;
  3753. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3754. if (!phys_obj->handle) {
  3755. ret = -ENOMEM;
  3756. goto kfree_obj;
  3757. }
  3758. #ifdef CONFIG_X86
  3759. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3760. #endif
  3761. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3762. return 0;
  3763. kfree_obj:
  3764. kfree(phys_obj);
  3765. return ret;
  3766. }
  3767. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3768. {
  3769. drm_i915_private_t *dev_priv = dev->dev_private;
  3770. struct drm_i915_gem_phys_object *phys_obj;
  3771. if (!dev_priv->mm.phys_objs[id - 1])
  3772. return;
  3773. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3774. if (phys_obj->cur_obj) {
  3775. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3776. }
  3777. #ifdef CONFIG_X86
  3778. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3779. #endif
  3780. drm_pci_free(dev, phys_obj->handle);
  3781. kfree(phys_obj);
  3782. dev_priv->mm.phys_objs[id - 1] = NULL;
  3783. }
  3784. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3785. {
  3786. int i;
  3787. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3788. i915_gem_free_phys_object(dev, i);
  3789. }
  3790. void i915_gem_detach_phys_object(struct drm_device *dev,
  3791. struct drm_i915_gem_object *obj)
  3792. {
  3793. struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
  3794. char *vaddr;
  3795. int i;
  3796. int page_count;
  3797. if (!obj->phys_obj)
  3798. return;
  3799. vaddr = obj->phys_obj->handle->vaddr;
  3800. page_count = obj->base.size / PAGE_SIZE;
  3801. for (i = 0; i < page_count; i++) {
  3802. struct page *page = shmem_read_mapping_page(mapping, i);
  3803. if (!IS_ERR(page)) {
  3804. char *dst = kmap_atomic(page);
  3805. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3806. kunmap_atomic(dst);
  3807. drm_clflush_pages(&page, 1);
  3808. set_page_dirty(page);
  3809. mark_page_accessed(page);
  3810. page_cache_release(page);
  3811. }
  3812. }
  3813. i915_gem_chipset_flush(dev);
  3814. obj->phys_obj->cur_obj = NULL;
  3815. obj->phys_obj = NULL;
  3816. }
  3817. int
  3818. i915_gem_attach_phys_object(struct drm_device *dev,
  3819. struct drm_i915_gem_object *obj,
  3820. int id,
  3821. int align)
  3822. {
  3823. struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
  3824. drm_i915_private_t *dev_priv = dev->dev_private;
  3825. int ret = 0;
  3826. int page_count;
  3827. int i;
  3828. if (id > I915_MAX_PHYS_OBJECT)
  3829. return -EINVAL;
  3830. if (obj->phys_obj) {
  3831. if (obj->phys_obj->id == id)
  3832. return 0;
  3833. i915_gem_detach_phys_object(dev, obj);
  3834. }
  3835. /* create a new object */
  3836. if (!dev_priv->mm.phys_objs[id - 1]) {
  3837. ret = i915_gem_init_phys_object(dev, id,
  3838. obj->base.size, align);
  3839. if (ret) {
  3840. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3841. id, obj->base.size);
  3842. return ret;
  3843. }
  3844. }
  3845. /* bind to the object */
  3846. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3847. obj->phys_obj->cur_obj = obj;
  3848. page_count = obj->base.size / PAGE_SIZE;
  3849. for (i = 0; i < page_count; i++) {
  3850. struct page *page;
  3851. char *dst, *src;
  3852. page = shmem_read_mapping_page(mapping, i);
  3853. if (IS_ERR(page))
  3854. return PTR_ERR(page);
  3855. src = kmap_atomic(page);
  3856. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3857. memcpy(dst, src, PAGE_SIZE);
  3858. kunmap_atomic(src);
  3859. mark_page_accessed(page);
  3860. page_cache_release(page);
  3861. }
  3862. return 0;
  3863. }
  3864. static int
  3865. i915_gem_phys_pwrite(struct drm_device *dev,
  3866. struct drm_i915_gem_object *obj,
  3867. struct drm_i915_gem_pwrite *args,
  3868. struct drm_file *file_priv)
  3869. {
  3870. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3871. char __user *user_data = to_user_ptr(args->data_ptr);
  3872. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3873. unsigned long unwritten;
  3874. /* The physical object once assigned is fixed for the lifetime
  3875. * of the obj, so we can safely drop the lock and continue
  3876. * to access vaddr.
  3877. */
  3878. mutex_unlock(&dev->struct_mutex);
  3879. unwritten = copy_from_user(vaddr, user_data, args->size);
  3880. mutex_lock(&dev->struct_mutex);
  3881. if (unwritten)
  3882. return -EFAULT;
  3883. }
  3884. i915_gem_chipset_flush(dev);
  3885. return 0;
  3886. }
  3887. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3888. {
  3889. struct drm_i915_file_private *file_priv = file->driver_priv;
  3890. /* Clean up our request list when the client is going away, so that
  3891. * later retire_requests won't dereference our soon-to-be-gone
  3892. * file_priv.
  3893. */
  3894. spin_lock(&file_priv->mm.lock);
  3895. while (!list_empty(&file_priv->mm.request_list)) {
  3896. struct drm_i915_gem_request *request;
  3897. request = list_first_entry(&file_priv->mm.request_list,
  3898. struct drm_i915_gem_request,
  3899. client_list);
  3900. list_del(&request->client_list);
  3901. request->file_priv = NULL;
  3902. }
  3903. spin_unlock(&file_priv->mm.lock);
  3904. }
  3905. static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
  3906. {
  3907. if (!mutex_is_locked(mutex))
  3908. return false;
  3909. #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
  3910. return mutex->owner == task;
  3911. #else
  3912. /* Since UP may be pre-empted, we cannot assume that we own the lock */
  3913. return false;
  3914. #endif
  3915. }
  3916. static int
  3917. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3918. {
  3919. struct drm_i915_private *dev_priv =
  3920. container_of(shrinker,
  3921. struct drm_i915_private,
  3922. mm.inactive_shrinker);
  3923. struct drm_device *dev = dev_priv->dev;
  3924. struct drm_i915_gem_object *obj;
  3925. int nr_to_scan = sc->nr_to_scan;
  3926. bool unlock = true;
  3927. int cnt;
  3928. if (!mutex_trylock(&dev->struct_mutex)) {
  3929. if (!mutex_is_locked_by(&dev->struct_mutex, current))
  3930. return 0;
  3931. if (dev_priv->mm.shrinker_no_lock_stealing)
  3932. return 0;
  3933. unlock = false;
  3934. }
  3935. if (nr_to_scan) {
  3936. nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
  3937. if (nr_to_scan > 0)
  3938. nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
  3939. false);
  3940. if (nr_to_scan > 0)
  3941. i915_gem_shrink_all(dev_priv);
  3942. }
  3943. cnt = 0;
  3944. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
  3945. if (obj->pages_pin_count == 0)
  3946. cnt += obj->base.size >> PAGE_SHIFT;
  3947. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  3948. if (obj->active)
  3949. continue;
  3950. if (obj->pin_count == 0 && obj->pages_pin_count == 0)
  3951. cnt += obj->base.size >> PAGE_SHIFT;
  3952. }
  3953. if (unlock)
  3954. mutex_unlock(&dev->struct_mutex);
  3955. return cnt;
  3956. }
  3957. /* All the new VM stuff */
  3958. unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
  3959. struct i915_address_space *vm)
  3960. {
  3961. struct drm_i915_private *dev_priv = o->base.dev->dev_private;
  3962. struct i915_vma *vma;
  3963. if (vm == &dev_priv->mm.aliasing_ppgtt->base)
  3964. vm = &dev_priv->gtt.base;
  3965. BUG_ON(list_empty(&o->vma_list));
  3966. list_for_each_entry(vma, &o->vma_list, vma_link) {
  3967. if (vma->vm == vm)
  3968. return vma->node.start;
  3969. }
  3970. return -1;
  3971. }
  3972. bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
  3973. struct i915_address_space *vm)
  3974. {
  3975. struct i915_vma *vma;
  3976. list_for_each_entry(vma, &o->vma_list, vma_link)
  3977. if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
  3978. return true;
  3979. return false;
  3980. }
  3981. bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
  3982. {
  3983. struct drm_i915_private *dev_priv = o->base.dev->dev_private;
  3984. struct i915_address_space *vm;
  3985. list_for_each_entry(vm, &dev_priv->vm_list, global_link)
  3986. if (i915_gem_obj_bound(o, vm))
  3987. return true;
  3988. return false;
  3989. }
  3990. unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
  3991. struct i915_address_space *vm)
  3992. {
  3993. struct drm_i915_private *dev_priv = o->base.dev->dev_private;
  3994. struct i915_vma *vma;
  3995. if (vm == &dev_priv->mm.aliasing_ppgtt->base)
  3996. vm = &dev_priv->gtt.base;
  3997. BUG_ON(list_empty(&o->vma_list));
  3998. list_for_each_entry(vma, &o->vma_list, vma_link)
  3999. if (vma->vm == vm)
  4000. return vma->node.size;
  4001. return 0;
  4002. }
  4003. struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
  4004. struct i915_address_space *vm)
  4005. {
  4006. struct i915_vma *vma;
  4007. list_for_each_entry(vma, &obj->vma_list, vma_link)
  4008. if (vma->vm == vm)
  4009. return vma;
  4010. return NULL;
  4011. }