x86.c 109 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <asm/uaccess.h>
  39. #include <asm/msr.h>
  40. #include <asm/desc.h>
  41. #include <asm/mtrr.h>
  42. #define MAX_IO_MSRS 256
  43. #define CR0_RESERVED_BITS \
  44. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  45. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  46. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  47. #define CR4_RESERVED_BITS \
  48. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  49. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  50. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  51. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  52. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  53. /* EFER defaults:
  54. * - enable syscall per default because its emulated by KVM
  55. * - enable LME and LMA per default on 64 bit KVM
  56. */
  57. #ifdef CONFIG_X86_64
  58. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  59. #else
  60. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  61. #endif
  62. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  63. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  64. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  65. struct kvm_cpuid_entry2 __user *entries);
  66. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  67. u32 function, u32 index);
  68. struct kvm_x86_ops *kvm_x86_ops;
  69. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  70. struct kvm_stats_debugfs_item debugfs_entries[] = {
  71. { "pf_fixed", VCPU_STAT(pf_fixed) },
  72. { "pf_guest", VCPU_STAT(pf_guest) },
  73. { "tlb_flush", VCPU_STAT(tlb_flush) },
  74. { "invlpg", VCPU_STAT(invlpg) },
  75. { "exits", VCPU_STAT(exits) },
  76. { "io_exits", VCPU_STAT(io_exits) },
  77. { "mmio_exits", VCPU_STAT(mmio_exits) },
  78. { "signal_exits", VCPU_STAT(signal_exits) },
  79. { "irq_window", VCPU_STAT(irq_window_exits) },
  80. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  81. { "halt_exits", VCPU_STAT(halt_exits) },
  82. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  83. { "hypercalls", VCPU_STAT(hypercalls) },
  84. { "request_irq", VCPU_STAT(request_irq_exits) },
  85. { "request_nmi", VCPU_STAT(request_nmi_exits) },
  86. { "irq_exits", VCPU_STAT(irq_exits) },
  87. { "host_state_reload", VCPU_STAT(host_state_reload) },
  88. { "efer_reload", VCPU_STAT(efer_reload) },
  89. { "fpu_reload", VCPU_STAT(fpu_reload) },
  90. { "insn_emulation", VCPU_STAT(insn_emulation) },
  91. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  92. { "irq_injections", VCPU_STAT(irq_injections) },
  93. { "nmi_injections", VCPU_STAT(nmi_injections) },
  94. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  95. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  96. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  97. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  98. { "mmu_flooded", VM_STAT(mmu_flooded) },
  99. { "mmu_recycled", VM_STAT(mmu_recycled) },
  100. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  101. { "mmu_unsync", VM_STAT(mmu_unsync) },
  102. { "mmu_unsync_global", VM_STAT(mmu_unsync_global) },
  103. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  104. { "largepages", VM_STAT(lpages) },
  105. { NULL }
  106. };
  107. unsigned long segment_base(u16 selector)
  108. {
  109. struct descriptor_table gdt;
  110. struct desc_struct *d;
  111. unsigned long table_base;
  112. unsigned long v;
  113. if (selector == 0)
  114. return 0;
  115. asm("sgdt %0" : "=m"(gdt));
  116. table_base = gdt.base;
  117. if (selector & 4) { /* from ldt */
  118. u16 ldt_selector;
  119. asm("sldt %0" : "=g"(ldt_selector));
  120. table_base = segment_base(ldt_selector);
  121. }
  122. d = (struct desc_struct *)(table_base + (selector & ~7));
  123. v = d->base0 | ((unsigned long)d->base1 << 16) |
  124. ((unsigned long)d->base2 << 24);
  125. #ifdef CONFIG_X86_64
  126. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  127. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  128. #endif
  129. return v;
  130. }
  131. EXPORT_SYMBOL_GPL(segment_base);
  132. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  133. {
  134. if (irqchip_in_kernel(vcpu->kvm))
  135. return vcpu->arch.apic_base;
  136. else
  137. return vcpu->arch.apic_base;
  138. }
  139. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  140. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  141. {
  142. /* TODO: reserve bits check */
  143. if (irqchip_in_kernel(vcpu->kvm))
  144. kvm_lapic_set_base(vcpu, data);
  145. else
  146. vcpu->arch.apic_base = data;
  147. }
  148. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  149. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  150. {
  151. WARN_ON(vcpu->arch.exception.pending);
  152. vcpu->arch.exception.pending = true;
  153. vcpu->arch.exception.has_error_code = false;
  154. vcpu->arch.exception.nr = nr;
  155. }
  156. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  157. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  158. u32 error_code)
  159. {
  160. ++vcpu->stat.pf_guest;
  161. if (vcpu->arch.exception.pending) {
  162. if (vcpu->arch.exception.nr == PF_VECTOR) {
  163. printk(KERN_DEBUG "kvm: inject_page_fault:"
  164. " double fault 0x%lx\n", addr);
  165. vcpu->arch.exception.nr = DF_VECTOR;
  166. vcpu->arch.exception.error_code = 0;
  167. } else if (vcpu->arch.exception.nr == DF_VECTOR) {
  168. /* triple fault -> shutdown */
  169. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  170. }
  171. return;
  172. }
  173. vcpu->arch.cr2 = addr;
  174. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  175. }
  176. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  177. {
  178. vcpu->arch.nmi_pending = 1;
  179. }
  180. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  181. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  182. {
  183. WARN_ON(vcpu->arch.exception.pending);
  184. vcpu->arch.exception.pending = true;
  185. vcpu->arch.exception.has_error_code = true;
  186. vcpu->arch.exception.nr = nr;
  187. vcpu->arch.exception.error_code = error_code;
  188. }
  189. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  190. static void __queue_exception(struct kvm_vcpu *vcpu)
  191. {
  192. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  193. vcpu->arch.exception.has_error_code,
  194. vcpu->arch.exception.error_code);
  195. }
  196. /*
  197. * Load the pae pdptrs. Return true is they are all valid.
  198. */
  199. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  200. {
  201. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  202. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  203. int i;
  204. int ret;
  205. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  206. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  207. offset * sizeof(u64), sizeof(pdpte));
  208. if (ret < 0) {
  209. ret = 0;
  210. goto out;
  211. }
  212. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  213. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  214. ret = 0;
  215. goto out;
  216. }
  217. }
  218. ret = 1;
  219. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  220. out:
  221. return ret;
  222. }
  223. EXPORT_SYMBOL_GPL(load_pdptrs);
  224. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  225. {
  226. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  227. bool changed = true;
  228. int r;
  229. if (is_long_mode(vcpu) || !is_pae(vcpu))
  230. return false;
  231. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  232. if (r < 0)
  233. goto out;
  234. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  235. out:
  236. return changed;
  237. }
  238. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  239. {
  240. if (cr0 & CR0_RESERVED_BITS) {
  241. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  242. cr0, vcpu->arch.cr0);
  243. kvm_inject_gp(vcpu, 0);
  244. return;
  245. }
  246. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  247. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  248. kvm_inject_gp(vcpu, 0);
  249. return;
  250. }
  251. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  252. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  253. "and a clear PE flag\n");
  254. kvm_inject_gp(vcpu, 0);
  255. return;
  256. }
  257. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  258. #ifdef CONFIG_X86_64
  259. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  260. int cs_db, cs_l;
  261. if (!is_pae(vcpu)) {
  262. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  263. "in long mode while PAE is disabled\n");
  264. kvm_inject_gp(vcpu, 0);
  265. return;
  266. }
  267. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  268. if (cs_l) {
  269. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  270. "in long mode while CS.L == 1\n");
  271. kvm_inject_gp(vcpu, 0);
  272. return;
  273. }
  274. } else
  275. #endif
  276. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  277. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  278. "reserved bits\n");
  279. kvm_inject_gp(vcpu, 0);
  280. return;
  281. }
  282. }
  283. kvm_x86_ops->set_cr0(vcpu, cr0);
  284. vcpu->arch.cr0 = cr0;
  285. kvm_mmu_sync_global(vcpu);
  286. kvm_mmu_reset_context(vcpu);
  287. return;
  288. }
  289. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  290. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  291. {
  292. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  293. KVMTRACE_1D(LMSW, vcpu,
  294. (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
  295. handler);
  296. }
  297. EXPORT_SYMBOL_GPL(kvm_lmsw);
  298. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  299. {
  300. unsigned long old_cr4 = vcpu->arch.cr4;
  301. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  302. if (cr4 & CR4_RESERVED_BITS) {
  303. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  304. kvm_inject_gp(vcpu, 0);
  305. return;
  306. }
  307. if (is_long_mode(vcpu)) {
  308. if (!(cr4 & X86_CR4_PAE)) {
  309. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  310. "in long mode\n");
  311. kvm_inject_gp(vcpu, 0);
  312. return;
  313. }
  314. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  315. && ((cr4 ^ old_cr4) & pdptr_bits)
  316. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  317. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  318. kvm_inject_gp(vcpu, 0);
  319. return;
  320. }
  321. if (cr4 & X86_CR4_VMXE) {
  322. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  323. kvm_inject_gp(vcpu, 0);
  324. return;
  325. }
  326. kvm_x86_ops->set_cr4(vcpu, cr4);
  327. vcpu->arch.cr4 = cr4;
  328. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  329. kvm_mmu_sync_global(vcpu);
  330. kvm_mmu_reset_context(vcpu);
  331. }
  332. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  333. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  334. {
  335. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  336. kvm_mmu_sync_roots(vcpu);
  337. kvm_mmu_flush_tlb(vcpu);
  338. return;
  339. }
  340. if (is_long_mode(vcpu)) {
  341. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  342. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  343. kvm_inject_gp(vcpu, 0);
  344. return;
  345. }
  346. } else {
  347. if (is_pae(vcpu)) {
  348. if (cr3 & CR3_PAE_RESERVED_BITS) {
  349. printk(KERN_DEBUG
  350. "set_cr3: #GP, reserved bits\n");
  351. kvm_inject_gp(vcpu, 0);
  352. return;
  353. }
  354. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  355. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  356. "reserved bits\n");
  357. kvm_inject_gp(vcpu, 0);
  358. return;
  359. }
  360. }
  361. /*
  362. * We don't check reserved bits in nonpae mode, because
  363. * this isn't enforced, and VMware depends on this.
  364. */
  365. }
  366. /*
  367. * Does the new cr3 value map to physical memory? (Note, we
  368. * catch an invalid cr3 even in real-mode, because it would
  369. * cause trouble later on when we turn on paging anyway.)
  370. *
  371. * A real CPU would silently accept an invalid cr3 and would
  372. * attempt to use it - with largely undefined (and often hard
  373. * to debug) behavior on the guest side.
  374. */
  375. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  376. kvm_inject_gp(vcpu, 0);
  377. else {
  378. vcpu->arch.cr3 = cr3;
  379. vcpu->arch.mmu.new_cr3(vcpu);
  380. }
  381. }
  382. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  383. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  384. {
  385. if (cr8 & CR8_RESERVED_BITS) {
  386. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  387. kvm_inject_gp(vcpu, 0);
  388. return;
  389. }
  390. if (irqchip_in_kernel(vcpu->kvm))
  391. kvm_lapic_set_tpr(vcpu, cr8);
  392. else
  393. vcpu->arch.cr8 = cr8;
  394. }
  395. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  396. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  397. {
  398. if (irqchip_in_kernel(vcpu->kvm))
  399. return kvm_lapic_get_cr8(vcpu);
  400. else
  401. return vcpu->arch.cr8;
  402. }
  403. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  404. static inline u32 bit(int bitno)
  405. {
  406. return 1 << (bitno & 31);
  407. }
  408. /*
  409. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  410. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  411. *
  412. * This list is modified at module load time to reflect the
  413. * capabilities of the host cpu.
  414. */
  415. static u32 msrs_to_save[] = {
  416. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  417. MSR_K6_STAR,
  418. #ifdef CONFIG_X86_64
  419. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  420. #endif
  421. MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  422. MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  423. };
  424. static unsigned num_msrs_to_save;
  425. static u32 emulated_msrs[] = {
  426. MSR_IA32_MISC_ENABLE,
  427. };
  428. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  429. {
  430. if (efer & efer_reserved_bits) {
  431. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  432. efer);
  433. kvm_inject_gp(vcpu, 0);
  434. return;
  435. }
  436. if (is_paging(vcpu)
  437. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  438. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  439. kvm_inject_gp(vcpu, 0);
  440. return;
  441. }
  442. if (efer & EFER_FFXSR) {
  443. struct kvm_cpuid_entry2 *feat;
  444. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  445. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  446. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  447. kvm_inject_gp(vcpu, 0);
  448. return;
  449. }
  450. }
  451. if (efer & EFER_SVME) {
  452. struct kvm_cpuid_entry2 *feat;
  453. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  454. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  455. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  456. kvm_inject_gp(vcpu, 0);
  457. return;
  458. }
  459. }
  460. kvm_x86_ops->set_efer(vcpu, efer);
  461. efer &= ~EFER_LMA;
  462. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  463. vcpu->arch.shadow_efer = efer;
  464. }
  465. void kvm_enable_efer_bits(u64 mask)
  466. {
  467. efer_reserved_bits &= ~mask;
  468. }
  469. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  470. /*
  471. * Writes msr value into into the appropriate "register".
  472. * Returns 0 on success, non-0 otherwise.
  473. * Assumes vcpu_load() was already called.
  474. */
  475. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  476. {
  477. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  478. }
  479. /*
  480. * Adapt set_msr() to msr_io()'s calling convention
  481. */
  482. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  483. {
  484. return kvm_set_msr(vcpu, index, *data);
  485. }
  486. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  487. {
  488. static int version;
  489. struct pvclock_wall_clock wc;
  490. struct timespec now, sys, boot;
  491. if (!wall_clock)
  492. return;
  493. version++;
  494. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  495. /*
  496. * The guest calculates current wall clock time by adding
  497. * system time (updated by kvm_write_guest_time below) to the
  498. * wall clock specified here. guest system time equals host
  499. * system time for us, thus we must fill in host boot time here.
  500. */
  501. now = current_kernel_time();
  502. ktime_get_ts(&sys);
  503. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  504. wc.sec = boot.tv_sec;
  505. wc.nsec = boot.tv_nsec;
  506. wc.version = version;
  507. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  508. version++;
  509. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  510. }
  511. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  512. {
  513. uint32_t quotient, remainder;
  514. /* Don't try to replace with do_div(), this one calculates
  515. * "(dividend << 32) / divisor" */
  516. __asm__ ( "divl %4"
  517. : "=a" (quotient), "=d" (remainder)
  518. : "0" (0), "1" (dividend), "r" (divisor) );
  519. return quotient;
  520. }
  521. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  522. {
  523. uint64_t nsecs = 1000000000LL;
  524. int32_t shift = 0;
  525. uint64_t tps64;
  526. uint32_t tps32;
  527. tps64 = tsc_khz * 1000LL;
  528. while (tps64 > nsecs*2) {
  529. tps64 >>= 1;
  530. shift--;
  531. }
  532. tps32 = (uint32_t)tps64;
  533. while (tps32 <= (uint32_t)nsecs) {
  534. tps32 <<= 1;
  535. shift++;
  536. }
  537. hv_clock->tsc_shift = shift;
  538. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  539. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  540. __func__, tsc_khz, hv_clock->tsc_shift,
  541. hv_clock->tsc_to_system_mul);
  542. }
  543. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  544. static void kvm_write_guest_time(struct kvm_vcpu *v)
  545. {
  546. struct timespec ts;
  547. unsigned long flags;
  548. struct kvm_vcpu_arch *vcpu = &v->arch;
  549. void *shared_kaddr;
  550. if ((!vcpu->time_page))
  551. return;
  552. preempt_disable();
  553. if (unlikely(vcpu->hv_clock_tsc_khz != __get_cpu_var(cpu_tsc_khz))) {
  554. kvm_set_time_scale(__get_cpu_var(cpu_tsc_khz), &vcpu->hv_clock);
  555. vcpu->hv_clock_tsc_khz = __get_cpu_var(cpu_tsc_khz);
  556. }
  557. preempt_enable();
  558. /* Keep irq disabled to prevent changes to the clock */
  559. local_irq_save(flags);
  560. kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
  561. &vcpu->hv_clock.tsc_timestamp);
  562. ktime_get_ts(&ts);
  563. local_irq_restore(flags);
  564. /* With all the info we got, fill in the values */
  565. vcpu->hv_clock.system_time = ts.tv_nsec +
  566. (NSEC_PER_SEC * (u64)ts.tv_sec);
  567. /*
  568. * The interface expects us to write an even number signaling that the
  569. * update is finished. Since the guest won't see the intermediate
  570. * state, we just increase by 2 at the end.
  571. */
  572. vcpu->hv_clock.version += 2;
  573. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  574. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  575. sizeof(vcpu->hv_clock));
  576. kunmap_atomic(shared_kaddr, KM_USER0);
  577. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  578. }
  579. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  580. {
  581. struct kvm_vcpu_arch *vcpu = &v->arch;
  582. if (!vcpu->time_page)
  583. return 0;
  584. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  585. return 1;
  586. }
  587. static bool msr_mtrr_valid(unsigned msr)
  588. {
  589. switch (msr) {
  590. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  591. case MSR_MTRRfix64K_00000:
  592. case MSR_MTRRfix16K_80000:
  593. case MSR_MTRRfix16K_A0000:
  594. case MSR_MTRRfix4K_C0000:
  595. case MSR_MTRRfix4K_C8000:
  596. case MSR_MTRRfix4K_D0000:
  597. case MSR_MTRRfix4K_D8000:
  598. case MSR_MTRRfix4K_E0000:
  599. case MSR_MTRRfix4K_E8000:
  600. case MSR_MTRRfix4K_F0000:
  601. case MSR_MTRRfix4K_F8000:
  602. case MSR_MTRRdefType:
  603. case MSR_IA32_CR_PAT:
  604. return true;
  605. case 0x2f8:
  606. return true;
  607. }
  608. return false;
  609. }
  610. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  611. {
  612. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  613. if (!msr_mtrr_valid(msr))
  614. return 1;
  615. if (msr == MSR_MTRRdefType) {
  616. vcpu->arch.mtrr_state.def_type = data;
  617. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  618. } else if (msr == MSR_MTRRfix64K_00000)
  619. p[0] = data;
  620. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  621. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  622. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  623. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  624. else if (msr == MSR_IA32_CR_PAT)
  625. vcpu->arch.pat = data;
  626. else { /* Variable MTRRs */
  627. int idx, is_mtrr_mask;
  628. u64 *pt;
  629. idx = (msr - 0x200) / 2;
  630. is_mtrr_mask = msr - 0x200 - 2 * idx;
  631. if (!is_mtrr_mask)
  632. pt =
  633. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  634. else
  635. pt =
  636. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  637. *pt = data;
  638. }
  639. kvm_mmu_reset_context(vcpu);
  640. return 0;
  641. }
  642. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  643. {
  644. switch (msr) {
  645. case MSR_EFER:
  646. set_efer(vcpu, data);
  647. break;
  648. case MSR_IA32_MC0_STATUS:
  649. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  650. __func__, data);
  651. break;
  652. case MSR_IA32_MCG_STATUS:
  653. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  654. __func__, data);
  655. break;
  656. case MSR_IA32_MCG_CTL:
  657. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
  658. __func__, data);
  659. break;
  660. case MSR_IA32_DEBUGCTLMSR:
  661. if (!data) {
  662. /* We support the non-activated case already */
  663. break;
  664. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  665. /* Values other than LBR and BTF are vendor-specific,
  666. thus reserved and should throw a #GP */
  667. return 1;
  668. }
  669. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  670. __func__, data);
  671. break;
  672. case MSR_IA32_UCODE_REV:
  673. case MSR_IA32_UCODE_WRITE:
  674. case MSR_VM_HSAVE_PA:
  675. break;
  676. case 0x200 ... 0x2ff:
  677. return set_msr_mtrr(vcpu, msr, data);
  678. case MSR_IA32_APICBASE:
  679. kvm_set_apic_base(vcpu, data);
  680. break;
  681. case MSR_IA32_MISC_ENABLE:
  682. vcpu->arch.ia32_misc_enable_msr = data;
  683. break;
  684. case MSR_KVM_WALL_CLOCK:
  685. vcpu->kvm->arch.wall_clock = data;
  686. kvm_write_wall_clock(vcpu->kvm, data);
  687. break;
  688. case MSR_KVM_SYSTEM_TIME: {
  689. if (vcpu->arch.time_page) {
  690. kvm_release_page_dirty(vcpu->arch.time_page);
  691. vcpu->arch.time_page = NULL;
  692. }
  693. vcpu->arch.time = data;
  694. /* we verify if the enable bit is set... */
  695. if (!(data & 1))
  696. break;
  697. /* ...but clean it before doing the actual write */
  698. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  699. vcpu->arch.time_page =
  700. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  701. if (is_error_page(vcpu->arch.time_page)) {
  702. kvm_release_page_clean(vcpu->arch.time_page);
  703. vcpu->arch.time_page = NULL;
  704. }
  705. kvm_request_guest_time_update(vcpu);
  706. break;
  707. }
  708. default:
  709. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
  710. return 1;
  711. }
  712. return 0;
  713. }
  714. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  715. /*
  716. * Reads an msr value (of 'msr_index') into 'pdata'.
  717. * Returns 0 on success, non-0 otherwise.
  718. * Assumes vcpu_load() was already called.
  719. */
  720. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  721. {
  722. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  723. }
  724. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  725. {
  726. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  727. if (!msr_mtrr_valid(msr))
  728. return 1;
  729. if (msr == MSR_MTRRdefType)
  730. *pdata = vcpu->arch.mtrr_state.def_type +
  731. (vcpu->arch.mtrr_state.enabled << 10);
  732. else if (msr == MSR_MTRRfix64K_00000)
  733. *pdata = p[0];
  734. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  735. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  736. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  737. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  738. else if (msr == MSR_IA32_CR_PAT)
  739. *pdata = vcpu->arch.pat;
  740. else { /* Variable MTRRs */
  741. int idx, is_mtrr_mask;
  742. u64 *pt;
  743. idx = (msr - 0x200) / 2;
  744. is_mtrr_mask = msr - 0x200 - 2 * idx;
  745. if (!is_mtrr_mask)
  746. pt =
  747. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  748. else
  749. pt =
  750. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  751. *pdata = *pt;
  752. }
  753. return 0;
  754. }
  755. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  756. {
  757. u64 data;
  758. switch (msr) {
  759. case 0xc0010010: /* SYSCFG */
  760. case 0xc0010015: /* HWCR */
  761. case MSR_IA32_PLATFORM_ID:
  762. case MSR_IA32_P5_MC_ADDR:
  763. case MSR_IA32_P5_MC_TYPE:
  764. case MSR_IA32_MC0_CTL:
  765. case MSR_IA32_MCG_STATUS:
  766. case MSR_IA32_MCG_CAP:
  767. case MSR_IA32_MCG_CTL:
  768. case MSR_IA32_MC0_MISC:
  769. case MSR_IA32_MC0_MISC+4:
  770. case MSR_IA32_MC0_MISC+8:
  771. case MSR_IA32_MC0_MISC+12:
  772. case MSR_IA32_MC0_MISC+16:
  773. case MSR_IA32_MC0_MISC+20:
  774. case MSR_IA32_UCODE_REV:
  775. case MSR_IA32_EBL_CR_POWERON:
  776. case MSR_IA32_DEBUGCTLMSR:
  777. case MSR_IA32_LASTBRANCHFROMIP:
  778. case MSR_IA32_LASTBRANCHTOIP:
  779. case MSR_IA32_LASTINTFROMIP:
  780. case MSR_IA32_LASTINTTOIP:
  781. case MSR_VM_HSAVE_PA:
  782. case MSR_P6_EVNTSEL0:
  783. case MSR_P6_EVNTSEL1:
  784. data = 0;
  785. break;
  786. case MSR_MTRRcap:
  787. data = 0x500 | KVM_NR_VAR_MTRR;
  788. break;
  789. case 0x200 ... 0x2ff:
  790. return get_msr_mtrr(vcpu, msr, pdata);
  791. case 0xcd: /* fsb frequency */
  792. data = 3;
  793. break;
  794. case MSR_IA32_APICBASE:
  795. data = kvm_get_apic_base(vcpu);
  796. break;
  797. case MSR_IA32_MISC_ENABLE:
  798. data = vcpu->arch.ia32_misc_enable_msr;
  799. break;
  800. case MSR_IA32_PERF_STATUS:
  801. /* TSC increment by tick */
  802. data = 1000ULL;
  803. /* CPU multiplier */
  804. data |= (((uint64_t)4ULL) << 40);
  805. break;
  806. case MSR_EFER:
  807. data = vcpu->arch.shadow_efer;
  808. break;
  809. case MSR_KVM_WALL_CLOCK:
  810. data = vcpu->kvm->arch.wall_clock;
  811. break;
  812. case MSR_KVM_SYSTEM_TIME:
  813. data = vcpu->arch.time;
  814. break;
  815. default:
  816. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  817. return 1;
  818. }
  819. *pdata = data;
  820. return 0;
  821. }
  822. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  823. /*
  824. * Read or write a bunch of msrs. All parameters are kernel addresses.
  825. *
  826. * @return number of msrs set successfully.
  827. */
  828. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  829. struct kvm_msr_entry *entries,
  830. int (*do_msr)(struct kvm_vcpu *vcpu,
  831. unsigned index, u64 *data))
  832. {
  833. int i;
  834. vcpu_load(vcpu);
  835. down_read(&vcpu->kvm->slots_lock);
  836. for (i = 0; i < msrs->nmsrs; ++i)
  837. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  838. break;
  839. up_read(&vcpu->kvm->slots_lock);
  840. vcpu_put(vcpu);
  841. return i;
  842. }
  843. /*
  844. * Read or write a bunch of msrs. Parameters are user addresses.
  845. *
  846. * @return number of msrs set successfully.
  847. */
  848. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  849. int (*do_msr)(struct kvm_vcpu *vcpu,
  850. unsigned index, u64 *data),
  851. int writeback)
  852. {
  853. struct kvm_msrs msrs;
  854. struct kvm_msr_entry *entries;
  855. int r, n;
  856. unsigned size;
  857. r = -EFAULT;
  858. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  859. goto out;
  860. r = -E2BIG;
  861. if (msrs.nmsrs >= MAX_IO_MSRS)
  862. goto out;
  863. r = -ENOMEM;
  864. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  865. entries = vmalloc(size);
  866. if (!entries)
  867. goto out;
  868. r = -EFAULT;
  869. if (copy_from_user(entries, user_msrs->entries, size))
  870. goto out_free;
  871. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  872. if (r < 0)
  873. goto out_free;
  874. r = -EFAULT;
  875. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  876. goto out_free;
  877. r = n;
  878. out_free:
  879. vfree(entries);
  880. out:
  881. return r;
  882. }
  883. int kvm_dev_ioctl_check_extension(long ext)
  884. {
  885. int r;
  886. switch (ext) {
  887. case KVM_CAP_IRQCHIP:
  888. case KVM_CAP_HLT:
  889. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  890. case KVM_CAP_SET_TSS_ADDR:
  891. case KVM_CAP_EXT_CPUID:
  892. case KVM_CAP_CLOCKSOURCE:
  893. case KVM_CAP_PIT:
  894. case KVM_CAP_NOP_IO_DELAY:
  895. case KVM_CAP_MP_STATE:
  896. case KVM_CAP_SYNC_MMU:
  897. case KVM_CAP_REINJECT_CONTROL:
  898. case KVM_CAP_IRQ_INJECT_STATUS:
  899. case KVM_CAP_ASSIGN_DEV_IRQ:
  900. r = 1;
  901. break;
  902. case KVM_CAP_COALESCED_MMIO:
  903. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  904. break;
  905. case KVM_CAP_VAPIC:
  906. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  907. break;
  908. case KVM_CAP_NR_VCPUS:
  909. r = KVM_MAX_VCPUS;
  910. break;
  911. case KVM_CAP_NR_MEMSLOTS:
  912. r = KVM_MEMORY_SLOTS;
  913. break;
  914. case KVM_CAP_PV_MMU:
  915. r = !tdp_enabled;
  916. break;
  917. case KVM_CAP_IOMMU:
  918. r = iommu_found();
  919. break;
  920. default:
  921. r = 0;
  922. break;
  923. }
  924. return r;
  925. }
  926. long kvm_arch_dev_ioctl(struct file *filp,
  927. unsigned int ioctl, unsigned long arg)
  928. {
  929. void __user *argp = (void __user *)arg;
  930. long r;
  931. switch (ioctl) {
  932. case KVM_GET_MSR_INDEX_LIST: {
  933. struct kvm_msr_list __user *user_msr_list = argp;
  934. struct kvm_msr_list msr_list;
  935. unsigned n;
  936. r = -EFAULT;
  937. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  938. goto out;
  939. n = msr_list.nmsrs;
  940. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  941. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  942. goto out;
  943. r = -E2BIG;
  944. if (n < num_msrs_to_save)
  945. goto out;
  946. r = -EFAULT;
  947. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  948. num_msrs_to_save * sizeof(u32)))
  949. goto out;
  950. if (copy_to_user(user_msr_list->indices
  951. + num_msrs_to_save * sizeof(u32),
  952. &emulated_msrs,
  953. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  954. goto out;
  955. r = 0;
  956. break;
  957. }
  958. case KVM_GET_SUPPORTED_CPUID: {
  959. struct kvm_cpuid2 __user *cpuid_arg = argp;
  960. struct kvm_cpuid2 cpuid;
  961. r = -EFAULT;
  962. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  963. goto out;
  964. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  965. cpuid_arg->entries);
  966. if (r)
  967. goto out;
  968. r = -EFAULT;
  969. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  970. goto out;
  971. r = 0;
  972. break;
  973. }
  974. default:
  975. r = -EINVAL;
  976. }
  977. out:
  978. return r;
  979. }
  980. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  981. {
  982. kvm_x86_ops->vcpu_load(vcpu, cpu);
  983. kvm_request_guest_time_update(vcpu);
  984. }
  985. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  986. {
  987. kvm_x86_ops->vcpu_put(vcpu);
  988. kvm_put_guest_fpu(vcpu);
  989. }
  990. static int is_efer_nx(void)
  991. {
  992. unsigned long long efer = 0;
  993. rdmsrl_safe(MSR_EFER, &efer);
  994. return efer & EFER_NX;
  995. }
  996. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  997. {
  998. int i;
  999. struct kvm_cpuid_entry2 *e, *entry;
  1000. entry = NULL;
  1001. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1002. e = &vcpu->arch.cpuid_entries[i];
  1003. if (e->function == 0x80000001) {
  1004. entry = e;
  1005. break;
  1006. }
  1007. }
  1008. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1009. entry->edx &= ~(1 << 20);
  1010. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1011. }
  1012. }
  1013. /* when an old userspace process fills a new kernel module */
  1014. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1015. struct kvm_cpuid *cpuid,
  1016. struct kvm_cpuid_entry __user *entries)
  1017. {
  1018. int r, i;
  1019. struct kvm_cpuid_entry *cpuid_entries;
  1020. r = -E2BIG;
  1021. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1022. goto out;
  1023. r = -ENOMEM;
  1024. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1025. if (!cpuid_entries)
  1026. goto out;
  1027. r = -EFAULT;
  1028. if (copy_from_user(cpuid_entries, entries,
  1029. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1030. goto out_free;
  1031. for (i = 0; i < cpuid->nent; i++) {
  1032. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1033. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1034. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1035. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1036. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1037. vcpu->arch.cpuid_entries[i].index = 0;
  1038. vcpu->arch.cpuid_entries[i].flags = 0;
  1039. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1040. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1041. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1042. }
  1043. vcpu->arch.cpuid_nent = cpuid->nent;
  1044. cpuid_fix_nx_cap(vcpu);
  1045. r = 0;
  1046. out_free:
  1047. vfree(cpuid_entries);
  1048. out:
  1049. return r;
  1050. }
  1051. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1052. struct kvm_cpuid2 *cpuid,
  1053. struct kvm_cpuid_entry2 __user *entries)
  1054. {
  1055. int r;
  1056. r = -E2BIG;
  1057. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1058. goto out;
  1059. r = -EFAULT;
  1060. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1061. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1062. goto out;
  1063. vcpu->arch.cpuid_nent = cpuid->nent;
  1064. return 0;
  1065. out:
  1066. return r;
  1067. }
  1068. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1069. struct kvm_cpuid2 *cpuid,
  1070. struct kvm_cpuid_entry2 __user *entries)
  1071. {
  1072. int r;
  1073. r = -E2BIG;
  1074. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1075. goto out;
  1076. r = -EFAULT;
  1077. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1078. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1079. goto out;
  1080. return 0;
  1081. out:
  1082. cpuid->nent = vcpu->arch.cpuid_nent;
  1083. return r;
  1084. }
  1085. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1086. u32 index)
  1087. {
  1088. entry->function = function;
  1089. entry->index = index;
  1090. cpuid_count(entry->function, entry->index,
  1091. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1092. entry->flags = 0;
  1093. }
  1094. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1095. u32 index, int *nent, int maxnent)
  1096. {
  1097. const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
  1098. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  1099. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  1100. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  1101. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  1102. bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
  1103. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  1104. bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
  1105. bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
  1106. bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
  1107. const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
  1108. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  1109. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  1110. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  1111. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  1112. bit(X86_FEATURE_PGE) |
  1113. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  1114. bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
  1115. bit(X86_FEATURE_SYSCALL) |
  1116. (is_efer_nx() ? bit(X86_FEATURE_NX) : 0) |
  1117. #ifdef CONFIG_X86_64
  1118. bit(X86_FEATURE_LM) |
  1119. #endif
  1120. bit(X86_FEATURE_FXSR_OPT) |
  1121. bit(X86_FEATURE_MMXEXT) |
  1122. bit(X86_FEATURE_3DNOWEXT) |
  1123. bit(X86_FEATURE_3DNOW);
  1124. const u32 kvm_supported_word3_x86_features =
  1125. bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
  1126. const u32 kvm_supported_word6_x86_features =
  1127. bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY) |
  1128. bit(X86_FEATURE_SVM);
  1129. /* all calls to cpuid_count() should be made on the same cpu */
  1130. get_cpu();
  1131. do_cpuid_1_ent(entry, function, index);
  1132. ++*nent;
  1133. switch (function) {
  1134. case 0:
  1135. entry->eax = min(entry->eax, (u32)0xb);
  1136. break;
  1137. case 1:
  1138. entry->edx &= kvm_supported_word0_x86_features;
  1139. entry->ecx &= kvm_supported_word3_x86_features;
  1140. break;
  1141. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1142. * may return different values. This forces us to get_cpu() before
  1143. * issuing the first command, and also to emulate this annoying behavior
  1144. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1145. case 2: {
  1146. int t, times = entry->eax & 0xff;
  1147. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1148. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1149. for (t = 1; t < times && *nent < maxnent; ++t) {
  1150. do_cpuid_1_ent(&entry[t], function, 0);
  1151. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1152. ++*nent;
  1153. }
  1154. break;
  1155. }
  1156. /* function 4 and 0xb have additional index. */
  1157. case 4: {
  1158. int i, cache_type;
  1159. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1160. /* read more entries until cache_type is zero */
  1161. for (i = 1; *nent < maxnent; ++i) {
  1162. cache_type = entry[i - 1].eax & 0x1f;
  1163. if (!cache_type)
  1164. break;
  1165. do_cpuid_1_ent(&entry[i], function, i);
  1166. entry[i].flags |=
  1167. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1168. ++*nent;
  1169. }
  1170. break;
  1171. }
  1172. case 0xb: {
  1173. int i, level_type;
  1174. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1175. /* read more entries until level_type is zero */
  1176. for (i = 1; *nent < maxnent; ++i) {
  1177. level_type = entry[i - 1].ecx & 0xff00;
  1178. if (!level_type)
  1179. break;
  1180. do_cpuid_1_ent(&entry[i], function, i);
  1181. entry[i].flags |=
  1182. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1183. ++*nent;
  1184. }
  1185. break;
  1186. }
  1187. case 0x80000000:
  1188. entry->eax = min(entry->eax, 0x8000001a);
  1189. break;
  1190. case 0x80000001:
  1191. entry->edx &= kvm_supported_word1_x86_features;
  1192. entry->ecx &= kvm_supported_word6_x86_features;
  1193. break;
  1194. }
  1195. put_cpu();
  1196. }
  1197. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1198. struct kvm_cpuid_entry2 __user *entries)
  1199. {
  1200. struct kvm_cpuid_entry2 *cpuid_entries;
  1201. int limit, nent = 0, r = -E2BIG;
  1202. u32 func;
  1203. if (cpuid->nent < 1)
  1204. goto out;
  1205. r = -ENOMEM;
  1206. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1207. if (!cpuid_entries)
  1208. goto out;
  1209. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1210. limit = cpuid_entries[0].eax;
  1211. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1212. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1213. &nent, cpuid->nent);
  1214. r = -E2BIG;
  1215. if (nent >= cpuid->nent)
  1216. goto out_free;
  1217. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1218. limit = cpuid_entries[nent - 1].eax;
  1219. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1220. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1221. &nent, cpuid->nent);
  1222. r = -EFAULT;
  1223. if (copy_to_user(entries, cpuid_entries,
  1224. nent * sizeof(struct kvm_cpuid_entry2)))
  1225. goto out_free;
  1226. cpuid->nent = nent;
  1227. r = 0;
  1228. out_free:
  1229. vfree(cpuid_entries);
  1230. out:
  1231. return r;
  1232. }
  1233. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1234. struct kvm_lapic_state *s)
  1235. {
  1236. vcpu_load(vcpu);
  1237. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1238. vcpu_put(vcpu);
  1239. return 0;
  1240. }
  1241. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1242. struct kvm_lapic_state *s)
  1243. {
  1244. vcpu_load(vcpu);
  1245. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1246. kvm_apic_post_state_restore(vcpu);
  1247. vcpu_put(vcpu);
  1248. return 0;
  1249. }
  1250. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1251. struct kvm_interrupt *irq)
  1252. {
  1253. if (irq->irq < 0 || irq->irq >= 256)
  1254. return -EINVAL;
  1255. if (irqchip_in_kernel(vcpu->kvm))
  1256. return -ENXIO;
  1257. vcpu_load(vcpu);
  1258. set_bit(irq->irq, vcpu->arch.irq_pending);
  1259. set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1260. vcpu_put(vcpu);
  1261. return 0;
  1262. }
  1263. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1264. {
  1265. vcpu_load(vcpu);
  1266. kvm_inject_nmi(vcpu);
  1267. vcpu_put(vcpu);
  1268. return 0;
  1269. }
  1270. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1271. struct kvm_tpr_access_ctl *tac)
  1272. {
  1273. if (tac->flags)
  1274. return -EINVAL;
  1275. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1276. return 0;
  1277. }
  1278. long kvm_arch_vcpu_ioctl(struct file *filp,
  1279. unsigned int ioctl, unsigned long arg)
  1280. {
  1281. struct kvm_vcpu *vcpu = filp->private_data;
  1282. void __user *argp = (void __user *)arg;
  1283. int r;
  1284. struct kvm_lapic_state *lapic = NULL;
  1285. switch (ioctl) {
  1286. case KVM_GET_LAPIC: {
  1287. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1288. r = -ENOMEM;
  1289. if (!lapic)
  1290. goto out;
  1291. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1292. if (r)
  1293. goto out;
  1294. r = -EFAULT;
  1295. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1296. goto out;
  1297. r = 0;
  1298. break;
  1299. }
  1300. case KVM_SET_LAPIC: {
  1301. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1302. r = -ENOMEM;
  1303. if (!lapic)
  1304. goto out;
  1305. r = -EFAULT;
  1306. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1307. goto out;
  1308. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1309. if (r)
  1310. goto out;
  1311. r = 0;
  1312. break;
  1313. }
  1314. case KVM_INTERRUPT: {
  1315. struct kvm_interrupt irq;
  1316. r = -EFAULT;
  1317. if (copy_from_user(&irq, argp, sizeof irq))
  1318. goto out;
  1319. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1320. if (r)
  1321. goto out;
  1322. r = 0;
  1323. break;
  1324. }
  1325. case KVM_NMI: {
  1326. r = kvm_vcpu_ioctl_nmi(vcpu);
  1327. if (r)
  1328. goto out;
  1329. r = 0;
  1330. break;
  1331. }
  1332. case KVM_SET_CPUID: {
  1333. struct kvm_cpuid __user *cpuid_arg = argp;
  1334. struct kvm_cpuid cpuid;
  1335. r = -EFAULT;
  1336. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1337. goto out;
  1338. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1339. if (r)
  1340. goto out;
  1341. break;
  1342. }
  1343. case KVM_SET_CPUID2: {
  1344. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1345. struct kvm_cpuid2 cpuid;
  1346. r = -EFAULT;
  1347. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1348. goto out;
  1349. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1350. cpuid_arg->entries);
  1351. if (r)
  1352. goto out;
  1353. break;
  1354. }
  1355. case KVM_GET_CPUID2: {
  1356. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1357. struct kvm_cpuid2 cpuid;
  1358. r = -EFAULT;
  1359. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1360. goto out;
  1361. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1362. cpuid_arg->entries);
  1363. if (r)
  1364. goto out;
  1365. r = -EFAULT;
  1366. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1367. goto out;
  1368. r = 0;
  1369. break;
  1370. }
  1371. case KVM_GET_MSRS:
  1372. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1373. break;
  1374. case KVM_SET_MSRS:
  1375. r = msr_io(vcpu, argp, do_set_msr, 0);
  1376. break;
  1377. case KVM_TPR_ACCESS_REPORTING: {
  1378. struct kvm_tpr_access_ctl tac;
  1379. r = -EFAULT;
  1380. if (copy_from_user(&tac, argp, sizeof tac))
  1381. goto out;
  1382. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1383. if (r)
  1384. goto out;
  1385. r = -EFAULT;
  1386. if (copy_to_user(argp, &tac, sizeof tac))
  1387. goto out;
  1388. r = 0;
  1389. break;
  1390. };
  1391. case KVM_SET_VAPIC_ADDR: {
  1392. struct kvm_vapic_addr va;
  1393. r = -EINVAL;
  1394. if (!irqchip_in_kernel(vcpu->kvm))
  1395. goto out;
  1396. r = -EFAULT;
  1397. if (copy_from_user(&va, argp, sizeof va))
  1398. goto out;
  1399. r = 0;
  1400. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1401. break;
  1402. }
  1403. default:
  1404. r = -EINVAL;
  1405. }
  1406. out:
  1407. if (lapic)
  1408. kfree(lapic);
  1409. return r;
  1410. }
  1411. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1412. {
  1413. int ret;
  1414. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1415. return -1;
  1416. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1417. return ret;
  1418. }
  1419. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1420. u32 kvm_nr_mmu_pages)
  1421. {
  1422. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1423. return -EINVAL;
  1424. down_write(&kvm->slots_lock);
  1425. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1426. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1427. up_write(&kvm->slots_lock);
  1428. return 0;
  1429. }
  1430. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1431. {
  1432. return kvm->arch.n_alloc_mmu_pages;
  1433. }
  1434. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1435. {
  1436. int i;
  1437. struct kvm_mem_alias *alias;
  1438. for (i = 0; i < kvm->arch.naliases; ++i) {
  1439. alias = &kvm->arch.aliases[i];
  1440. if (gfn >= alias->base_gfn
  1441. && gfn < alias->base_gfn + alias->npages)
  1442. return alias->target_gfn + gfn - alias->base_gfn;
  1443. }
  1444. return gfn;
  1445. }
  1446. /*
  1447. * Set a new alias region. Aliases map a portion of physical memory into
  1448. * another portion. This is useful for memory windows, for example the PC
  1449. * VGA region.
  1450. */
  1451. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1452. struct kvm_memory_alias *alias)
  1453. {
  1454. int r, n;
  1455. struct kvm_mem_alias *p;
  1456. r = -EINVAL;
  1457. /* General sanity checks */
  1458. if (alias->memory_size & (PAGE_SIZE - 1))
  1459. goto out;
  1460. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1461. goto out;
  1462. if (alias->slot >= KVM_ALIAS_SLOTS)
  1463. goto out;
  1464. if (alias->guest_phys_addr + alias->memory_size
  1465. < alias->guest_phys_addr)
  1466. goto out;
  1467. if (alias->target_phys_addr + alias->memory_size
  1468. < alias->target_phys_addr)
  1469. goto out;
  1470. down_write(&kvm->slots_lock);
  1471. spin_lock(&kvm->mmu_lock);
  1472. p = &kvm->arch.aliases[alias->slot];
  1473. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1474. p->npages = alias->memory_size >> PAGE_SHIFT;
  1475. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1476. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1477. if (kvm->arch.aliases[n - 1].npages)
  1478. break;
  1479. kvm->arch.naliases = n;
  1480. spin_unlock(&kvm->mmu_lock);
  1481. kvm_mmu_zap_all(kvm);
  1482. up_write(&kvm->slots_lock);
  1483. return 0;
  1484. out:
  1485. return r;
  1486. }
  1487. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1488. {
  1489. int r;
  1490. r = 0;
  1491. switch (chip->chip_id) {
  1492. case KVM_IRQCHIP_PIC_MASTER:
  1493. memcpy(&chip->chip.pic,
  1494. &pic_irqchip(kvm)->pics[0],
  1495. sizeof(struct kvm_pic_state));
  1496. break;
  1497. case KVM_IRQCHIP_PIC_SLAVE:
  1498. memcpy(&chip->chip.pic,
  1499. &pic_irqchip(kvm)->pics[1],
  1500. sizeof(struct kvm_pic_state));
  1501. break;
  1502. case KVM_IRQCHIP_IOAPIC:
  1503. memcpy(&chip->chip.ioapic,
  1504. ioapic_irqchip(kvm),
  1505. sizeof(struct kvm_ioapic_state));
  1506. break;
  1507. default:
  1508. r = -EINVAL;
  1509. break;
  1510. }
  1511. return r;
  1512. }
  1513. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1514. {
  1515. int r;
  1516. r = 0;
  1517. switch (chip->chip_id) {
  1518. case KVM_IRQCHIP_PIC_MASTER:
  1519. memcpy(&pic_irqchip(kvm)->pics[0],
  1520. &chip->chip.pic,
  1521. sizeof(struct kvm_pic_state));
  1522. break;
  1523. case KVM_IRQCHIP_PIC_SLAVE:
  1524. memcpy(&pic_irqchip(kvm)->pics[1],
  1525. &chip->chip.pic,
  1526. sizeof(struct kvm_pic_state));
  1527. break;
  1528. case KVM_IRQCHIP_IOAPIC:
  1529. memcpy(ioapic_irqchip(kvm),
  1530. &chip->chip.ioapic,
  1531. sizeof(struct kvm_ioapic_state));
  1532. break;
  1533. default:
  1534. r = -EINVAL;
  1535. break;
  1536. }
  1537. kvm_pic_update_irq(pic_irqchip(kvm));
  1538. return r;
  1539. }
  1540. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1541. {
  1542. int r = 0;
  1543. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1544. return r;
  1545. }
  1546. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1547. {
  1548. int r = 0;
  1549. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1550. kvm_pit_load_count(kvm, 0, ps->channels[0].count);
  1551. return r;
  1552. }
  1553. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  1554. struct kvm_reinject_control *control)
  1555. {
  1556. if (!kvm->arch.vpit)
  1557. return -ENXIO;
  1558. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  1559. return 0;
  1560. }
  1561. /*
  1562. * Get (and clear) the dirty memory log for a memory slot.
  1563. */
  1564. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1565. struct kvm_dirty_log *log)
  1566. {
  1567. int r;
  1568. int n;
  1569. struct kvm_memory_slot *memslot;
  1570. int is_dirty = 0;
  1571. down_write(&kvm->slots_lock);
  1572. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1573. if (r)
  1574. goto out;
  1575. /* If nothing is dirty, don't bother messing with page tables. */
  1576. if (is_dirty) {
  1577. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1578. kvm_flush_remote_tlbs(kvm);
  1579. memslot = &kvm->memslots[log->slot];
  1580. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1581. memset(memslot->dirty_bitmap, 0, n);
  1582. }
  1583. r = 0;
  1584. out:
  1585. up_write(&kvm->slots_lock);
  1586. return r;
  1587. }
  1588. long kvm_arch_vm_ioctl(struct file *filp,
  1589. unsigned int ioctl, unsigned long arg)
  1590. {
  1591. struct kvm *kvm = filp->private_data;
  1592. void __user *argp = (void __user *)arg;
  1593. int r = -EINVAL;
  1594. /*
  1595. * This union makes it completely explicit to gcc-3.x
  1596. * that these two variables' stack usage should be
  1597. * combined, not added together.
  1598. */
  1599. union {
  1600. struct kvm_pit_state ps;
  1601. struct kvm_memory_alias alias;
  1602. } u;
  1603. switch (ioctl) {
  1604. case KVM_SET_TSS_ADDR:
  1605. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1606. if (r < 0)
  1607. goto out;
  1608. break;
  1609. case KVM_SET_MEMORY_REGION: {
  1610. struct kvm_memory_region kvm_mem;
  1611. struct kvm_userspace_memory_region kvm_userspace_mem;
  1612. r = -EFAULT;
  1613. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1614. goto out;
  1615. kvm_userspace_mem.slot = kvm_mem.slot;
  1616. kvm_userspace_mem.flags = kvm_mem.flags;
  1617. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1618. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1619. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1620. if (r)
  1621. goto out;
  1622. break;
  1623. }
  1624. case KVM_SET_NR_MMU_PAGES:
  1625. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1626. if (r)
  1627. goto out;
  1628. break;
  1629. case KVM_GET_NR_MMU_PAGES:
  1630. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1631. break;
  1632. case KVM_SET_MEMORY_ALIAS:
  1633. r = -EFAULT;
  1634. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  1635. goto out;
  1636. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  1637. if (r)
  1638. goto out;
  1639. break;
  1640. case KVM_CREATE_IRQCHIP:
  1641. r = -ENOMEM;
  1642. kvm->arch.vpic = kvm_create_pic(kvm);
  1643. if (kvm->arch.vpic) {
  1644. r = kvm_ioapic_init(kvm);
  1645. if (r) {
  1646. kfree(kvm->arch.vpic);
  1647. kvm->arch.vpic = NULL;
  1648. goto out;
  1649. }
  1650. } else
  1651. goto out;
  1652. r = kvm_setup_default_irq_routing(kvm);
  1653. if (r) {
  1654. kfree(kvm->arch.vpic);
  1655. kfree(kvm->arch.vioapic);
  1656. goto out;
  1657. }
  1658. break;
  1659. case KVM_CREATE_PIT:
  1660. mutex_lock(&kvm->lock);
  1661. r = -EEXIST;
  1662. if (kvm->arch.vpit)
  1663. goto create_pit_unlock;
  1664. r = -ENOMEM;
  1665. kvm->arch.vpit = kvm_create_pit(kvm);
  1666. if (kvm->arch.vpit)
  1667. r = 0;
  1668. create_pit_unlock:
  1669. mutex_unlock(&kvm->lock);
  1670. break;
  1671. case KVM_IRQ_LINE_STATUS:
  1672. case KVM_IRQ_LINE: {
  1673. struct kvm_irq_level irq_event;
  1674. r = -EFAULT;
  1675. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1676. goto out;
  1677. if (irqchip_in_kernel(kvm)) {
  1678. __s32 status;
  1679. mutex_lock(&kvm->lock);
  1680. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  1681. irq_event.irq, irq_event.level);
  1682. mutex_unlock(&kvm->lock);
  1683. if (ioctl == KVM_IRQ_LINE_STATUS) {
  1684. irq_event.status = status;
  1685. if (copy_to_user(argp, &irq_event,
  1686. sizeof irq_event))
  1687. goto out;
  1688. }
  1689. r = 0;
  1690. }
  1691. break;
  1692. }
  1693. case KVM_GET_IRQCHIP: {
  1694. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1695. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1696. r = -ENOMEM;
  1697. if (!chip)
  1698. goto out;
  1699. r = -EFAULT;
  1700. if (copy_from_user(chip, argp, sizeof *chip))
  1701. goto get_irqchip_out;
  1702. r = -ENXIO;
  1703. if (!irqchip_in_kernel(kvm))
  1704. goto get_irqchip_out;
  1705. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  1706. if (r)
  1707. goto get_irqchip_out;
  1708. r = -EFAULT;
  1709. if (copy_to_user(argp, chip, sizeof *chip))
  1710. goto get_irqchip_out;
  1711. r = 0;
  1712. get_irqchip_out:
  1713. kfree(chip);
  1714. if (r)
  1715. goto out;
  1716. break;
  1717. }
  1718. case KVM_SET_IRQCHIP: {
  1719. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1720. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1721. r = -ENOMEM;
  1722. if (!chip)
  1723. goto out;
  1724. r = -EFAULT;
  1725. if (copy_from_user(chip, argp, sizeof *chip))
  1726. goto set_irqchip_out;
  1727. r = -ENXIO;
  1728. if (!irqchip_in_kernel(kvm))
  1729. goto set_irqchip_out;
  1730. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  1731. if (r)
  1732. goto set_irqchip_out;
  1733. r = 0;
  1734. set_irqchip_out:
  1735. kfree(chip);
  1736. if (r)
  1737. goto out;
  1738. break;
  1739. }
  1740. case KVM_GET_PIT: {
  1741. r = -EFAULT;
  1742. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  1743. goto out;
  1744. r = -ENXIO;
  1745. if (!kvm->arch.vpit)
  1746. goto out;
  1747. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  1748. if (r)
  1749. goto out;
  1750. r = -EFAULT;
  1751. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  1752. goto out;
  1753. r = 0;
  1754. break;
  1755. }
  1756. case KVM_SET_PIT: {
  1757. r = -EFAULT;
  1758. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  1759. goto out;
  1760. r = -ENXIO;
  1761. if (!kvm->arch.vpit)
  1762. goto out;
  1763. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  1764. if (r)
  1765. goto out;
  1766. r = 0;
  1767. break;
  1768. }
  1769. case KVM_REINJECT_CONTROL: {
  1770. struct kvm_reinject_control control;
  1771. r = -EFAULT;
  1772. if (copy_from_user(&control, argp, sizeof(control)))
  1773. goto out;
  1774. r = kvm_vm_ioctl_reinject(kvm, &control);
  1775. if (r)
  1776. goto out;
  1777. r = 0;
  1778. break;
  1779. }
  1780. default:
  1781. ;
  1782. }
  1783. out:
  1784. return r;
  1785. }
  1786. static void kvm_init_msr_list(void)
  1787. {
  1788. u32 dummy[2];
  1789. unsigned i, j;
  1790. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1791. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1792. continue;
  1793. if (j < i)
  1794. msrs_to_save[j] = msrs_to_save[i];
  1795. j++;
  1796. }
  1797. num_msrs_to_save = j;
  1798. }
  1799. /*
  1800. * Only apic need an MMIO device hook, so shortcut now..
  1801. */
  1802. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1803. gpa_t addr, int len,
  1804. int is_write)
  1805. {
  1806. struct kvm_io_device *dev;
  1807. if (vcpu->arch.apic) {
  1808. dev = &vcpu->arch.apic->dev;
  1809. if (dev->in_range(dev, addr, len, is_write))
  1810. return dev;
  1811. }
  1812. return NULL;
  1813. }
  1814. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1815. gpa_t addr, int len,
  1816. int is_write)
  1817. {
  1818. struct kvm_io_device *dev;
  1819. dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
  1820. if (dev == NULL)
  1821. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
  1822. is_write);
  1823. return dev;
  1824. }
  1825. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  1826. struct kvm_vcpu *vcpu)
  1827. {
  1828. void *data = val;
  1829. int r = X86EMUL_CONTINUE;
  1830. while (bytes) {
  1831. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1832. unsigned offset = addr & (PAGE_SIZE-1);
  1833. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  1834. int ret;
  1835. if (gpa == UNMAPPED_GVA) {
  1836. r = X86EMUL_PROPAGATE_FAULT;
  1837. goto out;
  1838. }
  1839. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  1840. if (ret < 0) {
  1841. r = X86EMUL_UNHANDLEABLE;
  1842. goto out;
  1843. }
  1844. bytes -= toread;
  1845. data += toread;
  1846. addr += toread;
  1847. }
  1848. out:
  1849. return r;
  1850. }
  1851. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  1852. struct kvm_vcpu *vcpu)
  1853. {
  1854. void *data = val;
  1855. int r = X86EMUL_CONTINUE;
  1856. while (bytes) {
  1857. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1858. unsigned offset = addr & (PAGE_SIZE-1);
  1859. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  1860. int ret;
  1861. if (gpa == UNMAPPED_GVA) {
  1862. r = X86EMUL_PROPAGATE_FAULT;
  1863. goto out;
  1864. }
  1865. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  1866. if (ret < 0) {
  1867. r = X86EMUL_UNHANDLEABLE;
  1868. goto out;
  1869. }
  1870. bytes -= towrite;
  1871. data += towrite;
  1872. addr += towrite;
  1873. }
  1874. out:
  1875. return r;
  1876. }
  1877. static int emulator_read_emulated(unsigned long addr,
  1878. void *val,
  1879. unsigned int bytes,
  1880. struct kvm_vcpu *vcpu)
  1881. {
  1882. struct kvm_io_device *mmio_dev;
  1883. gpa_t gpa;
  1884. if (vcpu->mmio_read_completed) {
  1885. memcpy(val, vcpu->mmio_data, bytes);
  1886. vcpu->mmio_read_completed = 0;
  1887. return X86EMUL_CONTINUE;
  1888. }
  1889. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1890. /* For APIC access vmexit */
  1891. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1892. goto mmio;
  1893. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  1894. == X86EMUL_CONTINUE)
  1895. return X86EMUL_CONTINUE;
  1896. if (gpa == UNMAPPED_GVA)
  1897. return X86EMUL_PROPAGATE_FAULT;
  1898. mmio:
  1899. /*
  1900. * Is this MMIO handled locally?
  1901. */
  1902. mutex_lock(&vcpu->kvm->lock);
  1903. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
  1904. if (mmio_dev) {
  1905. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1906. mutex_unlock(&vcpu->kvm->lock);
  1907. return X86EMUL_CONTINUE;
  1908. }
  1909. mutex_unlock(&vcpu->kvm->lock);
  1910. vcpu->mmio_needed = 1;
  1911. vcpu->mmio_phys_addr = gpa;
  1912. vcpu->mmio_size = bytes;
  1913. vcpu->mmio_is_write = 0;
  1914. return X86EMUL_UNHANDLEABLE;
  1915. }
  1916. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1917. const void *val, int bytes)
  1918. {
  1919. int ret;
  1920. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1921. if (ret < 0)
  1922. return 0;
  1923. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  1924. return 1;
  1925. }
  1926. static int emulator_write_emulated_onepage(unsigned long addr,
  1927. const void *val,
  1928. unsigned int bytes,
  1929. struct kvm_vcpu *vcpu)
  1930. {
  1931. struct kvm_io_device *mmio_dev;
  1932. gpa_t gpa;
  1933. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1934. if (gpa == UNMAPPED_GVA) {
  1935. kvm_inject_page_fault(vcpu, addr, 2);
  1936. return X86EMUL_PROPAGATE_FAULT;
  1937. }
  1938. /* For APIC access vmexit */
  1939. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1940. goto mmio;
  1941. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1942. return X86EMUL_CONTINUE;
  1943. mmio:
  1944. /*
  1945. * Is this MMIO handled locally?
  1946. */
  1947. mutex_lock(&vcpu->kvm->lock);
  1948. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
  1949. if (mmio_dev) {
  1950. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1951. mutex_unlock(&vcpu->kvm->lock);
  1952. return X86EMUL_CONTINUE;
  1953. }
  1954. mutex_unlock(&vcpu->kvm->lock);
  1955. vcpu->mmio_needed = 1;
  1956. vcpu->mmio_phys_addr = gpa;
  1957. vcpu->mmio_size = bytes;
  1958. vcpu->mmio_is_write = 1;
  1959. memcpy(vcpu->mmio_data, val, bytes);
  1960. return X86EMUL_CONTINUE;
  1961. }
  1962. int emulator_write_emulated(unsigned long addr,
  1963. const void *val,
  1964. unsigned int bytes,
  1965. struct kvm_vcpu *vcpu)
  1966. {
  1967. /* Crossing a page boundary? */
  1968. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1969. int rc, now;
  1970. now = -addr & ~PAGE_MASK;
  1971. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1972. if (rc != X86EMUL_CONTINUE)
  1973. return rc;
  1974. addr += now;
  1975. val += now;
  1976. bytes -= now;
  1977. }
  1978. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1979. }
  1980. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1981. static int emulator_cmpxchg_emulated(unsigned long addr,
  1982. const void *old,
  1983. const void *new,
  1984. unsigned int bytes,
  1985. struct kvm_vcpu *vcpu)
  1986. {
  1987. static int reported;
  1988. if (!reported) {
  1989. reported = 1;
  1990. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1991. }
  1992. #ifndef CONFIG_X86_64
  1993. /* guests cmpxchg8b have to be emulated atomically */
  1994. if (bytes == 8) {
  1995. gpa_t gpa;
  1996. struct page *page;
  1997. char *kaddr;
  1998. u64 val;
  1999. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2000. if (gpa == UNMAPPED_GVA ||
  2001. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2002. goto emul_write;
  2003. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2004. goto emul_write;
  2005. val = *(u64 *)new;
  2006. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2007. kaddr = kmap_atomic(page, KM_USER0);
  2008. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2009. kunmap_atomic(kaddr, KM_USER0);
  2010. kvm_release_page_dirty(page);
  2011. }
  2012. emul_write:
  2013. #endif
  2014. return emulator_write_emulated(addr, new, bytes, vcpu);
  2015. }
  2016. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2017. {
  2018. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2019. }
  2020. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2021. {
  2022. kvm_mmu_invlpg(vcpu, address);
  2023. return X86EMUL_CONTINUE;
  2024. }
  2025. int emulate_clts(struct kvm_vcpu *vcpu)
  2026. {
  2027. KVMTRACE_0D(CLTS, vcpu, handler);
  2028. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  2029. return X86EMUL_CONTINUE;
  2030. }
  2031. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2032. {
  2033. struct kvm_vcpu *vcpu = ctxt->vcpu;
  2034. switch (dr) {
  2035. case 0 ... 3:
  2036. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  2037. return X86EMUL_CONTINUE;
  2038. default:
  2039. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  2040. return X86EMUL_UNHANDLEABLE;
  2041. }
  2042. }
  2043. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2044. {
  2045. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2046. int exception;
  2047. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  2048. if (exception) {
  2049. /* FIXME: better handling */
  2050. return X86EMUL_UNHANDLEABLE;
  2051. }
  2052. return X86EMUL_CONTINUE;
  2053. }
  2054. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2055. {
  2056. u8 opcodes[4];
  2057. unsigned long rip = kvm_rip_read(vcpu);
  2058. unsigned long rip_linear;
  2059. if (!printk_ratelimit())
  2060. return;
  2061. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2062. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2063. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2064. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2065. }
  2066. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2067. static struct x86_emulate_ops emulate_ops = {
  2068. .read_std = kvm_read_guest_virt,
  2069. .read_emulated = emulator_read_emulated,
  2070. .write_emulated = emulator_write_emulated,
  2071. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2072. };
  2073. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2074. {
  2075. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2076. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2077. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2078. vcpu->arch.regs_dirty = ~0;
  2079. }
  2080. int emulate_instruction(struct kvm_vcpu *vcpu,
  2081. struct kvm_run *run,
  2082. unsigned long cr2,
  2083. u16 error_code,
  2084. int emulation_type)
  2085. {
  2086. int r;
  2087. struct decode_cache *c;
  2088. kvm_clear_exception_queue(vcpu);
  2089. vcpu->arch.mmio_fault_cr2 = cr2;
  2090. /*
  2091. * TODO: fix x86_emulate.c to use guest_read/write_register
  2092. * instead of direct ->regs accesses, can save hundred cycles
  2093. * on Intel for instructions that don't read/change RSP, for
  2094. * for example.
  2095. */
  2096. cache_all_regs(vcpu);
  2097. vcpu->mmio_is_write = 0;
  2098. vcpu->arch.pio.string = 0;
  2099. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2100. int cs_db, cs_l;
  2101. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2102. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2103. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  2104. vcpu->arch.emulate_ctxt.mode =
  2105. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2106. ? X86EMUL_MODE_REAL : cs_l
  2107. ? X86EMUL_MODE_PROT64 : cs_db
  2108. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2109. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2110. /* Reject the instructions other than VMCALL/VMMCALL when
  2111. * try to emulate invalid opcode */
  2112. c = &vcpu->arch.emulate_ctxt.decode;
  2113. if ((emulation_type & EMULTYPE_TRAP_UD) &&
  2114. (!(c->twobyte && c->b == 0x01 &&
  2115. (c->modrm_reg == 0 || c->modrm_reg == 3) &&
  2116. c->modrm_mod == 3 && c->modrm_rm == 1)))
  2117. return EMULATE_FAIL;
  2118. ++vcpu->stat.insn_emulation;
  2119. if (r) {
  2120. ++vcpu->stat.insn_emulation_fail;
  2121. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2122. return EMULATE_DONE;
  2123. return EMULATE_FAIL;
  2124. }
  2125. }
  2126. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2127. if (vcpu->arch.pio.string)
  2128. return EMULATE_DO_MMIO;
  2129. if ((r || vcpu->mmio_is_write) && run) {
  2130. run->exit_reason = KVM_EXIT_MMIO;
  2131. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2132. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2133. run->mmio.len = vcpu->mmio_size;
  2134. run->mmio.is_write = vcpu->mmio_is_write;
  2135. }
  2136. if (r) {
  2137. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2138. return EMULATE_DONE;
  2139. if (!vcpu->mmio_needed) {
  2140. kvm_report_emulation_failure(vcpu, "mmio");
  2141. return EMULATE_FAIL;
  2142. }
  2143. return EMULATE_DO_MMIO;
  2144. }
  2145. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2146. if (vcpu->mmio_is_write) {
  2147. vcpu->mmio_needed = 0;
  2148. return EMULATE_DO_MMIO;
  2149. }
  2150. return EMULATE_DONE;
  2151. }
  2152. EXPORT_SYMBOL_GPL(emulate_instruction);
  2153. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2154. {
  2155. void *p = vcpu->arch.pio_data;
  2156. gva_t q = vcpu->arch.pio.guest_gva;
  2157. unsigned bytes;
  2158. int ret;
  2159. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2160. if (vcpu->arch.pio.in)
  2161. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  2162. else
  2163. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  2164. return ret;
  2165. }
  2166. int complete_pio(struct kvm_vcpu *vcpu)
  2167. {
  2168. struct kvm_pio_request *io = &vcpu->arch.pio;
  2169. long delta;
  2170. int r;
  2171. unsigned long val;
  2172. if (!io->string) {
  2173. if (io->in) {
  2174. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2175. memcpy(&val, vcpu->arch.pio_data, io->size);
  2176. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2177. }
  2178. } else {
  2179. if (io->in) {
  2180. r = pio_copy_data(vcpu);
  2181. if (r)
  2182. return r;
  2183. }
  2184. delta = 1;
  2185. if (io->rep) {
  2186. delta *= io->cur_count;
  2187. /*
  2188. * The size of the register should really depend on
  2189. * current address size.
  2190. */
  2191. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2192. val -= delta;
  2193. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2194. }
  2195. if (io->down)
  2196. delta = -delta;
  2197. delta *= io->size;
  2198. if (io->in) {
  2199. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2200. val += delta;
  2201. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2202. } else {
  2203. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2204. val += delta;
  2205. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2206. }
  2207. }
  2208. io->count -= io->cur_count;
  2209. io->cur_count = 0;
  2210. return 0;
  2211. }
  2212. static void kernel_pio(struct kvm_io_device *pio_dev,
  2213. struct kvm_vcpu *vcpu,
  2214. void *pd)
  2215. {
  2216. /* TODO: String I/O for in kernel device */
  2217. mutex_lock(&vcpu->kvm->lock);
  2218. if (vcpu->arch.pio.in)
  2219. kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
  2220. vcpu->arch.pio.size,
  2221. pd);
  2222. else
  2223. kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
  2224. vcpu->arch.pio.size,
  2225. pd);
  2226. mutex_unlock(&vcpu->kvm->lock);
  2227. }
  2228. static void pio_string_write(struct kvm_io_device *pio_dev,
  2229. struct kvm_vcpu *vcpu)
  2230. {
  2231. struct kvm_pio_request *io = &vcpu->arch.pio;
  2232. void *pd = vcpu->arch.pio_data;
  2233. int i;
  2234. mutex_lock(&vcpu->kvm->lock);
  2235. for (i = 0; i < io->cur_count; i++) {
  2236. kvm_iodevice_write(pio_dev, io->port,
  2237. io->size,
  2238. pd);
  2239. pd += io->size;
  2240. }
  2241. mutex_unlock(&vcpu->kvm->lock);
  2242. }
  2243. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  2244. gpa_t addr, int len,
  2245. int is_write)
  2246. {
  2247. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
  2248. }
  2249. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2250. int size, unsigned port)
  2251. {
  2252. struct kvm_io_device *pio_dev;
  2253. unsigned long val;
  2254. vcpu->run->exit_reason = KVM_EXIT_IO;
  2255. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2256. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2257. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2258. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2259. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2260. vcpu->arch.pio.in = in;
  2261. vcpu->arch.pio.string = 0;
  2262. vcpu->arch.pio.down = 0;
  2263. vcpu->arch.pio.rep = 0;
  2264. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2265. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2266. handler);
  2267. else
  2268. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2269. handler);
  2270. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2271. memcpy(vcpu->arch.pio_data, &val, 4);
  2272. pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
  2273. if (pio_dev) {
  2274. kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
  2275. complete_pio(vcpu);
  2276. return 1;
  2277. }
  2278. return 0;
  2279. }
  2280. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2281. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2282. int size, unsigned long count, int down,
  2283. gva_t address, int rep, unsigned port)
  2284. {
  2285. unsigned now, in_page;
  2286. int ret = 0;
  2287. struct kvm_io_device *pio_dev;
  2288. vcpu->run->exit_reason = KVM_EXIT_IO;
  2289. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2290. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2291. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2292. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2293. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2294. vcpu->arch.pio.in = in;
  2295. vcpu->arch.pio.string = 1;
  2296. vcpu->arch.pio.down = down;
  2297. vcpu->arch.pio.rep = rep;
  2298. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2299. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2300. handler);
  2301. else
  2302. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2303. handler);
  2304. if (!count) {
  2305. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2306. return 1;
  2307. }
  2308. if (!down)
  2309. in_page = PAGE_SIZE - offset_in_page(address);
  2310. else
  2311. in_page = offset_in_page(address) + size;
  2312. now = min(count, (unsigned long)in_page / size);
  2313. if (!now)
  2314. now = 1;
  2315. if (down) {
  2316. /*
  2317. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2318. */
  2319. pr_unimpl(vcpu, "guest string pio down\n");
  2320. kvm_inject_gp(vcpu, 0);
  2321. return 1;
  2322. }
  2323. vcpu->run->io.count = now;
  2324. vcpu->arch.pio.cur_count = now;
  2325. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2326. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2327. vcpu->arch.pio.guest_gva = address;
  2328. pio_dev = vcpu_find_pio_dev(vcpu, port,
  2329. vcpu->arch.pio.cur_count,
  2330. !vcpu->arch.pio.in);
  2331. if (!vcpu->arch.pio.in) {
  2332. /* string PIO write */
  2333. ret = pio_copy_data(vcpu);
  2334. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2335. kvm_inject_gp(vcpu, 0);
  2336. return 1;
  2337. }
  2338. if (ret == 0 && pio_dev) {
  2339. pio_string_write(pio_dev, vcpu);
  2340. complete_pio(vcpu);
  2341. if (vcpu->arch.pio.count == 0)
  2342. ret = 1;
  2343. }
  2344. } else if (pio_dev)
  2345. pr_unimpl(vcpu, "no string pio read support yet, "
  2346. "port %x size %d count %ld\n",
  2347. port, size, count);
  2348. return ret;
  2349. }
  2350. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2351. static void bounce_off(void *info)
  2352. {
  2353. /* nothing */
  2354. }
  2355. static unsigned int ref_freq;
  2356. static unsigned long tsc_khz_ref;
  2357. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  2358. void *data)
  2359. {
  2360. struct cpufreq_freqs *freq = data;
  2361. struct kvm *kvm;
  2362. struct kvm_vcpu *vcpu;
  2363. int i, send_ipi = 0;
  2364. if (!ref_freq)
  2365. ref_freq = freq->old;
  2366. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  2367. return 0;
  2368. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  2369. return 0;
  2370. per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  2371. spin_lock(&kvm_lock);
  2372. list_for_each_entry(kvm, &vm_list, vm_list) {
  2373. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2374. vcpu = kvm->vcpus[i];
  2375. if (!vcpu)
  2376. continue;
  2377. if (vcpu->cpu != freq->cpu)
  2378. continue;
  2379. if (!kvm_request_guest_time_update(vcpu))
  2380. continue;
  2381. if (vcpu->cpu != smp_processor_id())
  2382. send_ipi++;
  2383. }
  2384. }
  2385. spin_unlock(&kvm_lock);
  2386. if (freq->old < freq->new && send_ipi) {
  2387. /*
  2388. * We upscale the frequency. Must make the guest
  2389. * doesn't see old kvmclock values while running with
  2390. * the new frequency, otherwise we risk the guest sees
  2391. * time go backwards.
  2392. *
  2393. * In case we update the frequency for another cpu
  2394. * (which might be in guest context) send an interrupt
  2395. * to kick the cpu out of guest context. Next time
  2396. * guest context is entered kvmclock will be updated,
  2397. * so the guest will not see stale values.
  2398. */
  2399. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  2400. }
  2401. return 0;
  2402. }
  2403. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  2404. .notifier_call = kvmclock_cpufreq_notifier
  2405. };
  2406. int kvm_arch_init(void *opaque)
  2407. {
  2408. int r, cpu;
  2409. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2410. if (kvm_x86_ops) {
  2411. printk(KERN_ERR "kvm: already loaded the other module\n");
  2412. r = -EEXIST;
  2413. goto out;
  2414. }
  2415. if (!ops->cpu_has_kvm_support()) {
  2416. printk(KERN_ERR "kvm: no hardware support\n");
  2417. r = -EOPNOTSUPP;
  2418. goto out;
  2419. }
  2420. if (ops->disabled_by_bios()) {
  2421. printk(KERN_ERR "kvm: disabled by bios\n");
  2422. r = -EOPNOTSUPP;
  2423. goto out;
  2424. }
  2425. r = kvm_mmu_module_init();
  2426. if (r)
  2427. goto out;
  2428. kvm_init_msr_list();
  2429. kvm_x86_ops = ops;
  2430. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2431. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2432. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2433. PT_DIRTY_MASK, PT64_NX_MASK, 0, 0);
  2434. for_each_possible_cpu(cpu)
  2435. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  2436. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  2437. tsc_khz_ref = tsc_khz;
  2438. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  2439. CPUFREQ_TRANSITION_NOTIFIER);
  2440. }
  2441. return 0;
  2442. out:
  2443. return r;
  2444. }
  2445. void kvm_arch_exit(void)
  2446. {
  2447. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  2448. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  2449. CPUFREQ_TRANSITION_NOTIFIER);
  2450. kvm_x86_ops = NULL;
  2451. kvm_mmu_module_exit();
  2452. }
  2453. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2454. {
  2455. ++vcpu->stat.halt_exits;
  2456. KVMTRACE_0D(HLT, vcpu, handler);
  2457. if (irqchip_in_kernel(vcpu->kvm)) {
  2458. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2459. return 1;
  2460. } else {
  2461. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2462. return 0;
  2463. }
  2464. }
  2465. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2466. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2467. unsigned long a1)
  2468. {
  2469. if (is_long_mode(vcpu))
  2470. return a0;
  2471. else
  2472. return a0 | ((gpa_t)a1 << 32);
  2473. }
  2474. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2475. {
  2476. unsigned long nr, a0, a1, a2, a3, ret;
  2477. int r = 1;
  2478. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2479. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2480. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2481. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2482. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2483. KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
  2484. if (!is_long_mode(vcpu)) {
  2485. nr &= 0xFFFFFFFF;
  2486. a0 &= 0xFFFFFFFF;
  2487. a1 &= 0xFFFFFFFF;
  2488. a2 &= 0xFFFFFFFF;
  2489. a3 &= 0xFFFFFFFF;
  2490. }
  2491. switch (nr) {
  2492. case KVM_HC_VAPIC_POLL_IRQ:
  2493. ret = 0;
  2494. break;
  2495. case KVM_HC_MMU_OP:
  2496. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2497. break;
  2498. default:
  2499. ret = -KVM_ENOSYS;
  2500. break;
  2501. }
  2502. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  2503. ++vcpu->stat.hypercalls;
  2504. return r;
  2505. }
  2506. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2507. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2508. {
  2509. char instruction[3];
  2510. int ret = 0;
  2511. unsigned long rip = kvm_rip_read(vcpu);
  2512. /*
  2513. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2514. * to ensure that the updated hypercall appears atomically across all
  2515. * VCPUs.
  2516. */
  2517. kvm_mmu_zap_all(vcpu->kvm);
  2518. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2519. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  2520. != X86EMUL_CONTINUE)
  2521. ret = -EFAULT;
  2522. return ret;
  2523. }
  2524. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2525. {
  2526. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2527. }
  2528. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2529. {
  2530. struct descriptor_table dt = { limit, base };
  2531. kvm_x86_ops->set_gdt(vcpu, &dt);
  2532. }
  2533. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2534. {
  2535. struct descriptor_table dt = { limit, base };
  2536. kvm_x86_ops->set_idt(vcpu, &dt);
  2537. }
  2538. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2539. unsigned long *rflags)
  2540. {
  2541. kvm_lmsw(vcpu, msw);
  2542. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2543. }
  2544. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2545. {
  2546. unsigned long value;
  2547. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2548. switch (cr) {
  2549. case 0:
  2550. value = vcpu->arch.cr0;
  2551. break;
  2552. case 2:
  2553. value = vcpu->arch.cr2;
  2554. break;
  2555. case 3:
  2556. value = vcpu->arch.cr3;
  2557. break;
  2558. case 4:
  2559. value = vcpu->arch.cr4;
  2560. break;
  2561. case 8:
  2562. value = kvm_get_cr8(vcpu);
  2563. break;
  2564. default:
  2565. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2566. return 0;
  2567. }
  2568. KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
  2569. (u32)((u64)value >> 32), handler);
  2570. return value;
  2571. }
  2572. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2573. unsigned long *rflags)
  2574. {
  2575. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
  2576. (u32)((u64)val >> 32), handler);
  2577. switch (cr) {
  2578. case 0:
  2579. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2580. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2581. break;
  2582. case 2:
  2583. vcpu->arch.cr2 = val;
  2584. break;
  2585. case 3:
  2586. kvm_set_cr3(vcpu, val);
  2587. break;
  2588. case 4:
  2589. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2590. break;
  2591. case 8:
  2592. kvm_set_cr8(vcpu, val & 0xfUL);
  2593. break;
  2594. default:
  2595. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2596. }
  2597. }
  2598. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2599. {
  2600. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2601. int j, nent = vcpu->arch.cpuid_nent;
  2602. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2603. /* when no next entry is found, the current entry[i] is reselected */
  2604. for (j = i + 1; ; j = (j + 1) % nent) {
  2605. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2606. if (ej->function == e->function) {
  2607. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2608. return j;
  2609. }
  2610. }
  2611. return 0; /* silence gcc, even though control never reaches here */
  2612. }
  2613. /* find an entry with matching function, matching index (if needed), and that
  2614. * should be read next (if it's stateful) */
  2615. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2616. u32 function, u32 index)
  2617. {
  2618. if (e->function != function)
  2619. return 0;
  2620. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2621. return 0;
  2622. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2623. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2624. return 0;
  2625. return 1;
  2626. }
  2627. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  2628. u32 function, u32 index)
  2629. {
  2630. int i;
  2631. struct kvm_cpuid_entry2 *best = NULL;
  2632. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2633. struct kvm_cpuid_entry2 *e;
  2634. e = &vcpu->arch.cpuid_entries[i];
  2635. if (is_matching_cpuid_entry(e, function, index)) {
  2636. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2637. move_to_next_stateful_cpuid_entry(vcpu, i);
  2638. best = e;
  2639. break;
  2640. }
  2641. /*
  2642. * Both basic or both extended?
  2643. */
  2644. if (((e->function ^ function) & 0x80000000) == 0)
  2645. if (!best || e->function > best->function)
  2646. best = e;
  2647. }
  2648. return best;
  2649. }
  2650. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  2651. {
  2652. struct kvm_cpuid_entry2 *best;
  2653. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  2654. if (best)
  2655. return best->eax & 0xff;
  2656. return 36;
  2657. }
  2658. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2659. {
  2660. u32 function, index;
  2661. struct kvm_cpuid_entry2 *best;
  2662. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2663. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2664. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  2665. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  2666. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  2667. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  2668. best = kvm_find_cpuid_entry(vcpu, function, index);
  2669. if (best) {
  2670. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  2671. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  2672. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  2673. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  2674. }
  2675. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2676. KVMTRACE_5D(CPUID, vcpu, function,
  2677. (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
  2678. (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
  2679. (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
  2680. (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
  2681. }
  2682. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2683. /*
  2684. * Check if userspace requested an interrupt window, and that the
  2685. * interrupt window is open.
  2686. *
  2687. * No need to exit to userspace if we already have an interrupt queued.
  2688. */
  2689. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2690. struct kvm_run *kvm_run)
  2691. {
  2692. return (!vcpu->arch.irq_summary &&
  2693. kvm_run->request_interrupt_window &&
  2694. vcpu->arch.interrupt_window_open &&
  2695. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  2696. }
  2697. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2698. struct kvm_run *kvm_run)
  2699. {
  2700. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2701. kvm_run->cr8 = kvm_get_cr8(vcpu);
  2702. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2703. if (irqchip_in_kernel(vcpu->kvm))
  2704. kvm_run->ready_for_interrupt_injection = 1;
  2705. else
  2706. kvm_run->ready_for_interrupt_injection =
  2707. (vcpu->arch.interrupt_window_open &&
  2708. vcpu->arch.irq_summary == 0);
  2709. }
  2710. static void vapic_enter(struct kvm_vcpu *vcpu)
  2711. {
  2712. struct kvm_lapic *apic = vcpu->arch.apic;
  2713. struct page *page;
  2714. if (!apic || !apic->vapic_addr)
  2715. return;
  2716. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2717. vcpu->arch.apic->vapic_page = page;
  2718. }
  2719. static void vapic_exit(struct kvm_vcpu *vcpu)
  2720. {
  2721. struct kvm_lapic *apic = vcpu->arch.apic;
  2722. if (!apic || !apic->vapic_addr)
  2723. return;
  2724. down_read(&vcpu->kvm->slots_lock);
  2725. kvm_release_page_dirty(apic->vapic_page);
  2726. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2727. up_read(&vcpu->kvm->slots_lock);
  2728. }
  2729. static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2730. {
  2731. int r;
  2732. if (vcpu->requests)
  2733. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  2734. kvm_mmu_unload(vcpu);
  2735. r = kvm_mmu_reload(vcpu);
  2736. if (unlikely(r))
  2737. goto out;
  2738. if (vcpu->requests) {
  2739. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  2740. __kvm_migrate_timers(vcpu);
  2741. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  2742. kvm_write_guest_time(vcpu);
  2743. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  2744. kvm_mmu_sync_roots(vcpu);
  2745. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  2746. kvm_x86_ops->tlb_flush(vcpu);
  2747. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  2748. &vcpu->requests)) {
  2749. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  2750. r = 0;
  2751. goto out;
  2752. }
  2753. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  2754. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2755. r = 0;
  2756. goto out;
  2757. }
  2758. }
  2759. preempt_disable();
  2760. kvm_x86_ops->prepare_guest_switch(vcpu);
  2761. kvm_load_guest_fpu(vcpu);
  2762. local_irq_disable();
  2763. if (vcpu->requests || need_resched() || signal_pending(current)) {
  2764. local_irq_enable();
  2765. preempt_enable();
  2766. r = 1;
  2767. goto out;
  2768. }
  2769. vcpu->guest_mode = 1;
  2770. /*
  2771. * Make sure that guest_mode assignment won't happen after
  2772. * testing the pending IRQ vector bitmap.
  2773. */
  2774. smp_wmb();
  2775. if (vcpu->arch.exception.pending)
  2776. __queue_exception(vcpu);
  2777. else if (irqchip_in_kernel(vcpu->kvm))
  2778. kvm_x86_ops->inject_pending_irq(vcpu);
  2779. else
  2780. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  2781. kvm_lapic_sync_to_vapic(vcpu);
  2782. up_read(&vcpu->kvm->slots_lock);
  2783. kvm_guest_enter();
  2784. get_debugreg(vcpu->arch.host_dr6, 6);
  2785. get_debugreg(vcpu->arch.host_dr7, 7);
  2786. if (unlikely(vcpu->arch.switch_db_regs)) {
  2787. get_debugreg(vcpu->arch.host_db[0], 0);
  2788. get_debugreg(vcpu->arch.host_db[1], 1);
  2789. get_debugreg(vcpu->arch.host_db[2], 2);
  2790. get_debugreg(vcpu->arch.host_db[3], 3);
  2791. set_debugreg(0, 7);
  2792. set_debugreg(vcpu->arch.eff_db[0], 0);
  2793. set_debugreg(vcpu->arch.eff_db[1], 1);
  2794. set_debugreg(vcpu->arch.eff_db[2], 2);
  2795. set_debugreg(vcpu->arch.eff_db[3], 3);
  2796. }
  2797. KVMTRACE_0D(VMENTRY, vcpu, entryexit);
  2798. kvm_x86_ops->run(vcpu, kvm_run);
  2799. if (unlikely(vcpu->arch.switch_db_regs)) {
  2800. set_debugreg(0, 7);
  2801. set_debugreg(vcpu->arch.host_db[0], 0);
  2802. set_debugreg(vcpu->arch.host_db[1], 1);
  2803. set_debugreg(vcpu->arch.host_db[2], 2);
  2804. set_debugreg(vcpu->arch.host_db[3], 3);
  2805. }
  2806. set_debugreg(vcpu->arch.host_dr6, 6);
  2807. set_debugreg(vcpu->arch.host_dr7, 7);
  2808. vcpu->guest_mode = 0;
  2809. local_irq_enable();
  2810. ++vcpu->stat.exits;
  2811. /*
  2812. * We must have an instruction between local_irq_enable() and
  2813. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  2814. * the interrupt shadow. The stat.exits increment will do nicely.
  2815. * But we need to prevent reordering, hence this barrier():
  2816. */
  2817. barrier();
  2818. kvm_guest_exit();
  2819. preempt_enable();
  2820. down_read(&vcpu->kvm->slots_lock);
  2821. /*
  2822. * Profile KVM exit RIPs:
  2823. */
  2824. if (unlikely(prof_on == KVM_PROFILING)) {
  2825. unsigned long rip = kvm_rip_read(vcpu);
  2826. profile_hit(KVM_PROFILING, (void *)rip);
  2827. }
  2828. if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
  2829. vcpu->arch.exception.pending = false;
  2830. kvm_lapic_sync_from_vapic(vcpu);
  2831. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  2832. out:
  2833. return r;
  2834. }
  2835. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2836. {
  2837. int r;
  2838. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  2839. pr_debug("vcpu %d received sipi with vector # %x\n",
  2840. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  2841. kvm_lapic_reset(vcpu);
  2842. r = kvm_arch_vcpu_reset(vcpu);
  2843. if (r)
  2844. return r;
  2845. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  2846. }
  2847. down_read(&vcpu->kvm->slots_lock);
  2848. vapic_enter(vcpu);
  2849. r = 1;
  2850. while (r > 0) {
  2851. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  2852. r = vcpu_enter_guest(vcpu, kvm_run);
  2853. else {
  2854. up_read(&vcpu->kvm->slots_lock);
  2855. kvm_vcpu_block(vcpu);
  2856. down_read(&vcpu->kvm->slots_lock);
  2857. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  2858. {
  2859. switch(vcpu->arch.mp_state) {
  2860. case KVM_MP_STATE_HALTED:
  2861. vcpu->arch.mp_state =
  2862. KVM_MP_STATE_RUNNABLE;
  2863. case KVM_MP_STATE_RUNNABLE:
  2864. break;
  2865. case KVM_MP_STATE_SIPI_RECEIVED:
  2866. default:
  2867. r = -EINTR;
  2868. break;
  2869. }
  2870. }
  2871. }
  2872. if (r <= 0)
  2873. break;
  2874. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  2875. if (kvm_cpu_has_pending_timer(vcpu))
  2876. kvm_inject_pending_timer_irqs(vcpu);
  2877. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  2878. r = -EINTR;
  2879. kvm_run->exit_reason = KVM_EXIT_INTR;
  2880. ++vcpu->stat.request_irq_exits;
  2881. }
  2882. if (signal_pending(current)) {
  2883. r = -EINTR;
  2884. kvm_run->exit_reason = KVM_EXIT_INTR;
  2885. ++vcpu->stat.signal_exits;
  2886. }
  2887. if (need_resched()) {
  2888. up_read(&vcpu->kvm->slots_lock);
  2889. kvm_resched(vcpu);
  2890. down_read(&vcpu->kvm->slots_lock);
  2891. }
  2892. }
  2893. up_read(&vcpu->kvm->slots_lock);
  2894. post_kvm_run_save(vcpu, kvm_run);
  2895. vapic_exit(vcpu);
  2896. return r;
  2897. }
  2898. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2899. {
  2900. int r;
  2901. sigset_t sigsaved;
  2902. vcpu_load(vcpu);
  2903. if (vcpu->sigset_active)
  2904. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  2905. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  2906. kvm_vcpu_block(vcpu);
  2907. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  2908. r = -EAGAIN;
  2909. goto out;
  2910. }
  2911. /* re-sync apic's tpr */
  2912. if (!irqchip_in_kernel(vcpu->kvm))
  2913. kvm_set_cr8(vcpu, kvm_run->cr8);
  2914. if (vcpu->arch.pio.cur_count) {
  2915. r = complete_pio(vcpu);
  2916. if (r)
  2917. goto out;
  2918. }
  2919. #if CONFIG_HAS_IOMEM
  2920. if (vcpu->mmio_needed) {
  2921. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  2922. vcpu->mmio_read_completed = 1;
  2923. vcpu->mmio_needed = 0;
  2924. down_read(&vcpu->kvm->slots_lock);
  2925. r = emulate_instruction(vcpu, kvm_run,
  2926. vcpu->arch.mmio_fault_cr2, 0,
  2927. EMULTYPE_NO_DECODE);
  2928. up_read(&vcpu->kvm->slots_lock);
  2929. if (r == EMULATE_DO_MMIO) {
  2930. /*
  2931. * Read-modify-write. Back to userspace.
  2932. */
  2933. r = 0;
  2934. goto out;
  2935. }
  2936. }
  2937. #endif
  2938. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  2939. kvm_register_write(vcpu, VCPU_REGS_RAX,
  2940. kvm_run->hypercall.ret);
  2941. r = __vcpu_run(vcpu, kvm_run);
  2942. out:
  2943. if (vcpu->sigset_active)
  2944. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  2945. vcpu_put(vcpu);
  2946. return r;
  2947. }
  2948. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2949. {
  2950. vcpu_load(vcpu);
  2951. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2952. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2953. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2954. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2955. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2956. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2957. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  2958. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  2959. #ifdef CONFIG_X86_64
  2960. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  2961. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  2962. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  2963. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  2964. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  2965. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  2966. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  2967. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  2968. #endif
  2969. regs->rip = kvm_rip_read(vcpu);
  2970. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  2971. /*
  2972. * Don't leak debug flags in case they were set for guest debugging
  2973. */
  2974. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  2975. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  2976. vcpu_put(vcpu);
  2977. return 0;
  2978. }
  2979. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2980. {
  2981. vcpu_load(vcpu);
  2982. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  2983. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  2984. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  2985. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  2986. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  2987. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  2988. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  2989. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  2990. #ifdef CONFIG_X86_64
  2991. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  2992. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  2993. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  2994. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  2995. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  2996. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  2997. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  2998. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  2999. #endif
  3000. kvm_rip_write(vcpu, regs->rip);
  3001. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  3002. vcpu->arch.exception.pending = false;
  3003. vcpu_put(vcpu);
  3004. return 0;
  3005. }
  3006. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3007. struct kvm_segment *var, int seg)
  3008. {
  3009. kvm_x86_ops->get_segment(vcpu, var, seg);
  3010. }
  3011. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3012. {
  3013. struct kvm_segment cs;
  3014. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3015. *db = cs.db;
  3016. *l = cs.l;
  3017. }
  3018. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  3019. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  3020. struct kvm_sregs *sregs)
  3021. {
  3022. struct descriptor_table dt;
  3023. int pending_vec;
  3024. vcpu_load(vcpu);
  3025. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3026. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3027. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3028. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3029. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3030. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3031. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3032. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3033. kvm_x86_ops->get_idt(vcpu, &dt);
  3034. sregs->idt.limit = dt.limit;
  3035. sregs->idt.base = dt.base;
  3036. kvm_x86_ops->get_gdt(vcpu, &dt);
  3037. sregs->gdt.limit = dt.limit;
  3038. sregs->gdt.base = dt.base;
  3039. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3040. sregs->cr0 = vcpu->arch.cr0;
  3041. sregs->cr2 = vcpu->arch.cr2;
  3042. sregs->cr3 = vcpu->arch.cr3;
  3043. sregs->cr4 = vcpu->arch.cr4;
  3044. sregs->cr8 = kvm_get_cr8(vcpu);
  3045. sregs->efer = vcpu->arch.shadow_efer;
  3046. sregs->apic_base = kvm_get_apic_base(vcpu);
  3047. if (irqchip_in_kernel(vcpu->kvm)) {
  3048. memset(sregs->interrupt_bitmap, 0,
  3049. sizeof sregs->interrupt_bitmap);
  3050. pending_vec = kvm_x86_ops->get_irq(vcpu);
  3051. if (pending_vec >= 0)
  3052. set_bit(pending_vec,
  3053. (unsigned long *)sregs->interrupt_bitmap);
  3054. } else
  3055. memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
  3056. sizeof sregs->interrupt_bitmap);
  3057. vcpu_put(vcpu);
  3058. return 0;
  3059. }
  3060. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  3061. struct kvm_mp_state *mp_state)
  3062. {
  3063. vcpu_load(vcpu);
  3064. mp_state->mp_state = vcpu->arch.mp_state;
  3065. vcpu_put(vcpu);
  3066. return 0;
  3067. }
  3068. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  3069. struct kvm_mp_state *mp_state)
  3070. {
  3071. vcpu_load(vcpu);
  3072. vcpu->arch.mp_state = mp_state->mp_state;
  3073. vcpu_put(vcpu);
  3074. return 0;
  3075. }
  3076. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3077. struct kvm_segment *var, int seg)
  3078. {
  3079. kvm_x86_ops->set_segment(vcpu, var, seg);
  3080. }
  3081. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  3082. struct kvm_segment *kvm_desct)
  3083. {
  3084. kvm_desct->base = seg_desc->base0;
  3085. kvm_desct->base |= seg_desc->base1 << 16;
  3086. kvm_desct->base |= seg_desc->base2 << 24;
  3087. kvm_desct->limit = seg_desc->limit0;
  3088. kvm_desct->limit |= seg_desc->limit << 16;
  3089. if (seg_desc->g) {
  3090. kvm_desct->limit <<= 12;
  3091. kvm_desct->limit |= 0xfff;
  3092. }
  3093. kvm_desct->selector = selector;
  3094. kvm_desct->type = seg_desc->type;
  3095. kvm_desct->present = seg_desc->p;
  3096. kvm_desct->dpl = seg_desc->dpl;
  3097. kvm_desct->db = seg_desc->d;
  3098. kvm_desct->s = seg_desc->s;
  3099. kvm_desct->l = seg_desc->l;
  3100. kvm_desct->g = seg_desc->g;
  3101. kvm_desct->avl = seg_desc->avl;
  3102. if (!selector)
  3103. kvm_desct->unusable = 1;
  3104. else
  3105. kvm_desct->unusable = 0;
  3106. kvm_desct->padding = 0;
  3107. }
  3108. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  3109. u16 selector,
  3110. struct descriptor_table *dtable)
  3111. {
  3112. if (selector & 1 << 2) {
  3113. struct kvm_segment kvm_seg;
  3114. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  3115. if (kvm_seg.unusable)
  3116. dtable->limit = 0;
  3117. else
  3118. dtable->limit = kvm_seg.limit;
  3119. dtable->base = kvm_seg.base;
  3120. }
  3121. else
  3122. kvm_x86_ops->get_gdt(vcpu, dtable);
  3123. }
  3124. /* allowed just for 8 bytes segments */
  3125. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3126. struct desc_struct *seg_desc)
  3127. {
  3128. gpa_t gpa;
  3129. struct descriptor_table dtable;
  3130. u16 index = selector >> 3;
  3131. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3132. if (dtable.limit < index * 8 + 7) {
  3133. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  3134. return 1;
  3135. }
  3136. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3137. gpa += index * 8;
  3138. return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
  3139. }
  3140. /* allowed just for 8 bytes segments */
  3141. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3142. struct desc_struct *seg_desc)
  3143. {
  3144. gpa_t gpa;
  3145. struct descriptor_table dtable;
  3146. u16 index = selector >> 3;
  3147. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3148. if (dtable.limit < index * 8 + 7)
  3149. return 1;
  3150. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3151. gpa += index * 8;
  3152. return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
  3153. }
  3154. static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
  3155. struct desc_struct *seg_desc)
  3156. {
  3157. u32 base_addr;
  3158. base_addr = seg_desc->base0;
  3159. base_addr |= (seg_desc->base1 << 16);
  3160. base_addr |= (seg_desc->base2 << 24);
  3161. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3162. }
  3163. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3164. {
  3165. struct kvm_segment kvm_seg;
  3166. kvm_get_segment(vcpu, &kvm_seg, seg);
  3167. return kvm_seg.selector;
  3168. }
  3169. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3170. u16 selector,
  3171. struct kvm_segment *kvm_seg)
  3172. {
  3173. struct desc_struct seg_desc;
  3174. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3175. return 1;
  3176. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3177. return 0;
  3178. }
  3179. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3180. {
  3181. struct kvm_segment segvar = {
  3182. .base = selector << 4,
  3183. .limit = 0xffff,
  3184. .selector = selector,
  3185. .type = 3,
  3186. .present = 1,
  3187. .dpl = 3,
  3188. .db = 0,
  3189. .s = 1,
  3190. .l = 0,
  3191. .g = 0,
  3192. .avl = 0,
  3193. .unusable = 0,
  3194. };
  3195. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3196. return 0;
  3197. }
  3198. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3199. int type_bits, int seg)
  3200. {
  3201. struct kvm_segment kvm_seg;
  3202. if (!(vcpu->arch.cr0 & X86_CR0_PE))
  3203. return kvm_load_realmode_segment(vcpu, selector, seg);
  3204. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3205. return 1;
  3206. kvm_seg.type |= type_bits;
  3207. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3208. seg != VCPU_SREG_LDTR)
  3209. if (!kvm_seg.s)
  3210. kvm_seg.unusable = 1;
  3211. kvm_set_segment(vcpu, &kvm_seg, seg);
  3212. return 0;
  3213. }
  3214. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3215. struct tss_segment_32 *tss)
  3216. {
  3217. tss->cr3 = vcpu->arch.cr3;
  3218. tss->eip = kvm_rip_read(vcpu);
  3219. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  3220. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3221. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3222. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3223. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3224. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3225. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3226. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3227. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3228. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3229. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3230. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3231. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3232. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3233. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3234. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3235. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3236. }
  3237. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3238. struct tss_segment_32 *tss)
  3239. {
  3240. kvm_set_cr3(vcpu, tss->cr3);
  3241. kvm_rip_write(vcpu, tss->eip);
  3242. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  3243. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3244. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3245. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3246. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3247. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3248. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3249. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3250. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3251. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3252. return 1;
  3253. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3254. return 1;
  3255. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3256. return 1;
  3257. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3258. return 1;
  3259. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3260. return 1;
  3261. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3262. return 1;
  3263. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3264. return 1;
  3265. return 0;
  3266. }
  3267. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3268. struct tss_segment_16 *tss)
  3269. {
  3270. tss->ip = kvm_rip_read(vcpu);
  3271. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  3272. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3273. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3274. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3275. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3276. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3277. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3278. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3279. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3280. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3281. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3282. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3283. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3284. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3285. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3286. }
  3287. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3288. struct tss_segment_16 *tss)
  3289. {
  3290. kvm_rip_write(vcpu, tss->ip);
  3291. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  3292. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3293. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3294. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3295. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3296. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3297. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3298. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3299. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3300. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3301. return 1;
  3302. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3303. return 1;
  3304. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3305. return 1;
  3306. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3307. return 1;
  3308. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3309. return 1;
  3310. return 0;
  3311. }
  3312. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3313. u32 old_tss_base,
  3314. struct desc_struct *nseg_desc)
  3315. {
  3316. struct tss_segment_16 tss_segment_16;
  3317. int ret = 0;
  3318. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3319. sizeof tss_segment_16))
  3320. goto out;
  3321. save_state_to_tss16(vcpu, &tss_segment_16);
  3322. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3323. sizeof tss_segment_16))
  3324. goto out;
  3325. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3326. &tss_segment_16, sizeof tss_segment_16))
  3327. goto out;
  3328. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3329. goto out;
  3330. ret = 1;
  3331. out:
  3332. return ret;
  3333. }
  3334. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3335. u32 old_tss_base,
  3336. struct desc_struct *nseg_desc)
  3337. {
  3338. struct tss_segment_32 tss_segment_32;
  3339. int ret = 0;
  3340. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3341. sizeof tss_segment_32))
  3342. goto out;
  3343. save_state_to_tss32(vcpu, &tss_segment_32);
  3344. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3345. sizeof tss_segment_32))
  3346. goto out;
  3347. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3348. &tss_segment_32, sizeof tss_segment_32))
  3349. goto out;
  3350. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3351. goto out;
  3352. ret = 1;
  3353. out:
  3354. return ret;
  3355. }
  3356. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3357. {
  3358. struct kvm_segment tr_seg;
  3359. struct desc_struct cseg_desc;
  3360. struct desc_struct nseg_desc;
  3361. int ret = 0;
  3362. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3363. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3364. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3365. /* FIXME: Handle errors. Failure to read either TSS or their
  3366. * descriptors should generate a pagefault.
  3367. */
  3368. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3369. goto out;
  3370. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3371. goto out;
  3372. if (reason != TASK_SWITCH_IRET) {
  3373. int cpl;
  3374. cpl = kvm_x86_ops->get_cpl(vcpu);
  3375. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3376. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3377. return 1;
  3378. }
  3379. }
  3380. if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
  3381. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3382. return 1;
  3383. }
  3384. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3385. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3386. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3387. }
  3388. if (reason == TASK_SWITCH_IRET) {
  3389. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3390. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3391. }
  3392. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3393. if (nseg_desc.type & 8)
  3394. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
  3395. &nseg_desc);
  3396. else
  3397. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
  3398. &nseg_desc);
  3399. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3400. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3401. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3402. }
  3403. if (reason != TASK_SWITCH_IRET) {
  3404. nseg_desc.type |= (1 << 1);
  3405. save_guest_segment_descriptor(vcpu, tss_selector,
  3406. &nseg_desc);
  3407. }
  3408. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3409. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3410. tr_seg.type = 11;
  3411. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3412. out:
  3413. return ret;
  3414. }
  3415. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3416. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3417. struct kvm_sregs *sregs)
  3418. {
  3419. int mmu_reset_needed = 0;
  3420. int i, pending_vec, max_bits;
  3421. struct descriptor_table dt;
  3422. vcpu_load(vcpu);
  3423. dt.limit = sregs->idt.limit;
  3424. dt.base = sregs->idt.base;
  3425. kvm_x86_ops->set_idt(vcpu, &dt);
  3426. dt.limit = sregs->gdt.limit;
  3427. dt.base = sregs->gdt.base;
  3428. kvm_x86_ops->set_gdt(vcpu, &dt);
  3429. vcpu->arch.cr2 = sregs->cr2;
  3430. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3431. vcpu->arch.cr3 = sregs->cr3;
  3432. kvm_set_cr8(vcpu, sregs->cr8);
  3433. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3434. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3435. kvm_set_apic_base(vcpu, sregs->apic_base);
  3436. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3437. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3438. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3439. vcpu->arch.cr0 = sregs->cr0;
  3440. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3441. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3442. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3443. load_pdptrs(vcpu, vcpu->arch.cr3);
  3444. if (mmu_reset_needed)
  3445. kvm_mmu_reset_context(vcpu);
  3446. if (!irqchip_in_kernel(vcpu->kvm)) {
  3447. memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
  3448. sizeof vcpu->arch.irq_pending);
  3449. vcpu->arch.irq_summary = 0;
  3450. for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
  3451. if (vcpu->arch.irq_pending[i])
  3452. __set_bit(i, &vcpu->arch.irq_summary);
  3453. } else {
  3454. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3455. pending_vec = find_first_bit(
  3456. (const unsigned long *)sregs->interrupt_bitmap,
  3457. max_bits);
  3458. /* Only pending external irq is handled here */
  3459. if (pending_vec < max_bits) {
  3460. kvm_x86_ops->set_irq(vcpu, pending_vec);
  3461. pr_debug("Set back pending irq %d\n",
  3462. pending_vec);
  3463. }
  3464. kvm_pic_clear_isr_ack(vcpu->kvm);
  3465. }
  3466. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3467. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3468. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3469. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3470. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3471. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3472. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3473. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3474. /* Older userspace won't unhalt the vcpu on reset. */
  3475. if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
  3476. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  3477. !(vcpu->arch.cr0 & X86_CR0_PE))
  3478. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3479. vcpu_put(vcpu);
  3480. return 0;
  3481. }
  3482. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  3483. struct kvm_guest_debug *dbg)
  3484. {
  3485. int i, r;
  3486. vcpu_load(vcpu);
  3487. if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
  3488. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
  3489. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  3490. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  3491. vcpu->arch.switch_db_regs =
  3492. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  3493. } else {
  3494. for (i = 0; i < KVM_NR_DB_REGS; i++)
  3495. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  3496. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  3497. }
  3498. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3499. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  3500. kvm_queue_exception(vcpu, DB_VECTOR);
  3501. else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
  3502. kvm_queue_exception(vcpu, BP_VECTOR);
  3503. vcpu_put(vcpu);
  3504. return r;
  3505. }
  3506. /*
  3507. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3508. * we have asm/x86/processor.h
  3509. */
  3510. struct fxsave {
  3511. u16 cwd;
  3512. u16 swd;
  3513. u16 twd;
  3514. u16 fop;
  3515. u64 rip;
  3516. u64 rdp;
  3517. u32 mxcsr;
  3518. u32 mxcsr_mask;
  3519. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3520. #ifdef CONFIG_X86_64
  3521. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3522. #else
  3523. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3524. #endif
  3525. };
  3526. /*
  3527. * Translate a guest virtual address to a guest physical address.
  3528. */
  3529. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3530. struct kvm_translation *tr)
  3531. {
  3532. unsigned long vaddr = tr->linear_address;
  3533. gpa_t gpa;
  3534. vcpu_load(vcpu);
  3535. down_read(&vcpu->kvm->slots_lock);
  3536. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3537. up_read(&vcpu->kvm->slots_lock);
  3538. tr->physical_address = gpa;
  3539. tr->valid = gpa != UNMAPPED_GVA;
  3540. tr->writeable = 1;
  3541. tr->usermode = 0;
  3542. vcpu_put(vcpu);
  3543. return 0;
  3544. }
  3545. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3546. {
  3547. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3548. vcpu_load(vcpu);
  3549. memcpy(fpu->fpr, fxsave->st_space, 128);
  3550. fpu->fcw = fxsave->cwd;
  3551. fpu->fsw = fxsave->swd;
  3552. fpu->ftwx = fxsave->twd;
  3553. fpu->last_opcode = fxsave->fop;
  3554. fpu->last_ip = fxsave->rip;
  3555. fpu->last_dp = fxsave->rdp;
  3556. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3557. vcpu_put(vcpu);
  3558. return 0;
  3559. }
  3560. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3561. {
  3562. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3563. vcpu_load(vcpu);
  3564. memcpy(fxsave->st_space, fpu->fpr, 128);
  3565. fxsave->cwd = fpu->fcw;
  3566. fxsave->swd = fpu->fsw;
  3567. fxsave->twd = fpu->ftwx;
  3568. fxsave->fop = fpu->last_opcode;
  3569. fxsave->rip = fpu->last_ip;
  3570. fxsave->rdp = fpu->last_dp;
  3571. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3572. vcpu_put(vcpu);
  3573. return 0;
  3574. }
  3575. void fx_init(struct kvm_vcpu *vcpu)
  3576. {
  3577. unsigned after_mxcsr_mask;
  3578. /*
  3579. * Touch the fpu the first time in non atomic context as if
  3580. * this is the first fpu instruction the exception handler
  3581. * will fire before the instruction returns and it'll have to
  3582. * allocate ram with GFP_KERNEL.
  3583. */
  3584. if (!used_math())
  3585. kvm_fx_save(&vcpu->arch.host_fx_image);
  3586. /* Initialize guest FPU by resetting ours and saving into guest's */
  3587. preempt_disable();
  3588. kvm_fx_save(&vcpu->arch.host_fx_image);
  3589. kvm_fx_finit();
  3590. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3591. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3592. preempt_enable();
  3593. vcpu->arch.cr0 |= X86_CR0_ET;
  3594. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3595. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3596. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3597. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3598. }
  3599. EXPORT_SYMBOL_GPL(fx_init);
  3600. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  3601. {
  3602. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  3603. return;
  3604. vcpu->guest_fpu_loaded = 1;
  3605. kvm_fx_save(&vcpu->arch.host_fx_image);
  3606. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  3607. }
  3608. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  3609. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  3610. {
  3611. if (!vcpu->guest_fpu_loaded)
  3612. return;
  3613. vcpu->guest_fpu_loaded = 0;
  3614. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3615. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3616. ++vcpu->stat.fpu_reload;
  3617. }
  3618. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  3619. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  3620. {
  3621. if (vcpu->arch.time_page) {
  3622. kvm_release_page_dirty(vcpu->arch.time_page);
  3623. vcpu->arch.time_page = NULL;
  3624. }
  3625. kvm_x86_ops->vcpu_free(vcpu);
  3626. }
  3627. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  3628. unsigned int id)
  3629. {
  3630. return kvm_x86_ops->vcpu_create(kvm, id);
  3631. }
  3632. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  3633. {
  3634. int r;
  3635. /* We do fxsave: this must be aligned. */
  3636. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  3637. vcpu->arch.mtrr_state.have_fixed = 1;
  3638. vcpu_load(vcpu);
  3639. r = kvm_arch_vcpu_reset(vcpu);
  3640. if (r == 0)
  3641. r = kvm_mmu_setup(vcpu);
  3642. vcpu_put(vcpu);
  3643. if (r < 0)
  3644. goto free_vcpu;
  3645. return 0;
  3646. free_vcpu:
  3647. kvm_x86_ops->vcpu_free(vcpu);
  3648. return r;
  3649. }
  3650. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  3651. {
  3652. vcpu_load(vcpu);
  3653. kvm_mmu_unload(vcpu);
  3654. vcpu_put(vcpu);
  3655. kvm_x86_ops->vcpu_free(vcpu);
  3656. }
  3657. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  3658. {
  3659. vcpu->arch.nmi_pending = false;
  3660. vcpu->arch.nmi_injected = false;
  3661. vcpu->arch.switch_db_regs = 0;
  3662. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  3663. vcpu->arch.dr6 = DR6_FIXED_1;
  3664. vcpu->arch.dr7 = DR7_FIXED_1;
  3665. return kvm_x86_ops->vcpu_reset(vcpu);
  3666. }
  3667. void kvm_arch_hardware_enable(void *garbage)
  3668. {
  3669. kvm_x86_ops->hardware_enable(garbage);
  3670. }
  3671. void kvm_arch_hardware_disable(void *garbage)
  3672. {
  3673. kvm_x86_ops->hardware_disable(garbage);
  3674. }
  3675. int kvm_arch_hardware_setup(void)
  3676. {
  3677. return kvm_x86_ops->hardware_setup();
  3678. }
  3679. void kvm_arch_hardware_unsetup(void)
  3680. {
  3681. kvm_x86_ops->hardware_unsetup();
  3682. }
  3683. void kvm_arch_check_processor_compat(void *rtn)
  3684. {
  3685. kvm_x86_ops->check_processor_compatibility(rtn);
  3686. }
  3687. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  3688. {
  3689. struct page *page;
  3690. struct kvm *kvm;
  3691. int r;
  3692. BUG_ON(vcpu->kvm == NULL);
  3693. kvm = vcpu->kvm;
  3694. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3695. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  3696. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3697. else
  3698. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  3699. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3700. if (!page) {
  3701. r = -ENOMEM;
  3702. goto fail;
  3703. }
  3704. vcpu->arch.pio_data = page_address(page);
  3705. r = kvm_mmu_create(vcpu);
  3706. if (r < 0)
  3707. goto fail_free_pio_data;
  3708. if (irqchip_in_kernel(kvm)) {
  3709. r = kvm_create_lapic(vcpu);
  3710. if (r < 0)
  3711. goto fail_mmu_destroy;
  3712. }
  3713. return 0;
  3714. fail_mmu_destroy:
  3715. kvm_mmu_destroy(vcpu);
  3716. fail_free_pio_data:
  3717. free_page((unsigned long)vcpu->arch.pio_data);
  3718. fail:
  3719. return r;
  3720. }
  3721. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  3722. {
  3723. kvm_free_lapic(vcpu);
  3724. down_read(&vcpu->kvm->slots_lock);
  3725. kvm_mmu_destroy(vcpu);
  3726. up_read(&vcpu->kvm->slots_lock);
  3727. free_page((unsigned long)vcpu->arch.pio_data);
  3728. }
  3729. struct kvm *kvm_arch_create_vm(void)
  3730. {
  3731. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  3732. if (!kvm)
  3733. return ERR_PTR(-ENOMEM);
  3734. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  3735. INIT_LIST_HEAD(&kvm->arch.oos_global_pages);
  3736. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  3737. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  3738. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  3739. rdtscll(kvm->arch.vm_init_tsc);
  3740. return kvm;
  3741. }
  3742. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  3743. {
  3744. vcpu_load(vcpu);
  3745. kvm_mmu_unload(vcpu);
  3746. vcpu_put(vcpu);
  3747. }
  3748. static void kvm_free_vcpus(struct kvm *kvm)
  3749. {
  3750. unsigned int i;
  3751. /*
  3752. * Unpin any mmu pages first.
  3753. */
  3754. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  3755. if (kvm->vcpus[i])
  3756. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  3757. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  3758. if (kvm->vcpus[i]) {
  3759. kvm_arch_vcpu_free(kvm->vcpus[i]);
  3760. kvm->vcpus[i] = NULL;
  3761. }
  3762. }
  3763. }
  3764. void kvm_arch_sync_events(struct kvm *kvm)
  3765. {
  3766. kvm_free_all_assigned_devices(kvm);
  3767. }
  3768. void kvm_arch_destroy_vm(struct kvm *kvm)
  3769. {
  3770. kvm_iommu_unmap_guest(kvm);
  3771. kvm_free_pit(kvm);
  3772. kfree(kvm->arch.vpic);
  3773. kfree(kvm->arch.vioapic);
  3774. kvm_free_vcpus(kvm);
  3775. kvm_free_physmem(kvm);
  3776. if (kvm->arch.apic_access_page)
  3777. put_page(kvm->arch.apic_access_page);
  3778. if (kvm->arch.ept_identity_pagetable)
  3779. put_page(kvm->arch.ept_identity_pagetable);
  3780. kfree(kvm);
  3781. }
  3782. int kvm_arch_set_memory_region(struct kvm *kvm,
  3783. struct kvm_userspace_memory_region *mem,
  3784. struct kvm_memory_slot old,
  3785. int user_alloc)
  3786. {
  3787. int npages = mem->memory_size >> PAGE_SHIFT;
  3788. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  3789. /*To keep backward compatibility with older userspace,
  3790. *x86 needs to hanlde !user_alloc case.
  3791. */
  3792. if (!user_alloc) {
  3793. if (npages && !old.rmap) {
  3794. unsigned long userspace_addr;
  3795. down_write(&current->mm->mmap_sem);
  3796. userspace_addr = do_mmap(NULL, 0,
  3797. npages * PAGE_SIZE,
  3798. PROT_READ | PROT_WRITE,
  3799. MAP_PRIVATE | MAP_ANONYMOUS,
  3800. 0);
  3801. up_write(&current->mm->mmap_sem);
  3802. if (IS_ERR((void *)userspace_addr))
  3803. return PTR_ERR((void *)userspace_addr);
  3804. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  3805. spin_lock(&kvm->mmu_lock);
  3806. memslot->userspace_addr = userspace_addr;
  3807. spin_unlock(&kvm->mmu_lock);
  3808. } else {
  3809. if (!old.user_alloc && old.rmap) {
  3810. int ret;
  3811. down_write(&current->mm->mmap_sem);
  3812. ret = do_munmap(current->mm, old.userspace_addr,
  3813. old.npages * PAGE_SIZE);
  3814. up_write(&current->mm->mmap_sem);
  3815. if (ret < 0)
  3816. printk(KERN_WARNING
  3817. "kvm_vm_ioctl_set_memory_region: "
  3818. "failed to munmap memory\n");
  3819. }
  3820. }
  3821. }
  3822. if (!kvm->arch.n_requested_mmu_pages) {
  3823. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  3824. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  3825. }
  3826. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  3827. kvm_flush_remote_tlbs(kvm);
  3828. return 0;
  3829. }
  3830. void kvm_arch_flush_shadow(struct kvm *kvm)
  3831. {
  3832. kvm_mmu_zap_all(kvm);
  3833. }
  3834. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  3835. {
  3836. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  3837. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  3838. || vcpu->arch.nmi_pending;
  3839. }
  3840. static void vcpu_kick_intr(void *info)
  3841. {
  3842. #ifdef DEBUG
  3843. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  3844. printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
  3845. #endif
  3846. }
  3847. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  3848. {
  3849. int ipi_pcpu = vcpu->cpu;
  3850. int cpu = get_cpu();
  3851. if (waitqueue_active(&vcpu->wq)) {
  3852. wake_up_interruptible(&vcpu->wq);
  3853. ++vcpu->stat.halt_wakeup;
  3854. }
  3855. /*
  3856. * We may be called synchronously with irqs disabled in guest mode,
  3857. * So need not to call smp_call_function_single() in that case.
  3858. */
  3859. if (vcpu->guest_mode && vcpu->cpu != cpu)
  3860. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
  3861. put_cpu();
  3862. }
  3863. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  3864. {
  3865. return kvm_x86_ops->interrupt_allowed(vcpu);
  3866. }