paging_tmpl.h 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. /*
  20. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  21. * so the code in this file is compiled twice, once per pte size.
  22. */
  23. #if PTTYPE == 64
  24. #define pt_element_t u64
  25. #define guest_walker guest_walker64
  26. #define FNAME(name) paging##64_##name
  27. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  28. #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
  29. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  30. #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
  31. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  32. #ifdef CONFIG_X86_64
  33. #define PT_MAX_FULL_LEVELS 4
  34. #define CMPXCHG cmpxchg
  35. #else
  36. #define CMPXCHG cmpxchg64
  37. #define PT_MAX_FULL_LEVELS 2
  38. #endif
  39. #elif PTTYPE == 32
  40. #define pt_element_t u32
  41. #define guest_walker guest_walker32
  42. #define FNAME(name) paging##32_##name
  43. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  44. #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
  45. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  46. #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
  47. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  48. #define PT_MAX_FULL_LEVELS 2
  49. #define CMPXCHG cmpxchg
  50. #else
  51. #error Invalid PTTYPE value
  52. #endif
  53. #define gpte_to_gfn FNAME(gpte_to_gfn)
  54. #define gpte_to_gfn_pde FNAME(gpte_to_gfn_pde)
  55. /*
  56. * The guest_walker structure emulates the behavior of the hardware page
  57. * table walker.
  58. */
  59. struct guest_walker {
  60. int level;
  61. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  62. pt_element_t ptes[PT_MAX_FULL_LEVELS];
  63. gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
  64. unsigned pt_access;
  65. unsigned pte_access;
  66. gfn_t gfn;
  67. u32 error_code;
  68. };
  69. static gfn_t gpte_to_gfn(pt_element_t gpte)
  70. {
  71. return (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
  72. }
  73. static gfn_t gpte_to_gfn_pde(pt_element_t gpte)
  74. {
  75. return (gpte & PT_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  76. }
  77. static bool FNAME(cmpxchg_gpte)(struct kvm *kvm,
  78. gfn_t table_gfn, unsigned index,
  79. pt_element_t orig_pte, pt_element_t new_pte)
  80. {
  81. pt_element_t ret;
  82. pt_element_t *table;
  83. struct page *page;
  84. page = gfn_to_page(kvm, table_gfn);
  85. table = kmap_atomic(page, KM_USER0);
  86. ret = CMPXCHG(&table[index], orig_pte, new_pte);
  87. kunmap_atomic(table, KM_USER0);
  88. kvm_release_page_dirty(page);
  89. return (ret != orig_pte);
  90. }
  91. static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
  92. {
  93. unsigned access;
  94. access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
  95. #if PTTYPE == 64
  96. if (is_nx(vcpu))
  97. access &= ~(gpte >> PT64_NX_SHIFT);
  98. #endif
  99. return access;
  100. }
  101. /*
  102. * Fetch a guest pte for a guest virtual address
  103. */
  104. static int FNAME(walk_addr)(struct guest_walker *walker,
  105. struct kvm_vcpu *vcpu, gva_t addr,
  106. int write_fault, int user_fault, int fetch_fault)
  107. {
  108. pt_element_t pte;
  109. gfn_t table_gfn;
  110. unsigned index, pt_access, pte_access;
  111. gpa_t pte_gpa;
  112. int rsvd_fault = 0;
  113. pgprintk("%s: addr %lx\n", __func__, addr);
  114. walk:
  115. walker->level = vcpu->arch.mmu.root_level;
  116. pte = vcpu->arch.cr3;
  117. #if PTTYPE == 64
  118. if (!is_long_mode(vcpu)) {
  119. pte = vcpu->arch.pdptrs[(addr >> 30) & 3];
  120. if (!is_present_pte(pte))
  121. goto not_present;
  122. --walker->level;
  123. }
  124. #endif
  125. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  126. (vcpu->arch.cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
  127. pt_access = ACC_ALL;
  128. for (;;) {
  129. index = PT_INDEX(addr, walker->level);
  130. table_gfn = gpte_to_gfn(pte);
  131. pte_gpa = gfn_to_gpa(table_gfn);
  132. pte_gpa += index * sizeof(pt_element_t);
  133. walker->table_gfn[walker->level - 1] = table_gfn;
  134. walker->pte_gpa[walker->level - 1] = pte_gpa;
  135. pgprintk("%s: table_gfn[%d] %lx\n", __func__,
  136. walker->level - 1, table_gfn);
  137. kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
  138. if (!is_present_pte(pte))
  139. goto not_present;
  140. rsvd_fault = is_rsvd_bits_set(vcpu, pte, walker->level);
  141. if (rsvd_fault)
  142. goto access_error;
  143. if (write_fault && !is_writeble_pte(pte))
  144. if (user_fault || is_write_protection(vcpu))
  145. goto access_error;
  146. if (user_fault && !(pte & PT_USER_MASK))
  147. goto access_error;
  148. #if PTTYPE == 64
  149. if (fetch_fault && is_nx(vcpu) && (pte & PT64_NX_MASK))
  150. goto access_error;
  151. #endif
  152. if (!(pte & PT_ACCESSED_MASK)) {
  153. mark_page_dirty(vcpu->kvm, table_gfn);
  154. if (FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn,
  155. index, pte, pte|PT_ACCESSED_MASK))
  156. goto walk;
  157. pte |= PT_ACCESSED_MASK;
  158. }
  159. pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
  160. walker->ptes[walker->level - 1] = pte;
  161. if (walker->level == PT_PAGE_TABLE_LEVEL) {
  162. walker->gfn = gpte_to_gfn(pte);
  163. break;
  164. }
  165. if (walker->level == PT_DIRECTORY_LEVEL
  166. && (pte & PT_PAGE_SIZE_MASK)
  167. && (PTTYPE == 64 || is_pse(vcpu))) {
  168. walker->gfn = gpte_to_gfn_pde(pte);
  169. walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
  170. if (PTTYPE == 32 && is_cpuid_PSE36())
  171. walker->gfn += pse36_gfn_delta(pte);
  172. break;
  173. }
  174. pt_access = pte_access;
  175. --walker->level;
  176. }
  177. if (write_fault && !is_dirty_pte(pte)) {
  178. bool ret;
  179. mark_page_dirty(vcpu->kvm, table_gfn);
  180. ret = FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, index, pte,
  181. pte|PT_DIRTY_MASK);
  182. if (ret)
  183. goto walk;
  184. pte |= PT_DIRTY_MASK;
  185. walker->ptes[walker->level - 1] = pte;
  186. }
  187. walker->pt_access = pt_access;
  188. walker->pte_access = pte_access;
  189. pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
  190. __func__, (u64)pte, pt_access, pte_access);
  191. return 1;
  192. not_present:
  193. walker->error_code = 0;
  194. goto err;
  195. access_error:
  196. walker->error_code = PFERR_PRESENT_MASK;
  197. err:
  198. if (write_fault)
  199. walker->error_code |= PFERR_WRITE_MASK;
  200. if (user_fault)
  201. walker->error_code |= PFERR_USER_MASK;
  202. if (fetch_fault)
  203. walker->error_code |= PFERR_FETCH_MASK;
  204. if (rsvd_fault)
  205. walker->error_code |= PFERR_RSVD_MASK;
  206. return 0;
  207. }
  208. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
  209. u64 *spte, const void *pte)
  210. {
  211. pt_element_t gpte;
  212. unsigned pte_access;
  213. pfn_t pfn;
  214. int largepage = vcpu->arch.update_pte.largepage;
  215. gpte = *(const pt_element_t *)pte;
  216. if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
  217. if (!is_present_pte(gpte))
  218. set_shadow_pte(spte, shadow_notrap_nonpresent_pte);
  219. return;
  220. }
  221. pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
  222. pte_access = page->role.access & FNAME(gpte_access)(vcpu, gpte);
  223. if (gpte_to_gfn(gpte) != vcpu->arch.update_pte.gfn)
  224. return;
  225. pfn = vcpu->arch.update_pte.pfn;
  226. if (is_error_pfn(pfn))
  227. return;
  228. if (mmu_notifier_retry(vcpu, vcpu->arch.update_pte.mmu_seq))
  229. return;
  230. kvm_get_pfn(pfn);
  231. mmu_set_spte(vcpu, spte, page->role.access, pte_access, 0, 0,
  232. gpte & PT_DIRTY_MASK, NULL, largepage,
  233. gpte & PT_GLOBAL_MASK, gpte_to_gfn(gpte),
  234. pfn, true);
  235. }
  236. /*
  237. * Fetch a shadow pte for a specific level in the paging hierarchy.
  238. */
  239. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  240. struct guest_walker *gw,
  241. int user_fault, int write_fault, int largepage,
  242. int *ptwrite, pfn_t pfn)
  243. {
  244. unsigned access = gw->pt_access;
  245. struct kvm_mmu_page *shadow_page;
  246. u64 spte, *sptep;
  247. int direct;
  248. gfn_t table_gfn;
  249. int r;
  250. int level;
  251. pt_element_t curr_pte;
  252. struct kvm_shadow_walk_iterator iterator;
  253. if (!is_present_pte(gw->ptes[gw->level - 1]))
  254. return NULL;
  255. for_each_shadow_entry(vcpu, addr, iterator) {
  256. level = iterator.level;
  257. sptep = iterator.sptep;
  258. if (level == PT_PAGE_TABLE_LEVEL
  259. || (largepage && level == PT_DIRECTORY_LEVEL)) {
  260. mmu_set_spte(vcpu, sptep, access,
  261. gw->pte_access & access,
  262. user_fault, write_fault,
  263. gw->ptes[gw->level-1] & PT_DIRTY_MASK,
  264. ptwrite, largepage,
  265. gw->ptes[gw->level-1] & PT_GLOBAL_MASK,
  266. gw->gfn, pfn, false);
  267. break;
  268. }
  269. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
  270. continue;
  271. if (is_large_pte(*sptep)) {
  272. rmap_remove(vcpu->kvm, sptep);
  273. set_shadow_pte(sptep, shadow_trap_nonpresent_pte);
  274. kvm_flush_remote_tlbs(vcpu->kvm);
  275. }
  276. if (level == PT_DIRECTORY_LEVEL
  277. && gw->level == PT_DIRECTORY_LEVEL) {
  278. direct = 1;
  279. if (!is_dirty_pte(gw->ptes[level - 1]))
  280. access &= ~ACC_WRITE_MASK;
  281. table_gfn = gpte_to_gfn(gw->ptes[level - 1]);
  282. } else {
  283. direct = 0;
  284. table_gfn = gw->table_gfn[level - 2];
  285. }
  286. shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
  287. direct, access, sptep);
  288. if (!direct) {
  289. r = kvm_read_guest_atomic(vcpu->kvm,
  290. gw->pte_gpa[level - 2],
  291. &curr_pte, sizeof(curr_pte));
  292. if (r || curr_pte != gw->ptes[level - 2]) {
  293. kvm_mmu_put_page(shadow_page, sptep);
  294. kvm_release_pfn_clean(pfn);
  295. sptep = NULL;
  296. break;
  297. }
  298. }
  299. spte = __pa(shadow_page->spt)
  300. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  301. | PT_WRITABLE_MASK | PT_USER_MASK;
  302. *sptep = spte;
  303. }
  304. return sptep;
  305. }
  306. /*
  307. * Page fault handler. There are several causes for a page fault:
  308. * - there is no shadow pte for the guest pte
  309. * - write access through a shadow pte marked read only so that we can set
  310. * the dirty bit
  311. * - write access to a shadow pte marked read only so we can update the page
  312. * dirty bitmap, when userspace requests it
  313. * - mmio access; in this case we will never install a present shadow pte
  314. * - normal guest page fault due to the guest pte marked not present, not
  315. * writable, or not executable
  316. *
  317. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  318. * a negative value on error.
  319. */
  320. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
  321. u32 error_code)
  322. {
  323. int write_fault = error_code & PFERR_WRITE_MASK;
  324. int user_fault = error_code & PFERR_USER_MASK;
  325. int fetch_fault = error_code & PFERR_FETCH_MASK;
  326. struct guest_walker walker;
  327. u64 *shadow_pte;
  328. int write_pt = 0;
  329. int r;
  330. pfn_t pfn;
  331. int largepage = 0;
  332. unsigned long mmu_seq;
  333. pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
  334. kvm_mmu_audit(vcpu, "pre page fault");
  335. r = mmu_topup_memory_caches(vcpu);
  336. if (r)
  337. return r;
  338. /*
  339. * Look up the guest pte for the faulting address.
  340. */
  341. r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
  342. fetch_fault);
  343. /*
  344. * The page is not mapped by the guest. Let the guest handle it.
  345. */
  346. if (!r) {
  347. pgprintk("%s: guest page fault\n", __func__);
  348. inject_page_fault(vcpu, addr, walker.error_code);
  349. vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
  350. return 0;
  351. }
  352. if (walker.level == PT_DIRECTORY_LEVEL) {
  353. gfn_t large_gfn;
  354. large_gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE-1);
  355. if (is_largepage_backed(vcpu, large_gfn)) {
  356. walker.gfn = large_gfn;
  357. largepage = 1;
  358. }
  359. }
  360. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  361. smp_rmb();
  362. pfn = gfn_to_pfn(vcpu->kvm, walker.gfn);
  363. /* mmio */
  364. if (is_error_pfn(pfn)) {
  365. pgprintk("gfn %lx is mmio\n", walker.gfn);
  366. kvm_release_pfn_clean(pfn);
  367. return 1;
  368. }
  369. spin_lock(&vcpu->kvm->mmu_lock);
  370. if (mmu_notifier_retry(vcpu, mmu_seq))
  371. goto out_unlock;
  372. kvm_mmu_free_some_pages(vcpu);
  373. shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  374. largepage, &write_pt, pfn);
  375. pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__,
  376. shadow_pte, *shadow_pte, write_pt);
  377. if (!write_pt)
  378. vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
  379. ++vcpu->stat.pf_fixed;
  380. kvm_mmu_audit(vcpu, "post page fault (fixed)");
  381. spin_unlock(&vcpu->kvm->mmu_lock);
  382. return write_pt;
  383. out_unlock:
  384. spin_unlock(&vcpu->kvm->mmu_lock);
  385. kvm_release_pfn_clean(pfn);
  386. return 0;
  387. }
  388. static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
  389. {
  390. struct kvm_shadow_walk_iterator iterator;
  391. pt_element_t gpte;
  392. gpa_t pte_gpa = -1;
  393. int level;
  394. u64 *sptep;
  395. int need_flush = 0;
  396. spin_lock(&vcpu->kvm->mmu_lock);
  397. for_each_shadow_entry(vcpu, gva, iterator) {
  398. level = iterator.level;
  399. sptep = iterator.sptep;
  400. /* FIXME: properly handle invlpg on large guest pages */
  401. if (level == PT_PAGE_TABLE_LEVEL ||
  402. ((level == PT_DIRECTORY_LEVEL) && is_large_pte(*sptep))) {
  403. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  404. pte_gpa = (sp->gfn << PAGE_SHIFT);
  405. pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
  406. if (is_shadow_present_pte(*sptep)) {
  407. rmap_remove(vcpu->kvm, sptep);
  408. if (is_large_pte(*sptep))
  409. --vcpu->kvm->stat.lpages;
  410. need_flush = 1;
  411. }
  412. set_shadow_pte(sptep, shadow_trap_nonpresent_pte);
  413. break;
  414. }
  415. if (!is_shadow_present_pte(*sptep))
  416. break;
  417. }
  418. if (need_flush)
  419. kvm_flush_remote_tlbs(vcpu->kvm);
  420. spin_unlock(&vcpu->kvm->mmu_lock);
  421. if (pte_gpa == -1)
  422. return;
  423. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  424. sizeof(pt_element_t)))
  425. return;
  426. if (is_present_pte(gpte) && (gpte & PT_ACCESSED_MASK)) {
  427. if (mmu_topup_memory_caches(vcpu))
  428. return;
  429. kvm_mmu_pte_write(vcpu, pte_gpa, (const u8 *)&gpte,
  430. sizeof(pt_element_t), 0);
  431. }
  432. }
  433. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
  434. {
  435. struct guest_walker walker;
  436. gpa_t gpa = UNMAPPED_GVA;
  437. int r;
  438. r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
  439. if (r) {
  440. gpa = gfn_to_gpa(walker.gfn);
  441. gpa |= vaddr & ~PAGE_MASK;
  442. }
  443. return gpa;
  444. }
  445. static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
  446. struct kvm_mmu_page *sp)
  447. {
  448. int i, j, offset, r;
  449. pt_element_t pt[256 / sizeof(pt_element_t)];
  450. gpa_t pte_gpa;
  451. if (sp->role.direct
  452. || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
  453. nonpaging_prefetch_page(vcpu, sp);
  454. return;
  455. }
  456. pte_gpa = gfn_to_gpa(sp->gfn);
  457. if (PTTYPE == 32) {
  458. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  459. pte_gpa += offset * sizeof(pt_element_t);
  460. }
  461. for (i = 0; i < PT64_ENT_PER_PAGE; i += ARRAY_SIZE(pt)) {
  462. r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, pt, sizeof pt);
  463. pte_gpa += ARRAY_SIZE(pt) * sizeof(pt_element_t);
  464. for (j = 0; j < ARRAY_SIZE(pt); ++j)
  465. if (r || is_present_pte(pt[j]))
  466. sp->spt[i+j] = shadow_trap_nonpresent_pte;
  467. else
  468. sp->spt[i+j] = shadow_notrap_nonpresent_pte;
  469. }
  470. }
  471. /*
  472. * Using the cached information from sp->gfns is safe because:
  473. * - The spte has a reference to the struct page, so the pfn for a given gfn
  474. * can't change unless all sptes pointing to it are nuked first.
  475. * - Alias changes zap the entire shadow cache.
  476. */
  477. static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  478. {
  479. int i, offset, nr_present;
  480. offset = nr_present = 0;
  481. if (PTTYPE == 32)
  482. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  483. for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
  484. unsigned pte_access;
  485. pt_element_t gpte;
  486. gpa_t pte_gpa;
  487. gfn_t gfn = sp->gfns[i];
  488. if (!is_shadow_present_pte(sp->spt[i]))
  489. continue;
  490. pte_gpa = gfn_to_gpa(sp->gfn);
  491. pte_gpa += (i+offset) * sizeof(pt_element_t);
  492. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  493. sizeof(pt_element_t)))
  494. return -EINVAL;
  495. if (gpte_to_gfn(gpte) != gfn || !is_present_pte(gpte) ||
  496. !(gpte & PT_ACCESSED_MASK)) {
  497. u64 nonpresent;
  498. rmap_remove(vcpu->kvm, &sp->spt[i]);
  499. if (is_present_pte(gpte))
  500. nonpresent = shadow_trap_nonpresent_pte;
  501. else
  502. nonpresent = shadow_notrap_nonpresent_pte;
  503. set_shadow_pte(&sp->spt[i], nonpresent);
  504. continue;
  505. }
  506. nr_present++;
  507. pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
  508. set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
  509. is_dirty_pte(gpte), 0, gpte & PT_GLOBAL_MASK, gfn,
  510. spte_to_pfn(sp->spt[i]), true, false);
  511. }
  512. return !nr_present;
  513. }
  514. #undef pt_element_t
  515. #undef guest_walker
  516. #undef FNAME
  517. #undef PT_BASE_ADDR_MASK
  518. #undef PT_INDEX
  519. #undef PT_LEVEL_MASK
  520. #undef PT_DIR_BASE_ADDR_MASK
  521. #undef PT_LEVEL_BITS
  522. #undef PT_MAX_FULL_LEVELS
  523. #undef gpte_to_gfn
  524. #undef gpte_to_gfn_pde
  525. #undef CMPXCHG