slab.c 118 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same intializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/slab.h>
  89. #include <linux/mm.h>
  90. #include <linux/poison.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/seq_file.h>
  98. #include <linux/notifier.h>
  99. #include <linux/kallsyms.h>
  100. #include <linux/cpu.h>
  101. #include <linux/sysctl.h>
  102. #include <linux/module.h>
  103. #include <linux/rcupdate.h>
  104. #include <linux/string.h>
  105. #include <linux/uaccess.h>
  106. #include <linux/nodemask.h>
  107. #include <linux/mempolicy.h>
  108. #include <linux/mutex.h>
  109. #include <linux/fault-inject.h>
  110. #include <linux/rtmutex.h>
  111. #include <linux/reciprocal_div.h>
  112. #include <asm/cacheflush.h>
  113. #include <asm/tlbflush.h>
  114. #include <asm/page.h>
  115. /*
  116. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
  117. * SLAB_RED_ZONE & SLAB_POISON.
  118. * 0 for faster, smaller code (especially in the critical paths).
  119. *
  120. * STATS - 1 to collect stats for /proc/slabinfo.
  121. * 0 for faster, smaller code (especially in the critical paths).
  122. *
  123. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  124. */
  125. #ifdef CONFIG_DEBUG_SLAB
  126. #define DEBUG 1
  127. #define STATS 1
  128. #define FORCED_DEBUG 1
  129. #else
  130. #define DEBUG 0
  131. #define STATS 0
  132. #define FORCED_DEBUG 0
  133. #endif
  134. /* Shouldn't this be in a header file somewhere? */
  135. #define BYTES_PER_WORD sizeof(void *)
  136. #ifndef cache_line_size
  137. #define cache_line_size() L1_CACHE_BYTES
  138. #endif
  139. #ifndef ARCH_KMALLOC_MINALIGN
  140. /*
  141. * Enforce a minimum alignment for the kmalloc caches.
  142. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  143. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  144. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  145. * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
  146. * Note that this flag disables some debug features.
  147. */
  148. #define ARCH_KMALLOC_MINALIGN 0
  149. #endif
  150. #ifndef ARCH_SLAB_MINALIGN
  151. /*
  152. * Enforce a minimum alignment for all caches.
  153. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  154. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  155. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  156. * some debug features.
  157. */
  158. #define ARCH_SLAB_MINALIGN 0
  159. #endif
  160. #ifndef ARCH_KMALLOC_FLAGS
  161. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  162. #endif
  163. /* Legal flag mask for kmem_cache_create(). */
  164. #if DEBUG
  165. # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
  166. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  167. SLAB_CACHE_DMA | \
  168. SLAB_STORE_USER | \
  169. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  170. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  171. #else
  172. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  173. SLAB_CACHE_DMA | \
  174. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  175. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  176. #endif
  177. /*
  178. * kmem_bufctl_t:
  179. *
  180. * Bufctl's are used for linking objs within a slab
  181. * linked offsets.
  182. *
  183. * This implementation relies on "struct page" for locating the cache &
  184. * slab an object belongs to.
  185. * This allows the bufctl structure to be small (one int), but limits
  186. * the number of objects a slab (not a cache) can contain when off-slab
  187. * bufctls are used. The limit is the size of the largest general cache
  188. * that does not use off-slab slabs.
  189. * For 32bit archs with 4 kB pages, is this 56.
  190. * This is not serious, as it is only for large objects, when it is unwise
  191. * to have too many per slab.
  192. * Note: This limit can be raised by introducing a general cache whose size
  193. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  194. */
  195. typedef unsigned int kmem_bufctl_t;
  196. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  197. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  198. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  199. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  200. /*
  201. * struct slab
  202. *
  203. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  204. * for a slab, or allocated from an general cache.
  205. * Slabs are chained into three list: fully used, partial, fully free slabs.
  206. */
  207. struct slab {
  208. struct list_head list;
  209. unsigned long colouroff;
  210. void *s_mem; /* including colour offset */
  211. unsigned int inuse; /* num of objs active in slab */
  212. kmem_bufctl_t free;
  213. unsigned short nodeid;
  214. };
  215. /*
  216. * struct slab_rcu
  217. *
  218. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  219. * arrange for kmem_freepages to be called via RCU. This is useful if
  220. * we need to approach a kernel structure obliquely, from its address
  221. * obtained without the usual locking. We can lock the structure to
  222. * stabilize it and check it's still at the given address, only if we
  223. * can be sure that the memory has not been meanwhile reused for some
  224. * other kind of object (which our subsystem's lock might corrupt).
  225. *
  226. * rcu_read_lock before reading the address, then rcu_read_unlock after
  227. * taking the spinlock within the structure expected at that address.
  228. *
  229. * We assume struct slab_rcu can overlay struct slab when destroying.
  230. */
  231. struct slab_rcu {
  232. struct rcu_head head;
  233. struct kmem_cache *cachep;
  234. void *addr;
  235. };
  236. /*
  237. * struct array_cache
  238. *
  239. * Purpose:
  240. * - LIFO ordering, to hand out cache-warm objects from _alloc
  241. * - reduce the number of linked list operations
  242. * - reduce spinlock operations
  243. *
  244. * The limit is stored in the per-cpu structure to reduce the data cache
  245. * footprint.
  246. *
  247. */
  248. struct array_cache {
  249. unsigned int avail;
  250. unsigned int limit;
  251. unsigned int batchcount;
  252. unsigned int touched;
  253. spinlock_t lock;
  254. void *entry[0]; /*
  255. * Must have this definition in here for the proper
  256. * alignment of array_cache. Also simplifies accessing
  257. * the entries.
  258. * [0] is for gcc 2.95. It should really be [].
  259. */
  260. };
  261. /*
  262. * bootstrap: The caches do not work without cpuarrays anymore, but the
  263. * cpuarrays are allocated from the generic caches...
  264. */
  265. #define BOOT_CPUCACHE_ENTRIES 1
  266. struct arraycache_init {
  267. struct array_cache cache;
  268. void *entries[BOOT_CPUCACHE_ENTRIES];
  269. };
  270. /*
  271. * The slab lists for all objects.
  272. */
  273. struct kmem_list3 {
  274. struct list_head slabs_partial; /* partial list first, better asm code */
  275. struct list_head slabs_full;
  276. struct list_head slabs_free;
  277. unsigned long free_objects;
  278. unsigned int free_limit;
  279. unsigned int colour_next; /* Per-node cache coloring */
  280. spinlock_t list_lock;
  281. struct array_cache *shared; /* shared per node */
  282. struct array_cache **alien; /* on other nodes */
  283. unsigned long next_reap; /* updated without locking */
  284. int free_touched; /* updated without locking */
  285. };
  286. /*
  287. * Need this for bootstrapping a per node allocator.
  288. */
  289. #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
  290. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  291. #define CACHE_CACHE 0
  292. #define SIZE_AC 1
  293. #define SIZE_L3 (1 + MAX_NUMNODES)
  294. static int drain_freelist(struct kmem_cache *cache,
  295. struct kmem_list3 *l3, int tofree);
  296. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  297. int node);
  298. static int enable_cpucache(struct kmem_cache *cachep);
  299. static void cache_reap(struct work_struct *unused);
  300. /*
  301. * This function must be completely optimized away if a constant is passed to
  302. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  303. */
  304. static __always_inline int index_of(const size_t size)
  305. {
  306. extern void __bad_size(void);
  307. if (__builtin_constant_p(size)) {
  308. int i = 0;
  309. #define CACHE(x) \
  310. if (size <=x) \
  311. return i; \
  312. else \
  313. i++;
  314. #include "linux/kmalloc_sizes.h"
  315. #undef CACHE
  316. __bad_size();
  317. } else
  318. __bad_size();
  319. return 0;
  320. }
  321. static int slab_early_init = 1;
  322. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  323. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  324. static void kmem_list3_init(struct kmem_list3 *parent)
  325. {
  326. INIT_LIST_HEAD(&parent->slabs_full);
  327. INIT_LIST_HEAD(&parent->slabs_partial);
  328. INIT_LIST_HEAD(&parent->slabs_free);
  329. parent->shared = NULL;
  330. parent->alien = NULL;
  331. parent->colour_next = 0;
  332. spin_lock_init(&parent->list_lock);
  333. parent->free_objects = 0;
  334. parent->free_touched = 0;
  335. }
  336. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  337. do { \
  338. INIT_LIST_HEAD(listp); \
  339. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  340. } while (0)
  341. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  342. do { \
  343. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  344. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  345. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  346. } while (0)
  347. /*
  348. * struct kmem_cache
  349. *
  350. * manages a cache.
  351. */
  352. struct kmem_cache {
  353. /* 1) per-cpu data, touched during every alloc/free */
  354. struct array_cache *array[NR_CPUS];
  355. /* 2) Cache tunables. Protected by cache_chain_mutex */
  356. unsigned int batchcount;
  357. unsigned int limit;
  358. unsigned int shared;
  359. unsigned int buffer_size;
  360. u32 reciprocal_buffer_size;
  361. /* 3) touched by every alloc & free from the backend */
  362. unsigned int flags; /* constant flags */
  363. unsigned int num; /* # of objs per slab */
  364. /* 4) cache_grow/shrink */
  365. /* order of pgs per slab (2^n) */
  366. unsigned int gfporder;
  367. /* force GFP flags, e.g. GFP_DMA */
  368. gfp_t gfpflags;
  369. size_t colour; /* cache colouring range */
  370. unsigned int colour_off; /* colour offset */
  371. struct kmem_cache *slabp_cache;
  372. unsigned int slab_size;
  373. unsigned int dflags; /* dynamic flags */
  374. /* constructor func */
  375. void (*ctor) (void *, struct kmem_cache *, unsigned long);
  376. /* de-constructor func */
  377. void (*dtor) (void *, struct kmem_cache *, unsigned long);
  378. /* 5) cache creation/removal */
  379. const char *name;
  380. struct list_head next;
  381. /* 6) statistics */
  382. #if STATS
  383. unsigned long num_active;
  384. unsigned long num_allocations;
  385. unsigned long high_mark;
  386. unsigned long grown;
  387. unsigned long reaped;
  388. unsigned long errors;
  389. unsigned long max_freeable;
  390. unsigned long node_allocs;
  391. unsigned long node_frees;
  392. unsigned long node_overflow;
  393. atomic_t allochit;
  394. atomic_t allocmiss;
  395. atomic_t freehit;
  396. atomic_t freemiss;
  397. #endif
  398. #if DEBUG
  399. /*
  400. * If debugging is enabled, then the allocator can add additional
  401. * fields and/or padding to every object. buffer_size contains the total
  402. * object size including these internal fields, the following two
  403. * variables contain the offset to the user object and its size.
  404. */
  405. int obj_offset;
  406. int obj_size;
  407. #endif
  408. /*
  409. * We put nodelists[] at the end of kmem_cache, because we want to size
  410. * this array to nr_node_ids slots instead of MAX_NUMNODES
  411. * (see kmem_cache_init())
  412. * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
  413. * is statically defined, so we reserve the max number of nodes.
  414. */
  415. struct kmem_list3 *nodelists[MAX_NUMNODES];
  416. /*
  417. * Do not add fields after nodelists[]
  418. */
  419. };
  420. #define CFLGS_OFF_SLAB (0x80000000UL)
  421. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  422. #define BATCHREFILL_LIMIT 16
  423. /*
  424. * Optimization question: fewer reaps means less probability for unnessary
  425. * cpucache drain/refill cycles.
  426. *
  427. * OTOH the cpuarrays can contain lots of objects,
  428. * which could lock up otherwise freeable slabs.
  429. */
  430. #define REAPTIMEOUT_CPUC (2*HZ)
  431. #define REAPTIMEOUT_LIST3 (4*HZ)
  432. #if STATS
  433. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  434. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  435. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  436. #define STATS_INC_GROWN(x) ((x)->grown++)
  437. #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
  438. #define STATS_SET_HIGH(x) \
  439. do { \
  440. if ((x)->num_active > (x)->high_mark) \
  441. (x)->high_mark = (x)->num_active; \
  442. } while (0)
  443. #define STATS_INC_ERR(x) ((x)->errors++)
  444. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  445. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  446. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  447. #define STATS_SET_FREEABLE(x, i) \
  448. do { \
  449. if ((x)->max_freeable < i) \
  450. (x)->max_freeable = i; \
  451. } while (0)
  452. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  453. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  454. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  455. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  456. #else
  457. #define STATS_INC_ACTIVE(x) do { } while (0)
  458. #define STATS_DEC_ACTIVE(x) do { } while (0)
  459. #define STATS_INC_ALLOCED(x) do { } while (0)
  460. #define STATS_INC_GROWN(x) do { } while (0)
  461. #define STATS_ADD_REAPED(x,y) do { } while (0)
  462. #define STATS_SET_HIGH(x) do { } while (0)
  463. #define STATS_INC_ERR(x) do { } while (0)
  464. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  465. #define STATS_INC_NODEFREES(x) do { } while (0)
  466. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  467. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  468. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  469. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  470. #define STATS_INC_FREEHIT(x) do { } while (0)
  471. #define STATS_INC_FREEMISS(x) do { } while (0)
  472. #endif
  473. #if DEBUG
  474. /*
  475. * memory layout of objects:
  476. * 0 : objp
  477. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  478. * the end of an object is aligned with the end of the real
  479. * allocation. Catches writes behind the end of the allocation.
  480. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  481. * redzone word.
  482. * cachep->obj_offset: The real object.
  483. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  484. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  485. * [BYTES_PER_WORD long]
  486. */
  487. static int obj_offset(struct kmem_cache *cachep)
  488. {
  489. return cachep->obj_offset;
  490. }
  491. static int obj_size(struct kmem_cache *cachep)
  492. {
  493. return cachep->obj_size;
  494. }
  495. static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  496. {
  497. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  498. return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
  499. }
  500. static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  501. {
  502. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  503. if (cachep->flags & SLAB_STORE_USER)
  504. return (unsigned long *)(objp + cachep->buffer_size -
  505. 2 * BYTES_PER_WORD);
  506. return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
  507. }
  508. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  509. {
  510. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  511. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  512. }
  513. #else
  514. #define obj_offset(x) 0
  515. #define obj_size(cachep) (cachep->buffer_size)
  516. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  517. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  518. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  519. #endif
  520. /*
  521. * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
  522. * order.
  523. */
  524. #if defined(CONFIG_LARGE_ALLOCS)
  525. #define MAX_OBJ_ORDER 13 /* up to 32Mb */
  526. #define MAX_GFP_ORDER 13 /* up to 32Mb */
  527. #elif defined(CONFIG_MMU)
  528. #define MAX_OBJ_ORDER 5 /* 32 pages */
  529. #define MAX_GFP_ORDER 5 /* 32 pages */
  530. #else
  531. #define MAX_OBJ_ORDER 8 /* up to 1Mb */
  532. #define MAX_GFP_ORDER 8 /* up to 1Mb */
  533. #endif
  534. /*
  535. * Do not go above this order unless 0 objects fit into the slab.
  536. */
  537. #define BREAK_GFP_ORDER_HI 1
  538. #define BREAK_GFP_ORDER_LO 0
  539. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  540. /*
  541. * Functions for storing/retrieving the cachep and or slab from the page
  542. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  543. * these are used to find the cache which an obj belongs to.
  544. */
  545. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  546. {
  547. page->lru.next = (struct list_head *)cache;
  548. }
  549. static inline struct kmem_cache *page_get_cache(struct page *page)
  550. {
  551. page = compound_head(page);
  552. BUG_ON(!PageSlab(page));
  553. return (struct kmem_cache *)page->lru.next;
  554. }
  555. static inline void page_set_slab(struct page *page, struct slab *slab)
  556. {
  557. page->lru.prev = (struct list_head *)slab;
  558. }
  559. static inline struct slab *page_get_slab(struct page *page)
  560. {
  561. BUG_ON(!PageSlab(page));
  562. return (struct slab *)page->lru.prev;
  563. }
  564. static inline struct kmem_cache *virt_to_cache(const void *obj)
  565. {
  566. struct page *page = virt_to_head_page(obj);
  567. return page_get_cache(page);
  568. }
  569. static inline struct slab *virt_to_slab(const void *obj)
  570. {
  571. struct page *page = virt_to_head_page(obj);
  572. return page_get_slab(page);
  573. }
  574. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  575. unsigned int idx)
  576. {
  577. return slab->s_mem + cache->buffer_size * idx;
  578. }
  579. /*
  580. * We want to avoid an expensive divide : (offset / cache->buffer_size)
  581. * Using the fact that buffer_size is a constant for a particular cache,
  582. * we can replace (offset / cache->buffer_size) by
  583. * reciprocal_divide(offset, cache->reciprocal_buffer_size)
  584. */
  585. static inline unsigned int obj_to_index(const struct kmem_cache *cache,
  586. const struct slab *slab, void *obj)
  587. {
  588. u32 offset = (obj - slab->s_mem);
  589. return reciprocal_divide(offset, cache->reciprocal_buffer_size);
  590. }
  591. /*
  592. * These are the default caches for kmalloc. Custom caches can have other sizes.
  593. */
  594. struct cache_sizes malloc_sizes[] = {
  595. #define CACHE(x) { .cs_size = (x) },
  596. #include <linux/kmalloc_sizes.h>
  597. CACHE(ULONG_MAX)
  598. #undef CACHE
  599. };
  600. EXPORT_SYMBOL(malloc_sizes);
  601. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  602. struct cache_names {
  603. char *name;
  604. char *name_dma;
  605. };
  606. static struct cache_names __initdata cache_names[] = {
  607. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  608. #include <linux/kmalloc_sizes.h>
  609. {NULL,}
  610. #undef CACHE
  611. };
  612. static struct arraycache_init initarray_cache __initdata =
  613. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  614. static struct arraycache_init initarray_generic =
  615. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  616. /* internal cache of cache description objs */
  617. static struct kmem_cache cache_cache = {
  618. .batchcount = 1,
  619. .limit = BOOT_CPUCACHE_ENTRIES,
  620. .shared = 1,
  621. .buffer_size = sizeof(struct kmem_cache),
  622. .name = "kmem_cache",
  623. };
  624. #define BAD_ALIEN_MAGIC 0x01020304ul
  625. #ifdef CONFIG_LOCKDEP
  626. /*
  627. * Slab sometimes uses the kmalloc slabs to store the slab headers
  628. * for other slabs "off slab".
  629. * The locking for this is tricky in that it nests within the locks
  630. * of all other slabs in a few places; to deal with this special
  631. * locking we put on-slab caches into a separate lock-class.
  632. *
  633. * We set lock class for alien array caches which are up during init.
  634. * The lock annotation will be lost if all cpus of a node goes down and
  635. * then comes back up during hotplug
  636. */
  637. static struct lock_class_key on_slab_l3_key;
  638. static struct lock_class_key on_slab_alc_key;
  639. static inline void init_lock_keys(void)
  640. {
  641. int q;
  642. struct cache_sizes *s = malloc_sizes;
  643. while (s->cs_size != ULONG_MAX) {
  644. for_each_node(q) {
  645. struct array_cache **alc;
  646. int r;
  647. struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
  648. if (!l3 || OFF_SLAB(s->cs_cachep))
  649. continue;
  650. lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
  651. alc = l3->alien;
  652. /*
  653. * FIXME: This check for BAD_ALIEN_MAGIC
  654. * should go away when common slab code is taught to
  655. * work even without alien caches.
  656. * Currently, non NUMA code returns BAD_ALIEN_MAGIC
  657. * for alloc_alien_cache,
  658. */
  659. if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
  660. continue;
  661. for_each_node(r) {
  662. if (alc[r])
  663. lockdep_set_class(&alc[r]->lock,
  664. &on_slab_alc_key);
  665. }
  666. }
  667. s++;
  668. }
  669. }
  670. #else
  671. static inline void init_lock_keys(void)
  672. {
  673. }
  674. #endif
  675. /*
  676. * 1. Guard access to the cache-chain.
  677. * 2. Protect sanity of cpu_online_map against cpu hotplug events
  678. */
  679. static DEFINE_MUTEX(cache_chain_mutex);
  680. static struct list_head cache_chain;
  681. /*
  682. * chicken and egg problem: delay the per-cpu array allocation
  683. * until the general caches are up.
  684. */
  685. static enum {
  686. NONE,
  687. PARTIAL_AC,
  688. PARTIAL_L3,
  689. FULL
  690. } g_cpucache_up;
  691. /*
  692. * used by boot code to determine if it can use slab based allocator
  693. */
  694. int slab_is_available(void)
  695. {
  696. return g_cpucache_up == FULL;
  697. }
  698. static DEFINE_PER_CPU(struct delayed_work, reap_work);
  699. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  700. {
  701. return cachep->array[smp_processor_id()];
  702. }
  703. static inline struct kmem_cache *__find_general_cachep(size_t size,
  704. gfp_t gfpflags)
  705. {
  706. struct cache_sizes *csizep = malloc_sizes;
  707. #if DEBUG
  708. /* This happens if someone tries to call
  709. * kmem_cache_create(), or __kmalloc(), before
  710. * the generic caches are initialized.
  711. */
  712. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  713. #endif
  714. while (size > csizep->cs_size)
  715. csizep++;
  716. /*
  717. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  718. * has cs_{dma,}cachep==NULL. Thus no special case
  719. * for large kmalloc calls required.
  720. */
  721. #ifdef CONFIG_ZONE_DMA
  722. if (unlikely(gfpflags & GFP_DMA))
  723. return csizep->cs_dmacachep;
  724. #endif
  725. return csizep->cs_cachep;
  726. }
  727. static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  728. {
  729. return __find_general_cachep(size, gfpflags);
  730. }
  731. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  732. {
  733. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  734. }
  735. /*
  736. * Calculate the number of objects and left-over bytes for a given buffer size.
  737. */
  738. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  739. size_t align, int flags, size_t *left_over,
  740. unsigned int *num)
  741. {
  742. int nr_objs;
  743. size_t mgmt_size;
  744. size_t slab_size = PAGE_SIZE << gfporder;
  745. /*
  746. * The slab management structure can be either off the slab or
  747. * on it. For the latter case, the memory allocated for a
  748. * slab is used for:
  749. *
  750. * - The struct slab
  751. * - One kmem_bufctl_t for each object
  752. * - Padding to respect alignment of @align
  753. * - @buffer_size bytes for each object
  754. *
  755. * If the slab management structure is off the slab, then the
  756. * alignment will already be calculated into the size. Because
  757. * the slabs are all pages aligned, the objects will be at the
  758. * correct alignment when allocated.
  759. */
  760. if (flags & CFLGS_OFF_SLAB) {
  761. mgmt_size = 0;
  762. nr_objs = slab_size / buffer_size;
  763. if (nr_objs > SLAB_LIMIT)
  764. nr_objs = SLAB_LIMIT;
  765. } else {
  766. /*
  767. * Ignore padding for the initial guess. The padding
  768. * is at most @align-1 bytes, and @buffer_size is at
  769. * least @align. In the worst case, this result will
  770. * be one greater than the number of objects that fit
  771. * into the memory allocation when taking the padding
  772. * into account.
  773. */
  774. nr_objs = (slab_size - sizeof(struct slab)) /
  775. (buffer_size + sizeof(kmem_bufctl_t));
  776. /*
  777. * This calculated number will be either the right
  778. * amount, or one greater than what we want.
  779. */
  780. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  781. > slab_size)
  782. nr_objs--;
  783. if (nr_objs > SLAB_LIMIT)
  784. nr_objs = SLAB_LIMIT;
  785. mgmt_size = slab_mgmt_size(nr_objs, align);
  786. }
  787. *num = nr_objs;
  788. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  789. }
  790. #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
  791. static void __slab_error(const char *function, struct kmem_cache *cachep,
  792. char *msg)
  793. {
  794. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  795. function, cachep->name, msg);
  796. dump_stack();
  797. }
  798. /*
  799. * By default on NUMA we use alien caches to stage the freeing of
  800. * objects allocated from other nodes. This causes massive memory
  801. * inefficiencies when using fake NUMA setup to split memory into a
  802. * large number of small nodes, so it can be disabled on the command
  803. * line
  804. */
  805. static int use_alien_caches __read_mostly = 1;
  806. static int __init noaliencache_setup(char *s)
  807. {
  808. use_alien_caches = 0;
  809. return 1;
  810. }
  811. __setup("noaliencache", noaliencache_setup);
  812. #ifdef CONFIG_NUMA
  813. /*
  814. * Special reaping functions for NUMA systems called from cache_reap().
  815. * These take care of doing round robin flushing of alien caches (containing
  816. * objects freed on different nodes from which they were allocated) and the
  817. * flushing of remote pcps by calling drain_node_pages.
  818. */
  819. static DEFINE_PER_CPU(unsigned long, reap_node);
  820. static void init_reap_node(int cpu)
  821. {
  822. int node;
  823. node = next_node(cpu_to_node(cpu), node_online_map);
  824. if (node == MAX_NUMNODES)
  825. node = first_node(node_online_map);
  826. per_cpu(reap_node, cpu) = node;
  827. }
  828. static void next_reap_node(void)
  829. {
  830. int node = __get_cpu_var(reap_node);
  831. /*
  832. * Also drain per cpu pages on remote zones
  833. */
  834. if (node != numa_node_id())
  835. drain_node_pages(node);
  836. node = next_node(node, node_online_map);
  837. if (unlikely(node >= MAX_NUMNODES))
  838. node = first_node(node_online_map);
  839. __get_cpu_var(reap_node) = node;
  840. }
  841. #else
  842. #define init_reap_node(cpu) do { } while (0)
  843. #define next_reap_node(void) do { } while (0)
  844. #endif
  845. /*
  846. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  847. * via the workqueue/eventd.
  848. * Add the CPU number into the expiration time to minimize the possibility of
  849. * the CPUs getting into lockstep and contending for the global cache chain
  850. * lock.
  851. */
  852. static void __devinit start_cpu_timer(int cpu)
  853. {
  854. struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
  855. /*
  856. * When this gets called from do_initcalls via cpucache_init(),
  857. * init_workqueues() has already run, so keventd will be setup
  858. * at that time.
  859. */
  860. if (keventd_up() && reap_work->work.func == NULL) {
  861. init_reap_node(cpu);
  862. INIT_DELAYED_WORK(reap_work, cache_reap);
  863. schedule_delayed_work_on(cpu, reap_work,
  864. __round_jiffies_relative(HZ, cpu));
  865. }
  866. }
  867. static struct array_cache *alloc_arraycache(int node, int entries,
  868. int batchcount)
  869. {
  870. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  871. struct array_cache *nc = NULL;
  872. nc = kmalloc_node(memsize, GFP_KERNEL, node);
  873. if (nc) {
  874. nc->avail = 0;
  875. nc->limit = entries;
  876. nc->batchcount = batchcount;
  877. nc->touched = 0;
  878. spin_lock_init(&nc->lock);
  879. }
  880. return nc;
  881. }
  882. /*
  883. * Transfer objects in one arraycache to another.
  884. * Locking must be handled by the caller.
  885. *
  886. * Return the number of entries transferred.
  887. */
  888. static int transfer_objects(struct array_cache *to,
  889. struct array_cache *from, unsigned int max)
  890. {
  891. /* Figure out how many entries to transfer */
  892. int nr = min(min(from->avail, max), to->limit - to->avail);
  893. if (!nr)
  894. return 0;
  895. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  896. sizeof(void *) *nr);
  897. from->avail -= nr;
  898. to->avail += nr;
  899. to->touched = 1;
  900. return nr;
  901. }
  902. #ifndef CONFIG_NUMA
  903. #define drain_alien_cache(cachep, alien) do { } while (0)
  904. #define reap_alien(cachep, l3) do { } while (0)
  905. static inline struct array_cache **alloc_alien_cache(int node, int limit)
  906. {
  907. return (struct array_cache **)BAD_ALIEN_MAGIC;
  908. }
  909. static inline void free_alien_cache(struct array_cache **ac_ptr)
  910. {
  911. }
  912. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  913. {
  914. return 0;
  915. }
  916. static inline void *alternate_node_alloc(struct kmem_cache *cachep,
  917. gfp_t flags)
  918. {
  919. return NULL;
  920. }
  921. static inline void *____cache_alloc_node(struct kmem_cache *cachep,
  922. gfp_t flags, int nodeid)
  923. {
  924. return NULL;
  925. }
  926. #else /* CONFIG_NUMA */
  927. static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
  928. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  929. static struct array_cache **alloc_alien_cache(int node, int limit)
  930. {
  931. struct array_cache **ac_ptr;
  932. int memsize = sizeof(void *) * nr_node_ids;
  933. int i;
  934. if (limit > 1)
  935. limit = 12;
  936. ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
  937. if (ac_ptr) {
  938. for_each_node(i) {
  939. if (i == node || !node_online(i)) {
  940. ac_ptr[i] = NULL;
  941. continue;
  942. }
  943. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
  944. if (!ac_ptr[i]) {
  945. for (i--; i <= 0; i--)
  946. kfree(ac_ptr[i]);
  947. kfree(ac_ptr);
  948. return NULL;
  949. }
  950. }
  951. }
  952. return ac_ptr;
  953. }
  954. static void free_alien_cache(struct array_cache **ac_ptr)
  955. {
  956. int i;
  957. if (!ac_ptr)
  958. return;
  959. for_each_node(i)
  960. kfree(ac_ptr[i]);
  961. kfree(ac_ptr);
  962. }
  963. static void __drain_alien_cache(struct kmem_cache *cachep,
  964. struct array_cache *ac, int node)
  965. {
  966. struct kmem_list3 *rl3 = cachep->nodelists[node];
  967. if (ac->avail) {
  968. spin_lock(&rl3->list_lock);
  969. /*
  970. * Stuff objects into the remote nodes shared array first.
  971. * That way we could avoid the overhead of putting the objects
  972. * into the free lists and getting them back later.
  973. */
  974. if (rl3->shared)
  975. transfer_objects(rl3->shared, ac, ac->limit);
  976. free_block(cachep, ac->entry, ac->avail, node);
  977. ac->avail = 0;
  978. spin_unlock(&rl3->list_lock);
  979. }
  980. }
  981. /*
  982. * Called from cache_reap() to regularly drain alien caches round robin.
  983. */
  984. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  985. {
  986. int node = __get_cpu_var(reap_node);
  987. if (l3->alien) {
  988. struct array_cache *ac = l3->alien[node];
  989. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  990. __drain_alien_cache(cachep, ac, node);
  991. spin_unlock_irq(&ac->lock);
  992. }
  993. }
  994. }
  995. static void drain_alien_cache(struct kmem_cache *cachep,
  996. struct array_cache **alien)
  997. {
  998. int i = 0;
  999. struct array_cache *ac;
  1000. unsigned long flags;
  1001. for_each_online_node(i) {
  1002. ac = alien[i];
  1003. if (ac) {
  1004. spin_lock_irqsave(&ac->lock, flags);
  1005. __drain_alien_cache(cachep, ac, i);
  1006. spin_unlock_irqrestore(&ac->lock, flags);
  1007. }
  1008. }
  1009. }
  1010. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  1011. {
  1012. struct slab *slabp = virt_to_slab(objp);
  1013. int nodeid = slabp->nodeid;
  1014. struct kmem_list3 *l3;
  1015. struct array_cache *alien = NULL;
  1016. int node;
  1017. node = numa_node_id();
  1018. /*
  1019. * Make sure we are not freeing a object from another node to the array
  1020. * cache on this cpu.
  1021. */
  1022. if (likely(slabp->nodeid == node))
  1023. return 0;
  1024. l3 = cachep->nodelists[node];
  1025. STATS_INC_NODEFREES(cachep);
  1026. if (l3->alien && l3->alien[nodeid]) {
  1027. alien = l3->alien[nodeid];
  1028. spin_lock(&alien->lock);
  1029. if (unlikely(alien->avail == alien->limit)) {
  1030. STATS_INC_ACOVERFLOW(cachep);
  1031. __drain_alien_cache(cachep, alien, nodeid);
  1032. }
  1033. alien->entry[alien->avail++] = objp;
  1034. spin_unlock(&alien->lock);
  1035. } else {
  1036. spin_lock(&(cachep->nodelists[nodeid])->list_lock);
  1037. free_block(cachep, &objp, 1, nodeid);
  1038. spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
  1039. }
  1040. return 1;
  1041. }
  1042. #endif
  1043. static int __cpuinit cpuup_callback(struct notifier_block *nfb,
  1044. unsigned long action, void *hcpu)
  1045. {
  1046. long cpu = (long)hcpu;
  1047. struct kmem_cache *cachep;
  1048. struct kmem_list3 *l3 = NULL;
  1049. int node = cpu_to_node(cpu);
  1050. int memsize = sizeof(struct kmem_list3);
  1051. switch (action) {
  1052. case CPU_UP_PREPARE:
  1053. mutex_lock(&cache_chain_mutex);
  1054. /*
  1055. * We need to do this right in the beginning since
  1056. * alloc_arraycache's are going to use this list.
  1057. * kmalloc_node allows us to add the slab to the right
  1058. * kmem_list3 and not this cpu's kmem_list3
  1059. */
  1060. list_for_each_entry(cachep, &cache_chain, next) {
  1061. /*
  1062. * Set up the size64 kmemlist for cpu before we can
  1063. * begin anything. Make sure some other cpu on this
  1064. * node has not already allocated this
  1065. */
  1066. if (!cachep->nodelists[node]) {
  1067. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  1068. if (!l3)
  1069. goto bad;
  1070. kmem_list3_init(l3);
  1071. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  1072. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1073. /*
  1074. * The l3s don't come and go as CPUs come and
  1075. * go. cache_chain_mutex is sufficient
  1076. * protection here.
  1077. */
  1078. cachep->nodelists[node] = l3;
  1079. }
  1080. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  1081. cachep->nodelists[node]->free_limit =
  1082. (1 + nr_cpus_node(node)) *
  1083. cachep->batchcount + cachep->num;
  1084. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  1085. }
  1086. /*
  1087. * Now we can go ahead with allocating the shared arrays and
  1088. * array caches
  1089. */
  1090. list_for_each_entry(cachep, &cache_chain, next) {
  1091. struct array_cache *nc;
  1092. struct array_cache *shared = NULL;
  1093. struct array_cache **alien = NULL;
  1094. nc = alloc_arraycache(node, cachep->limit,
  1095. cachep->batchcount);
  1096. if (!nc)
  1097. goto bad;
  1098. if (cachep->shared) {
  1099. shared = alloc_arraycache(node,
  1100. cachep->shared * cachep->batchcount,
  1101. 0xbaadf00d);
  1102. if (!shared)
  1103. goto bad;
  1104. }
  1105. if (use_alien_caches) {
  1106. alien = alloc_alien_cache(node, cachep->limit);
  1107. if (!alien)
  1108. goto bad;
  1109. }
  1110. cachep->array[cpu] = nc;
  1111. l3 = cachep->nodelists[node];
  1112. BUG_ON(!l3);
  1113. spin_lock_irq(&l3->list_lock);
  1114. if (!l3->shared) {
  1115. /*
  1116. * We are serialised from CPU_DEAD or
  1117. * CPU_UP_CANCELLED by the cpucontrol lock
  1118. */
  1119. l3->shared = shared;
  1120. shared = NULL;
  1121. }
  1122. #ifdef CONFIG_NUMA
  1123. if (!l3->alien) {
  1124. l3->alien = alien;
  1125. alien = NULL;
  1126. }
  1127. #endif
  1128. spin_unlock_irq(&l3->list_lock);
  1129. kfree(shared);
  1130. free_alien_cache(alien);
  1131. }
  1132. break;
  1133. case CPU_ONLINE:
  1134. mutex_unlock(&cache_chain_mutex);
  1135. start_cpu_timer(cpu);
  1136. break;
  1137. #ifdef CONFIG_HOTPLUG_CPU
  1138. case CPU_DOWN_PREPARE:
  1139. mutex_lock(&cache_chain_mutex);
  1140. break;
  1141. case CPU_DOWN_FAILED:
  1142. mutex_unlock(&cache_chain_mutex);
  1143. break;
  1144. case CPU_DEAD:
  1145. /*
  1146. * Even if all the cpus of a node are down, we don't free the
  1147. * kmem_list3 of any cache. This to avoid a race between
  1148. * cpu_down, and a kmalloc allocation from another cpu for
  1149. * memory from the node of the cpu going down. The list3
  1150. * structure is usually allocated from kmem_cache_create() and
  1151. * gets destroyed at kmem_cache_destroy().
  1152. */
  1153. /* fall thru */
  1154. #endif
  1155. case CPU_UP_CANCELED:
  1156. list_for_each_entry(cachep, &cache_chain, next) {
  1157. struct array_cache *nc;
  1158. struct array_cache *shared;
  1159. struct array_cache **alien;
  1160. cpumask_t mask;
  1161. mask = node_to_cpumask(node);
  1162. /* cpu is dead; no one can alloc from it. */
  1163. nc = cachep->array[cpu];
  1164. cachep->array[cpu] = NULL;
  1165. l3 = cachep->nodelists[node];
  1166. if (!l3)
  1167. goto free_array_cache;
  1168. spin_lock_irq(&l3->list_lock);
  1169. /* Free limit for this kmem_list3 */
  1170. l3->free_limit -= cachep->batchcount;
  1171. if (nc)
  1172. free_block(cachep, nc->entry, nc->avail, node);
  1173. if (!cpus_empty(mask)) {
  1174. spin_unlock_irq(&l3->list_lock);
  1175. goto free_array_cache;
  1176. }
  1177. shared = l3->shared;
  1178. if (shared) {
  1179. free_block(cachep, shared->entry,
  1180. shared->avail, node);
  1181. l3->shared = NULL;
  1182. }
  1183. alien = l3->alien;
  1184. l3->alien = NULL;
  1185. spin_unlock_irq(&l3->list_lock);
  1186. kfree(shared);
  1187. if (alien) {
  1188. drain_alien_cache(cachep, alien);
  1189. free_alien_cache(alien);
  1190. }
  1191. free_array_cache:
  1192. kfree(nc);
  1193. }
  1194. /*
  1195. * In the previous loop, all the objects were freed to
  1196. * the respective cache's slabs, now we can go ahead and
  1197. * shrink each nodelist to its limit.
  1198. */
  1199. list_for_each_entry(cachep, &cache_chain, next) {
  1200. l3 = cachep->nodelists[node];
  1201. if (!l3)
  1202. continue;
  1203. drain_freelist(cachep, l3, l3->free_objects);
  1204. }
  1205. mutex_unlock(&cache_chain_mutex);
  1206. break;
  1207. }
  1208. return NOTIFY_OK;
  1209. bad:
  1210. return NOTIFY_BAD;
  1211. }
  1212. static struct notifier_block __cpuinitdata cpucache_notifier = {
  1213. &cpuup_callback, NULL, 0
  1214. };
  1215. /*
  1216. * swap the static kmem_list3 with kmalloced memory
  1217. */
  1218. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1219. int nodeid)
  1220. {
  1221. struct kmem_list3 *ptr;
  1222. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
  1223. BUG_ON(!ptr);
  1224. local_irq_disable();
  1225. memcpy(ptr, list, sizeof(struct kmem_list3));
  1226. /*
  1227. * Do not assume that spinlocks can be initialized via memcpy:
  1228. */
  1229. spin_lock_init(&ptr->list_lock);
  1230. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1231. cachep->nodelists[nodeid] = ptr;
  1232. local_irq_enable();
  1233. }
  1234. /*
  1235. * Initialisation. Called after the page allocator have been initialised and
  1236. * before smp_init().
  1237. */
  1238. void __init kmem_cache_init(void)
  1239. {
  1240. size_t left_over;
  1241. struct cache_sizes *sizes;
  1242. struct cache_names *names;
  1243. int i;
  1244. int order;
  1245. int node;
  1246. if (num_possible_nodes() == 1)
  1247. use_alien_caches = 0;
  1248. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1249. kmem_list3_init(&initkmem_list3[i]);
  1250. if (i < MAX_NUMNODES)
  1251. cache_cache.nodelists[i] = NULL;
  1252. }
  1253. /*
  1254. * Fragmentation resistance on low memory - only use bigger
  1255. * page orders on machines with more than 32MB of memory.
  1256. */
  1257. if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  1258. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1259. /* Bootstrap is tricky, because several objects are allocated
  1260. * from caches that do not exist yet:
  1261. * 1) initialize the cache_cache cache: it contains the struct
  1262. * kmem_cache structures of all caches, except cache_cache itself:
  1263. * cache_cache is statically allocated.
  1264. * Initially an __init data area is used for the head array and the
  1265. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1266. * array at the end of the bootstrap.
  1267. * 2) Create the first kmalloc cache.
  1268. * The struct kmem_cache for the new cache is allocated normally.
  1269. * An __init data area is used for the head array.
  1270. * 3) Create the remaining kmalloc caches, with minimally sized
  1271. * head arrays.
  1272. * 4) Replace the __init data head arrays for cache_cache and the first
  1273. * kmalloc cache with kmalloc allocated arrays.
  1274. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1275. * the other cache's with kmalloc allocated memory.
  1276. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1277. */
  1278. node = numa_node_id();
  1279. /* 1) create the cache_cache */
  1280. INIT_LIST_HEAD(&cache_chain);
  1281. list_add(&cache_cache.next, &cache_chain);
  1282. cache_cache.colour_off = cache_line_size();
  1283. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1284. cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
  1285. /*
  1286. * struct kmem_cache size depends on nr_node_ids, which
  1287. * can be less than MAX_NUMNODES.
  1288. */
  1289. cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
  1290. nr_node_ids * sizeof(struct kmem_list3 *);
  1291. #if DEBUG
  1292. cache_cache.obj_size = cache_cache.buffer_size;
  1293. #endif
  1294. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1295. cache_line_size());
  1296. cache_cache.reciprocal_buffer_size =
  1297. reciprocal_value(cache_cache.buffer_size);
  1298. for (order = 0; order < MAX_ORDER; order++) {
  1299. cache_estimate(order, cache_cache.buffer_size,
  1300. cache_line_size(), 0, &left_over, &cache_cache.num);
  1301. if (cache_cache.num)
  1302. break;
  1303. }
  1304. BUG_ON(!cache_cache.num);
  1305. cache_cache.gfporder = order;
  1306. cache_cache.colour = left_over / cache_cache.colour_off;
  1307. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1308. sizeof(struct slab), cache_line_size());
  1309. /* 2+3) create the kmalloc caches */
  1310. sizes = malloc_sizes;
  1311. names = cache_names;
  1312. /*
  1313. * Initialize the caches that provide memory for the array cache and the
  1314. * kmem_list3 structures first. Without this, further allocations will
  1315. * bug.
  1316. */
  1317. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1318. sizes[INDEX_AC].cs_size,
  1319. ARCH_KMALLOC_MINALIGN,
  1320. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1321. NULL, NULL);
  1322. if (INDEX_AC != INDEX_L3) {
  1323. sizes[INDEX_L3].cs_cachep =
  1324. kmem_cache_create(names[INDEX_L3].name,
  1325. sizes[INDEX_L3].cs_size,
  1326. ARCH_KMALLOC_MINALIGN,
  1327. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1328. NULL, NULL);
  1329. }
  1330. slab_early_init = 0;
  1331. while (sizes->cs_size != ULONG_MAX) {
  1332. /*
  1333. * For performance, all the general caches are L1 aligned.
  1334. * This should be particularly beneficial on SMP boxes, as it
  1335. * eliminates "false sharing".
  1336. * Note for systems short on memory removing the alignment will
  1337. * allow tighter packing of the smaller caches.
  1338. */
  1339. if (!sizes->cs_cachep) {
  1340. sizes->cs_cachep = kmem_cache_create(names->name,
  1341. sizes->cs_size,
  1342. ARCH_KMALLOC_MINALIGN,
  1343. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1344. NULL, NULL);
  1345. }
  1346. #ifdef CONFIG_ZONE_DMA
  1347. sizes->cs_dmacachep = kmem_cache_create(
  1348. names->name_dma,
  1349. sizes->cs_size,
  1350. ARCH_KMALLOC_MINALIGN,
  1351. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1352. SLAB_PANIC,
  1353. NULL, NULL);
  1354. #endif
  1355. sizes++;
  1356. names++;
  1357. }
  1358. /* 4) Replace the bootstrap head arrays */
  1359. {
  1360. struct array_cache *ptr;
  1361. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1362. local_irq_disable();
  1363. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1364. memcpy(ptr, cpu_cache_get(&cache_cache),
  1365. sizeof(struct arraycache_init));
  1366. /*
  1367. * Do not assume that spinlocks can be initialized via memcpy:
  1368. */
  1369. spin_lock_init(&ptr->lock);
  1370. cache_cache.array[smp_processor_id()] = ptr;
  1371. local_irq_enable();
  1372. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1373. local_irq_disable();
  1374. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1375. != &initarray_generic.cache);
  1376. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1377. sizeof(struct arraycache_init));
  1378. /*
  1379. * Do not assume that spinlocks can be initialized via memcpy:
  1380. */
  1381. spin_lock_init(&ptr->lock);
  1382. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1383. ptr;
  1384. local_irq_enable();
  1385. }
  1386. /* 5) Replace the bootstrap kmem_list3's */
  1387. {
  1388. int nid;
  1389. /* Replace the static kmem_list3 structures for the boot cpu */
  1390. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
  1391. for_each_online_node(nid) {
  1392. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1393. &initkmem_list3[SIZE_AC + nid], nid);
  1394. if (INDEX_AC != INDEX_L3) {
  1395. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1396. &initkmem_list3[SIZE_L3 + nid], nid);
  1397. }
  1398. }
  1399. }
  1400. /* 6) resize the head arrays to their final sizes */
  1401. {
  1402. struct kmem_cache *cachep;
  1403. mutex_lock(&cache_chain_mutex);
  1404. list_for_each_entry(cachep, &cache_chain, next)
  1405. if (enable_cpucache(cachep))
  1406. BUG();
  1407. mutex_unlock(&cache_chain_mutex);
  1408. }
  1409. /* Annotate slab for lockdep -- annotate the malloc caches */
  1410. init_lock_keys();
  1411. /* Done! */
  1412. g_cpucache_up = FULL;
  1413. /*
  1414. * Register a cpu startup notifier callback that initializes
  1415. * cpu_cache_get for all new cpus
  1416. */
  1417. register_cpu_notifier(&cpucache_notifier);
  1418. /*
  1419. * The reap timers are started later, with a module init call: That part
  1420. * of the kernel is not yet operational.
  1421. */
  1422. }
  1423. static int __init cpucache_init(void)
  1424. {
  1425. int cpu;
  1426. /*
  1427. * Register the timers that return unneeded pages to the page allocator
  1428. */
  1429. for_each_online_cpu(cpu)
  1430. start_cpu_timer(cpu);
  1431. return 0;
  1432. }
  1433. __initcall(cpucache_init);
  1434. /*
  1435. * Interface to system's page allocator. No need to hold the cache-lock.
  1436. *
  1437. * If we requested dmaable memory, we will get it. Even if we
  1438. * did not request dmaable memory, we might get it, but that
  1439. * would be relatively rare and ignorable.
  1440. */
  1441. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1442. {
  1443. struct page *page;
  1444. int nr_pages;
  1445. int i;
  1446. #ifndef CONFIG_MMU
  1447. /*
  1448. * Nommu uses slab's for process anonymous memory allocations, and thus
  1449. * requires __GFP_COMP to properly refcount higher order allocations
  1450. */
  1451. flags |= __GFP_COMP;
  1452. #endif
  1453. flags |= cachep->gfpflags;
  1454. page = alloc_pages_node(nodeid, flags, cachep->gfporder);
  1455. if (!page)
  1456. return NULL;
  1457. nr_pages = (1 << cachep->gfporder);
  1458. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1459. add_zone_page_state(page_zone(page),
  1460. NR_SLAB_RECLAIMABLE, nr_pages);
  1461. else
  1462. add_zone_page_state(page_zone(page),
  1463. NR_SLAB_UNRECLAIMABLE, nr_pages);
  1464. for (i = 0; i < nr_pages; i++)
  1465. __SetPageSlab(page + i);
  1466. return page_address(page);
  1467. }
  1468. /*
  1469. * Interface to system's page release.
  1470. */
  1471. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1472. {
  1473. unsigned long i = (1 << cachep->gfporder);
  1474. struct page *page = virt_to_page(addr);
  1475. const unsigned long nr_freed = i;
  1476. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1477. sub_zone_page_state(page_zone(page),
  1478. NR_SLAB_RECLAIMABLE, nr_freed);
  1479. else
  1480. sub_zone_page_state(page_zone(page),
  1481. NR_SLAB_UNRECLAIMABLE, nr_freed);
  1482. while (i--) {
  1483. BUG_ON(!PageSlab(page));
  1484. __ClearPageSlab(page);
  1485. page++;
  1486. }
  1487. if (current->reclaim_state)
  1488. current->reclaim_state->reclaimed_slab += nr_freed;
  1489. free_pages((unsigned long)addr, cachep->gfporder);
  1490. }
  1491. static void kmem_rcu_free(struct rcu_head *head)
  1492. {
  1493. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1494. struct kmem_cache *cachep = slab_rcu->cachep;
  1495. kmem_freepages(cachep, slab_rcu->addr);
  1496. if (OFF_SLAB(cachep))
  1497. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1498. }
  1499. #if DEBUG
  1500. #ifdef CONFIG_DEBUG_PAGEALLOC
  1501. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1502. unsigned long caller)
  1503. {
  1504. int size = obj_size(cachep);
  1505. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1506. if (size < 5 * sizeof(unsigned long))
  1507. return;
  1508. *addr++ = 0x12345678;
  1509. *addr++ = caller;
  1510. *addr++ = smp_processor_id();
  1511. size -= 3 * sizeof(unsigned long);
  1512. {
  1513. unsigned long *sptr = &caller;
  1514. unsigned long svalue;
  1515. while (!kstack_end(sptr)) {
  1516. svalue = *sptr++;
  1517. if (kernel_text_address(svalue)) {
  1518. *addr++ = svalue;
  1519. size -= sizeof(unsigned long);
  1520. if (size <= sizeof(unsigned long))
  1521. break;
  1522. }
  1523. }
  1524. }
  1525. *addr++ = 0x87654321;
  1526. }
  1527. #endif
  1528. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1529. {
  1530. int size = obj_size(cachep);
  1531. addr = &((char *)addr)[obj_offset(cachep)];
  1532. memset(addr, val, size);
  1533. *(unsigned char *)(addr + size - 1) = POISON_END;
  1534. }
  1535. static void dump_line(char *data, int offset, int limit)
  1536. {
  1537. int i;
  1538. unsigned char error = 0;
  1539. int bad_count = 0;
  1540. printk(KERN_ERR "%03x:", offset);
  1541. for (i = 0; i < limit; i++) {
  1542. if (data[offset + i] != POISON_FREE) {
  1543. error = data[offset + i];
  1544. bad_count++;
  1545. }
  1546. printk(" %02x", (unsigned char)data[offset + i]);
  1547. }
  1548. printk("\n");
  1549. if (bad_count == 1) {
  1550. error ^= POISON_FREE;
  1551. if (!(error & (error - 1))) {
  1552. printk(KERN_ERR "Single bit error detected. Probably "
  1553. "bad RAM.\n");
  1554. #ifdef CONFIG_X86
  1555. printk(KERN_ERR "Run memtest86+ or a similar memory "
  1556. "test tool.\n");
  1557. #else
  1558. printk(KERN_ERR "Run a memory test tool.\n");
  1559. #endif
  1560. }
  1561. }
  1562. }
  1563. #endif
  1564. #if DEBUG
  1565. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1566. {
  1567. int i, size;
  1568. char *realobj;
  1569. if (cachep->flags & SLAB_RED_ZONE) {
  1570. printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
  1571. *dbg_redzone1(cachep, objp),
  1572. *dbg_redzone2(cachep, objp));
  1573. }
  1574. if (cachep->flags & SLAB_STORE_USER) {
  1575. printk(KERN_ERR "Last user: [<%p>]",
  1576. *dbg_userword(cachep, objp));
  1577. print_symbol("(%s)",
  1578. (unsigned long)*dbg_userword(cachep, objp));
  1579. printk("\n");
  1580. }
  1581. realobj = (char *)objp + obj_offset(cachep);
  1582. size = obj_size(cachep);
  1583. for (i = 0; i < size && lines; i += 16, lines--) {
  1584. int limit;
  1585. limit = 16;
  1586. if (i + limit > size)
  1587. limit = size - i;
  1588. dump_line(realobj, i, limit);
  1589. }
  1590. }
  1591. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1592. {
  1593. char *realobj;
  1594. int size, i;
  1595. int lines = 0;
  1596. realobj = (char *)objp + obj_offset(cachep);
  1597. size = obj_size(cachep);
  1598. for (i = 0; i < size; i++) {
  1599. char exp = POISON_FREE;
  1600. if (i == size - 1)
  1601. exp = POISON_END;
  1602. if (realobj[i] != exp) {
  1603. int limit;
  1604. /* Mismatch ! */
  1605. /* Print header */
  1606. if (lines == 0) {
  1607. printk(KERN_ERR
  1608. "Slab corruption: %s start=%p, len=%d\n",
  1609. cachep->name, realobj, size);
  1610. print_objinfo(cachep, objp, 0);
  1611. }
  1612. /* Hexdump the affected line */
  1613. i = (i / 16) * 16;
  1614. limit = 16;
  1615. if (i + limit > size)
  1616. limit = size - i;
  1617. dump_line(realobj, i, limit);
  1618. i += 16;
  1619. lines++;
  1620. /* Limit to 5 lines */
  1621. if (lines > 5)
  1622. break;
  1623. }
  1624. }
  1625. if (lines != 0) {
  1626. /* Print some data about the neighboring objects, if they
  1627. * exist:
  1628. */
  1629. struct slab *slabp = virt_to_slab(objp);
  1630. unsigned int objnr;
  1631. objnr = obj_to_index(cachep, slabp, objp);
  1632. if (objnr) {
  1633. objp = index_to_obj(cachep, slabp, objnr - 1);
  1634. realobj = (char *)objp + obj_offset(cachep);
  1635. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1636. realobj, size);
  1637. print_objinfo(cachep, objp, 2);
  1638. }
  1639. if (objnr + 1 < cachep->num) {
  1640. objp = index_to_obj(cachep, slabp, objnr + 1);
  1641. realobj = (char *)objp + obj_offset(cachep);
  1642. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1643. realobj, size);
  1644. print_objinfo(cachep, objp, 2);
  1645. }
  1646. }
  1647. }
  1648. #endif
  1649. #if DEBUG
  1650. /**
  1651. * slab_destroy_objs - destroy a slab and its objects
  1652. * @cachep: cache pointer being destroyed
  1653. * @slabp: slab pointer being destroyed
  1654. *
  1655. * Call the registered destructor for each object in a slab that is being
  1656. * destroyed.
  1657. */
  1658. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1659. {
  1660. int i;
  1661. for (i = 0; i < cachep->num; i++) {
  1662. void *objp = index_to_obj(cachep, slabp, i);
  1663. if (cachep->flags & SLAB_POISON) {
  1664. #ifdef CONFIG_DEBUG_PAGEALLOC
  1665. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1666. OFF_SLAB(cachep))
  1667. kernel_map_pages(virt_to_page(objp),
  1668. cachep->buffer_size / PAGE_SIZE, 1);
  1669. else
  1670. check_poison_obj(cachep, objp);
  1671. #else
  1672. check_poison_obj(cachep, objp);
  1673. #endif
  1674. }
  1675. if (cachep->flags & SLAB_RED_ZONE) {
  1676. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1677. slab_error(cachep, "start of a freed object "
  1678. "was overwritten");
  1679. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1680. slab_error(cachep, "end of a freed object "
  1681. "was overwritten");
  1682. }
  1683. if (cachep->dtor && !(cachep->flags & SLAB_POISON))
  1684. (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
  1685. }
  1686. }
  1687. #else
  1688. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1689. {
  1690. if (cachep->dtor) {
  1691. int i;
  1692. for (i = 0; i < cachep->num; i++) {
  1693. void *objp = index_to_obj(cachep, slabp, i);
  1694. (cachep->dtor) (objp, cachep, 0);
  1695. }
  1696. }
  1697. }
  1698. #endif
  1699. /**
  1700. * slab_destroy - destroy and release all objects in a slab
  1701. * @cachep: cache pointer being destroyed
  1702. * @slabp: slab pointer being destroyed
  1703. *
  1704. * Destroy all the objs in a slab, and release the mem back to the system.
  1705. * Before calling the slab must have been unlinked from the cache. The
  1706. * cache-lock is not held/needed.
  1707. */
  1708. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1709. {
  1710. void *addr = slabp->s_mem - slabp->colouroff;
  1711. slab_destroy_objs(cachep, slabp);
  1712. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1713. struct slab_rcu *slab_rcu;
  1714. slab_rcu = (struct slab_rcu *)slabp;
  1715. slab_rcu->cachep = cachep;
  1716. slab_rcu->addr = addr;
  1717. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1718. } else {
  1719. kmem_freepages(cachep, addr);
  1720. if (OFF_SLAB(cachep))
  1721. kmem_cache_free(cachep->slabp_cache, slabp);
  1722. }
  1723. }
  1724. /*
  1725. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1726. * size of kmem_list3.
  1727. */
  1728. static void __init set_up_list3s(struct kmem_cache *cachep, int index)
  1729. {
  1730. int node;
  1731. for_each_online_node(node) {
  1732. cachep->nodelists[node] = &initkmem_list3[index + node];
  1733. cachep->nodelists[node]->next_reap = jiffies +
  1734. REAPTIMEOUT_LIST3 +
  1735. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1736. }
  1737. }
  1738. static void __kmem_cache_destroy(struct kmem_cache *cachep)
  1739. {
  1740. int i;
  1741. struct kmem_list3 *l3;
  1742. for_each_online_cpu(i)
  1743. kfree(cachep->array[i]);
  1744. /* NUMA: free the list3 structures */
  1745. for_each_online_node(i) {
  1746. l3 = cachep->nodelists[i];
  1747. if (l3) {
  1748. kfree(l3->shared);
  1749. free_alien_cache(l3->alien);
  1750. kfree(l3);
  1751. }
  1752. }
  1753. kmem_cache_free(&cache_cache, cachep);
  1754. }
  1755. /**
  1756. * calculate_slab_order - calculate size (page order) of slabs
  1757. * @cachep: pointer to the cache that is being created
  1758. * @size: size of objects to be created in this cache.
  1759. * @align: required alignment for the objects.
  1760. * @flags: slab allocation flags
  1761. *
  1762. * Also calculates the number of objects per slab.
  1763. *
  1764. * This could be made much more intelligent. For now, try to avoid using
  1765. * high order pages for slabs. When the gfp() functions are more friendly
  1766. * towards high-order requests, this should be changed.
  1767. */
  1768. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1769. size_t size, size_t align, unsigned long flags)
  1770. {
  1771. unsigned long offslab_limit;
  1772. size_t left_over = 0;
  1773. int gfporder;
  1774. for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
  1775. unsigned int num;
  1776. size_t remainder;
  1777. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1778. if (!num)
  1779. continue;
  1780. if (flags & CFLGS_OFF_SLAB) {
  1781. /*
  1782. * Max number of objs-per-slab for caches which
  1783. * use off-slab slabs. Needed to avoid a possible
  1784. * looping condition in cache_grow().
  1785. */
  1786. offslab_limit = size - sizeof(struct slab);
  1787. offslab_limit /= sizeof(kmem_bufctl_t);
  1788. if (num > offslab_limit)
  1789. break;
  1790. }
  1791. /* Found something acceptable - save it away */
  1792. cachep->num = num;
  1793. cachep->gfporder = gfporder;
  1794. left_over = remainder;
  1795. /*
  1796. * A VFS-reclaimable slab tends to have most allocations
  1797. * as GFP_NOFS and we really don't want to have to be allocating
  1798. * higher-order pages when we are unable to shrink dcache.
  1799. */
  1800. if (flags & SLAB_RECLAIM_ACCOUNT)
  1801. break;
  1802. /*
  1803. * Large number of objects is good, but very large slabs are
  1804. * currently bad for the gfp()s.
  1805. */
  1806. if (gfporder >= slab_break_gfp_order)
  1807. break;
  1808. /*
  1809. * Acceptable internal fragmentation?
  1810. */
  1811. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1812. break;
  1813. }
  1814. return left_over;
  1815. }
  1816. static int setup_cpu_cache(struct kmem_cache *cachep)
  1817. {
  1818. if (g_cpucache_up == FULL)
  1819. return enable_cpucache(cachep);
  1820. if (g_cpucache_up == NONE) {
  1821. /*
  1822. * Note: the first kmem_cache_create must create the cache
  1823. * that's used by kmalloc(24), otherwise the creation of
  1824. * further caches will BUG().
  1825. */
  1826. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1827. /*
  1828. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1829. * the first cache, then we need to set up all its list3s,
  1830. * otherwise the creation of further caches will BUG().
  1831. */
  1832. set_up_list3s(cachep, SIZE_AC);
  1833. if (INDEX_AC == INDEX_L3)
  1834. g_cpucache_up = PARTIAL_L3;
  1835. else
  1836. g_cpucache_up = PARTIAL_AC;
  1837. } else {
  1838. cachep->array[smp_processor_id()] =
  1839. kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1840. if (g_cpucache_up == PARTIAL_AC) {
  1841. set_up_list3s(cachep, SIZE_L3);
  1842. g_cpucache_up = PARTIAL_L3;
  1843. } else {
  1844. int node;
  1845. for_each_online_node(node) {
  1846. cachep->nodelists[node] =
  1847. kmalloc_node(sizeof(struct kmem_list3),
  1848. GFP_KERNEL, node);
  1849. BUG_ON(!cachep->nodelists[node]);
  1850. kmem_list3_init(cachep->nodelists[node]);
  1851. }
  1852. }
  1853. }
  1854. cachep->nodelists[numa_node_id()]->next_reap =
  1855. jiffies + REAPTIMEOUT_LIST3 +
  1856. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1857. cpu_cache_get(cachep)->avail = 0;
  1858. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1859. cpu_cache_get(cachep)->batchcount = 1;
  1860. cpu_cache_get(cachep)->touched = 0;
  1861. cachep->batchcount = 1;
  1862. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1863. return 0;
  1864. }
  1865. /**
  1866. * kmem_cache_create - Create a cache.
  1867. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1868. * @size: The size of objects to be created in this cache.
  1869. * @align: The required alignment for the objects.
  1870. * @flags: SLAB flags
  1871. * @ctor: A constructor for the objects.
  1872. * @dtor: A destructor for the objects.
  1873. *
  1874. * Returns a ptr to the cache on success, NULL on failure.
  1875. * Cannot be called within a int, but can be interrupted.
  1876. * The @ctor is run when new pages are allocated by the cache
  1877. * and the @dtor is run before the pages are handed back.
  1878. *
  1879. * @name must be valid until the cache is destroyed. This implies that
  1880. * the module calling this has to destroy the cache before getting unloaded.
  1881. *
  1882. * The flags are
  1883. *
  1884. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1885. * to catch references to uninitialised memory.
  1886. *
  1887. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1888. * for buffer overruns.
  1889. *
  1890. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1891. * cacheline. This can be beneficial if you're counting cycles as closely
  1892. * as davem.
  1893. */
  1894. struct kmem_cache *
  1895. kmem_cache_create (const char *name, size_t size, size_t align,
  1896. unsigned long flags,
  1897. void (*ctor)(void*, struct kmem_cache *, unsigned long),
  1898. void (*dtor)(void*, struct kmem_cache *, unsigned long))
  1899. {
  1900. size_t left_over, slab_size, ralign;
  1901. struct kmem_cache *cachep = NULL, *pc;
  1902. /*
  1903. * Sanity checks... these are all serious usage bugs.
  1904. */
  1905. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1906. (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
  1907. printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
  1908. name);
  1909. BUG();
  1910. }
  1911. /*
  1912. * We use cache_chain_mutex to ensure a consistent view of
  1913. * cpu_online_map as well. Please see cpuup_callback
  1914. */
  1915. mutex_lock(&cache_chain_mutex);
  1916. list_for_each_entry(pc, &cache_chain, next) {
  1917. char tmp;
  1918. int res;
  1919. /*
  1920. * This happens when the module gets unloaded and doesn't
  1921. * destroy its slab cache and no-one else reuses the vmalloc
  1922. * area of the module. Print a warning.
  1923. */
  1924. res = probe_kernel_address(pc->name, tmp);
  1925. if (res) {
  1926. printk(KERN_ERR
  1927. "SLAB: cache with size %d has lost its name\n",
  1928. pc->buffer_size);
  1929. continue;
  1930. }
  1931. if (!strcmp(pc->name, name)) {
  1932. printk(KERN_ERR
  1933. "kmem_cache_create: duplicate cache %s\n", name);
  1934. dump_stack();
  1935. goto oops;
  1936. }
  1937. }
  1938. #if DEBUG
  1939. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1940. if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
  1941. /* No constructor, but inital state check requested */
  1942. printk(KERN_ERR "%s: No con, but init state check "
  1943. "requested - %s\n", __FUNCTION__, name);
  1944. flags &= ~SLAB_DEBUG_INITIAL;
  1945. }
  1946. #if FORCED_DEBUG
  1947. /*
  1948. * Enable redzoning and last user accounting, except for caches with
  1949. * large objects, if the increased size would increase the object size
  1950. * above the next power of two: caches with object sizes just above a
  1951. * power of two have a significant amount of internal fragmentation.
  1952. */
  1953. if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
  1954. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1955. if (!(flags & SLAB_DESTROY_BY_RCU))
  1956. flags |= SLAB_POISON;
  1957. #endif
  1958. if (flags & SLAB_DESTROY_BY_RCU)
  1959. BUG_ON(flags & SLAB_POISON);
  1960. #endif
  1961. if (flags & SLAB_DESTROY_BY_RCU)
  1962. BUG_ON(dtor);
  1963. /*
  1964. * Always checks flags, a caller might be expecting debug support which
  1965. * isn't available.
  1966. */
  1967. BUG_ON(flags & ~CREATE_MASK);
  1968. /*
  1969. * Check that size is in terms of words. This is needed to avoid
  1970. * unaligned accesses for some archs when redzoning is used, and makes
  1971. * sure any on-slab bufctl's are also correctly aligned.
  1972. */
  1973. if (size & (BYTES_PER_WORD - 1)) {
  1974. size += (BYTES_PER_WORD - 1);
  1975. size &= ~(BYTES_PER_WORD - 1);
  1976. }
  1977. /* calculate the final buffer alignment: */
  1978. /* 1) arch recommendation: can be overridden for debug */
  1979. if (flags & SLAB_HWCACHE_ALIGN) {
  1980. /*
  1981. * Default alignment: as specified by the arch code. Except if
  1982. * an object is really small, then squeeze multiple objects into
  1983. * one cacheline.
  1984. */
  1985. ralign = cache_line_size();
  1986. while (size <= ralign / 2)
  1987. ralign /= 2;
  1988. } else {
  1989. ralign = BYTES_PER_WORD;
  1990. }
  1991. /*
  1992. * Redzoning and user store require word alignment. Note this will be
  1993. * overridden by architecture or caller mandated alignment if either
  1994. * is greater than BYTES_PER_WORD.
  1995. */
  1996. if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
  1997. ralign = BYTES_PER_WORD;
  1998. /* 2) arch mandated alignment */
  1999. if (ralign < ARCH_SLAB_MINALIGN) {
  2000. ralign = ARCH_SLAB_MINALIGN;
  2001. }
  2002. /* 3) caller mandated alignment */
  2003. if (ralign < align) {
  2004. ralign = align;
  2005. }
  2006. /* disable debug if necessary */
  2007. if (ralign > BYTES_PER_WORD)
  2008. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  2009. /*
  2010. * 4) Store it.
  2011. */
  2012. align = ralign;
  2013. /* Get cache's description obj. */
  2014. cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
  2015. if (!cachep)
  2016. goto oops;
  2017. #if DEBUG
  2018. cachep->obj_size = size;
  2019. /*
  2020. * Both debugging options require word-alignment which is calculated
  2021. * into align above.
  2022. */
  2023. if (flags & SLAB_RED_ZONE) {
  2024. /* add space for red zone words */
  2025. cachep->obj_offset += BYTES_PER_WORD;
  2026. size += 2 * BYTES_PER_WORD;
  2027. }
  2028. if (flags & SLAB_STORE_USER) {
  2029. /* user store requires one word storage behind the end of
  2030. * the real object.
  2031. */
  2032. size += BYTES_PER_WORD;
  2033. }
  2034. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  2035. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  2036. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  2037. cachep->obj_offset += PAGE_SIZE - size;
  2038. size = PAGE_SIZE;
  2039. }
  2040. #endif
  2041. #endif
  2042. /*
  2043. * Determine if the slab management is 'on' or 'off' slab.
  2044. * (bootstrapping cannot cope with offslab caches so don't do
  2045. * it too early on.)
  2046. */
  2047. if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
  2048. /*
  2049. * Size is large, assume best to place the slab management obj
  2050. * off-slab (should allow better packing of objs).
  2051. */
  2052. flags |= CFLGS_OFF_SLAB;
  2053. size = ALIGN(size, align);
  2054. left_over = calculate_slab_order(cachep, size, align, flags);
  2055. if (!cachep->num) {
  2056. printk(KERN_ERR
  2057. "kmem_cache_create: couldn't create cache %s.\n", name);
  2058. kmem_cache_free(&cache_cache, cachep);
  2059. cachep = NULL;
  2060. goto oops;
  2061. }
  2062. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  2063. + sizeof(struct slab), align);
  2064. /*
  2065. * If the slab has been placed off-slab, and we have enough space then
  2066. * move it on-slab. This is at the expense of any extra colouring.
  2067. */
  2068. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  2069. flags &= ~CFLGS_OFF_SLAB;
  2070. left_over -= slab_size;
  2071. }
  2072. if (flags & CFLGS_OFF_SLAB) {
  2073. /* really off slab. No need for manual alignment */
  2074. slab_size =
  2075. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  2076. }
  2077. cachep->colour_off = cache_line_size();
  2078. /* Offset must be a multiple of the alignment. */
  2079. if (cachep->colour_off < align)
  2080. cachep->colour_off = align;
  2081. cachep->colour = left_over / cachep->colour_off;
  2082. cachep->slab_size = slab_size;
  2083. cachep->flags = flags;
  2084. cachep->gfpflags = 0;
  2085. if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
  2086. cachep->gfpflags |= GFP_DMA;
  2087. cachep->buffer_size = size;
  2088. cachep->reciprocal_buffer_size = reciprocal_value(size);
  2089. if (flags & CFLGS_OFF_SLAB) {
  2090. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  2091. /*
  2092. * This is a possibility for one of the malloc_sizes caches.
  2093. * But since we go off slab only for object size greater than
  2094. * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
  2095. * this should not happen at all.
  2096. * But leave a BUG_ON for some lucky dude.
  2097. */
  2098. BUG_ON(!cachep->slabp_cache);
  2099. }
  2100. cachep->ctor = ctor;
  2101. cachep->dtor = dtor;
  2102. cachep->name = name;
  2103. if (setup_cpu_cache(cachep)) {
  2104. __kmem_cache_destroy(cachep);
  2105. cachep = NULL;
  2106. goto oops;
  2107. }
  2108. /* cache setup completed, link it into the list */
  2109. list_add(&cachep->next, &cache_chain);
  2110. oops:
  2111. if (!cachep && (flags & SLAB_PANIC))
  2112. panic("kmem_cache_create(): failed to create slab `%s'\n",
  2113. name);
  2114. mutex_unlock(&cache_chain_mutex);
  2115. return cachep;
  2116. }
  2117. EXPORT_SYMBOL(kmem_cache_create);
  2118. #if DEBUG
  2119. static void check_irq_off(void)
  2120. {
  2121. BUG_ON(!irqs_disabled());
  2122. }
  2123. static void check_irq_on(void)
  2124. {
  2125. BUG_ON(irqs_disabled());
  2126. }
  2127. static void check_spinlock_acquired(struct kmem_cache *cachep)
  2128. {
  2129. #ifdef CONFIG_SMP
  2130. check_irq_off();
  2131. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  2132. #endif
  2133. }
  2134. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  2135. {
  2136. #ifdef CONFIG_SMP
  2137. check_irq_off();
  2138. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  2139. #endif
  2140. }
  2141. #else
  2142. #define check_irq_off() do { } while(0)
  2143. #define check_irq_on() do { } while(0)
  2144. #define check_spinlock_acquired(x) do { } while(0)
  2145. #define check_spinlock_acquired_node(x, y) do { } while(0)
  2146. #endif
  2147. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  2148. struct array_cache *ac,
  2149. int force, int node);
  2150. static void do_drain(void *arg)
  2151. {
  2152. struct kmem_cache *cachep = arg;
  2153. struct array_cache *ac;
  2154. int node = numa_node_id();
  2155. check_irq_off();
  2156. ac = cpu_cache_get(cachep);
  2157. spin_lock(&cachep->nodelists[node]->list_lock);
  2158. free_block(cachep, ac->entry, ac->avail, node);
  2159. spin_unlock(&cachep->nodelists[node]->list_lock);
  2160. ac->avail = 0;
  2161. }
  2162. static void drain_cpu_caches(struct kmem_cache *cachep)
  2163. {
  2164. struct kmem_list3 *l3;
  2165. int node;
  2166. on_each_cpu(do_drain, cachep, 1, 1);
  2167. check_irq_on();
  2168. for_each_online_node(node) {
  2169. l3 = cachep->nodelists[node];
  2170. if (l3 && l3->alien)
  2171. drain_alien_cache(cachep, l3->alien);
  2172. }
  2173. for_each_online_node(node) {
  2174. l3 = cachep->nodelists[node];
  2175. if (l3)
  2176. drain_array(cachep, l3, l3->shared, 1, node);
  2177. }
  2178. }
  2179. /*
  2180. * Remove slabs from the list of free slabs.
  2181. * Specify the number of slabs to drain in tofree.
  2182. *
  2183. * Returns the actual number of slabs released.
  2184. */
  2185. static int drain_freelist(struct kmem_cache *cache,
  2186. struct kmem_list3 *l3, int tofree)
  2187. {
  2188. struct list_head *p;
  2189. int nr_freed;
  2190. struct slab *slabp;
  2191. nr_freed = 0;
  2192. while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
  2193. spin_lock_irq(&l3->list_lock);
  2194. p = l3->slabs_free.prev;
  2195. if (p == &l3->slabs_free) {
  2196. spin_unlock_irq(&l3->list_lock);
  2197. goto out;
  2198. }
  2199. slabp = list_entry(p, struct slab, list);
  2200. #if DEBUG
  2201. BUG_ON(slabp->inuse);
  2202. #endif
  2203. list_del(&slabp->list);
  2204. /*
  2205. * Safe to drop the lock. The slab is no longer linked
  2206. * to the cache.
  2207. */
  2208. l3->free_objects -= cache->num;
  2209. spin_unlock_irq(&l3->list_lock);
  2210. slab_destroy(cache, slabp);
  2211. nr_freed++;
  2212. }
  2213. out:
  2214. return nr_freed;
  2215. }
  2216. /* Called with cache_chain_mutex held to protect against cpu hotplug */
  2217. static int __cache_shrink(struct kmem_cache *cachep)
  2218. {
  2219. int ret = 0, i = 0;
  2220. struct kmem_list3 *l3;
  2221. drain_cpu_caches(cachep);
  2222. check_irq_on();
  2223. for_each_online_node(i) {
  2224. l3 = cachep->nodelists[i];
  2225. if (!l3)
  2226. continue;
  2227. drain_freelist(cachep, l3, l3->free_objects);
  2228. ret += !list_empty(&l3->slabs_full) ||
  2229. !list_empty(&l3->slabs_partial);
  2230. }
  2231. return (ret ? 1 : 0);
  2232. }
  2233. /**
  2234. * kmem_cache_shrink - Shrink a cache.
  2235. * @cachep: The cache to shrink.
  2236. *
  2237. * Releases as many slabs as possible for a cache.
  2238. * To help debugging, a zero exit status indicates all slabs were released.
  2239. */
  2240. int kmem_cache_shrink(struct kmem_cache *cachep)
  2241. {
  2242. int ret;
  2243. BUG_ON(!cachep || in_interrupt());
  2244. mutex_lock(&cache_chain_mutex);
  2245. ret = __cache_shrink(cachep);
  2246. mutex_unlock(&cache_chain_mutex);
  2247. return ret;
  2248. }
  2249. EXPORT_SYMBOL(kmem_cache_shrink);
  2250. /**
  2251. * kmem_cache_destroy - delete a cache
  2252. * @cachep: the cache to destroy
  2253. *
  2254. * Remove a &struct kmem_cache object from the slab cache.
  2255. *
  2256. * It is expected this function will be called by a module when it is
  2257. * unloaded. This will remove the cache completely, and avoid a duplicate
  2258. * cache being allocated each time a module is loaded and unloaded, if the
  2259. * module doesn't have persistent in-kernel storage across loads and unloads.
  2260. *
  2261. * The cache must be empty before calling this function.
  2262. *
  2263. * The caller must guarantee that noone will allocate memory from the cache
  2264. * during the kmem_cache_destroy().
  2265. */
  2266. void kmem_cache_destroy(struct kmem_cache *cachep)
  2267. {
  2268. BUG_ON(!cachep || in_interrupt());
  2269. /* Find the cache in the chain of caches. */
  2270. mutex_lock(&cache_chain_mutex);
  2271. /*
  2272. * the chain is never empty, cache_cache is never destroyed
  2273. */
  2274. list_del(&cachep->next);
  2275. if (__cache_shrink(cachep)) {
  2276. slab_error(cachep, "Can't free all objects");
  2277. list_add(&cachep->next, &cache_chain);
  2278. mutex_unlock(&cache_chain_mutex);
  2279. return;
  2280. }
  2281. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2282. synchronize_rcu();
  2283. __kmem_cache_destroy(cachep);
  2284. mutex_unlock(&cache_chain_mutex);
  2285. }
  2286. EXPORT_SYMBOL(kmem_cache_destroy);
  2287. /*
  2288. * Get the memory for a slab management obj.
  2289. * For a slab cache when the slab descriptor is off-slab, slab descriptors
  2290. * always come from malloc_sizes caches. The slab descriptor cannot
  2291. * come from the same cache which is getting created because,
  2292. * when we are searching for an appropriate cache for these
  2293. * descriptors in kmem_cache_create, we search through the malloc_sizes array.
  2294. * If we are creating a malloc_sizes cache here it would not be visible to
  2295. * kmem_find_general_cachep till the initialization is complete.
  2296. * Hence we cannot have slabp_cache same as the original cache.
  2297. */
  2298. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2299. int colour_off, gfp_t local_flags,
  2300. int nodeid)
  2301. {
  2302. struct slab *slabp;
  2303. if (OFF_SLAB(cachep)) {
  2304. /* Slab management obj is off-slab. */
  2305. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2306. local_flags & ~GFP_THISNODE, nodeid);
  2307. if (!slabp)
  2308. return NULL;
  2309. } else {
  2310. slabp = objp + colour_off;
  2311. colour_off += cachep->slab_size;
  2312. }
  2313. slabp->inuse = 0;
  2314. slabp->colouroff = colour_off;
  2315. slabp->s_mem = objp + colour_off;
  2316. slabp->nodeid = nodeid;
  2317. return slabp;
  2318. }
  2319. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2320. {
  2321. return (kmem_bufctl_t *) (slabp + 1);
  2322. }
  2323. static void cache_init_objs(struct kmem_cache *cachep,
  2324. struct slab *slabp, unsigned long ctor_flags)
  2325. {
  2326. int i;
  2327. for (i = 0; i < cachep->num; i++) {
  2328. void *objp = index_to_obj(cachep, slabp, i);
  2329. #if DEBUG
  2330. /* need to poison the objs? */
  2331. if (cachep->flags & SLAB_POISON)
  2332. poison_obj(cachep, objp, POISON_FREE);
  2333. if (cachep->flags & SLAB_STORE_USER)
  2334. *dbg_userword(cachep, objp) = NULL;
  2335. if (cachep->flags & SLAB_RED_ZONE) {
  2336. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2337. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2338. }
  2339. /*
  2340. * Constructors are not allowed to allocate memory from the same
  2341. * cache which they are a constructor for. Otherwise, deadlock.
  2342. * They must also be threaded.
  2343. */
  2344. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2345. cachep->ctor(objp + obj_offset(cachep), cachep,
  2346. ctor_flags);
  2347. if (cachep->flags & SLAB_RED_ZONE) {
  2348. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2349. slab_error(cachep, "constructor overwrote the"
  2350. " end of an object");
  2351. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2352. slab_error(cachep, "constructor overwrote the"
  2353. " start of an object");
  2354. }
  2355. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2356. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2357. kernel_map_pages(virt_to_page(objp),
  2358. cachep->buffer_size / PAGE_SIZE, 0);
  2359. #else
  2360. if (cachep->ctor)
  2361. cachep->ctor(objp, cachep, ctor_flags);
  2362. #endif
  2363. slab_bufctl(slabp)[i] = i + 1;
  2364. }
  2365. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2366. slabp->free = 0;
  2367. }
  2368. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2369. {
  2370. if (CONFIG_ZONE_DMA_FLAG) {
  2371. if (flags & GFP_DMA)
  2372. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2373. else
  2374. BUG_ON(cachep->gfpflags & GFP_DMA);
  2375. }
  2376. }
  2377. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2378. int nodeid)
  2379. {
  2380. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2381. kmem_bufctl_t next;
  2382. slabp->inuse++;
  2383. next = slab_bufctl(slabp)[slabp->free];
  2384. #if DEBUG
  2385. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2386. WARN_ON(slabp->nodeid != nodeid);
  2387. #endif
  2388. slabp->free = next;
  2389. return objp;
  2390. }
  2391. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2392. void *objp, int nodeid)
  2393. {
  2394. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2395. #if DEBUG
  2396. /* Verify that the slab belongs to the intended node */
  2397. WARN_ON(slabp->nodeid != nodeid);
  2398. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2399. printk(KERN_ERR "slab: double free detected in cache "
  2400. "'%s', objp %p\n", cachep->name, objp);
  2401. BUG();
  2402. }
  2403. #endif
  2404. slab_bufctl(slabp)[objnr] = slabp->free;
  2405. slabp->free = objnr;
  2406. slabp->inuse--;
  2407. }
  2408. /*
  2409. * Map pages beginning at addr to the given cache and slab. This is required
  2410. * for the slab allocator to be able to lookup the cache and slab of a
  2411. * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
  2412. */
  2413. static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
  2414. void *addr)
  2415. {
  2416. int nr_pages;
  2417. struct page *page;
  2418. page = virt_to_page(addr);
  2419. nr_pages = 1;
  2420. if (likely(!PageCompound(page)))
  2421. nr_pages <<= cache->gfporder;
  2422. do {
  2423. page_set_cache(page, cache);
  2424. page_set_slab(page, slab);
  2425. page++;
  2426. } while (--nr_pages);
  2427. }
  2428. /*
  2429. * Grow (by 1) the number of slabs within a cache. This is called by
  2430. * kmem_cache_alloc() when there are no active objs left in a cache.
  2431. */
  2432. static int cache_grow(struct kmem_cache *cachep,
  2433. gfp_t flags, int nodeid, void *objp)
  2434. {
  2435. struct slab *slabp;
  2436. size_t offset;
  2437. gfp_t local_flags;
  2438. unsigned long ctor_flags;
  2439. struct kmem_list3 *l3;
  2440. /*
  2441. * Be lazy and only check for valid flags here, keeping it out of the
  2442. * critical path in kmem_cache_alloc().
  2443. */
  2444. BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW));
  2445. if (flags & __GFP_NO_GROW)
  2446. return 0;
  2447. ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2448. local_flags = (flags & GFP_LEVEL_MASK);
  2449. if (!(local_flags & __GFP_WAIT))
  2450. /*
  2451. * Not allowed to sleep. Need to tell a constructor about
  2452. * this - it might need to know...
  2453. */
  2454. ctor_flags |= SLAB_CTOR_ATOMIC;
  2455. /* Take the l3 list lock to change the colour_next on this node */
  2456. check_irq_off();
  2457. l3 = cachep->nodelists[nodeid];
  2458. spin_lock(&l3->list_lock);
  2459. /* Get colour for the slab, and cal the next value. */
  2460. offset = l3->colour_next;
  2461. l3->colour_next++;
  2462. if (l3->colour_next >= cachep->colour)
  2463. l3->colour_next = 0;
  2464. spin_unlock(&l3->list_lock);
  2465. offset *= cachep->colour_off;
  2466. if (local_flags & __GFP_WAIT)
  2467. local_irq_enable();
  2468. /*
  2469. * The test for missing atomic flag is performed here, rather than
  2470. * the more obvious place, simply to reduce the critical path length
  2471. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2472. * will eventually be caught here (where it matters).
  2473. */
  2474. kmem_flagcheck(cachep, flags);
  2475. /*
  2476. * Get mem for the objs. Attempt to allocate a physical page from
  2477. * 'nodeid'.
  2478. */
  2479. if (!objp)
  2480. objp = kmem_getpages(cachep, flags, nodeid);
  2481. if (!objp)
  2482. goto failed;
  2483. /* Get slab management. */
  2484. slabp = alloc_slabmgmt(cachep, objp, offset,
  2485. local_flags & ~GFP_THISNODE, nodeid);
  2486. if (!slabp)
  2487. goto opps1;
  2488. slabp->nodeid = nodeid;
  2489. slab_map_pages(cachep, slabp, objp);
  2490. cache_init_objs(cachep, slabp, ctor_flags);
  2491. if (local_flags & __GFP_WAIT)
  2492. local_irq_disable();
  2493. check_irq_off();
  2494. spin_lock(&l3->list_lock);
  2495. /* Make slab active. */
  2496. list_add_tail(&slabp->list, &(l3->slabs_free));
  2497. STATS_INC_GROWN(cachep);
  2498. l3->free_objects += cachep->num;
  2499. spin_unlock(&l3->list_lock);
  2500. return 1;
  2501. opps1:
  2502. kmem_freepages(cachep, objp);
  2503. failed:
  2504. if (local_flags & __GFP_WAIT)
  2505. local_irq_disable();
  2506. return 0;
  2507. }
  2508. #if DEBUG
  2509. /*
  2510. * Perform extra freeing checks:
  2511. * - detect bad pointers.
  2512. * - POISON/RED_ZONE checking
  2513. * - destructor calls, for caches with POISON+dtor
  2514. */
  2515. static void kfree_debugcheck(const void *objp)
  2516. {
  2517. if (!virt_addr_valid(objp)) {
  2518. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2519. (unsigned long)objp);
  2520. BUG();
  2521. }
  2522. }
  2523. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2524. {
  2525. unsigned long redzone1, redzone2;
  2526. redzone1 = *dbg_redzone1(cache, obj);
  2527. redzone2 = *dbg_redzone2(cache, obj);
  2528. /*
  2529. * Redzone is ok.
  2530. */
  2531. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2532. return;
  2533. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2534. slab_error(cache, "double free detected");
  2535. else
  2536. slab_error(cache, "memory outside object was overwritten");
  2537. printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
  2538. obj, redzone1, redzone2);
  2539. }
  2540. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2541. void *caller)
  2542. {
  2543. struct page *page;
  2544. unsigned int objnr;
  2545. struct slab *slabp;
  2546. objp -= obj_offset(cachep);
  2547. kfree_debugcheck(objp);
  2548. page = virt_to_head_page(objp);
  2549. slabp = page_get_slab(page);
  2550. if (cachep->flags & SLAB_RED_ZONE) {
  2551. verify_redzone_free(cachep, objp);
  2552. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2553. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2554. }
  2555. if (cachep->flags & SLAB_STORE_USER)
  2556. *dbg_userword(cachep, objp) = caller;
  2557. objnr = obj_to_index(cachep, slabp, objp);
  2558. BUG_ON(objnr >= cachep->num);
  2559. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2560. if (cachep->flags & SLAB_DEBUG_INITIAL) {
  2561. /*
  2562. * Need to call the slab's constructor so the caller can
  2563. * perform a verify of its state (debugging). Called without
  2564. * the cache-lock held.
  2565. */
  2566. cachep->ctor(objp + obj_offset(cachep),
  2567. cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
  2568. }
  2569. if (cachep->flags & SLAB_POISON && cachep->dtor) {
  2570. /* we want to cache poison the object,
  2571. * call the destruction callback
  2572. */
  2573. cachep->dtor(objp + obj_offset(cachep), cachep, 0);
  2574. }
  2575. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2576. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2577. #endif
  2578. if (cachep->flags & SLAB_POISON) {
  2579. #ifdef CONFIG_DEBUG_PAGEALLOC
  2580. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2581. store_stackinfo(cachep, objp, (unsigned long)caller);
  2582. kernel_map_pages(virt_to_page(objp),
  2583. cachep->buffer_size / PAGE_SIZE, 0);
  2584. } else {
  2585. poison_obj(cachep, objp, POISON_FREE);
  2586. }
  2587. #else
  2588. poison_obj(cachep, objp, POISON_FREE);
  2589. #endif
  2590. }
  2591. return objp;
  2592. }
  2593. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2594. {
  2595. kmem_bufctl_t i;
  2596. int entries = 0;
  2597. /* Check slab's freelist to see if this obj is there. */
  2598. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2599. entries++;
  2600. if (entries > cachep->num || i >= cachep->num)
  2601. goto bad;
  2602. }
  2603. if (entries != cachep->num - slabp->inuse) {
  2604. bad:
  2605. printk(KERN_ERR "slab: Internal list corruption detected in "
  2606. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2607. cachep->name, cachep->num, slabp, slabp->inuse);
  2608. for (i = 0;
  2609. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2610. i++) {
  2611. if (i % 16 == 0)
  2612. printk("\n%03x:", i);
  2613. printk(" %02x", ((unsigned char *)slabp)[i]);
  2614. }
  2615. printk("\n");
  2616. BUG();
  2617. }
  2618. }
  2619. #else
  2620. #define kfree_debugcheck(x) do { } while(0)
  2621. #define cache_free_debugcheck(x,objp,z) (objp)
  2622. #define check_slabp(x,y) do { } while(0)
  2623. #endif
  2624. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2625. {
  2626. int batchcount;
  2627. struct kmem_list3 *l3;
  2628. struct array_cache *ac;
  2629. int node;
  2630. node = numa_node_id();
  2631. check_irq_off();
  2632. ac = cpu_cache_get(cachep);
  2633. retry:
  2634. batchcount = ac->batchcount;
  2635. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2636. /*
  2637. * If there was little recent activity on this cache, then
  2638. * perform only a partial refill. Otherwise we could generate
  2639. * refill bouncing.
  2640. */
  2641. batchcount = BATCHREFILL_LIMIT;
  2642. }
  2643. l3 = cachep->nodelists[node];
  2644. BUG_ON(ac->avail > 0 || !l3);
  2645. spin_lock(&l3->list_lock);
  2646. /* See if we can refill from the shared array */
  2647. if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
  2648. goto alloc_done;
  2649. while (batchcount > 0) {
  2650. struct list_head *entry;
  2651. struct slab *slabp;
  2652. /* Get slab alloc is to come from. */
  2653. entry = l3->slabs_partial.next;
  2654. if (entry == &l3->slabs_partial) {
  2655. l3->free_touched = 1;
  2656. entry = l3->slabs_free.next;
  2657. if (entry == &l3->slabs_free)
  2658. goto must_grow;
  2659. }
  2660. slabp = list_entry(entry, struct slab, list);
  2661. check_slabp(cachep, slabp);
  2662. check_spinlock_acquired(cachep);
  2663. /*
  2664. * The slab was either on partial or free list so
  2665. * there must be at least one object available for
  2666. * allocation.
  2667. */
  2668. BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
  2669. while (slabp->inuse < cachep->num && batchcount--) {
  2670. STATS_INC_ALLOCED(cachep);
  2671. STATS_INC_ACTIVE(cachep);
  2672. STATS_SET_HIGH(cachep);
  2673. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2674. node);
  2675. }
  2676. check_slabp(cachep, slabp);
  2677. /* move slabp to correct slabp list: */
  2678. list_del(&slabp->list);
  2679. if (slabp->free == BUFCTL_END)
  2680. list_add(&slabp->list, &l3->slabs_full);
  2681. else
  2682. list_add(&slabp->list, &l3->slabs_partial);
  2683. }
  2684. must_grow:
  2685. l3->free_objects -= ac->avail;
  2686. alloc_done:
  2687. spin_unlock(&l3->list_lock);
  2688. if (unlikely(!ac->avail)) {
  2689. int x;
  2690. x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
  2691. /* cache_grow can reenable interrupts, then ac could change. */
  2692. ac = cpu_cache_get(cachep);
  2693. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2694. return NULL;
  2695. if (!ac->avail) /* objects refilled by interrupt? */
  2696. goto retry;
  2697. }
  2698. ac->touched = 1;
  2699. return ac->entry[--ac->avail];
  2700. }
  2701. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2702. gfp_t flags)
  2703. {
  2704. might_sleep_if(flags & __GFP_WAIT);
  2705. #if DEBUG
  2706. kmem_flagcheck(cachep, flags);
  2707. #endif
  2708. }
  2709. #if DEBUG
  2710. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2711. gfp_t flags, void *objp, void *caller)
  2712. {
  2713. if (!objp)
  2714. return objp;
  2715. if (cachep->flags & SLAB_POISON) {
  2716. #ifdef CONFIG_DEBUG_PAGEALLOC
  2717. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2718. kernel_map_pages(virt_to_page(objp),
  2719. cachep->buffer_size / PAGE_SIZE, 1);
  2720. else
  2721. check_poison_obj(cachep, objp);
  2722. #else
  2723. check_poison_obj(cachep, objp);
  2724. #endif
  2725. poison_obj(cachep, objp, POISON_INUSE);
  2726. }
  2727. if (cachep->flags & SLAB_STORE_USER)
  2728. *dbg_userword(cachep, objp) = caller;
  2729. if (cachep->flags & SLAB_RED_ZONE) {
  2730. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2731. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2732. slab_error(cachep, "double free, or memory outside"
  2733. " object was overwritten");
  2734. printk(KERN_ERR
  2735. "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
  2736. objp, *dbg_redzone1(cachep, objp),
  2737. *dbg_redzone2(cachep, objp));
  2738. }
  2739. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2740. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2741. }
  2742. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2743. {
  2744. struct slab *slabp;
  2745. unsigned objnr;
  2746. slabp = page_get_slab(virt_to_head_page(objp));
  2747. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2748. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2749. }
  2750. #endif
  2751. objp += obj_offset(cachep);
  2752. if (cachep->ctor && cachep->flags & SLAB_POISON) {
  2753. unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2754. if (!(flags & __GFP_WAIT))
  2755. ctor_flags |= SLAB_CTOR_ATOMIC;
  2756. cachep->ctor(objp, cachep, ctor_flags);
  2757. }
  2758. #if ARCH_SLAB_MINALIGN
  2759. if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
  2760. printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
  2761. objp, ARCH_SLAB_MINALIGN);
  2762. }
  2763. #endif
  2764. return objp;
  2765. }
  2766. #else
  2767. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2768. #endif
  2769. #ifdef CONFIG_FAILSLAB
  2770. static struct failslab_attr {
  2771. struct fault_attr attr;
  2772. u32 ignore_gfp_wait;
  2773. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2774. struct dentry *ignore_gfp_wait_file;
  2775. #endif
  2776. } failslab = {
  2777. .attr = FAULT_ATTR_INITIALIZER,
  2778. .ignore_gfp_wait = 1,
  2779. };
  2780. static int __init setup_failslab(char *str)
  2781. {
  2782. return setup_fault_attr(&failslab.attr, str);
  2783. }
  2784. __setup("failslab=", setup_failslab);
  2785. static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2786. {
  2787. if (cachep == &cache_cache)
  2788. return 0;
  2789. if (flags & __GFP_NOFAIL)
  2790. return 0;
  2791. if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
  2792. return 0;
  2793. return should_fail(&failslab.attr, obj_size(cachep));
  2794. }
  2795. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2796. static int __init failslab_debugfs(void)
  2797. {
  2798. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  2799. struct dentry *dir;
  2800. int err;
  2801. err = init_fault_attr_dentries(&failslab.attr, "failslab");
  2802. if (err)
  2803. return err;
  2804. dir = failslab.attr.dentries.dir;
  2805. failslab.ignore_gfp_wait_file =
  2806. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  2807. &failslab.ignore_gfp_wait);
  2808. if (!failslab.ignore_gfp_wait_file) {
  2809. err = -ENOMEM;
  2810. debugfs_remove(failslab.ignore_gfp_wait_file);
  2811. cleanup_fault_attr_dentries(&failslab.attr);
  2812. }
  2813. return err;
  2814. }
  2815. late_initcall(failslab_debugfs);
  2816. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  2817. #else /* CONFIG_FAILSLAB */
  2818. static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2819. {
  2820. return 0;
  2821. }
  2822. #endif /* CONFIG_FAILSLAB */
  2823. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2824. {
  2825. void *objp;
  2826. struct array_cache *ac;
  2827. check_irq_off();
  2828. ac = cpu_cache_get(cachep);
  2829. if (likely(ac->avail)) {
  2830. STATS_INC_ALLOCHIT(cachep);
  2831. ac->touched = 1;
  2832. objp = ac->entry[--ac->avail];
  2833. } else {
  2834. STATS_INC_ALLOCMISS(cachep);
  2835. objp = cache_alloc_refill(cachep, flags);
  2836. }
  2837. return objp;
  2838. }
  2839. #ifdef CONFIG_NUMA
  2840. /*
  2841. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2842. *
  2843. * If we are in_interrupt, then process context, including cpusets and
  2844. * mempolicy, may not apply and should not be used for allocation policy.
  2845. */
  2846. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2847. {
  2848. int nid_alloc, nid_here;
  2849. if (in_interrupt() || (flags & __GFP_THISNODE))
  2850. return NULL;
  2851. nid_alloc = nid_here = numa_node_id();
  2852. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2853. nid_alloc = cpuset_mem_spread_node();
  2854. else if (current->mempolicy)
  2855. nid_alloc = slab_node(current->mempolicy);
  2856. if (nid_alloc != nid_here)
  2857. return ____cache_alloc_node(cachep, flags, nid_alloc);
  2858. return NULL;
  2859. }
  2860. /*
  2861. * Fallback function if there was no memory available and no objects on a
  2862. * certain node and fall back is permitted. First we scan all the
  2863. * available nodelists for available objects. If that fails then we
  2864. * perform an allocation without specifying a node. This allows the page
  2865. * allocator to do its reclaim / fallback magic. We then insert the
  2866. * slab into the proper nodelist and then allocate from it.
  2867. */
  2868. static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
  2869. {
  2870. struct zonelist *zonelist;
  2871. gfp_t local_flags;
  2872. struct zone **z;
  2873. void *obj = NULL;
  2874. int nid;
  2875. if (flags & __GFP_THISNODE)
  2876. return NULL;
  2877. zonelist = &NODE_DATA(slab_node(current->mempolicy))
  2878. ->node_zonelists[gfp_zone(flags)];
  2879. local_flags = (flags & GFP_LEVEL_MASK);
  2880. retry:
  2881. /*
  2882. * Look through allowed nodes for objects available
  2883. * from existing per node queues.
  2884. */
  2885. for (z = zonelist->zones; *z && !obj; z++) {
  2886. nid = zone_to_nid(*z);
  2887. if (cpuset_zone_allowed_hardwall(*z, flags) &&
  2888. cache->nodelists[nid] &&
  2889. cache->nodelists[nid]->free_objects)
  2890. obj = ____cache_alloc_node(cache,
  2891. flags | GFP_THISNODE, nid);
  2892. }
  2893. if (!obj && !(flags & __GFP_NO_GROW)) {
  2894. /*
  2895. * This allocation will be performed within the constraints
  2896. * of the current cpuset / memory policy requirements.
  2897. * We may trigger various forms of reclaim on the allowed
  2898. * set and go into memory reserves if necessary.
  2899. */
  2900. if (local_flags & __GFP_WAIT)
  2901. local_irq_enable();
  2902. kmem_flagcheck(cache, flags);
  2903. obj = kmem_getpages(cache, flags, -1);
  2904. if (local_flags & __GFP_WAIT)
  2905. local_irq_disable();
  2906. if (obj) {
  2907. /*
  2908. * Insert into the appropriate per node queues
  2909. */
  2910. nid = page_to_nid(virt_to_page(obj));
  2911. if (cache_grow(cache, flags, nid, obj)) {
  2912. obj = ____cache_alloc_node(cache,
  2913. flags | GFP_THISNODE, nid);
  2914. if (!obj)
  2915. /*
  2916. * Another processor may allocate the
  2917. * objects in the slab since we are
  2918. * not holding any locks.
  2919. */
  2920. goto retry;
  2921. } else {
  2922. /* cache_grow already freed obj */
  2923. obj = NULL;
  2924. }
  2925. }
  2926. }
  2927. return obj;
  2928. }
  2929. /*
  2930. * A interface to enable slab creation on nodeid
  2931. */
  2932. static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2933. int nodeid)
  2934. {
  2935. struct list_head *entry;
  2936. struct slab *slabp;
  2937. struct kmem_list3 *l3;
  2938. void *obj;
  2939. int x;
  2940. l3 = cachep->nodelists[nodeid];
  2941. BUG_ON(!l3);
  2942. retry:
  2943. check_irq_off();
  2944. spin_lock(&l3->list_lock);
  2945. entry = l3->slabs_partial.next;
  2946. if (entry == &l3->slabs_partial) {
  2947. l3->free_touched = 1;
  2948. entry = l3->slabs_free.next;
  2949. if (entry == &l3->slabs_free)
  2950. goto must_grow;
  2951. }
  2952. slabp = list_entry(entry, struct slab, list);
  2953. check_spinlock_acquired_node(cachep, nodeid);
  2954. check_slabp(cachep, slabp);
  2955. STATS_INC_NODEALLOCS(cachep);
  2956. STATS_INC_ACTIVE(cachep);
  2957. STATS_SET_HIGH(cachep);
  2958. BUG_ON(slabp->inuse == cachep->num);
  2959. obj = slab_get_obj(cachep, slabp, nodeid);
  2960. check_slabp(cachep, slabp);
  2961. l3->free_objects--;
  2962. /* move slabp to correct slabp list: */
  2963. list_del(&slabp->list);
  2964. if (slabp->free == BUFCTL_END)
  2965. list_add(&slabp->list, &l3->slabs_full);
  2966. else
  2967. list_add(&slabp->list, &l3->slabs_partial);
  2968. spin_unlock(&l3->list_lock);
  2969. goto done;
  2970. must_grow:
  2971. spin_unlock(&l3->list_lock);
  2972. x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
  2973. if (x)
  2974. goto retry;
  2975. return fallback_alloc(cachep, flags);
  2976. done:
  2977. return obj;
  2978. }
  2979. /**
  2980. * kmem_cache_alloc_node - Allocate an object on the specified node
  2981. * @cachep: The cache to allocate from.
  2982. * @flags: See kmalloc().
  2983. * @nodeid: node number of the target node.
  2984. * @caller: return address of caller, used for debug information
  2985. *
  2986. * Identical to kmem_cache_alloc but it will allocate memory on the given
  2987. * node, which can improve the performance for cpu bound structures.
  2988. *
  2989. * Fallback to other node is possible if __GFP_THISNODE is not set.
  2990. */
  2991. static __always_inline void *
  2992. __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
  2993. void *caller)
  2994. {
  2995. unsigned long save_flags;
  2996. void *ptr;
  2997. if (should_failslab(cachep, flags))
  2998. return NULL;
  2999. cache_alloc_debugcheck_before(cachep, flags);
  3000. local_irq_save(save_flags);
  3001. if (unlikely(nodeid == -1))
  3002. nodeid = numa_node_id();
  3003. if (unlikely(!cachep->nodelists[nodeid])) {
  3004. /* Node not bootstrapped yet */
  3005. ptr = fallback_alloc(cachep, flags);
  3006. goto out;
  3007. }
  3008. if (nodeid == numa_node_id()) {
  3009. /*
  3010. * Use the locally cached objects if possible.
  3011. * However ____cache_alloc does not allow fallback
  3012. * to other nodes. It may fail while we still have
  3013. * objects on other nodes available.
  3014. */
  3015. ptr = ____cache_alloc(cachep, flags);
  3016. if (ptr)
  3017. goto out;
  3018. }
  3019. /* ___cache_alloc_node can fall back to other nodes */
  3020. ptr = ____cache_alloc_node(cachep, flags, nodeid);
  3021. out:
  3022. local_irq_restore(save_flags);
  3023. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
  3024. return ptr;
  3025. }
  3026. static __always_inline void *
  3027. __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
  3028. {
  3029. void *objp;
  3030. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  3031. objp = alternate_node_alloc(cache, flags);
  3032. if (objp)
  3033. goto out;
  3034. }
  3035. objp = ____cache_alloc(cache, flags);
  3036. /*
  3037. * We may just have run out of memory on the local node.
  3038. * ____cache_alloc_node() knows how to locate memory on other nodes
  3039. */
  3040. if (!objp)
  3041. objp = ____cache_alloc_node(cache, flags, numa_node_id());
  3042. out:
  3043. return objp;
  3044. }
  3045. #else
  3046. static __always_inline void *
  3047. __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3048. {
  3049. return ____cache_alloc(cachep, flags);
  3050. }
  3051. #endif /* CONFIG_NUMA */
  3052. static __always_inline void *
  3053. __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
  3054. {
  3055. unsigned long save_flags;
  3056. void *objp;
  3057. if (should_failslab(cachep, flags))
  3058. return NULL;
  3059. cache_alloc_debugcheck_before(cachep, flags);
  3060. local_irq_save(save_flags);
  3061. objp = __do_cache_alloc(cachep, flags);
  3062. local_irq_restore(save_flags);
  3063. objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
  3064. prefetchw(objp);
  3065. return objp;
  3066. }
  3067. /*
  3068. * Caller needs to acquire correct kmem_list's list_lock
  3069. */
  3070. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  3071. int node)
  3072. {
  3073. int i;
  3074. struct kmem_list3 *l3;
  3075. for (i = 0; i < nr_objects; i++) {
  3076. void *objp = objpp[i];
  3077. struct slab *slabp;
  3078. slabp = virt_to_slab(objp);
  3079. l3 = cachep->nodelists[node];
  3080. list_del(&slabp->list);
  3081. check_spinlock_acquired_node(cachep, node);
  3082. check_slabp(cachep, slabp);
  3083. slab_put_obj(cachep, slabp, objp, node);
  3084. STATS_DEC_ACTIVE(cachep);
  3085. l3->free_objects++;
  3086. check_slabp(cachep, slabp);
  3087. /* fixup slab chains */
  3088. if (slabp->inuse == 0) {
  3089. if (l3->free_objects > l3->free_limit) {
  3090. l3->free_objects -= cachep->num;
  3091. /* No need to drop any previously held
  3092. * lock here, even if we have a off-slab slab
  3093. * descriptor it is guaranteed to come from
  3094. * a different cache, refer to comments before
  3095. * alloc_slabmgmt.
  3096. */
  3097. slab_destroy(cachep, slabp);
  3098. } else {
  3099. list_add(&slabp->list, &l3->slabs_free);
  3100. }
  3101. } else {
  3102. /* Unconditionally move a slab to the end of the
  3103. * partial list on free - maximum time for the
  3104. * other objects to be freed, too.
  3105. */
  3106. list_add_tail(&slabp->list, &l3->slabs_partial);
  3107. }
  3108. }
  3109. }
  3110. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  3111. {
  3112. int batchcount;
  3113. struct kmem_list3 *l3;
  3114. int node = numa_node_id();
  3115. batchcount = ac->batchcount;
  3116. #if DEBUG
  3117. BUG_ON(!batchcount || batchcount > ac->avail);
  3118. #endif
  3119. check_irq_off();
  3120. l3 = cachep->nodelists[node];
  3121. spin_lock(&l3->list_lock);
  3122. if (l3->shared) {
  3123. struct array_cache *shared_array = l3->shared;
  3124. int max = shared_array->limit - shared_array->avail;
  3125. if (max) {
  3126. if (batchcount > max)
  3127. batchcount = max;
  3128. memcpy(&(shared_array->entry[shared_array->avail]),
  3129. ac->entry, sizeof(void *) * batchcount);
  3130. shared_array->avail += batchcount;
  3131. goto free_done;
  3132. }
  3133. }
  3134. free_block(cachep, ac->entry, batchcount, node);
  3135. free_done:
  3136. #if STATS
  3137. {
  3138. int i = 0;
  3139. struct list_head *p;
  3140. p = l3->slabs_free.next;
  3141. while (p != &(l3->slabs_free)) {
  3142. struct slab *slabp;
  3143. slabp = list_entry(p, struct slab, list);
  3144. BUG_ON(slabp->inuse);
  3145. i++;
  3146. p = p->next;
  3147. }
  3148. STATS_SET_FREEABLE(cachep, i);
  3149. }
  3150. #endif
  3151. spin_unlock(&l3->list_lock);
  3152. ac->avail -= batchcount;
  3153. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  3154. }
  3155. /*
  3156. * Release an obj back to its cache. If the obj has a constructed state, it must
  3157. * be in this state _before_ it is released. Called with disabled ints.
  3158. */
  3159. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  3160. {
  3161. struct array_cache *ac = cpu_cache_get(cachep);
  3162. check_irq_off();
  3163. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  3164. if (use_alien_caches && cache_free_alien(cachep, objp))
  3165. return;
  3166. if (likely(ac->avail < ac->limit)) {
  3167. STATS_INC_FREEHIT(cachep);
  3168. ac->entry[ac->avail++] = objp;
  3169. return;
  3170. } else {
  3171. STATS_INC_FREEMISS(cachep);
  3172. cache_flusharray(cachep, ac);
  3173. ac->entry[ac->avail++] = objp;
  3174. }
  3175. }
  3176. /**
  3177. * kmem_cache_alloc - Allocate an object
  3178. * @cachep: The cache to allocate from.
  3179. * @flags: See kmalloc().
  3180. *
  3181. * Allocate an object from this cache. The flags are only relevant
  3182. * if the cache has no available objects.
  3183. */
  3184. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3185. {
  3186. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  3187. }
  3188. EXPORT_SYMBOL(kmem_cache_alloc);
  3189. /**
  3190. * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
  3191. * @cache: The cache to allocate from.
  3192. * @flags: See kmalloc().
  3193. *
  3194. * Allocate an object from this cache and set the allocated memory to zero.
  3195. * The flags are only relevant if the cache has no available objects.
  3196. */
  3197. void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
  3198. {
  3199. void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
  3200. if (ret)
  3201. memset(ret, 0, obj_size(cache));
  3202. return ret;
  3203. }
  3204. EXPORT_SYMBOL(kmem_cache_zalloc);
  3205. /**
  3206. * kmem_ptr_validate - check if an untrusted pointer might
  3207. * be a slab entry.
  3208. * @cachep: the cache we're checking against
  3209. * @ptr: pointer to validate
  3210. *
  3211. * This verifies that the untrusted pointer looks sane:
  3212. * it is _not_ a guarantee that the pointer is actually
  3213. * part of the slab cache in question, but it at least
  3214. * validates that the pointer can be dereferenced and
  3215. * looks half-way sane.
  3216. *
  3217. * Currently only used for dentry validation.
  3218. */
  3219. int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
  3220. {
  3221. unsigned long addr = (unsigned long)ptr;
  3222. unsigned long min_addr = PAGE_OFFSET;
  3223. unsigned long align_mask = BYTES_PER_WORD - 1;
  3224. unsigned long size = cachep->buffer_size;
  3225. struct page *page;
  3226. if (unlikely(addr < min_addr))
  3227. goto out;
  3228. if (unlikely(addr > (unsigned long)high_memory - size))
  3229. goto out;
  3230. if (unlikely(addr & align_mask))
  3231. goto out;
  3232. if (unlikely(!kern_addr_valid(addr)))
  3233. goto out;
  3234. if (unlikely(!kern_addr_valid(addr + size - 1)))
  3235. goto out;
  3236. page = virt_to_page(ptr);
  3237. if (unlikely(!PageSlab(page)))
  3238. goto out;
  3239. if (unlikely(page_get_cache(page) != cachep))
  3240. goto out;
  3241. return 1;
  3242. out:
  3243. return 0;
  3244. }
  3245. #ifdef CONFIG_NUMA
  3246. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  3247. {
  3248. return __cache_alloc_node(cachep, flags, nodeid,
  3249. __builtin_return_address(0));
  3250. }
  3251. EXPORT_SYMBOL(kmem_cache_alloc_node);
  3252. static __always_inline void *
  3253. __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
  3254. {
  3255. struct kmem_cache *cachep;
  3256. cachep = kmem_find_general_cachep(size, flags);
  3257. if (unlikely(cachep == NULL))
  3258. return NULL;
  3259. return kmem_cache_alloc_node(cachep, flags, node);
  3260. }
  3261. #ifdef CONFIG_DEBUG_SLAB
  3262. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3263. {
  3264. return __do_kmalloc_node(size, flags, node,
  3265. __builtin_return_address(0));
  3266. }
  3267. EXPORT_SYMBOL(__kmalloc_node);
  3268. void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
  3269. int node, void *caller)
  3270. {
  3271. return __do_kmalloc_node(size, flags, node, caller);
  3272. }
  3273. EXPORT_SYMBOL(__kmalloc_node_track_caller);
  3274. #else
  3275. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3276. {
  3277. return __do_kmalloc_node(size, flags, node, NULL);
  3278. }
  3279. EXPORT_SYMBOL(__kmalloc_node);
  3280. #endif /* CONFIG_DEBUG_SLAB */
  3281. #endif /* CONFIG_NUMA */
  3282. /**
  3283. * __do_kmalloc - allocate memory
  3284. * @size: how many bytes of memory are required.
  3285. * @flags: the type of memory to allocate (see kmalloc).
  3286. * @caller: function caller for debug tracking of the caller
  3287. */
  3288. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  3289. void *caller)
  3290. {
  3291. struct kmem_cache *cachep;
  3292. /* If you want to save a few bytes .text space: replace
  3293. * __ with kmem_.
  3294. * Then kmalloc uses the uninlined functions instead of the inline
  3295. * functions.
  3296. */
  3297. cachep = __find_general_cachep(size, flags);
  3298. if (unlikely(cachep == NULL))
  3299. return NULL;
  3300. return __cache_alloc(cachep, flags, caller);
  3301. }
  3302. #ifdef CONFIG_DEBUG_SLAB
  3303. void *__kmalloc(size_t size, gfp_t flags)
  3304. {
  3305. return __do_kmalloc(size, flags, __builtin_return_address(0));
  3306. }
  3307. EXPORT_SYMBOL(__kmalloc);
  3308. void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
  3309. {
  3310. return __do_kmalloc(size, flags, caller);
  3311. }
  3312. EXPORT_SYMBOL(__kmalloc_track_caller);
  3313. #else
  3314. void *__kmalloc(size_t size, gfp_t flags)
  3315. {
  3316. return __do_kmalloc(size, flags, NULL);
  3317. }
  3318. EXPORT_SYMBOL(__kmalloc);
  3319. #endif
  3320. /**
  3321. * krealloc - reallocate memory. The contents will remain unchanged.
  3322. *
  3323. * @p: object to reallocate memory for.
  3324. * @new_size: how many bytes of memory are required.
  3325. * @flags: the type of memory to allocate.
  3326. *
  3327. * The contents of the object pointed to are preserved up to the
  3328. * lesser of the new and old sizes. If @p is %NULL, krealloc()
  3329. * behaves exactly like kmalloc(). If @size is 0 and @p is not a
  3330. * %NULL pointer, the object pointed to is freed.
  3331. */
  3332. void *krealloc(const void *p, size_t new_size, gfp_t flags)
  3333. {
  3334. struct kmem_cache *cache, *new_cache;
  3335. void *ret;
  3336. if (unlikely(!p))
  3337. return kmalloc_track_caller(new_size, flags);
  3338. if (unlikely(!new_size)) {
  3339. kfree(p);
  3340. return NULL;
  3341. }
  3342. cache = virt_to_cache(p);
  3343. new_cache = __find_general_cachep(new_size, flags);
  3344. /*
  3345. * If new size fits in the current cache, bail out.
  3346. */
  3347. if (likely(cache == new_cache))
  3348. return (void *)p;
  3349. /*
  3350. * We are on the slow-path here so do not use __cache_alloc
  3351. * because it bloats kernel text.
  3352. */
  3353. ret = kmalloc_track_caller(new_size, flags);
  3354. if (ret) {
  3355. memcpy(ret, p, min(new_size, ksize(p)));
  3356. kfree(p);
  3357. }
  3358. return ret;
  3359. }
  3360. EXPORT_SYMBOL(krealloc);
  3361. /**
  3362. * kmem_cache_free - Deallocate an object
  3363. * @cachep: The cache the allocation was from.
  3364. * @objp: The previously allocated object.
  3365. *
  3366. * Free an object which was previously allocated from this
  3367. * cache.
  3368. */
  3369. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  3370. {
  3371. unsigned long flags;
  3372. BUG_ON(virt_to_cache(objp) != cachep);
  3373. local_irq_save(flags);
  3374. debug_check_no_locks_freed(objp, obj_size(cachep));
  3375. __cache_free(cachep, objp);
  3376. local_irq_restore(flags);
  3377. }
  3378. EXPORT_SYMBOL(kmem_cache_free);
  3379. /**
  3380. * kfree - free previously allocated memory
  3381. * @objp: pointer returned by kmalloc.
  3382. *
  3383. * If @objp is NULL, no operation is performed.
  3384. *
  3385. * Don't free memory not originally allocated by kmalloc()
  3386. * or you will run into trouble.
  3387. */
  3388. void kfree(const void *objp)
  3389. {
  3390. struct kmem_cache *c;
  3391. unsigned long flags;
  3392. if (unlikely(!objp))
  3393. return;
  3394. local_irq_save(flags);
  3395. kfree_debugcheck(objp);
  3396. c = virt_to_cache(objp);
  3397. debug_check_no_locks_freed(objp, obj_size(c));
  3398. __cache_free(c, (void *)objp);
  3399. local_irq_restore(flags);
  3400. }
  3401. EXPORT_SYMBOL(kfree);
  3402. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3403. {
  3404. return obj_size(cachep);
  3405. }
  3406. EXPORT_SYMBOL(kmem_cache_size);
  3407. const char *kmem_cache_name(struct kmem_cache *cachep)
  3408. {
  3409. return cachep->name;
  3410. }
  3411. EXPORT_SYMBOL_GPL(kmem_cache_name);
  3412. /*
  3413. * This initializes kmem_list3 or resizes varioius caches for all nodes.
  3414. */
  3415. static int alloc_kmemlist(struct kmem_cache *cachep)
  3416. {
  3417. int node;
  3418. struct kmem_list3 *l3;
  3419. struct array_cache *new_shared;
  3420. struct array_cache **new_alien = NULL;
  3421. for_each_online_node(node) {
  3422. if (use_alien_caches) {
  3423. new_alien = alloc_alien_cache(node, cachep->limit);
  3424. if (!new_alien)
  3425. goto fail;
  3426. }
  3427. new_shared = NULL;
  3428. if (cachep->shared) {
  3429. new_shared = alloc_arraycache(node,
  3430. cachep->shared*cachep->batchcount,
  3431. 0xbaadf00d);
  3432. if (!new_shared) {
  3433. free_alien_cache(new_alien);
  3434. goto fail;
  3435. }
  3436. }
  3437. l3 = cachep->nodelists[node];
  3438. if (l3) {
  3439. struct array_cache *shared = l3->shared;
  3440. spin_lock_irq(&l3->list_lock);
  3441. if (shared)
  3442. free_block(cachep, shared->entry,
  3443. shared->avail, node);
  3444. l3->shared = new_shared;
  3445. if (!l3->alien) {
  3446. l3->alien = new_alien;
  3447. new_alien = NULL;
  3448. }
  3449. l3->free_limit = (1 + nr_cpus_node(node)) *
  3450. cachep->batchcount + cachep->num;
  3451. spin_unlock_irq(&l3->list_lock);
  3452. kfree(shared);
  3453. free_alien_cache(new_alien);
  3454. continue;
  3455. }
  3456. l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
  3457. if (!l3) {
  3458. free_alien_cache(new_alien);
  3459. kfree(new_shared);
  3460. goto fail;
  3461. }
  3462. kmem_list3_init(l3);
  3463. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3464. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3465. l3->shared = new_shared;
  3466. l3->alien = new_alien;
  3467. l3->free_limit = (1 + nr_cpus_node(node)) *
  3468. cachep->batchcount + cachep->num;
  3469. cachep->nodelists[node] = l3;
  3470. }
  3471. return 0;
  3472. fail:
  3473. if (!cachep->next.next) {
  3474. /* Cache is not active yet. Roll back what we did */
  3475. node--;
  3476. while (node >= 0) {
  3477. if (cachep->nodelists[node]) {
  3478. l3 = cachep->nodelists[node];
  3479. kfree(l3->shared);
  3480. free_alien_cache(l3->alien);
  3481. kfree(l3);
  3482. cachep->nodelists[node] = NULL;
  3483. }
  3484. node--;
  3485. }
  3486. }
  3487. return -ENOMEM;
  3488. }
  3489. struct ccupdate_struct {
  3490. struct kmem_cache *cachep;
  3491. struct array_cache *new[NR_CPUS];
  3492. };
  3493. static void do_ccupdate_local(void *info)
  3494. {
  3495. struct ccupdate_struct *new = info;
  3496. struct array_cache *old;
  3497. check_irq_off();
  3498. old = cpu_cache_get(new->cachep);
  3499. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3500. new->new[smp_processor_id()] = old;
  3501. }
  3502. /* Always called with the cache_chain_mutex held */
  3503. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3504. int batchcount, int shared)
  3505. {
  3506. struct ccupdate_struct *new;
  3507. int i;
  3508. new = kzalloc(sizeof(*new), GFP_KERNEL);
  3509. if (!new)
  3510. return -ENOMEM;
  3511. for_each_online_cpu(i) {
  3512. new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3513. batchcount);
  3514. if (!new->new[i]) {
  3515. for (i--; i >= 0; i--)
  3516. kfree(new->new[i]);
  3517. kfree(new);
  3518. return -ENOMEM;
  3519. }
  3520. }
  3521. new->cachep = cachep;
  3522. on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
  3523. check_irq_on();
  3524. cachep->batchcount = batchcount;
  3525. cachep->limit = limit;
  3526. cachep->shared = shared;
  3527. for_each_online_cpu(i) {
  3528. struct array_cache *ccold = new->new[i];
  3529. if (!ccold)
  3530. continue;
  3531. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3532. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3533. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3534. kfree(ccold);
  3535. }
  3536. kfree(new);
  3537. return alloc_kmemlist(cachep);
  3538. }
  3539. /* Called with cache_chain_mutex held always */
  3540. static int enable_cpucache(struct kmem_cache *cachep)
  3541. {
  3542. int err;
  3543. int limit, shared;
  3544. /*
  3545. * The head array serves three purposes:
  3546. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3547. * - reduce the number of spinlock operations.
  3548. * - reduce the number of linked list operations on the slab and
  3549. * bufctl chains: array operations are cheaper.
  3550. * The numbers are guessed, we should auto-tune as described by
  3551. * Bonwick.
  3552. */
  3553. if (cachep->buffer_size > 131072)
  3554. limit = 1;
  3555. else if (cachep->buffer_size > PAGE_SIZE)
  3556. limit = 8;
  3557. else if (cachep->buffer_size > 1024)
  3558. limit = 24;
  3559. else if (cachep->buffer_size > 256)
  3560. limit = 54;
  3561. else
  3562. limit = 120;
  3563. /*
  3564. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3565. * allocation behaviour: Most allocs on one cpu, most free operations
  3566. * on another cpu. For these cases, an efficient object passing between
  3567. * cpus is necessary. This is provided by a shared array. The array
  3568. * replaces Bonwick's magazine layer.
  3569. * On uniprocessor, it's functionally equivalent (but less efficient)
  3570. * to a larger limit. Thus disabled by default.
  3571. */
  3572. shared = 0;
  3573. if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
  3574. shared = 8;
  3575. #if DEBUG
  3576. /*
  3577. * With debugging enabled, large batchcount lead to excessively long
  3578. * periods with disabled local interrupts. Limit the batchcount
  3579. */
  3580. if (limit > 32)
  3581. limit = 32;
  3582. #endif
  3583. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
  3584. if (err)
  3585. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3586. cachep->name, -err);
  3587. return err;
  3588. }
  3589. /*
  3590. * Drain an array if it contains any elements taking the l3 lock only if
  3591. * necessary. Note that the l3 listlock also protects the array_cache
  3592. * if drain_array() is used on the shared array.
  3593. */
  3594. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3595. struct array_cache *ac, int force, int node)
  3596. {
  3597. int tofree;
  3598. if (!ac || !ac->avail)
  3599. return;
  3600. if (ac->touched && !force) {
  3601. ac->touched = 0;
  3602. } else {
  3603. spin_lock_irq(&l3->list_lock);
  3604. if (ac->avail) {
  3605. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3606. if (tofree > ac->avail)
  3607. tofree = (ac->avail + 1) / 2;
  3608. free_block(cachep, ac->entry, tofree, node);
  3609. ac->avail -= tofree;
  3610. memmove(ac->entry, &(ac->entry[tofree]),
  3611. sizeof(void *) * ac->avail);
  3612. }
  3613. spin_unlock_irq(&l3->list_lock);
  3614. }
  3615. }
  3616. /**
  3617. * cache_reap - Reclaim memory from caches.
  3618. * @w: work descriptor
  3619. *
  3620. * Called from workqueue/eventd every few seconds.
  3621. * Purpose:
  3622. * - clear the per-cpu caches for this CPU.
  3623. * - return freeable pages to the main free memory pool.
  3624. *
  3625. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3626. * again on the next iteration.
  3627. */
  3628. static void cache_reap(struct work_struct *w)
  3629. {
  3630. struct kmem_cache *searchp;
  3631. struct kmem_list3 *l3;
  3632. int node = numa_node_id();
  3633. struct delayed_work *work =
  3634. container_of(w, struct delayed_work, work);
  3635. if (!mutex_trylock(&cache_chain_mutex))
  3636. /* Give up. Setup the next iteration. */
  3637. goto out;
  3638. list_for_each_entry(searchp, &cache_chain, next) {
  3639. check_irq_on();
  3640. /*
  3641. * We only take the l3 lock if absolutely necessary and we
  3642. * have established with reasonable certainty that
  3643. * we can do some work if the lock was obtained.
  3644. */
  3645. l3 = searchp->nodelists[node];
  3646. reap_alien(searchp, l3);
  3647. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3648. /*
  3649. * These are racy checks but it does not matter
  3650. * if we skip one check or scan twice.
  3651. */
  3652. if (time_after(l3->next_reap, jiffies))
  3653. goto next;
  3654. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3655. drain_array(searchp, l3, l3->shared, 0, node);
  3656. if (l3->free_touched)
  3657. l3->free_touched = 0;
  3658. else {
  3659. int freed;
  3660. freed = drain_freelist(searchp, l3, (l3->free_limit +
  3661. 5 * searchp->num - 1) / (5 * searchp->num));
  3662. STATS_ADD_REAPED(searchp, freed);
  3663. }
  3664. next:
  3665. cond_resched();
  3666. }
  3667. check_irq_on();
  3668. mutex_unlock(&cache_chain_mutex);
  3669. next_reap_node();
  3670. refresh_cpu_vm_stats(smp_processor_id());
  3671. out:
  3672. /* Set up the next iteration */
  3673. schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
  3674. }
  3675. #ifdef CONFIG_PROC_FS
  3676. static void print_slabinfo_header(struct seq_file *m)
  3677. {
  3678. /*
  3679. * Output format version, so at least we can change it
  3680. * without _too_ many complaints.
  3681. */
  3682. #if STATS
  3683. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3684. #else
  3685. seq_puts(m, "slabinfo - version: 2.1\n");
  3686. #endif
  3687. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3688. "<objperslab> <pagesperslab>");
  3689. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3690. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3691. #if STATS
  3692. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3693. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3694. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3695. #endif
  3696. seq_putc(m, '\n');
  3697. }
  3698. static void *s_start(struct seq_file *m, loff_t *pos)
  3699. {
  3700. loff_t n = *pos;
  3701. struct list_head *p;
  3702. mutex_lock(&cache_chain_mutex);
  3703. if (!n)
  3704. print_slabinfo_header(m);
  3705. p = cache_chain.next;
  3706. while (n--) {
  3707. p = p->next;
  3708. if (p == &cache_chain)
  3709. return NULL;
  3710. }
  3711. return list_entry(p, struct kmem_cache, next);
  3712. }
  3713. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3714. {
  3715. struct kmem_cache *cachep = p;
  3716. ++*pos;
  3717. return cachep->next.next == &cache_chain ?
  3718. NULL : list_entry(cachep->next.next, struct kmem_cache, next);
  3719. }
  3720. static void s_stop(struct seq_file *m, void *p)
  3721. {
  3722. mutex_unlock(&cache_chain_mutex);
  3723. }
  3724. static int s_show(struct seq_file *m, void *p)
  3725. {
  3726. struct kmem_cache *cachep = p;
  3727. struct slab *slabp;
  3728. unsigned long active_objs;
  3729. unsigned long num_objs;
  3730. unsigned long active_slabs = 0;
  3731. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3732. const char *name;
  3733. char *error = NULL;
  3734. int node;
  3735. struct kmem_list3 *l3;
  3736. active_objs = 0;
  3737. num_slabs = 0;
  3738. for_each_online_node(node) {
  3739. l3 = cachep->nodelists[node];
  3740. if (!l3)
  3741. continue;
  3742. check_irq_on();
  3743. spin_lock_irq(&l3->list_lock);
  3744. list_for_each_entry(slabp, &l3->slabs_full, list) {
  3745. if (slabp->inuse != cachep->num && !error)
  3746. error = "slabs_full accounting error";
  3747. active_objs += cachep->num;
  3748. active_slabs++;
  3749. }
  3750. list_for_each_entry(slabp, &l3->slabs_partial, list) {
  3751. if (slabp->inuse == cachep->num && !error)
  3752. error = "slabs_partial inuse accounting error";
  3753. if (!slabp->inuse && !error)
  3754. error = "slabs_partial/inuse accounting error";
  3755. active_objs += slabp->inuse;
  3756. active_slabs++;
  3757. }
  3758. list_for_each_entry(slabp, &l3->slabs_free, list) {
  3759. if (slabp->inuse && !error)
  3760. error = "slabs_free/inuse accounting error";
  3761. num_slabs++;
  3762. }
  3763. free_objects += l3->free_objects;
  3764. if (l3->shared)
  3765. shared_avail += l3->shared->avail;
  3766. spin_unlock_irq(&l3->list_lock);
  3767. }
  3768. num_slabs += active_slabs;
  3769. num_objs = num_slabs * cachep->num;
  3770. if (num_objs - active_objs != free_objects && !error)
  3771. error = "free_objects accounting error";
  3772. name = cachep->name;
  3773. if (error)
  3774. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3775. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3776. name, active_objs, num_objs, cachep->buffer_size,
  3777. cachep->num, (1 << cachep->gfporder));
  3778. seq_printf(m, " : tunables %4u %4u %4u",
  3779. cachep->limit, cachep->batchcount, cachep->shared);
  3780. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3781. active_slabs, num_slabs, shared_avail);
  3782. #if STATS
  3783. { /* list3 stats */
  3784. unsigned long high = cachep->high_mark;
  3785. unsigned long allocs = cachep->num_allocations;
  3786. unsigned long grown = cachep->grown;
  3787. unsigned long reaped = cachep->reaped;
  3788. unsigned long errors = cachep->errors;
  3789. unsigned long max_freeable = cachep->max_freeable;
  3790. unsigned long node_allocs = cachep->node_allocs;
  3791. unsigned long node_frees = cachep->node_frees;
  3792. unsigned long overflows = cachep->node_overflow;
  3793. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3794. %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
  3795. reaped, errors, max_freeable, node_allocs,
  3796. node_frees, overflows);
  3797. }
  3798. /* cpu stats */
  3799. {
  3800. unsigned long allochit = atomic_read(&cachep->allochit);
  3801. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3802. unsigned long freehit = atomic_read(&cachep->freehit);
  3803. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3804. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3805. allochit, allocmiss, freehit, freemiss);
  3806. }
  3807. #endif
  3808. seq_putc(m, '\n');
  3809. return 0;
  3810. }
  3811. /*
  3812. * slabinfo_op - iterator that generates /proc/slabinfo
  3813. *
  3814. * Output layout:
  3815. * cache-name
  3816. * num-active-objs
  3817. * total-objs
  3818. * object size
  3819. * num-active-slabs
  3820. * total-slabs
  3821. * num-pages-per-slab
  3822. * + further values on SMP and with statistics enabled
  3823. */
  3824. const struct seq_operations slabinfo_op = {
  3825. .start = s_start,
  3826. .next = s_next,
  3827. .stop = s_stop,
  3828. .show = s_show,
  3829. };
  3830. #define MAX_SLABINFO_WRITE 128
  3831. /**
  3832. * slabinfo_write - Tuning for the slab allocator
  3833. * @file: unused
  3834. * @buffer: user buffer
  3835. * @count: data length
  3836. * @ppos: unused
  3837. */
  3838. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3839. size_t count, loff_t *ppos)
  3840. {
  3841. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3842. int limit, batchcount, shared, res;
  3843. struct kmem_cache *cachep;
  3844. if (count > MAX_SLABINFO_WRITE)
  3845. return -EINVAL;
  3846. if (copy_from_user(&kbuf, buffer, count))
  3847. return -EFAULT;
  3848. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3849. tmp = strchr(kbuf, ' ');
  3850. if (!tmp)
  3851. return -EINVAL;
  3852. *tmp = '\0';
  3853. tmp++;
  3854. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3855. return -EINVAL;
  3856. /* Find the cache in the chain of caches. */
  3857. mutex_lock(&cache_chain_mutex);
  3858. res = -EINVAL;
  3859. list_for_each_entry(cachep, &cache_chain, next) {
  3860. if (!strcmp(cachep->name, kbuf)) {
  3861. if (limit < 1 || batchcount < 1 ||
  3862. batchcount > limit || shared < 0) {
  3863. res = 0;
  3864. } else {
  3865. res = do_tune_cpucache(cachep, limit,
  3866. batchcount, shared);
  3867. }
  3868. break;
  3869. }
  3870. }
  3871. mutex_unlock(&cache_chain_mutex);
  3872. if (res >= 0)
  3873. res = count;
  3874. return res;
  3875. }
  3876. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3877. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3878. {
  3879. loff_t n = *pos;
  3880. struct list_head *p;
  3881. mutex_lock(&cache_chain_mutex);
  3882. p = cache_chain.next;
  3883. while (n--) {
  3884. p = p->next;
  3885. if (p == &cache_chain)
  3886. return NULL;
  3887. }
  3888. return list_entry(p, struct kmem_cache, next);
  3889. }
  3890. static inline int add_caller(unsigned long *n, unsigned long v)
  3891. {
  3892. unsigned long *p;
  3893. int l;
  3894. if (!v)
  3895. return 1;
  3896. l = n[1];
  3897. p = n + 2;
  3898. while (l) {
  3899. int i = l/2;
  3900. unsigned long *q = p + 2 * i;
  3901. if (*q == v) {
  3902. q[1]++;
  3903. return 1;
  3904. }
  3905. if (*q > v) {
  3906. l = i;
  3907. } else {
  3908. p = q + 2;
  3909. l -= i + 1;
  3910. }
  3911. }
  3912. if (++n[1] == n[0])
  3913. return 0;
  3914. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3915. p[0] = v;
  3916. p[1] = 1;
  3917. return 1;
  3918. }
  3919. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3920. {
  3921. void *p;
  3922. int i;
  3923. if (n[0] == n[1])
  3924. return;
  3925. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3926. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3927. continue;
  3928. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3929. return;
  3930. }
  3931. }
  3932. static void show_symbol(struct seq_file *m, unsigned long address)
  3933. {
  3934. #ifdef CONFIG_KALLSYMS
  3935. char *modname;
  3936. const char *name;
  3937. unsigned long offset, size;
  3938. char namebuf[KSYM_NAME_LEN+1];
  3939. name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
  3940. if (name) {
  3941. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3942. if (modname)
  3943. seq_printf(m, " [%s]", modname);
  3944. return;
  3945. }
  3946. #endif
  3947. seq_printf(m, "%p", (void *)address);
  3948. }
  3949. static int leaks_show(struct seq_file *m, void *p)
  3950. {
  3951. struct kmem_cache *cachep = p;
  3952. struct slab *slabp;
  3953. struct kmem_list3 *l3;
  3954. const char *name;
  3955. unsigned long *n = m->private;
  3956. int node;
  3957. int i;
  3958. if (!(cachep->flags & SLAB_STORE_USER))
  3959. return 0;
  3960. if (!(cachep->flags & SLAB_RED_ZONE))
  3961. return 0;
  3962. /* OK, we can do it */
  3963. n[1] = 0;
  3964. for_each_online_node(node) {
  3965. l3 = cachep->nodelists[node];
  3966. if (!l3)
  3967. continue;
  3968. check_irq_on();
  3969. spin_lock_irq(&l3->list_lock);
  3970. list_for_each_entry(slabp, &l3->slabs_full, list)
  3971. handle_slab(n, cachep, slabp);
  3972. list_for_each_entry(slabp, &l3->slabs_partial, list)
  3973. handle_slab(n, cachep, slabp);
  3974. spin_unlock_irq(&l3->list_lock);
  3975. }
  3976. name = cachep->name;
  3977. if (n[0] == n[1]) {
  3978. /* Increase the buffer size */
  3979. mutex_unlock(&cache_chain_mutex);
  3980. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3981. if (!m->private) {
  3982. /* Too bad, we are really out */
  3983. m->private = n;
  3984. mutex_lock(&cache_chain_mutex);
  3985. return -ENOMEM;
  3986. }
  3987. *(unsigned long *)m->private = n[0] * 2;
  3988. kfree(n);
  3989. mutex_lock(&cache_chain_mutex);
  3990. /* Now make sure this entry will be retried */
  3991. m->count = m->size;
  3992. return 0;
  3993. }
  3994. for (i = 0; i < n[1]; i++) {
  3995. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3996. show_symbol(m, n[2*i+2]);
  3997. seq_putc(m, '\n');
  3998. }
  3999. return 0;
  4000. }
  4001. const struct seq_operations slabstats_op = {
  4002. .start = leaks_start,
  4003. .next = s_next,
  4004. .stop = s_stop,
  4005. .show = leaks_show,
  4006. };
  4007. #endif
  4008. #endif
  4009. /**
  4010. * ksize - get the actual amount of memory allocated for a given object
  4011. * @objp: Pointer to the object
  4012. *
  4013. * kmalloc may internally round up allocations and return more memory
  4014. * than requested. ksize() can be used to determine the actual amount of
  4015. * memory allocated. The caller may use this additional memory, even though
  4016. * a smaller amount of memory was initially specified with the kmalloc call.
  4017. * The caller must guarantee that objp points to a valid object previously
  4018. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  4019. * must not be freed during the duration of the call.
  4020. */
  4021. size_t ksize(const void *objp)
  4022. {
  4023. if (unlikely(objp == NULL))
  4024. return 0;
  4025. return obj_size(virt_to_cache(objp));
  4026. }