mmu.c 93 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include "x86.h"
  25. #include <linux/kvm_host.h>
  26. #include <linux/types.h>
  27. #include <linux/string.h>
  28. #include <linux/mm.h>
  29. #include <linux/highmem.h>
  30. #include <linux/module.h>
  31. #include <linux/swap.h>
  32. #include <linux/hugetlb.h>
  33. #include <linux/compiler.h>
  34. #include <linux/srcu.h>
  35. #include <linux/slab.h>
  36. #include <linux/uaccess.h>
  37. #include <asm/page.h>
  38. #include <asm/cmpxchg.h>
  39. #include <asm/io.h>
  40. #include <asm/vmx.h>
  41. /*
  42. * When setting this variable to true it enables Two-Dimensional-Paging
  43. * where the hardware walks 2 page tables:
  44. * 1. the guest-virtual to guest-physical
  45. * 2. while doing 1. it walks guest-physical to host-physical
  46. * If the hardware supports that we don't need to do shadow paging.
  47. */
  48. bool tdp_enabled = false;
  49. enum {
  50. AUDIT_PRE_PAGE_FAULT,
  51. AUDIT_POST_PAGE_FAULT,
  52. AUDIT_PRE_PTE_WRITE,
  53. AUDIT_POST_PTE_WRITE,
  54. AUDIT_PRE_SYNC,
  55. AUDIT_POST_SYNC
  56. };
  57. char *audit_point_name[] = {
  58. "pre page fault",
  59. "post page fault",
  60. "pre pte write",
  61. "post pte write",
  62. "pre sync",
  63. "post sync"
  64. };
  65. #undef MMU_DEBUG
  66. #ifdef MMU_DEBUG
  67. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  68. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  69. #else
  70. #define pgprintk(x...) do { } while (0)
  71. #define rmap_printk(x...) do { } while (0)
  72. #endif
  73. #ifdef MMU_DEBUG
  74. static int dbg = 0;
  75. module_param(dbg, bool, 0644);
  76. #endif
  77. static int oos_shadow = 1;
  78. module_param(oos_shadow, bool, 0644);
  79. #ifndef MMU_DEBUG
  80. #define ASSERT(x) do { } while (0)
  81. #else
  82. #define ASSERT(x) \
  83. if (!(x)) { \
  84. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  85. __FILE__, __LINE__, #x); \
  86. }
  87. #endif
  88. #define PTE_PREFETCH_NUM 8
  89. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  90. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  91. #define PT64_LEVEL_BITS 9
  92. #define PT64_LEVEL_SHIFT(level) \
  93. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  94. #define PT64_LEVEL_MASK(level) \
  95. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  96. #define PT64_INDEX(address, level)\
  97. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  98. #define PT32_LEVEL_BITS 10
  99. #define PT32_LEVEL_SHIFT(level) \
  100. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  101. #define PT32_LEVEL_MASK(level) \
  102. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  103. #define PT32_LVL_OFFSET_MASK(level) \
  104. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  105. * PT32_LEVEL_BITS))) - 1))
  106. #define PT32_INDEX(address, level)\
  107. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  108. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  109. #define PT64_DIR_BASE_ADDR_MASK \
  110. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  111. #define PT64_LVL_ADDR_MASK(level) \
  112. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  113. * PT64_LEVEL_BITS))) - 1))
  114. #define PT64_LVL_OFFSET_MASK(level) \
  115. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  116. * PT64_LEVEL_BITS))) - 1))
  117. #define PT32_BASE_ADDR_MASK PAGE_MASK
  118. #define PT32_DIR_BASE_ADDR_MASK \
  119. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  120. #define PT32_LVL_ADDR_MASK(level) \
  121. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  122. * PT32_LEVEL_BITS))) - 1))
  123. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  124. | PT64_NX_MASK)
  125. #define RMAP_EXT 4
  126. #define ACC_EXEC_MASK 1
  127. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  128. #define ACC_USER_MASK PT_USER_MASK
  129. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  130. #include <trace/events/kvm.h>
  131. #define CREATE_TRACE_POINTS
  132. #include "mmutrace.h"
  133. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  134. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  135. struct kvm_rmap_desc {
  136. u64 *sptes[RMAP_EXT];
  137. struct kvm_rmap_desc *more;
  138. };
  139. struct kvm_shadow_walk_iterator {
  140. u64 addr;
  141. hpa_t shadow_addr;
  142. int level;
  143. u64 *sptep;
  144. unsigned index;
  145. };
  146. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  147. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  148. shadow_walk_okay(&(_walker)); \
  149. shadow_walk_next(&(_walker)))
  150. typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
  151. static struct kmem_cache *pte_chain_cache;
  152. static struct kmem_cache *rmap_desc_cache;
  153. static struct kmem_cache *mmu_page_header_cache;
  154. static struct percpu_counter kvm_total_used_mmu_pages;
  155. static u64 __read_mostly shadow_trap_nonpresent_pte;
  156. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  157. static u64 __read_mostly shadow_nx_mask;
  158. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  159. static u64 __read_mostly shadow_user_mask;
  160. static u64 __read_mostly shadow_accessed_mask;
  161. static u64 __read_mostly shadow_dirty_mask;
  162. static inline u64 rsvd_bits(int s, int e)
  163. {
  164. return ((1ULL << (e - s + 1)) - 1) << s;
  165. }
  166. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  167. {
  168. shadow_trap_nonpresent_pte = trap_pte;
  169. shadow_notrap_nonpresent_pte = notrap_pte;
  170. }
  171. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  172. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  173. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  174. {
  175. shadow_user_mask = user_mask;
  176. shadow_accessed_mask = accessed_mask;
  177. shadow_dirty_mask = dirty_mask;
  178. shadow_nx_mask = nx_mask;
  179. shadow_x_mask = x_mask;
  180. }
  181. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  182. static bool is_write_protection(struct kvm_vcpu *vcpu)
  183. {
  184. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  185. }
  186. static int is_cpuid_PSE36(void)
  187. {
  188. return 1;
  189. }
  190. static int is_nx(struct kvm_vcpu *vcpu)
  191. {
  192. return vcpu->arch.efer & EFER_NX;
  193. }
  194. static int is_shadow_present_pte(u64 pte)
  195. {
  196. return pte != shadow_trap_nonpresent_pte
  197. && pte != shadow_notrap_nonpresent_pte;
  198. }
  199. static int is_large_pte(u64 pte)
  200. {
  201. return pte & PT_PAGE_SIZE_MASK;
  202. }
  203. static int is_writable_pte(unsigned long pte)
  204. {
  205. return pte & PT_WRITABLE_MASK;
  206. }
  207. static int is_dirty_gpte(unsigned long pte)
  208. {
  209. return pte & PT_DIRTY_MASK;
  210. }
  211. static int is_rmap_spte(u64 pte)
  212. {
  213. return is_shadow_present_pte(pte);
  214. }
  215. static int is_last_spte(u64 pte, int level)
  216. {
  217. if (level == PT_PAGE_TABLE_LEVEL)
  218. return 1;
  219. if (is_large_pte(pte))
  220. return 1;
  221. return 0;
  222. }
  223. static pfn_t spte_to_pfn(u64 pte)
  224. {
  225. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  226. }
  227. static gfn_t pse36_gfn_delta(u32 gpte)
  228. {
  229. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  230. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  231. }
  232. static void __set_spte(u64 *sptep, u64 spte)
  233. {
  234. set_64bit(sptep, spte);
  235. }
  236. static u64 __xchg_spte(u64 *sptep, u64 new_spte)
  237. {
  238. #ifdef CONFIG_X86_64
  239. return xchg(sptep, new_spte);
  240. #else
  241. u64 old_spte;
  242. do {
  243. old_spte = *sptep;
  244. } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
  245. return old_spte;
  246. #endif
  247. }
  248. static bool spte_has_volatile_bits(u64 spte)
  249. {
  250. if (!shadow_accessed_mask)
  251. return false;
  252. if (!is_shadow_present_pte(spte))
  253. return false;
  254. if ((spte & shadow_accessed_mask) &&
  255. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  256. return false;
  257. return true;
  258. }
  259. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  260. {
  261. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  262. }
  263. static void update_spte(u64 *sptep, u64 new_spte)
  264. {
  265. u64 mask, old_spte = *sptep;
  266. WARN_ON(!is_rmap_spte(new_spte));
  267. new_spte |= old_spte & shadow_dirty_mask;
  268. mask = shadow_accessed_mask;
  269. if (is_writable_pte(old_spte))
  270. mask |= shadow_dirty_mask;
  271. if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
  272. __set_spte(sptep, new_spte);
  273. else
  274. old_spte = __xchg_spte(sptep, new_spte);
  275. if (!shadow_accessed_mask)
  276. return;
  277. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  278. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  279. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  280. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  281. }
  282. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  283. struct kmem_cache *base_cache, int min)
  284. {
  285. void *obj;
  286. if (cache->nobjs >= min)
  287. return 0;
  288. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  289. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  290. if (!obj)
  291. return -ENOMEM;
  292. cache->objects[cache->nobjs++] = obj;
  293. }
  294. return 0;
  295. }
  296. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  297. struct kmem_cache *cache)
  298. {
  299. while (mc->nobjs)
  300. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  301. }
  302. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  303. int min)
  304. {
  305. struct page *page;
  306. if (cache->nobjs >= min)
  307. return 0;
  308. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  309. page = alloc_page(GFP_KERNEL);
  310. if (!page)
  311. return -ENOMEM;
  312. cache->objects[cache->nobjs++] = page_address(page);
  313. }
  314. return 0;
  315. }
  316. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  317. {
  318. while (mc->nobjs)
  319. free_page((unsigned long)mc->objects[--mc->nobjs]);
  320. }
  321. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  322. {
  323. int r;
  324. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  325. pte_chain_cache, 4);
  326. if (r)
  327. goto out;
  328. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  329. rmap_desc_cache, 4 + PTE_PREFETCH_NUM);
  330. if (r)
  331. goto out;
  332. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  333. if (r)
  334. goto out;
  335. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  336. mmu_page_header_cache, 4);
  337. out:
  338. return r;
  339. }
  340. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  341. {
  342. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
  343. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
  344. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  345. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  346. mmu_page_header_cache);
  347. }
  348. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  349. size_t size)
  350. {
  351. void *p;
  352. BUG_ON(!mc->nobjs);
  353. p = mc->objects[--mc->nobjs];
  354. return p;
  355. }
  356. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  357. {
  358. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  359. sizeof(struct kvm_pte_chain));
  360. }
  361. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  362. {
  363. kmem_cache_free(pte_chain_cache, pc);
  364. }
  365. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  366. {
  367. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  368. sizeof(struct kvm_rmap_desc));
  369. }
  370. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  371. {
  372. kmem_cache_free(rmap_desc_cache, rd);
  373. }
  374. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  375. {
  376. if (!sp->role.direct)
  377. return sp->gfns[index];
  378. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  379. }
  380. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  381. {
  382. if (sp->role.direct)
  383. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  384. else
  385. sp->gfns[index] = gfn;
  386. }
  387. /*
  388. * Return the pointer to the large page information for a given gfn,
  389. * handling slots that are not large page aligned.
  390. */
  391. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  392. struct kvm_memory_slot *slot,
  393. int level)
  394. {
  395. unsigned long idx;
  396. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  397. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  398. return &slot->lpage_info[level - 2][idx];
  399. }
  400. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  401. {
  402. struct kvm_memory_slot *slot;
  403. struct kvm_lpage_info *linfo;
  404. int i;
  405. slot = gfn_to_memslot(kvm, gfn);
  406. for (i = PT_DIRECTORY_LEVEL;
  407. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  408. linfo = lpage_info_slot(gfn, slot, i);
  409. linfo->write_count += 1;
  410. }
  411. }
  412. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  413. {
  414. struct kvm_memory_slot *slot;
  415. struct kvm_lpage_info *linfo;
  416. int i;
  417. slot = gfn_to_memslot(kvm, gfn);
  418. for (i = PT_DIRECTORY_LEVEL;
  419. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  420. linfo = lpage_info_slot(gfn, slot, i);
  421. linfo->write_count -= 1;
  422. WARN_ON(linfo->write_count < 0);
  423. }
  424. }
  425. static int has_wrprotected_page(struct kvm *kvm,
  426. gfn_t gfn,
  427. int level)
  428. {
  429. struct kvm_memory_slot *slot;
  430. struct kvm_lpage_info *linfo;
  431. slot = gfn_to_memslot(kvm, gfn);
  432. if (slot) {
  433. linfo = lpage_info_slot(gfn, slot, level);
  434. return linfo->write_count;
  435. }
  436. return 1;
  437. }
  438. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  439. {
  440. unsigned long page_size;
  441. int i, ret = 0;
  442. page_size = kvm_host_page_size(kvm, gfn);
  443. for (i = PT_PAGE_TABLE_LEVEL;
  444. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  445. if (page_size >= KVM_HPAGE_SIZE(i))
  446. ret = i;
  447. else
  448. break;
  449. }
  450. return ret;
  451. }
  452. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  453. {
  454. struct kvm_memory_slot *slot;
  455. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  456. if (slot && slot->dirty_bitmap)
  457. return true;
  458. return false;
  459. }
  460. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  461. {
  462. int host_level, level, max_level;
  463. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  464. if (host_level == PT_PAGE_TABLE_LEVEL)
  465. return host_level;
  466. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  467. kvm_x86_ops->get_lpage_level() : host_level;
  468. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  469. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  470. break;
  471. return level - 1;
  472. }
  473. /*
  474. * Take gfn and return the reverse mapping to it.
  475. */
  476. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  477. {
  478. struct kvm_memory_slot *slot;
  479. struct kvm_lpage_info *linfo;
  480. slot = gfn_to_memslot(kvm, gfn);
  481. if (likely(level == PT_PAGE_TABLE_LEVEL))
  482. return &slot->rmap[gfn - slot->base_gfn];
  483. linfo = lpage_info_slot(gfn, slot, level);
  484. return &linfo->rmap_pde;
  485. }
  486. /*
  487. * Reverse mapping data structures:
  488. *
  489. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  490. * that points to page_address(page).
  491. *
  492. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  493. * containing more mappings.
  494. *
  495. * Returns the number of rmap entries before the spte was added or zero if
  496. * the spte was not added.
  497. *
  498. */
  499. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  500. {
  501. struct kvm_mmu_page *sp;
  502. struct kvm_rmap_desc *desc;
  503. unsigned long *rmapp;
  504. int i, count = 0;
  505. if (!is_rmap_spte(*spte))
  506. return count;
  507. sp = page_header(__pa(spte));
  508. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  509. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  510. if (!*rmapp) {
  511. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  512. *rmapp = (unsigned long)spte;
  513. } else if (!(*rmapp & 1)) {
  514. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  515. desc = mmu_alloc_rmap_desc(vcpu);
  516. desc->sptes[0] = (u64 *)*rmapp;
  517. desc->sptes[1] = spte;
  518. *rmapp = (unsigned long)desc | 1;
  519. ++count;
  520. } else {
  521. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  522. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  523. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  524. desc = desc->more;
  525. count += RMAP_EXT;
  526. }
  527. if (desc->sptes[RMAP_EXT-1]) {
  528. desc->more = mmu_alloc_rmap_desc(vcpu);
  529. desc = desc->more;
  530. }
  531. for (i = 0; desc->sptes[i]; ++i)
  532. ++count;
  533. desc->sptes[i] = spte;
  534. }
  535. return count;
  536. }
  537. static void rmap_desc_remove_entry(unsigned long *rmapp,
  538. struct kvm_rmap_desc *desc,
  539. int i,
  540. struct kvm_rmap_desc *prev_desc)
  541. {
  542. int j;
  543. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  544. ;
  545. desc->sptes[i] = desc->sptes[j];
  546. desc->sptes[j] = NULL;
  547. if (j != 0)
  548. return;
  549. if (!prev_desc && !desc->more)
  550. *rmapp = (unsigned long)desc->sptes[0];
  551. else
  552. if (prev_desc)
  553. prev_desc->more = desc->more;
  554. else
  555. *rmapp = (unsigned long)desc->more | 1;
  556. mmu_free_rmap_desc(desc);
  557. }
  558. static void rmap_remove(struct kvm *kvm, u64 *spte)
  559. {
  560. struct kvm_rmap_desc *desc;
  561. struct kvm_rmap_desc *prev_desc;
  562. struct kvm_mmu_page *sp;
  563. gfn_t gfn;
  564. unsigned long *rmapp;
  565. int i;
  566. sp = page_header(__pa(spte));
  567. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  568. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  569. if (!*rmapp) {
  570. printk(KERN_ERR "rmap_remove: %p 0->BUG\n", spte);
  571. BUG();
  572. } else if (!(*rmapp & 1)) {
  573. rmap_printk("rmap_remove: %p 1->0\n", spte);
  574. if ((u64 *)*rmapp != spte) {
  575. printk(KERN_ERR "rmap_remove: %p 1->BUG\n", spte);
  576. BUG();
  577. }
  578. *rmapp = 0;
  579. } else {
  580. rmap_printk("rmap_remove: %p many->many\n", spte);
  581. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  582. prev_desc = NULL;
  583. while (desc) {
  584. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  585. if (desc->sptes[i] == spte) {
  586. rmap_desc_remove_entry(rmapp,
  587. desc, i,
  588. prev_desc);
  589. return;
  590. }
  591. prev_desc = desc;
  592. desc = desc->more;
  593. }
  594. pr_err("rmap_remove: %p many->many\n", spte);
  595. BUG();
  596. }
  597. }
  598. static int set_spte_track_bits(u64 *sptep, u64 new_spte)
  599. {
  600. pfn_t pfn;
  601. u64 old_spte = *sptep;
  602. if (!spte_has_volatile_bits(old_spte))
  603. __set_spte(sptep, new_spte);
  604. else
  605. old_spte = __xchg_spte(sptep, new_spte);
  606. if (!is_rmap_spte(old_spte))
  607. return 0;
  608. pfn = spte_to_pfn(old_spte);
  609. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  610. kvm_set_pfn_accessed(pfn);
  611. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  612. kvm_set_pfn_dirty(pfn);
  613. return 1;
  614. }
  615. static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
  616. {
  617. if (set_spte_track_bits(sptep, new_spte))
  618. rmap_remove(kvm, sptep);
  619. }
  620. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  621. {
  622. struct kvm_rmap_desc *desc;
  623. u64 *prev_spte;
  624. int i;
  625. if (!*rmapp)
  626. return NULL;
  627. else if (!(*rmapp & 1)) {
  628. if (!spte)
  629. return (u64 *)*rmapp;
  630. return NULL;
  631. }
  632. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  633. prev_spte = NULL;
  634. while (desc) {
  635. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  636. if (prev_spte == spte)
  637. return desc->sptes[i];
  638. prev_spte = desc->sptes[i];
  639. }
  640. desc = desc->more;
  641. }
  642. return NULL;
  643. }
  644. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  645. {
  646. unsigned long *rmapp;
  647. u64 *spte;
  648. int i, write_protected = 0;
  649. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  650. spte = rmap_next(kvm, rmapp, NULL);
  651. while (spte) {
  652. BUG_ON(!spte);
  653. BUG_ON(!(*spte & PT_PRESENT_MASK));
  654. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  655. if (is_writable_pte(*spte)) {
  656. update_spte(spte, *spte & ~PT_WRITABLE_MASK);
  657. write_protected = 1;
  658. }
  659. spte = rmap_next(kvm, rmapp, spte);
  660. }
  661. /* check for huge page mappings */
  662. for (i = PT_DIRECTORY_LEVEL;
  663. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  664. rmapp = gfn_to_rmap(kvm, gfn, i);
  665. spte = rmap_next(kvm, rmapp, NULL);
  666. while (spte) {
  667. BUG_ON(!spte);
  668. BUG_ON(!(*spte & PT_PRESENT_MASK));
  669. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  670. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  671. if (is_writable_pte(*spte)) {
  672. drop_spte(kvm, spte,
  673. shadow_trap_nonpresent_pte);
  674. --kvm->stat.lpages;
  675. spte = NULL;
  676. write_protected = 1;
  677. }
  678. spte = rmap_next(kvm, rmapp, spte);
  679. }
  680. }
  681. return write_protected;
  682. }
  683. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  684. unsigned long data)
  685. {
  686. u64 *spte;
  687. int need_tlb_flush = 0;
  688. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  689. BUG_ON(!(*spte & PT_PRESENT_MASK));
  690. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  691. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  692. need_tlb_flush = 1;
  693. }
  694. return need_tlb_flush;
  695. }
  696. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  697. unsigned long data)
  698. {
  699. int need_flush = 0;
  700. u64 *spte, new_spte;
  701. pte_t *ptep = (pte_t *)data;
  702. pfn_t new_pfn;
  703. WARN_ON(pte_huge(*ptep));
  704. new_pfn = pte_pfn(*ptep);
  705. spte = rmap_next(kvm, rmapp, NULL);
  706. while (spte) {
  707. BUG_ON(!is_shadow_present_pte(*spte));
  708. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  709. need_flush = 1;
  710. if (pte_write(*ptep)) {
  711. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  712. spte = rmap_next(kvm, rmapp, NULL);
  713. } else {
  714. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  715. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  716. new_spte &= ~PT_WRITABLE_MASK;
  717. new_spte &= ~SPTE_HOST_WRITEABLE;
  718. new_spte &= ~shadow_accessed_mask;
  719. set_spte_track_bits(spte, new_spte);
  720. spte = rmap_next(kvm, rmapp, spte);
  721. }
  722. }
  723. if (need_flush)
  724. kvm_flush_remote_tlbs(kvm);
  725. return 0;
  726. }
  727. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  728. unsigned long data,
  729. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  730. unsigned long data))
  731. {
  732. int i, j;
  733. int ret;
  734. int retval = 0;
  735. struct kvm_memslots *slots;
  736. slots = kvm_memslots(kvm);
  737. for (i = 0; i < slots->nmemslots; i++) {
  738. struct kvm_memory_slot *memslot = &slots->memslots[i];
  739. unsigned long start = memslot->userspace_addr;
  740. unsigned long end;
  741. end = start + (memslot->npages << PAGE_SHIFT);
  742. if (hva >= start && hva < end) {
  743. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  744. gfn_t gfn = memslot->base_gfn + gfn_offset;
  745. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  746. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  747. struct kvm_lpage_info *linfo;
  748. linfo = lpage_info_slot(gfn, memslot,
  749. PT_DIRECTORY_LEVEL + j);
  750. ret |= handler(kvm, &linfo->rmap_pde, data);
  751. }
  752. trace_kvm_age_page(hva, memslot, ret);
  753. retval |= ret;
  754. }
  755. }
  756. return retval;
  757. }
  758. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  759. {
  760. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  761. }
  762. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  763. {
  764. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  765. }
  766. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  767. unsigned long data)
  768. {
  769. u64 *spte;
  770. int young = 0;
  771. /*
  772. * Emulate the accessed bit for EPT, by checking if this page has
  773. * an EPT mapping, and clearing it if it does. On the next access,
  774. * a new EPT mapping will be established.
  775. * This has some overhead, but not as much as the cost of swapping
  776. * out actively used pages or breaking up actively used hugepages.
  777. */
  778. if (!shadow_accessed_mask)
  779. return kvm_unmap_rmapp(kvm, rmapp, data);
  780. spte = rmap_next(kvm, rmapp, NULL);
  781. while (spte) {
  782. int _young;
  783. u64 _spte = *spte;
  784. BUG_ON(!(_spte & PT_PRESENT_MASK));
  785. _young = _spte & PT_ACCESSED_MASK;
  786. if (_young) {
  787. young = 1;
  788. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  789. }
  790. spte = rmap_next(kvm, rmapp, spte);
  791. }
  792. return young;
  793. }
  794. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  795. unsigned long data)
  796. {
  797. u64 *spte;
  798. int young = 0;
  799. /*
  800. * If there's no access bit in the secondary pte set by the
  801. * hardware it's up to gup-fast/gup to set the access bit in
  802. * the primary pte or in the page structure.
  803. */
  804. if (!shadow_accessed_mask)
  805. goto out;
  806. spte = rmap_next(kvm, rmapp, NULL);
  807. while (spte) {
  808. u64 _spte = *spte;
  809. BUG_ON(!(_spte & PT_PRESENT_MASK));
  810. young = _spte & PT_ACCESSED_MASK;
  811. if (young) {
  812. young = 1;
  813. break;
  814. }
  815. spte = rmap_next(kvm, rmapp, spte);
  816. }
  817. out:
  818. return young;
  819. }
  820. #define RMAP_RECYCLE_THRESHOLD 1000
  821. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  822. {
  823. unsigned long *rmapp;
  824. struct kvm_mmu_page *sp;
  825. sp = page_header(__pa(spte));
  826. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  827. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  828. kvm_flush_remote_tlbs(vcpu->kvm);
  829. }
  830. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  831. {
  832. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  833. }
  834. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  835. {
  836. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  837. }
  838. #ifdef MMU_DEBUG
  839. static int is_empty_shadow_page(u64 *spt)
  840. {
  841. u64 *pos;
  842. u64 *end;
  843. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  844. if (is_shadow_present_pte(*pos)) {
  845. printk(KERN_ERR "%s: %p %llx\n", __func__,
  846. pos, *pos);
  847. return 0;
  848. }
  849. return 1;
  850. }
  851. #endif
  852. /*
  853. * This value is the sum of all of the kvm instances's
  854. * kvm->arch.n_used_mmu_pages values. We need a global,
  855. * aggregate version in order to make the slab shrinker
  856. * faster
  857. */
  858. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  859. {
  860. kvm->arch.n_used_mmu_pages += nr;
  861. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  862. }
  863. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  864. {
  865. ASSERT(is_empty_shadow_page(sp->spt));
  866. hlist_del(&sp->hash_link);
  867. list_del(&sp->link);
  868. __free_page(virt_to_page(sp->spt));
  869. if (!sp->role.direct)
  870. __free_page(virt_to_page(sp->gfns));
  871. kmem_cache_free(mmu_page_header_cache, sp);
  872. kvm_mod_used_mmu_pages(kvm, -1);
  873. }
  874. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  875. {
  876. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  877. }
  878. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  879. u64 *parent_pte, int direct)
  880. {
  881. struct kvm_mmu_page *sp;
  882. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  883. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  884. if (!direct)
  885. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
  886. PAGE_SIZE);
  887. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  888. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  889. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  890. sp->multimapped = 0;
  891. sp->parent_pte = parent_pte;
  892. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  893. return sp;
  894. }
  895. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  896. struct kvm_mmu_page *sp, u64 *parent_pte)
  897. {
  898. struct kvm_pte_chain *pte_chain;
  899. struct hlist_node *node;
  900. int i;
  901. if (!parent_pte)
  902. return;
  903. if (!sp->multimapped) {
  904. u64 *old = sp->parent_pte;
  905. if (!old) {
  906. sp->parent_pte = parent_pte;
  907. return;
  908. }
  909. sp->multimapped = 1;
  910. pte_chain = mmu_alloc_pte_chain(vcpu);
  911. INIT_HLIST_HEAD(&sp->parent_ptes);
  912. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  913. pte_chain->parent_ptes[0] = old;
  914. }
  915. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  916. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  917. continue;
  918. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  919. if (!pte_chain->parent_ptes[i]) {
  920. pte_chain->parent_ptes[i] = parent_pte;
  921. return;
  922. }
  923. }
  924. pte_chain = mmu_alloc_pte_chain(vcpu);
  925. BUG_ON(!pte_chain);
  926. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  927. pte_chain->parent_ptes[0] = parent_pte;
  928. }
  929. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  930. u64 *parent_pte)
  931. {
  932. struct kvm_pte_chain *pte_chain;
  933. struct hlist_node *node;
  934. int i;
  935. if (!sp->multimapped) {
  936. BUG_ON(sp->parent_pte != parent_pte);
  937. sp->parent_pte = NULL;
  938. return;
  939. }
  940. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  941. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  942. if (!pte_chain->parent_ptes[i])
  943. break;
  944. if (pte_chain->parent_ptes[i] != parent_pte)
  945. continue;
  946. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  947. && pte_chain->parent_ptes[i + 1]) {
  948. pte_chain->parent_ptes[i]
  949. = pte_chain->parent_ptes[i + 1];
  950. ++i;
  951. }
  952. pte_chain->parent_ptes[i] = NULL;
  953. if (i == 0) {
  954. hlist_del(&pte_chain->link);
  955. mmu_free_pte_chain(pte_chain);
  956. if (hlist_empty(&sp->parent_ptes)) {
  957. sp->multimapped = 0;
  958. sp->parent_pte = NULL;
  959. }
  960. }
  961. return;
  962. }
  963. BUG();
  964. }
  965. static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
  966. {
  967. struct kvm_pte_chain *pte_chain;
  968. struct hlist_node *node;
  969. struct kvm_mmu_page *parent_sp;
  970. int i;
  971. if (!sp->multimapped && sp->parent_pte) {
  972. parent_sp = page_header(__pa(sp->parent_pte));
  973. fn(parent_sp, sp->parent_pte);
  974. return;
  975. }
  976. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  977. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  978. u64 *spte = pte_chain->parent_ptes[i];
  979. if (!spte)
  980. break;
  981. parent_sp = page_header(__pa(spte));
  982. fn(parent_sp, spte);
  983. }
  984. }
  985. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
  986. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  987. {
  988. mmu_parent_walk(sp, mark_unsync);
  989. }
  990. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
  991. {
  992. unsigned int index;
  993. index = spte - sp->spt;
  994. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  995. return;
  996. if (sp->unsync_children++)
  997. return;
  998. kvm_mmu_mark_parents_unsync(sp);
  999. }
  1000. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  1001. struct kvm_mmu_page *sp)
  1002. {
  1003. int i;
  1004. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1005. sp->spt[i] = shadow_trap_nonpresent_pte;
  1006. }
  1007. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1008. struct kvm_mmu_page *sp)
  1009. {
  1010. return 1;
  1011. }
  1012. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1013. {
  1014. }
  1015. #define KVM_PAGE_ARRAY_NR 16
  1016. struct kvm_mmu_pages {
  1017. struct mmu_page_and_offset {
  1018. struct kvm_mmu_page *sp;
  1019. unsigned int idx;
  1020. } page[KVM_PAGE_ARRAY_NR];
  1021. unsigned int nr;
  1022. };
  1023. #define for_each_unsync_children(bitmap, idx) \
  1024. for (idx = find_first_bit(bitmap, 512); \
  1025. idx < 512; \
  1026. idx = find_next_bit(bitmap, 512, idx+1))
  1027. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1028. int idx)
  1029. {
  1030. int i;
  1031. if (sp->unsync)
  1032. for (i=0; i < pvec->nr; i++)
  1033. if (pvec->page[i].sp == sp)
  1034. return 0;
  1035. pvec->page[pvec->nr].sp = sp;
  1036. pvec->page[pvec->nr].idx = idx;
  1037. pvec->nr++;
  1038. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1039. }
  1040. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1041. struct kvm_mmu_pages *pvec)
  1042. {
  1043. int i, ret, nr_unsync_leaf = 0;
  1044. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  1045. struct kvm_mmu_page *child;
  1046. u64 ent = sp->spt[i];
  1047. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1048. goto clear_child_bitmap;
  1049. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1050. if (child->unsync_children) {
  1051. if (mmu_pages_add(pvec, child, i))
  1052. return -ENOSPC;
  1053. ret = __mmu_unsync_walk(child, pvec);
  1054. if (!ret)
  1055. goto clear_child_bitmap;
  1056. else if (ret > 0)
  1057. nr_unsync_leaf += ret;
  1058. else
  1059. return ret;
  1060. } else if (child->unsync) {
  1061. nr_unsync_leaf++;
  1062. if (mmu_pages_add(pvec, child, i))
  1063. return -ENOSPC;
  1064. } else
  1065. goto clear_child_bitmap;
  1066. continue;
  1067. clear_child_bitmap:
  1068. __clear_bit(i, sp->unsync_child_bitmap);
  1069. sp->unsync_children--;
  1070. WARN_ON((int)sp->unsync_children < 0);
  1071. }
  1072. return nr_unsync_leaf;
  1073. }
  1074. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1075. struct kvm_mmu_pages *pvec)
  1076. {
  1077. if (!sp->unsync_children)
  1078. return 0;
  1079. mmu_pages_add(pvec, sp, 0);
  1080. return __mmu_unsync_walk(sp, pvec);
  1081. }
  1082. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1083. {
  1084. WARN_ON(!sp->unsync);
  1085. trace_kvm_mmu_sync_page(sp);
  1086. sp->unsync = 0;
  1087. --kvm->stat.mmu_unsync;
  1088. }
  1089. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1090. struct list_head *invalid_list);
  1091. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1092. struct list_head *invalid_list);
  1093. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1094. hlist_for_each_entry(sp, pos, \
  1095. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1096. if ((sp)->gfn != (gfn)) {} else
  1097. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1098. hlist_for_each_entry(sp, pos, \
  1099. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1100. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1101. (sp)->role.invalid) {} else
  1102. /* @sp->gfn should be write-protected at the call site */
  1103. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1104. struct list_head *invalid_list, bool clear_unsync)
  1105. {
  1106. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1107. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1108. return 1;
  1109. }
  1110. if (clear_unsync)
  1111. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1112. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1113. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1114. return 1;
  1115. }
  1116. kvm_mmu_flush_tlb(vcpu);
  1117. return 0;
  1118. }
  1119. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1120. struct kvm_mmu_page *sp)
  1121. {
  1122. LIST_HEAD(invalid_list);
  1123. int ret;
  1124. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1125. if (ret)
  1126. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1127. return ret;
  1128. }
  1129. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1130. struct list_head *invalid_list)
  1131. {
  1132. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1133. }
  1134. /* @gfn should be write-protected at the call site */
  1135. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1136. {
  1137. struct kvm_mmu_page *s;
  1138. struct hlist_node *node;
  1139. LIST_HEAD(invalid_list);
  1140. bool flush = false;
  1141. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1142. if (!s->unsync)
  1143. continue;
  1144. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1145. kvm_unlink_unsync_page(vcpu->kvm, s);
  1146. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1147. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1148. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1149. continue;
  1150. }
  1151. flush = true;
  1152. }
  1153. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1154. if (flush)
  1155. kvm_mmu_flush_tlb(vcpu);
  1156. }
  1157. struct mmu_page_path {
  1158. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1159. unsigned int idx[PT64_ROOT_LEVEL-1];
  1160. };
  1161. #define for_each_sp(pvec, sp, parents, i) \
  1162. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1163. sp = pvec.page[i].sp; \
  1164. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1165. i = mmu_pages_next(&pvec, &parents, i))
  1166. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1167. struct mmu_page_path *parents,
  1168. int i)
  1169. {
  1170. int n;
  1171. for (n = i+1; n < pvec->nr; n++) {
  1172. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1173. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1174. parents->idx[0] = pvec->page[n].idx;
  1175. return n;
  1176. }
  1177. parents->parent[sp->role.level-2] = sp;
  1178. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1179. }
  1180. return n;
  1181. }
  1182. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1183. {
  1184. struct kvm_mmu_page *sp;
  1185. unsigned int level = 0;
  1186. do {
  1187. unsigned int idx = parents->idx[level];
  1188. sp = parents->parent[level];
  1189. if (!sp)
  1190. return;
  1191. --sp->unsync_children;
  1192. WARN_ON((int)sp->unsync_children < 0);
  1193. __clear_bit(idx, sp->unsync_child_bitmap);
  1194. level++;
  1195. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1196. }
  1197. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1198. struct mmu_page_path *parents,
  1199. struct kvm_mmu_pages *pvec)
  1200. {
  1201. parents->parent[parent->role.level-1] = NULL;
  1202. pvec->nr = 0;
  1203. }
  1204. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1205. struct kvm_mmu_page *parent)
  1206. {
  1207. int i;
  1208. struct kvm_mmu_page *sp;
  1209. struct mmu_page_path parents;
  1210. struct kvm_mmu_pages pages;
  1211. LIST_HEAD(invalid_list);
  1212. kvm_mmu_pages_init(parent, &parents, &pages);
  1213. while (mmu_unsync_walk(parent, &pages)) {
  1214. int protected = 0;
  1215. for_each_sp(pages, sp, parents, i)
  1216. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1217. if (protected)
  1218. kvm_flush_remote_tlbs(vcpu->kvm);
  1219. for_each_sp(pages, sp, parents, i) {
  1220. kvm_sync_page(vcpu, sp, &invalid_list);
  1221. mmu_pages_clear_parents(&parents);
  1222. }
  1223. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1224. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1225. kvm_mmu_pages_init(parent, &parents, &pages);
  1226. }
  1227. }
  1228. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1229. gfn_t gfn,
  1230. gva_t gaddr,
  1231. unsigned level,
  1232. int direct,
  1233. unsigned access,
  1234. u64 *parent_pte)
  1235. {
  1236. union kvm_mmu_page_role role;
  1237. unsigned quadrant;
  1238. struct kvm_mmu_page *sp;
  1239. struct hlist_node *node;
  1240. bool need_sync = false;
  1241. role = vcpu->arch.mmu.base_role;
  1242. role.level = level;
  1243. role.direct = direct;
  1244. if (role.direct)
  1245. role.cr4_pae = 0;
  1246. role.access = access;
  1247. if (!vcpu->arch.mmu.direct_map
  1248. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1249. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1250. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1251. role.quadrant = quadrant;
  1252. }
  1253. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1254. if (!need_sync && sp->unsync)
  1255. need_sync = true;
  1256. if (sp->role.word != role.word)
  1257. continue;
  1258. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1259. break;
  1260. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1261. if (sp->unsync_children) {
  1262. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1263. kvm_mmu_mark_parents_unsync(sp);
  1264. } else if (sp->unsync)
  1265. kvm_mmu_mark_parents_unsync(sp);
  1266. trace_kvm_mmu_get_page(sp, false);
  1267. return sp;
  1268. }
  1269. ++vcpu->kvm->stat.mmu_cache_miss;
  1270. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1271. if (!sp)
  1272. return sp;
  1273. sp->gfn = gfn;
  1274. sp->role = role;
  1275. hlist_add_head(&sp->hash_link,
  1276. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1277. if (!direct) {
  1278. if (rmap_write_protect(vcpu->kvm, gfn))
  1279. kvm_flush_remote_tlbs(vcpu->kvm);
  1280. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1281. kvm_sync_pages(vcpu, gfn);
  1282. account_shadowed(vcpu->kvm, gfn);
  1283. }
  1284. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1285. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1286. else
  1287. nonpaging_prefetch_page(vcpu, sp);
  1288. trace_kvm_mmu_get_page(sp, true);
  1289. return sp;
  1290. }
  1291. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1292. struct kvm_vcpu *vcpu, u64 addr)
  1293. {
  1294. iterator->addr = addr;
  1295. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1296. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1297. if (iterator->level == PT64_ROOT_LEVEL &&
  1298. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1299. !vcpu->arch.mmu.direct_map)
  1300. --iterator->level;
  1301. if (iterator->level == PT32E_ROOT_LEVEL) {
  1302. iterator->shadow_addr
  1303. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1304. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1305. --iterator->level;
  1306. if (!iterator->shadow_addr)
  1307. iterator->level = 0;
  1308. }
  1309. }
  1310. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1311. {
  1312. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1313. return false;
  1314. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1315. if (is_large_pte(*iterator->sptep))
  1316. return false;
  1317. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1318. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1319. return true;
  1320. }
  1321. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1322. {
  1323. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1324. --iterator->level;
  1325. }
  1326. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1327. {
  1328. u64 spte;
  1329. spte = __pa(sp->spt)
  1330. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  1331. | PT_WRITABLE_MASK | PT_USER_MASK;
  1332. __set_spte(sptep, spte);
  1333. }
  1334. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  1335. {
  1336. if (is_large_pte(*sptep)) {
  1337. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1338. kvm_flush_remote_tlbs(vcpu->kvm);
  1339. }
  1340. }
  1341. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1342. unsigned direct_access)
  1343. {
  1344. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1345. struct kvm_mmu_page *child;
  1346. /*
  1347. * For the direct sp, if the guest pte's dirty bit
  1348. * changed form clean to dirty, it will corrupt the
  1349. * sp's access: allow writable in the read-only sp,
  1350. * so we should update the spte at this point to get
  1351. * a new sp with the correct access.
  1352. */
  1353. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1354. if (child->role.access == direct_access)
  1355. return;
  1356. mmu_page_remove_parent_pte(child, sptep);
  1357. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1358. kvm_flush_remote_tlbs(vcpu->kvm);
  1359. }
  1360. }
  1361. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1362. struct kvm_mmu_page *sp)
  1363. {
  1364. unsigned i;
  1365. u64 *pt;
  1366. u64 ent;
  1367. pt = sp->spt;
  1368. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1369. ent = pt[i];
  1370. if (is_shadow_present_pte(ent)) {
  1371. if (!is_last_spte(ent, sp->role.level)) {
  1372. ent &= PT64_BASE_ADDR_MASK;
  1373. mmu_page_remove_parent_pte(page_header(ent),
  1374. &pt[i]);
  1375. } else {
  1376. if (is_large_pte(ent))
  1377. --kvm->stat.lpages;
  1378. drop_spte(kvm, &pt[i],
  1379. shadow_trap_nonpresent_pte);
  1380. }
  1381. }
  1382. pt[i] = shadow_trap_nonpresent_pte;
  1383. }
  1384. }
  1385. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1386. {
  1387. mmu_page_remove_parent_pte(sp, parent_pte);
  1388. }
  1389. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1390. {
  1391. int i;
  1392. struct kvm_vcpu *vcpu;
  1393. kvm_for_each_vcpu(i, vcpu, kvm)
  1394. vcpu->arch.last_pte_updated = NULL;
  1395. }
  1396. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1397. {
  1398. u64 *parent_pte;
  1399. while (sp->multimapped || sp->parent_pte) {
  1400. if (!sp->multimapped)
  1401. parent_pte = sp->parent_pte;
  1402. else {
  1403. struct kvm_pte_chain *chain;
  1404. chain = container_of(sp->parent_ptes.first,
  1405. struct kvm_pte_chain, link);
  1406. parent_pte = chain->parent_ptes[0];
  1407. }
  1408. BUG_ON(!parent_pte);
  1409. kvm_mmu_put_page(sp, parent_pte);
  1410. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1411. }
  1412. }
  1413. static int mmu_zap_unsync_children(struct kvm *kvm,
  1414. struct kvm_mmu_page *parent,
  1415. struct list_head *invalid_list)
  1416. {
  1417. int i, zapped = 0;
  1418. struct mmu_page_path parents;
  1419. struct kvm_mmu_pages pages;
  1420. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1421. return 0;
  1422. kvm_mmu_pages_init(parent, &parents, &pages);
  1423. while (mmu_unsync_walk(parent, &pages)) {
  1424. struct kvm_mmu_page *sp;
  1425. for_each_sp(pages, sp, parents, i) {
  1426. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1427. mmu_pages_clear_parents(&parents);
  1428. zapped++;
  1429. }
  1430. kvm_mmu_pages_init(parent, &parents, &pages);
  1431. }
  1432. return zapped;
  1433. }
  1434. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1435. struct list_head *invalid_list)
  1436. {
  1437. int ret;
  1438. trace_kvm_mmu_prepare_zap_page(sp);
  1439. ++kvm->stat.mmu_shadow_zapped;
  1440. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1441. kvm_mmu_page_unlink_children(kvm, sp);
  1442. kvm_mmu_unlink_parents(kvm, sp);
  1443. if (!sp->role.invalid && !sp->role.direct)
  1444. unaccount_shadowed(kvm, sp->gfn);
  1445. if (sp->unsync)
  1446. kvm_unlink_unsync_page(kvm, sp);
  1447. if (!sp->root_count) {
  1448. /* Count self */
  1449. ret++;
  1450. list_move(&sp->link, invalid_list);
  1451. } else {
  1452. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1453. kvm_reload_remote_mmus(kvm);
  1454. }
  1455. sp->role.invalid = 1;
  1456. kvm_mmu_reset_last_pte_updated(kvm);
  1457. return ret;
  1458. }
  1459. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1460. struct list_head *invalid_list)
  1461. {
  1462. struct kvm_mmu_page *sp;
  1463. if (list_empty(invalid_list))
  1464. return;
  1465. kvm_flush_remote_tlbs(kvm);
  1466. do {
  1467. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1468. WARN_ON(!sp->role.invalid || sp->root_count);
  1469. kvm_mmu_free_page(kvm, sp);
  1470. } while (!list_empty(invalid_list));
  1471. }
  1472. /*
  1473. * Changing the number of mmu pages allocated to the vm
  1474. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1475. */
  1476. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1477. {
  1478. LIST_HEAD(invalid_list);
  1479. /*
  1480. * If we set the number of mmu pages to be smaller be than the
  1481. * number of actived pages , we must to free some mmu pages before we
  1482. * change the value
  1483. */
  1484. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1485. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
  1486. !list_empty(&kvm->arch.active_mmu_pages)) {
  1487. struct kvm_mmu_page *page;
  1488. page = container_of(kvm->arch.active_mmu_pages.prev,
  1489. struct kvm_mmu_page, link);
  1490. kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
  1491. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1492. }
  1493. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1494. }
  1495. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1496. }
  1497. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1498. {
  1499. struct kvm_mmu_page *sp;
  1500. struct hlist_node *node;
  1501. LIST_HEAD(invalid_list);
  1502. int r;
  1503. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1504. r = 0;
  1505. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1506. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1507. sp->role.word);
  1508. r = 1;
  1509. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1510. }
  1511. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1512. return r;
  1513. }
  1514. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1515. {
  1516. struct kvm_mmu_page *sp;
  1517. struct hlist_node *node;
  1518. LIST_HEAD(invalid_list);
  1519. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1520. pgprintk("%s: zap %llx %x\n",
  1521. __func__, gfn, sp->role.word);
  1522. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1523. }
  1524. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1525. }
  1526. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1527. {
  1528. int slot = memslot_id(kvm, gfn);
  1529. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1530. __set_bit(slot, sp->slot_bitmap);
  1531. }
  1532. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1533. {
  1534. int i;
  1535. u64 *pt = sp->spt;
  1536. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1537. return;
  1538. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1539. if (pt[i] == shadow_notrap_nonpresent_pte)
  1540. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1541. }
  1542. }
  1543. /*
  1544. * The function is based on mtrr_type_lookup() in
  1545. * arch/x86/kernel/cpu/mtrr/generic.c
  1546. */
  1547. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1548. u64 start, u64 end)
  1549. {
  1550. int i;
  1551. u64 base, mask;
  1552. u8 prev_match, curr_match;
  1553. int num_var_ranges = KVM_NR_VAR_MTRR;
  1554. if (!mtrr_state->enabled)
  1555. return 0xFF;
  1556. /* Make end inclusive end, instead of exclusive */
  1557. end--;
  1558. /* Look in fixed ranges. Just return the type as per start */
  1559. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1560. int idx;
  1561. if (start < 0x80000) {
  1562. idx = 0;
  1563. idx += (start >> 16);
  1564. return mtrr_state->fixed_ranges[idx];
  1565. } else if (start < 0xC0000) {
  1566. idx = 1 * 8;
  1567. idx += ((start - 0x80000) >> 14);
  1568. return mtrr_state->fixed_ranges[idx];
  1569. } else if (start < 0x1000000) {
  1570. idx = 3 * 8;
  1571. idx += ((start - 0xC0000) >> 12);
  1572. return mtrr_state->fixed_ranges[idx];
  1573. }
  1574. }
  1575. /*
  1576. * Look in variable ranges
  1577. * Look of multiple ranges matching this address and pick type
  1578. * as per MTRR precedence
  1579. */
  1580. if (!(mtrr_state->enabled & 2))
  1581. return mtrr_state->def_type;
  1582. prev_match = 0xFF;
  1583. for (i = 0; i < num_var_ranges; ++i) {
  1584. unsigned short start_state, end_state;
  1585. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1586. continue;
  1587. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1588. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1589. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1590. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1591. start_state = ((start & mask) == (base & mask));
  1592. end_state = ((end & mask) == (base & mask));
  1593. if (start_state != end_state)
  1594. return 0xFE;
  1595. if ((start & mask) != (base & mask))
  1596. continue;
  1597. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1598. if (prev_match == 0xFF) {
  1599. prev_match = curr_match;
  1600. continue;
  1601. }
  1602. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1603. curr_match == MTRR_TYPE_UNCACHABLE)
  1604. return MTRR_TYPE_UNCACHABLE;
  1605. if ((prev_match == MTRR_TYPE_WRBACK &&
  1606. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1607. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1608. curr_match == MTRR_TYPE_WRBACK)) {
  1609. prev_match = MTRR_TYPE_WRTHROUGH;
  1610. curr_match = MTRR_TYPE_WRTHROUGH;
  1611. }
  1612. if (prev_match != curr_match)
  1613. return MTRR_TYPE_UNCACHABLE;
  1614. }
  1615. if (prev_match != 0xFF)
  1616. return prev_match;
  1617. return mtrr_state->def_type;
  1618. }
  1619. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1620. {
  1621. u8 mtrr;
  1622. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1623. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1624. if (mtrr == 0xfe || mtrr == 0xff)
  1625. mtrr = MTRR_TYPE_WRBACK;
  1626. return mtrr;
  1627. }
  1628. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1629. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1630. {
  1631. trace_kvm_mmu_unsync_page(sp);
  1632. ++vcpu->kvm->stat.mmu_unsync;
  1633. sp->unsync = 1;
  1634. kvm_mmu_mark_parents_unsync(sp);
  1635. mmu_convert_notrap(sp);
  1636. }
  1637. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1638. {
  1639. struct kvm_mmu_page *s;
  1640. struct hlist_node *node;
  1641. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1642. if (s->unsync)
  1643. continue;
  1644. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1645. __kvm_unsync_page(vcpu, s);
  1646. }
  1647. }
  1648. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1649. bool can_unsync)
  1650. {
  1651. struct kvm_mmu_page *s;
  1652. struct hlist_node *node;
  1653. bool need_unsync = false;
  1654. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1655. if (!can_unsync)
  1656. return 1;
  1657. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1658. return 1;
  1659. if (!need_unsync && !s->unsync) {
  1660. if (!oos_shadow)
  1661. return 1;
  1662. need_unsync = true;
  1663. }
  1664. }
  1665. if (need_unsync)
  1666. kvm_unsync_pages(vcpu, gfn);
  1667. return 0;
  1668. }
  1669. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1670. unsigned pte_access, int user_fault,
  1671. int write_fault, int dirty, int level,
  1672. gfn_t gfn, pfn_t pfn, bool speculative,
  1673. bool can_unsync, bool host_writable)
  1674. {
  1675. u64 spte, entry = *sptep;
  1676. int ret = 0;
  1677. /*
  1678. * We don't set the accessed bit, since we sometimes want to see
  1679. * whether the guest actually used the pte (in order to detect
  1680. * demand paging).
  1681. */
  1682. spte = PT_PRESENT_MASK;
  1683. if (!speculative)
  1684. spte |= shadow_accessed_mask;
  1685. if (!dirty)
  1686. pte_access &= ~ACC_WRITE_MASK;
  1687. if (pte_access & ACC_EXEC_MASK)
  1688. spte |= shadow_x_mask;
  1689. else
  1690. spte |= shadow_nx_mask;
  1691. if (pte_access & ACC_USER_MASK)
  1692. spte |= shadow_user_mask;
  1693. if (level > PT_PAGE_TABLE_LEVEL)
  1694. spte |= PT_PAGE_SIZE_MASK;
  1695. if (tdp_enabled)
  1696. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1697. kvm_is_mmio_pfn(pfn));
  1698. if (host_writable)
  1699. spte |= SPTE_HOST_WRITEABLE;
  1700. else
  1701. pte_access &= ~ACC_WRITE_MASK;
  1702. spte |= (u64)pfn << PAGE_SHIFT;
  1703. if ((pte_access & ACC_WRITE_MASK)
  1704. || (!vcpu->arch.mmu.direct_map && write_fault
  1705. && !is_write_protection(vcpu) && !user_fault)) {
  1706. if (level > PT_PAGE_TABLE_LEVEL &&
  1707. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1708. ret = 1;
  1709. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1710. goto done;
  1711. }
  1712. spte |= PT_WRITABLE_MASK;
  1713. if (!vcpu->arch.mmu.direct_map
  1714. && !(pte_access & ACC_WRITE_MASK))
  1715. spte &= ~PT_USER_MASK;
  1716. /*
  1717. * Optimization: for pte sync, if spte was writable the hash
  1718. * lookup is unnecessary (and expensive). Write protection
  1719. * is responsibility of mmu_get_page / kvm_sync_page.
  1720. * Same reasoning can be applied to dirty page accounting.
  1721. */
  1722. if (!can_unsync && is_writable_pte(*sptep))
  1723. goto set_pte;
  1724. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1725. pgprintk("%s: found shadow page for %llx, marking ro\n",
  1726. __func__, gfn);
  1727. ret = 1;
  1728. pte_access &= ~ACC_WRITE_MASK;
  1729. if (is_writable_pte(spte))
  1730. spte &= ~PT_WRITABLE_MASK;
  1731. }
  1732. }
  1733. if (pte_access & ACC_WRITE_MASK)
  1734. mark_page_dirty(vcpu->kvm, gfn);
  1735. set_pte:
  1736. update_spte(sptep, spte);
  1737. /*
  1738. * If we overwrite a writable spte with a read-only one we
  1739. * should flush remote TLBs. Otherwise rmap_write_protect
  1740. * will find a read-only spte, even though the writable spte
  1741. * might be cached on a CPU's TLB.
  1742. */
  1743. if (is_writable_pte(entry) && !is_writable_pte(*sptep))
  1744. kvm_flush_remote_tlbs(vcpu->kvm);
  1745. done:
  1746. return ret;
  1747. }
  1748. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1749. unsigned pt_access, unsigned pte_access,
  1750. int user_fault, int write_fault, int dirty,
  1751. int *ptwrite, int level, gfn_t gfn,
  1752. pfn_t pfn, bool speculative,
  1753. bool host_writable)
  1754. {
  1755. int was_rmapped = 0;
  1756. int rmap_count;
  1757. pgprintk("%s: spte %llx access %x write_fault %d"
  1758. " user_fault %d gfn %llx\n",
  1759. __func__, *sptep, pt_access,
  1760. write_fault, user_fault, gfn);
  1761. if (is_rmap_spte(*sptep)) {
  1762. /*
  1763. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1764. * the parent of the now unreachable PTE.
  1765. */
  1766. if (level > PT_PAGE_TABLE_LEVEL &&
  1767. !is_large_pte(*sptep)) {
  1768. struct kvm_mmu_page *child;
  1769. u64 pte = *sptep;
  1770. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1771. mmu_page_remove_parent_pte(child, sptep);
  1772. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1773. kvm_flush_remote_tlbs(vcpu->kvm);
  1774. } else if (pfn != spte_to_pfn(*sptep)) {
  1775. pgprintk("hfn old %llx new %llx\n",
  1776. spte_to_pfn(*sptep), pfn);
  1777. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1778. kvm_flush_remote_tlbs(vcpu->kvm);
  1779. } else
  1780. was_rmapped = 1;
  1781. }
  1782. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1783. dirty, level, gfn, pfn, speculative, true,
  1784. host_writable)) {
  1785. if (write_fault)
  1786. *ptwrite = 1;
  1787. kvm_mmu_flush_tlb(vcpu);
  1788. }
  1789. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1790. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  1791. is_large_pte(*sptep)? "2MB" : "4kB",
  1792. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1793. *sptep, sptep);
  1794. if (!was_rmapped && is_large_pte(*sptep))
  1795. ++vcpu->kvm->stat.lpages;
  1796. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1797. if (!was_rmapped) {
  1798. rmap_count = rmap_add(vcpu, sptep, gfn);
  1799. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1800. rmap_recycle(vcpu, sptep, gfn);
  1801. }
  1802. kvm_release_pfn_clean(pfn);
  1803. if (speculative) {
  1804. vcpu->arch.last_pte_updated = sptep;
  1805. vcpu->arch.last_pte_gfn = gfn;
  1806. }
  1807. }
  1808. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1809. {
  1810. }
  1811. static struct kvm_memory_slot *
  1812. pte_prefetch_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn, bool no_dirty_log)
  1813. {
  1814. struct kvm_memory_slot *slot;
  1815. slot = gfn_to_memslot(vcpu->kvm, gfn);
  1816. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  1817. (no_dirty_log && slot->dirty_bitmap))
  1818. slot = NULL;
  1819. return slot;
  1820. }
  1821. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  1822. bool no_dirty_log)
  1823. {
  1824. struct kvm_memory_slot *slot;
  1825. unsigned long hva;
  1826. slot = pte_prefetch_gfn_to_memslot(vcpu, gfn, no_dirty_log);
  1827. if (!slot) {
  1828. get_page(bad_page);
  1829. return page_to_pfn(bad_page);
  1830. }
  1831. hva = gfn_to_hva_memslot(slot, gfn);
  1832. return hva_to_pfn_atomic(vcpu->kvm, hva);
  1833. }
  1834. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  1835. struct kvm_mmu_page *sp,
  1836. u64 *start, u64 *end)
  1837. {
  1838. struct page *pages[PTE_PREFETCH_NUM];
  1839. unsigned access = sp->role.access;
  1840. int i, ret;
  1841. gfn_t gfn;
  1842. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  1843. if (!pte_prefetch_gfn_to_memslot(vcpu, gfn, access & ACC_WRITE_MASK))
  1844. return -1;
  1845. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  1846. if (ret <= 0)
  1847. return -1;
  1848. for (i = 0; i < ret; i++, gfn++, start++)
  1849. mmu_set_spte(vcpu, start, ACC_ALL,
  1850. access, 0, 0, 1, NULL,
  1851. sp->role.level, gfn,
  1852. page_to_pfn(pages[i]), true, true);
  1853. return 0;
  1854. }
  1855. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  1856. struct kvm_mmu_page *sp, u64 *sptep)
  1857. {
  1858. u64 *spte, *start = NULL;
  1859. int i;
  1860. WARN_ON(!sp->role.direct);
  1861. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  1862. spte = sp->spt + i;
  1863. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  1864. if (*spte != shadow_trap_nonpresent_pte || spte == sptep) {
  1865. if (!start)
  1866. continue;
  1867. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  1868. break;
  1869. start = NULL;
  1870. } else if (!start)
  1871. start = spte;
  1872. }
  1873. }
  1874. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  1875. {
  1876. struct kvm_mmu_page *sp;
  1877. /*
  1878. * Since it's no accessed bit on EPT, it's no way to
  1879. * distinguish between actually accessed translations
  1880. * and prefetched, so disable pte prefetch if EPT is
  1881. * enabled.
  1882. */
  1883. if (!shadow_accessed_mask)
  1884. return;
  1885. sp = page_header(__pa(sptep));
  1886. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  1887. return;
  1888. __direct_pte_prefetch(vcpu, sp, sptep);
  1889. }
  1890. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1891. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  1892. bool prefault)
  1893. {
  1894. struct kvm_shadow_walk_iterator iterator;
  1895. struct kvm_mmu_page *sp;
  1896. int pt_write = 0;
  1897. gfn_t pseudo_gfn;
  1898. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1899. if (iterator.level == level) {
  1900. unsigned pte_access = ACC_ALL;
  1901. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
  1902. 0, write, 1, &pt_write,
  1903. level, gfn, pfn, prefault, map_writable);
  1904. direct_pte_prefetch(vcpu, iterator.sptep);
  1905. ++vcpu->stat.pf_fixed;
  1906. break;
  1907. }
  1908. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1909. u64 base_addr = iterator.addr;
  1910. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  1911. pseudo_gfn = base_addr >> PAGE_SHIFT;
  1912. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1913. iterator.level - 1,
  1914. 1, ACC_ALL, iterator.sptep);
  1915. if (!sp) {
  1916. pgprintk("nonpaging_map: ENOMEM\n");
  1917. kvm_release_pfn_clean(pfn);
  1918. return -ENOMEM;
  1919. }
  1920. __set_spte(iterator.sptep,
  1921. __pa(sp->spt)
  1922. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1923. | shadow_user_mask | shadow_x_mask
  1924. | shadow_accessed_mask);
  1925. }
  1926. }
  1927. return pt_write;
  1928. }
  1929. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  1930. {
  1931. siginfo_t info;
  1932. info.si_signo = SIGBUS;
  1933. info.si_errno = 0;
  1934. info.si_code = BUS_MCEERR_AR;
  1935. info.si_addr = (void __user *)address;
  1936. info.si_addr_lsb = PAGE_SHIFT;
  1937. send_sig_info(SIGBUS, &info, tsk);
  1938. }
  1939. static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
  1940. {
  1941. kvm_release_pfn_clean(pfn);
  1942. if (is_hwpoison_pfn(pfn)) {
  1943. kvm_send_hwpoison_signal(gfn_to_hva(kvm, gfn), current);
  1944. return 0;
  1945. } else if (is_fault_pfn(pfn))
  1946. return -EFAULT;
  1947. return 1;
  1948. }
  1949. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  1950. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  1951. {
  1952. pfn_t pfn = *pfnp;
  1953. gfn_t gfn = *gfnp;
  1954. int level = *levelp;
  1955. /*
  1956. * Check if it's a transparent hugepage. If this would be an
  1957. * hugetlbfs page, level wouldn't be set to
  1958. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  1959. * here.
  1960. */
  1961. if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
  1962. level == PT_PAGE_TABLE_LEVEL &&
  1963. PageTransCompound(pfn_to_page(pfn)) &&
  1964. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  1965. unsigned long mask;
  1966. /*
  1967. * mmu_notifier_retry was successful and we hold the
  1968. * mmu_lock here, so the pmd can't become splitting
  1969. * from under us, and in turn
  1970. * __split_huge_page_refcount() can't run from under
  1971. * us and we can safely transfer the refcount from
  1972. * PG_tail to PG_head as we switch the pfn to tail to
  1973. * head.
  1974. */
  1975. *levelp = level = PT_DIRECTORY_LEVEL;
  1976. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  1977. VM_BUG_ON((gfn & mask) != (pfn & mask));
  1978. if (pfn & mask) {
  1979. gfn &= ~mask;
  1980. *gfnp = gfn;
  1981. kvm_release_pfn_clean(pfn);
  1982. pfn &= ~mask;
  1983. if (!get_page_unless_zero(pfn_to_page(pfn)))
  1984. BUG();
  1985. *pfnp = pfn;
  1986. }
  1987. }
  1988. }
  1989. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  1990. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  1991. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
  1992. bool prefault)
  1993. {
  1994. int r;
  1995. int level;
  1996. int force_pt_level;
  1997. pfn_t pfn;
  1998. unsigned long mmu_seq;
  1999. bool map_writable;
  2000. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2001. if (likely(!force_pt_level)) {
  2002. level = mapping_level(vcpu, gfn);
  2003. /*
  2004. * This path builds a PAE pagetable - so we can map
  2005. * 2mb pages at maximum. Therefore check if the level
  2006. * is larger than that.
  2007. */
  2008. if (level > PT_DIRECTORY_LEVEL)
  2009. level = PT_DIRECTORY_LEVEL;
  2010. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2011. } else
  2012. level = PT_PAGE_TABLE_LEVEL;
  2013. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2014. smp_rmb();
  2015. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2016. return 0;
  2017. /* mmio */
  2018. if (is_error_pfn(pfn))
  2019. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  2020. spin_lock(&vcpu->kvm->mmu_lock);
  2021. if (mmu_notifier_retry(vcpu, mmu_seq))
  2022. goto out_unlock;
  2023. kvm_mmu_free_some_pages(vcpu);
  2024. if (likely(!force_pt_level))
  2025. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2026. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2027. prefault);
  2028. spin_unlock(&vcpu->kvm->mmu_lock);
  2029. return r;
  2030. out_unlock:
  2031. spin_unlock(&vcpu->kvm->mmu_lock);
  2032. kvm_release_pfn_clean(pfn);
  2033. return 0;
  2034. }
  2035. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2036. {
  2037. int i;
  2038. struct kvm_mmu_page *sp;
  2039. LIST_HEAD(invalid_list);
  2040. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2041. return;
  2042. spin_lock(&vcpu->kvm->mmu_lock);
  2043. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2044. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2045. vcpu->arch.mmu.direct_map)) {
  2046. hpa_t root = vcpu->arch.mmu.root_hpa;
  2047. sp = page_header(root);
  2048. --sp->root_count;
  2049. if (!sp->root_count && sp->role.invalid) {
  2050. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2051. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2052. }
  2053. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2054. spin_unlock(&vcpu->kvm->mmu_lock);
  2055. return;
  2056. }
  2057. for (i = 0; i < 4; ++i) {
  2058. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2059. if (root) {
  2060. root &= PT64_BASE_ADDR_MASK;
  2061. sp = page_header(root);
  2062. --sp->root_count;
  2063. if (!sp->root_count && sp->role.invalid)
  2064. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2065. &invalid_list);
  2066. }
  2067. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2068. }
  2069. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2070. spin_unlock(&vcpu->kvm->mmu_lock);
  2071. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2072. }
  2073. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2074. {
  2075. int ret = 0;
  2076. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2077. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2078. ret = 1;
  2079. }
  2080. return ret;
  2081. }
  2082. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2083. {
  2084. struct kvm_mmu_page *sp;
  2085. unsigned i;
  2086. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2087. spin_lock(&vcpu->kvm->mmu_lock);
  2088. kvm_mmu_free_some_pages(vcpu);
  2089. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2090. 1, ACC_ALL, NULL);
  2091. ++sp->root_count;
  2092. spin_unlock(&vcpu->kvm->mmu_lock);
  2093. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2094. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2095. for (i = 0; i < 4; ++i) {
  2096. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2097. ASSERT(!VALID_PAGE(root));
  2098. spin_lock(&vcpu->kvm->mmu_lock);
  2099. kvm_mmu_free_some_pages(vcpu);
  2100. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2101. i << 30,
  2102. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2103. NULL);
  2104. root = __pa(sp->spt);
  2105. ++sp->root_count;
  2106. spin_unlock(&vcpu->kvm->mmu_lock);
  2107. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2108. }
  2109. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2110. } else
  2111. BUG();
  2112. return 0;
  2113. }
  2114. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2115. {
  2116. struct kvm_mmu_page *sp;
  2117. u64 pdptr, pm_mask;
  2118. gfn_t root_gfn;
  2119. int i;
  2120. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2121. if (mmu_check_root(vcpu, root_gfn))
  2122. return 1;
  2123. /*
  2124. * Do we shadow a long mode page table? If so we need to
  2125. * write-protect the guests page table root.
  2126. */
  2127. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2128. hpa_t root = vcpu->arch.mmu.root_hpa;
  2129. ASSERT(!VALID_PAGE(root));
  2130. spin_lock(&vcpu->kvm->mmu_lock);
  2131. kvm_mmu_free_some_pages(vcpu);
  2132. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2133. 0, ACC_ALL, NULL);
  2134. root = __pa(sp->spt);
  2135. ++sp->root_count;
  2136. spin_unlock(&vcpu->kvm->mmu_lock);
  2137. vcpu->arch.mmu.root_hpa = root;
  2138. return 0;
  2139. }
  2140. /*
  2141. * We shadow a 32 bit page table. This may be a legacy 2-level
  2142. * or a PAE 3-level page table. In either case we need to be aware that
  2143. * the shadow page table may be a PAE or a long mode page table.
  2144. */
  2145. pm_mask = PT_PRESENT_MASK;
  2146. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2147. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2148. for (i = 0; i < 4; ++i) {
  2149. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2150. ASSERT(!VALID_PAGE(root));
  2151. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2152. pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i);
  2153. if (!is_present_gpte(pdptr)) {
  2154. vcpu->arch.mmu.pae_root[i] = 0;
  2155. continue;
  2156. }
  2157. root_gfn = pdptr >> PAGE_SHIFT;
  2158. if (mmu_check_root(vcpu, root_gfn))
  2159. return 1;
  2160. }
  2161. spin_lock(&vcpu->kvm->mmu_lock);
  2162. kvm_mmu_free_some_pages(vcpu);
  2163. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2164. PT32_ROOT_LEVEL, 0,
  2165. ACC_ALL, NULL);
  2166. root = __pa(sp->spt);
  2167. ++sp->root_count;
  2168. spin_unlock(&vcpu->kvm->mmu_lock);
  2169. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2170. }
  2171. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2172. /*
  2173. * If we shadow a 32 bit page table with a long mode page
  2174. * table we enter this path.
  2175. */
  2176. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2177. if (vcpu->arch.mmu.lm_root == NULL) {
  2178. /*
  2179. * The additional page necessary for this is only
  2180. * allocated on demand.
  2181. */
  2182. u64 *lm_root;
  2183. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2184. if (lm_root == NULL)
  2185. return 1;
  2186. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2187. vcpu->arch.mmu.lm_root = lm_root;
  2188. }
  2189. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2190. }
  2191. return 0;
  2192. }
  2193. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2194. {
  2195. if (vcpu->arch.mmu.direct_map)
  2196. return mmu_alloc_direct_roots(vcpu);
  2197. else
  2198. return mmu_alloc_shadow_roots(vcpu);
  2199. }
  2200. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2201. {
  2202. int i;
  2203. struct kvm_mmu_page *sp;
  2204. if (vcpu->arch.mmu.direct_map)
  2205. return;
  2206. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2207. return;
  2208. trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2209. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2210. hpa_t root = vcpu->arch.mmu.root_hpa;
  2211. sp = page_header(root);
  2212. mmu_sync_children(vcpu, sp);
  2213. trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2214. return;
  2215. }
  2216. for (i = 0; i < 4; ++i) {
  2217. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2218. if (root && VALID_PAGE(root)) {
  2219. root &= PT64_BASE_ADDR_MASK;
  2220. sp = page_header(root);
  2221. mmu_sync_children(vcpu, sp);
  2222. }
  2223. }
  2224. trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2225. }
  2226. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2227. {
  2228. spin_lock(&vcpu->kvm->mmu_lock);
  2229. mmu_sync_roots(vcpu);
  2230. spin_unlock(&vcpu->kvm->mmu_lock);
  2231. }
  2232. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2233. u32 access, struct x86_exception *exception)
  2234. {
  2235. if (exception)
  2236. exception->error_code = 0;
  2237. return vaddr;
  2238. }
  2239. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2240. u32 access,
  2241. struct x86_exception *exception)
  2242. {
  2243. if (exception)
  2244. exception->error_code = 0;
  2245. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
  2246. }
  2247. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2248. u32 error_code, bool prefault)
  2249. {
  2250. gfn_t gfn;
  2251. int r;
  2252. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2253. r = mmu_topup_memory_caches(vcpu);
  2254. if (r)
  2255. return r;
  2256. ASSERT(vcpu);
  2257. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2258. gfn = gva >> PAGE_SHIFT;
  2259. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2260. error_code & PFERR_WRITE_MASK, gfn, prefault);
  2261. }
  2262. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2263. {
  2264. struct kvm_arch_async_pf arch;
  2265. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2266. arch.gfn = gfn;
  2267. arch.direct_map = vcpu->arch.mmu.direct_map;
  2268. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2269. return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
  2270. }
  2271. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2272. {
  2273. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2274. kvm_event_needs_reinjection(vcpu)))
  2275. return false;
  2276. return kvm_x86_ops->interrupt_allowed(vcpu);
  2277. }
  2278. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2279. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2280. {
  2281. bool async;
  2282. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2283. if (!async)
  2284. return false; /* *pfn has correct page already */
  2285. put_page(pfn_to_page(*pfn));
  2286. if (!prefault && can_do_async_pf(vcpu)) {
  2287. trace_kvm_try_async_get_page(gva, gfn);
  2288. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2289. trace_kvm_async_pf_doublefault(gva, gfn);
  2290. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2291. return true;
  2292. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2293. return true;
  2294. }
  2295. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2296. return false;
  2297. }
  2298. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2299. bool prefault)
  2300. {
  2301. pfn_t pfn;
  2302. int r;
  2303. int level;
  2304. int force_pt_level;
  2305. gfn_t gfn = gpa >> PAGE_SHIFT;
  2306. unsigned long mmu_seq;
  2307. int write = error_code & PFERR_WRITE_MASK;
  2308. bool map_writable;
  2309. ASSERT(vcpu);
  2310. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2311. r = mmu_topup_memory_caches(vcpu);
  2312. if (r)
  2313. return r;
  2314. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2315. if (likely(!force_pt_level)) {
  2316. level = mapping_level(vcpu, gfn);
  2317. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2318. } else
  2319. level = PT_PAGE_TABLE_LEVEL;
  2320. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2321. smp_rmb();
  2322. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2323. return 0;
  2324. /* mmio */
  2325. if (is_error_pfn(pfn))
  2326. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  2327. spin_lock(&vcpu->kvm->mmu_lock);
  2328. if (mmu_notifier_retry(vcpu, mmu_seq))
  2329. goto out_unlock;
  2330. kvm_mmu_free_some_pages(vcpu);
  2331. if (likely(!force_pt_level))
  2332. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2333. r = __direct_map(vcpu, gpa, write, map_writable,
  2334. level, gfn, pfn, prefault);
  2335. spin_unlock(&vcpu->kvm->mmu_lock);
  2336. return r;
  2337. out_unlock:
  2338. spin_unlock(&vcpu->kvm->mmu_lock);
  2339. kvm_release_pfn_clean(pfn);
  2340. return 0;
  2341. }
  2342. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2343. {
  2344. mmu_free_roots(vcpu);
  2345. }
  2346. static int nonpaging_init_context(struct kvm_vcpu *vcpu,
  2347. struct kvm_mmu *context)
  2348. {
  2349. context->new_cr3 = nonpaging_new_cr3;
  2350. context->page_fault = nonpaging_page_fault;
  2351. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2352. context->free = nonpaging_free;
  2353. context->prefetch_page = nonpaging_prefetch_page;
  2354. context->sync_page = nonpaging_sync_page;
  2355. context->invlpg = nonpaging_invlpg;
  2356. context->root_level = 0;
  2357. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2358. context->root_hpa = INVALID_PAGE;
  2359. context->direct_map = true;
  2360. context->nx = false;
  2361. return 0;
  2362. }
  2363. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2364. {
  2365. ++vcpu->stat.tlb_flush;
  2366. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2367. }
  2368. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2369. {
  2370. pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
  2371. mmu_free_roots(vcpu);
  2372. }
  2373. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2374. {
  2375. return kvm_read_cr3(vcpu);
  2376. }
  2377. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2378. struct x86_exception *fault)
  2379. {
  2380. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2381. }
  2382. static void paging_free(struct kvm_vcpu *vcpu)
  2383. {
  2384. nonpaging_free(vcpu);
  2385. }
  2386. static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
  2387. {
  2388. int bit7;
  2389. bit7 = (gpte >> 7) & 1;
  2390. return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
  2391. }
  2392. #define PTTYPE 64
  2393. #include "paging_tmpl.h"
  2394. #undef PTTYPE
  2395. #define PTTYPE 32
  2396. #include "paging_tmpl.h"
  2397. #undef PTTYPE
  2398. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2399. struct kvm_mmu *context,
  2400. int level)
  2401. {
  2402. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2403. u64 exb_bit_rsvd = 0;
  2404. if (!context->nx)
  2405. exb_bit_rsvd = rsvd_bits(63, 63);
  2406. switch (level) {
  2407. case PT32_ROOT_LEVEL:
  2408. /* no rsvd bits for 2 level 4K page table entries */
  2409. context->rsvd_bits_mask[0][1] = 0;
  2410. context->rsvd_bits_mask[0][0] = 0;
  2411. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2412. if (!is_pse(vcpu)) {
  2413. context->rsvd_bits_mask[1][1] = 0;
  2414. break;
  2415. }
  2416. if (is_cpuid_PSE36())
  2417. /* 36bits PSE 4MB page */
  2418. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2419. else
  2420. /* 32 bits PSE 4MB page */
  2421. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2422. break;
  2423. case PT32E_ROOT_LEVEL:
  2424. context->rsvd_bits_mask[0][2] =
  2425. rsvd_bits(maxphyaddr, 63) |
  2426. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2427. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2428. rsvd_bits(maxphyaddr, 62); /* PDE */
  2429. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2430. rsvd_bits(maxphyaddr, 62); /* PTE */
  2431. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2432. rsvd_bits(maxphyaddr, 62) |
  2433. rsvd_bits(13, 20); /* large page */
  2434. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2435. break;
  2436. case PT64_ROOT_LEVEL:
  2437. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2438. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2439. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2440. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2441. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2442. rsvd_bits(maxphyaddr, 51);
  2443. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2444. rsvd_bits(maxphyaddr, 51);
  2445. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2446. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2447. rsvd_bits(maxphyaddr, 51) |
  2448. rsvd_bits(13, 29);
  2449. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2450. rsvd_bits(maxphyaddr, 51) |
  2451. rsvd_bits(13, 20); /* large page */
  2452. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2453. break;
  2454. }
  2455. }
  2456. static int paging64_init_context_common(struct kvm_vcpu *vcpu,
  2457. struct kvm_mmu *context,
  2458. int level)
  2459. {
  2460. context->nx = is_nx(vcpu);
  2461. reset_rsvds_bits_mask(vcpu, context, level);
  2462. ASSERT(is_pae(vcpu));
  2463. context->new_cr3 = paging_new_cr3;
  2464. context->page_fault = paging64_page_fault;
  2465. context->gva_to_gpa = paging64_gva_to_gpa;
  2466. context->prefetch_page = paging64_prefetch_page;
  2467. context->sync_page = paging64_sync_page;
  2468. context->invlpg = paging64_invlpg;
  2469. context->free = paging_free;
  2470. context->root_level = level;
  2471. context->shadow_root_level = level;
  2472. context->root_hpa = INVALID_PAGE;
  2473. context->direct_map = false;
  2474. return 0;
  2475. }
  2476. static int paging64_init_context(struct kvm_vcpu *vcpu,
  2477. struct kvm_mmu *context)
  2478. {
  2479. return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  2480. }
  2481. static int paging32_init_context(struct kvm_vcpu *vcpu,
  2482. struct kvm_mmu *context)
  2483. {
  2484. context->nx = false;
  2485. reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
  2486. context->new_cr3 = paging_new_cr3;
  2487. context->page_fault = paging32_page_fault;
  2488. context->gva_to_gpa = paging32_gva_to_gpa;
  2489. context->free = paging_free;
  2490. context->prefetch_page = paging32_prefetch_page;
  2491. context->sync_page = paging32_sync_page;
  2492. context->invlpg = paging32_invlpg;
  2493. context->root_level = PT32_ROOT_LEVEL;
  2494. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2495. context->root_hpa = INVALID_PAGE;
  2496. context->direct_map = false;
  2497. return 0;
  2498. }
  2499. static int paging32E_init_context(struct kvm_vcpu *vcpu,
  2500. struct kvm_mmu *context)
  2501. {
  2502. return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  2503. }
  2504. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2505. {
  2506. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  2507. context->base_role.word = 0;
  2508. context->new_cr3 = nonpaging_new_cr3;
  2509. context->page_fault = tdp_page_fault;
  2510. context->free = nonpaging_free;
  2511. context->prefetch_page = nonpaging_prefetch_page;
  2512. context->sync_page = nonpaging_sync_page;
  2513. context->invlpg = nonpaging_invlpg;
  2514. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2515. context->root_hpa = INVALID_PAGE;
  2516. context->direct_map = true;
  2517. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  2518. context->get_cr3 = get_cr3;
  2519. context->inject_page_fault = kvm_inject_page_fault;
  2520. context->nx = is_nx(vcpu);
  2521. if (!is_paging(vcpu)) {
  2522. context->nx = false;
  2523. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2524. context->root_level = 0;
  2525. } else if (is_long_mode(vcpu)) {
  2526. context->nx = is_nx(vcpu);
  2527. reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
  2528. context->gva_to_gpa = paging64_gva_to_gpa;
  2529. context->root_level = PT64_ROOT_LEVEL;
  2530. } else if (is_pae(vcpu)) {
  2531. context->nx = is_nx(vcpu);
  2532. reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
  2533. context->gva_to_gpa = paging64_gva_to_gpa;
  2534. context->root_level = PT32E_ROOT_LEVEL;
  2535. } else {
  2536. context->nx = false;
  2537. reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
  2538. context->gva_to_gpa = paging32_gva_to_gpa;
  2539. context->root_level = PT32_ROOT_LEVEL;
  2540. }
  2541. return 0;
  2542. }
  2543. int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  2544. {
  2545. int r;
  2546. ASSERT(vcpu);
  2547. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2548. if (!is_paging(vcpu))
  2549. r = nonpaging_init_context(vcpu, context);
  2550. else if (is_long_mode(vcpu))
  2551. r = paging64_init_context(vcpu, context);
  2552. else if (is_pae(vcpu))
  2553. r = paging32E_init_context(vcpu, context);
  2554. else
  2555. r = paging32_init_context(vcpu, context);
  2556. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2557. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2558. return r;
  2559. }
  2560. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  2561. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2562. {
  2563. int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  2564. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  2565. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  2566. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  2567. return r;
  2568. }
  2569. static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  2570. {
  2571. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  2572. g_context->get_cr3 = get_cr3;
  2573. g_context->inject_page_fault = kvm_inject_page_fault;
  2574. /*
  2575. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  2576. * translation of l2_gpa to l1_gpa addresses is done using the
  2577. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  2578. * functions between mmu and nested_mmu are swapped.
  2579. */
  2580. if (!is_paging(vcpu)) {
  2581. g_context->nx = false;
  2582. g_context->root_level = 0;
  2583. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  2584. } else if (is_long_mode(vcpu)) {
  2585. g_context->nx = is_nx(vcpu);
  2586. reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
  2587. g_context->root_level = PT64_ROOT_LEVEL;
  2588. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  2589. } else if (is_pae(vcpu)) {
  2590. g_context->nx = is_nx(vcpu);
  2591. reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
  2592. g_context->root_level = PT32E_ROOT_LEVEL;
  2593. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  2594. } else {
  2595. g_context->nx = false;
  2596. reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
  2597. g_context->root_level = PT32_ROOT_LEVEL;
  2598. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  2599. }
  2600. return 0;
  2601. }
  2602. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2603. {
  2604. vcpu->arch.update_pte.pfn = bad_pfn;
  2605. if (mmu_is_nested(vcpu))
  2606. return init_kvm_nested_mmu(vcpu);
  2607. else if (tdp_enabled)
  2608. return init_kvm_tdp_mmu(vcpu);
  2609. else
  2610. return init_kvm_softmmu(vcpu);
  2611. }
  2612. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2613. {
  2614. ASSERT(vcpu);
  2615. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2616. /* mmu.free() should set root_hpa = INVALID_PAGE */
  2617. vcpu->arch.mmu.free(vcpu);
  2618. }
  2619. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2620. {
  2621. destroy_kvm_mmu(vcpu);
  2622. return init_kvm_mmu(vcpu);
  2623. }
  2624. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2625. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2626. {
  2627. int r;
  2628. r = mmu_topup_memory_caches(vcpu);
  2629. if (r)
  2630. goto out;
  2631. r = mmu_alloc_roots(vcpu);
  2632. spin_lock(&vcpu->kvm->mmu_lock);
  2633. mmu_sync_roots(vcpu);
  2634. spin_unlock(&vcpu->kvm->mmu_lock);
  2635. if (r)
  2636. goto out;
  2637. /* set_cr3() should ensure TLB has been flushed */
  2638. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2639. out:
  2640. return r;
  2641. }
  2642. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2643. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2644. {
  2645. mmu_free_roots(vcpu);
  2646. }
  2647. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  2648. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2649. struct kvm_mmu_page *sp,
  2650. u64 *spte)
  2651. {
  2652. u64 pte;
  2653. struct kvm_mmu_page *child;
  2654. pte = *spte;
  2655. if (is_shadow_present_pte(pte)) {
  2656. if (is_last_spte(pte, sp->role.level))
  2657. drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
  2658. else {
  2659. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2660. mmu_page_remove_parent_pte(child, spte);
  2661. }
  2662. }
  2663. __set_spte(spte, shadow_trap_nonpresent_pte);
  2664. if (is_large_pte(pte))
  2665. --vcpu->kvm->stat.lpages;
  2666. }
  2667. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2668. struct kvm_mmu_page *sp,
  2669. u64 *spte,
  2670. const void *new)
  2671. {
  2672. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2673. ++vcpu->kvm->stat.mmu_pde_zapped;
  2674. return;
  2675. }
  2676. ++vcpu->kvm->stat.mmu_pte_updated;
  2677. if (!sp->role.cr4_pae)
  2678. paging32_update_pte(vcpu, sp, spte, new);
  2679. else
  2680. paging64_update_pte(vcpu, sp, spte, new);
  2681. }
  2682. static bool need_remote_flush(u64 old, u64 new)
  2683. {
  2684. if (!is_shadow_present_pte(old))
  2685. return false;
  2686. if (!is_shadow_present_pte(new))
  2687. return true;
  2688. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2689. return true;
  2690. old ^= PT64_NX_MASK;
  2691. new ^= PT64_NX_MASK;
  2692. return (old & ~new & PT64_PERM_MASK) != 0;
  2693. }
  2694. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  2695. bool remote_flush, bool local_flush)
  2696. {
  2697. if (zap_page)
  2698. return;
  2699. if (remote_flush)
  2700. kvm_flush_remote_tlbs(vcpu->kvm);
  2701. else if (local_flush)
  2702. kvm_mmu_flush_tlb(vcpu);
  2703. }
  2704. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2705. {
  2706. u64 *spte = vcpu->arch.last_pte_updated;
  2707. return !!(spte && (*spte & shadow_accessed_mask));
  2708. }
  2709. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2710. u64 gpte)
  2711. {
  2712. gfn_t gfn;
  2713. pfn_t pfn;
  2714. if (!is_present_gpte(gpte))
  2715. return;
  2716. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2717. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2718. smp_rmb();
  2719. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2720. if (is_error_pfn(pfn)) {
  2721. kvm_release_pfn_clean(pfn);
  2722. return;
  2723. }
  2724. vcpu->arch.update_pte.gfn = gfn;
  2725. vcpu->arch.update_pte.pfn = pfn;
  2726. }
  2727. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2728. {
  2729. u64 *spte = vcpu->arch.last_pte_updated;
  2730. if (spte
  2731. && vcpu->arch.last_pte_gfn == gfn
  2732. && shadow_accessed_mask
  2733. && !(*spte & shadow_accessed_mask)
  2734. && is_shadow_present_pte(*spte))
  2735. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2736. }
  2737. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2738. const u8 *new, int bytes,
  2739. bool guest_initiated)
  2740. {
  2741. gfn_t gfn = gpa >> PAGE_SHIFT;
  2742. union kvm_mmu_page_role mask = { .word = 0 };
  2743. struct kvm_mmu_page *sp;
  2744. struct hlist_node *node;
  2745. LIST_HEAD(invalid_list);
  2746. u64 entry, gentry;
  2747. u64 *spte;
  2748. unsigned offset = offset_in_page(gpa);
  2749. unsigned pte_size;
  2750. unsigned page_offset;
  2751. unsigned misaligned;
  2752. unsigned quadrant;
  2753. int level;
  2754. int flooded = 0;
  2755. int npte;
  2756. int r;
  2757. int invlpg_counter;
  2758. bool remote_flush, local_flush, zap_page;
  2759. zap_page = remote_flush = local_flush = false;
  2760. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2761. invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
  2762. /*
  2763. * Assume that the pte write on a page table of the same type
  2764. * as the current vcpu paging mode. This is nearly always true
  2765. * (might be false while changing modes). Note it is verified later
  2766. * by update_pte().
  2767. */
  2768. if ((is_pae(vcpu) && bytes == 4) || !new) {
  2769. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2770. if (is_pae(vcpu)) {
  2771. gpa &= ~(gpa_t)7;
  2772. bytes = 8;
  2773. }
  2774. r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
  2775. if (r)
  2776. gentry = 0;
  2777. new = (const u8 *)&gentry;
  2778. }
  2779. switch (bytes) {
  2780. case 4:
  2781. gentry = *(const u32 *)new;
  2782. break;
  2783. case 8:
  2784. gentry = *(const u64 *)new;
  2785. break;
  2786. default:
  2787. gentry = 0;
  2788. break;
  2789. }
  2790. mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
  2791. spin_lock(&vcpu->kvm->mmu_lock);
  2792. if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
  2793. gentry = 0;
  2794. kvm_mmu_access_page(vcpu, gfn);
  2795. kvm_mmu_free_some_pages(vcpu);
  2796. ++vcpu->kvm->stat.mmu_pte_write;
  2797. trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  2798. if (guest_initiated) {
  2799. if (gfn == vcpu->arch.last_pt_write_gfn
  2800. && !last_updated_pte_accessed(vcpu)) {
  2801. ++vcpu->arch.last_pt_write_count;
  2802. if (vcpu->arch.last_pt_write_count >= 3)
  2803. flooded = 1;
  2804. } else {
  2805. vcpu->arch.last_pt_write_gfn = gfn;
  2806. vcpu->arch.last_pt_write_count = 1;
  2807. vcpu->arch.last_pte_updated = NULL;
  2808. }
  2809. }
  2810. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  2811. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  2812. pte_size = sp->role.cr4_pae ? 8 : 4;
  2813. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2814. misaligned |= bytes < 4;
  2815. if (misaligned || flooded) {
  2816. /*
  2817. * Misaligned accesses are too much trouble to fix
  2818. * up; also, they usually indicate a page is not used
  2819. * as a page table.
  2820. *
  2821. * If we're seeing too many writes to a page,
  2822. * it may no longer be a page table, or we may be
  2823. * forking, in which case it is better to unmap the
  2824. * page.
  2825. */
  2826. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2827. gpa, bytes, sp->role.word);
  2828. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2829. &invalid_list);
  2830. ++vcpu->kvm->stat.mmu_flooded;
  2831. continue;
  2832. }
  2833. page_offset = offset;
  2834. level = sp->role.level;
  2835. npte = 1;
  2836. if (!sp->role.cr4_pae) {
  2837. page_offset <<= 1; /* 32->64 */
  2838. /*
  2839. * A 32-bit pde maps 4MB while the shadow pdes map
  2840. * only 2MB. So we need to double the offset again
  2841. * and zap two pdes instead of one.
  2842. */
  2843. if (level == PT32_ROOT_LEVEL) {
  2844. page_offset &= ~7; /* kill rounding error */
  2845. page_offset <<= 1;
  2846. npte = 2;
  2847. }
  2848. quadrant = page_offset >> PAGE_SHIFT;
  2849. page_offset &= ~PAGE_MASK;
  2850. if (quadrant != sp->role.quadrant)
  2851. continue;
  2852. }
  2853. local_flush = true;
  2854. spte = &sp->spt[page_offset / sizeof(*spte)];
  2855. while (npte--) {
  2856. entry = *spte;
  2857. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2858. if (gentry &&
  2859. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  2860. & mask.word))
  2861. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  2862. if (!remote_flush && need_remote_flush(entry, *spte))
  2863. remote_flush = true;
  2864. ++spte;
  2865. }
  2866. }
  2867. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  2868. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2869. trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  2870. spin_unlock(&vcpu->kvm->mmu_lock);
  2871. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2872. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2873. vcpu->arch.update_pte.pfn = bad_pfn;
  2874. }
  2875. }
  2876. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2877. {
  2878. gpa_t gpa;
  2879. int r;
  2880. if (vcpu->arch.mmu.direct_map)
  2881. return 0;
  2882. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  2883. spin_lock(&vcpu->kvm->mmu_lock);
  2884. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2885. spin_unlock(&vcpu->kvm->mmu_lock);
  2886. return r;
  2887. }
  2888. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2889. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2890. {
  2891. LIST_HEAD(invalid_list);
  2892. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
  2893. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2894. struct kvm_mmu_page *sp;
  2895. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2896. struct kvm_mmu_page, link);
  2897. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2898. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2899. ++vcpu->kvm->stat.mmu_recycled;
  2900. }
  2901. }
  2902. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  2903. void *insn, int insn_len)
  2904. {
  2905. int r;
  2906. enum emulation_result er;
  2907. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  2908. if (r < 0)
  2909. goto out;
  2910. if (!r) {
  2911. r = 1;
  2912. goto out;
  2913. }
  2914. r = mmu_topup_memory_caches(vcpu);
  2915. if (r)
  2916. goto out;
  2917. er = x86_emulate_instruction(vcpu, cr2, 0, insn, insn_len);
  2918. switch (er) {
  2919. case EMULATE_DONE:
  2920. return 1;
  2921. case EMULATE_DO_MMIO:
  2922. ++vcpu->stat.mmio_exits;
  2923. /* fall through */
  2924. case EMULATE_FAIL:
  2925. return 0;
  2926. default:
  2927. BUG();
  2928. }
  2929. out:
  2930. return r;
  2931. }
  2932. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2933. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2934. {
  2935. vcpu->arch.mmu.invlpg(vcpu, gva);
  2936. kvm_mmu_flush_tlb(vcpu);
  2937. ++vcpu->stat.invlpg;
  2938. }
  2939. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2940. void kvm_enable_tdp(void)
  2941. {
  2942. tdp_enabled = true;
  2943. }
  2944. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2945. void kvm_disable_tdp(void)
  2946. {
  2947. tdp_enabled = false;
  2948. }
  2949. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2950. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2951. {
  2952. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2953. if (vcpu->arch.mmu.lm_root != NULL)
  2954. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  2955. }
  2956. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2957. {
  2958. struct page *page;
  2959. int i;
  2960. ASSERT(vcpu);
  2961. /*
  2962. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2963. * Therefore we need to allocate shadow page tables in the first
  2964. * 4GB of memory, which happens to fit the DMA32 zone.
  2965. */
  2966. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2967. if (!page)
  2968. return -ENOMEM;
  2969. vcpu->arch.mmu.pae_root = page_address(page);
  2970. for (i = 0; i < 4; ++i)
  2971. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2972. return 0;
  2973. }
  2974. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2975. {
  2976. ASSERT(vcpu);
  2977. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2978. return alloc_mmu_pages(vcpu);
  2979. }
  2980. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2981. {
  2982. ASSERT(vcpu);
  2983. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2984. return init_kvm_mmu(vcpu);
  2985. }
  2986. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2987. {
  2988. struct kvm_mmu_page *sp;
  2989. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2990. int i;
  2991. u64 *pt;
  2992. if (!test_bit(slot, sp->slot_bitmap))
  2993. continue;
  2994. pt = sp->spt;
  2995. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2996. if (sp->role.level != PT_PAGE_TABLE_LEVEL
  2997. && is_large_pte(pt[i])) {
  2998. drop_spte(kvm, &pt[i],
  2999. shadow_trap_nonpresent_pte);
  3000. --kvm->stat.lpages;
  3001. }
  3002. /* avoid RMW */
  3003. if (is_writable_pte(pt[i]))
  3004. update_spte(&pt[i], pt[i] & ~PT_WRITABLE_MASK);
  3005. }
  3006. }
  3007. kvm_flush_remote_tlbs(kvm);
  3008. }
  3009. void kvm_mmu_zap_all(struct kvm *kvm)
  3010. {
  3011. struct kvm_mmu_page *sp, *node;
  3012. LIST_HEAD(invalid_list);
  3013. spin_lock(&kvm->mmu_lock);
  3014. restart:
  3015. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  3016. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  3017. goto restart;
  3018. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3019. spin_unlock(&kvm->mmu_lock);
  3020. }
  3021. static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  3022. struct list_head *invalid_list)
  3023. {
  3024. struct kvm_mmu_page *page;
  3025. page = container_of(kvm->arch.active_mmu_pages.prev,
  3026. struct kvm_mmu_page, link);
  3027. return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  3028. }
  3029. static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  3030. {
  3031. struct kvm *kvm;
  3032. struct kvm *kvm_freed = NULL;
  3033. if (nr_to_scan == 0)
  3034. goto out;
  3035. spin_lock(&kvm_lock);
  3036. list_for_each_entry(kvm, &vm_list, vm_list) {
  3037. int idx, freed_pages;
  3038. LIST_HEAD(invalid_list);
  3039. idx = srcu_read_lock(&kvm->srcu);
  3040. spin_lock(&kvm->mmu_lock);
  3041. if (!kvm_freed && nr_to_scan > 0 &&
  3042. kvm->arch.n_used_mmu_pages > 0) {
  3043. freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
  3044. &invalid_list);
  3045. kvm_freed = kvm;
  3046. }
  3047. nr_to_scan--;
  3048. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3049. spin_unlock(&kvm->mmu_lock);
  3050. srcu_read_unlock(&kvm->srcu, idx);
  3051. }
  3052. if (kvm_freed)
  3053. list_move_tail(&kvm_freed->vm_list, &vm_list);
  3054. spin_unlock(&kvm_lock);
  3055. out:
  3056. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  3057. }
  3058. static struct shrinker mmu_shrinker = {
  3059. .shrink = mmu_shrink,
  3060. .seeks = DEFAULT_SEEKS * 10,
  3061. };
  3062. static void mmu_destroy_caches(void)
  3063. {
  3064. if (pte_chain_cache)
  3065. kmem_cache_destroy(pte_chain_cache);
  3066. if (rmap_desc_cache)
  3067. kmem_cache_destroy(rmap_desc_cache);
  3068. if (mmu_page_header_cache)
  3069. kmem_cache_destroy(mmu_page_header_cache);
  3070. }
  3071. int kvm_mmu_module_init(void)
  3072. {
  3073. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  3074. sizeof(struct kvm_pte_chain),
  3075. 0, 0, NULL);
  3076. if (!pte_chain_cache)
  3077. goto nomem;
  3078. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  3079. sizeof(struct kvm_rmap_desc),
  3080. 0, 0, NULL);
  3081. if (!rmap_desc_cache)
  3082. goto nomem;
  3083. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  3084. sizeof(struct kvm_mmu_page),
  3085. 0, 0, NULL);
  3086. if (!mmu_page_header_cache)
  3087. goto nomem;
  3088. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  3089. goto nomem;
  3090. register_shrinker(&mmu_shrinker);
  3091. return 0;
  3092. nomem:
  3093. mmu_destroy_caches();
  3094. return -ENOMEM;
  3095. }
  3096. /*
  3097. * Caculate mmu pages needed for kvm.
  3098. */
  3099. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  3100. {
  3101. int i;
  3102. unsigned int nr_mmu_pages;
  3103. unsigned int nr_pages = 0;
  3104. struct kvm_memslots *slots;
  3105. slots = kvm_memslots(kvm);
  3106. for (i = 0; i < slots->nmemslots; i++)
  3107. nr_pages += slots->memslots[i].npages;
  3108. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  3109. nr_mmu_pages = max(nr_mmu_pages,
  3110. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  3111. return nr_mmu_pages;
  3112. }
  3113. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  3114. unsigned len)
  3115. {
  3116. if (len > buffer->len)
  3117. return NULL;
  3118. return buffer->ptr;
  3119. }
  3120. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  3121. unsigned len)
  3122. {
  3123. void *ret;
  3124. ret = pv_mmu_peek_buffer(buffer, len);
  3125. if (!ret)
  3126. return ret;
  3127. buffer->ptr += len;
  3128. buffer->len -= len;
  3129. buffer->processed += len;
  3130. return ret;
  3131. }
  3132. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  3133. gpa_t addr, gpa_t value)
  3134. {
  3135. int bytes = 8;
  3136. int r;
  3137. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  3138. bytes = 4;
  3139. r = mmu_topup_memory_caches(vcpu);
  3140. if (r)
  3141. return r;
  3142. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  3143. return -EFAULT;
  3144. return 1;
  3145. }
  3146. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  3147. {
  3148. (void)kvm_set_cr3(vcpu, kvm_read_cr3(vcpu));
  3149. return 1;
  3150. }
  3151. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  3152. {
  3153. spin_lock(&vcpu->kvm->mmu_lock);
  3154. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  3155. spin_unlock(&vcpu->kvm->mmu_lock);
  3156. return 1;
  3157. }
  3158. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  3159. struct kvm_pv_mmu_op_buffer *buffer)
  3160. {
  3161. struct kvm_mmu_op_header *header;
  3162. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  3163. if (!header)
  3164. return 0;
  3165. switch (header->op) {
  3166. case KVM_MMU_OP_WRITE_PTE: {
  3167. struct kvm_mmu_op_write_pte *wpte;
  3168. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  3169. if (!wpte)
  3170. return 0;
  3171. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  3172. wpte->pte_val);
  3173. }
  3174. case KVM_MMU_OP_FLUSH_TLB: {
  3175. struct kvm_mmu_op_flush_tlb *ftlb;
  3176. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  3177. if (!ftlb)
  3178. return 0;
  3179. return kvm_pv_mmu_flush_tlb(vcpu);
  3180. }
  3181. case KVM_MMU_OP_RELEASE_PT: {
  3182. struct kvm_mmu_op_release_pt *rpt;
  3183. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  3184. if (!rpt)
  3185. return 0;
  3186. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  3187. }
  3188. default: return 0;
  3189. }
  3190. }
  3191. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  3192. gpa_t addr, unsigned long *ret)
  3193. {
  3194. int r;
  3195. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  3196. buffer->ptr = buffer->buf;
  3197. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  3198. buffer->processed = 0;
  3199. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  3200. if (r)
  3201. goto out;
  3202. while (buffer->len) {
  3203. r = kvm_pv_mmu_op_one(vcpu, buffer);
  3204. if (r < 0)
  3205. goto out;
  3206. if (r == 0)
  3207. break;
  3208. }
  3209. r = 1;
  3210. out:
  3211. *ret = buffer->processed;
  3212. return r;
  3213. }
  3214. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  3215. {
  3216. struct kvm_shadow_walk_iterator iterator;
  3217. int nr_sptes = 0;
  3218. spin_lock(&vcpu->kvm->mmu_lock);
  3219. for_each_shadow_entry(vcpu, addr, iterator) {
  3220. sptes[iterator.level-1] = *iterator.sptep;
  3221. nr_sptes++;
  3222. if (!is_shadow_present_pte(*iterator.sptep))
  3223. break;
  3224. }
  3225. spin_unlock(&vcpu->kvm->mmu_lock);
  3226. return nr_sptes;
  3227. }
  3228. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3229. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  3230. {
  3231. ASSERT(vcpu);
  3232. destroy_kvm_mmu(vcpu);
  3233. free_mmu_pages(vcpu);
  3234. mmu_free_memory_caches(vcpu);
  3235. }
  3236. #ifdef CONFIG_KVM_MMU_AUDIT
  3237. #include "mmu_audit.c"
  3238. #else
  3239. static void mmu_audit_disable(void) { }
  3240. #endif
  3241. void kvm_mmu_module_exit(void)
  3242. {
  3243. mmu_destroy_caches();
  3244. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  3245. unregister_shrinker(&mmu_shrinker);
  3246. mmu_audit_disable();
  3247. }