evlist.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841
  1. /*
  2. * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
  3. *
  4. * Parts came from builtin-{top,stat,record}.c, see those files for further
  5. * copyright notes.
  6. *
  7. * Released under the GPL v2. (and only v2, not any later version)
  8. */
  9. #include "util.h"
  10. #include "debugfs.h"
  11. #include <poll.h>
  12. #include "cpumap.h"
  13. #include "thread_map.h"
  14. #include "target.h"
  15. #include "evlist.h"
  16. #include "evsel.h"
  17. #include <unistd.h>
  18. #include "parse-events.h"
  19. #include <sys/mman.h>
  20. #include <linux/bitops.h>
  21. #include <linux/hash.h>
  22. #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
  23. #define SID(e, x, y) xyarray__entry(e->sample_id, x, y)
  24. void perf_evlist__init(struct perf_evlist *evlist, struct cpu_map *cpus,
  25. struct thread_map *threads)
  26. {
  27. int i;
  28. for (i = 0; i < PERF_EVLIST__HLIST_SIZE; ++i)
  29. INIT_HLIST_HEAD(&evlist->heads[i]);
  30. INIT_LIST_HEAD(&evlist->entries);
  31. perf_evlist__set_maps(evlist, cpus, threads);
  32. evlist->workload.pid = -1;
  33. }
  34. struct perf_evlist *perf_evlist__new(struct cpu_map *cpus,
  35. struct thread_map *threads)
  36. {
  37. struct perf_evlist *evlist = zalloc(sizeof(*evlist));
  38. if (evlist != NULL)
  39. perf_evlist__init(evlist, cpus, threads);
  40. return evlist;
  41. }
  42. void perf_evlist__config_attrs(struct perf_evlist *evlist,
  43. struct perf_record_opts *opts)
  44. {
  45. struct perf_evsel *evsel;
  46. if (evlist->cpus->map[0] < 0)
  47. opts->no_inherit = true;
  48. list_for_each_entry(evsel, &evlist->entries, node) {
  49. perf_evsel__config(evsel, opts);
  50. if (evlist->nr_entries > 1)
  51. evsel->attr.sample_type |= PERF_SAMPLE_ID;
  52. }
  53. }
  54. static void perf_evlist__purge(struct perf_evlist *evlist)
  55. {
  56. struct perf_evsel *pos, *n;
  57. list_for_each_entry_safe(pos, n, &evlist->entries, node) {
  58. list_del_init(&pos->node);
  59. perf_evsel__delete(pos);
  60. }
  61. evlist->nr_entries = 0;
  62. }
  63. void perf_evlist__exit(struct perf_evlist *evlist)
  64. {
  65. free(evlist->mmap);
  66. free(evlist->pollfd);
  67. evlist->mmap = NULL;
  68. evlist->pollfd = NULL;
  69. }
  70. void perf_evlist__delete(struct perf_evlist *evlist)
  71. {
  72. perf_evlist__purge(evlist);
  73. perf_evlist__exit(evlist);
  74. free(evlist);
  75. }
  76. void perf_evlist__add(struct perf_evlist *evlist, struct perf_evsel *entry)
  77. {
  78. list_add_tail(&entry->node, &evlist->entries);
  79. ++evlist->nr_entries;
  80. }
  81. void perf_evlist__splice_list_tail(struct perf_evlist *evlist,
  82. struct list_head *list,
  83. int nr_entries)
  84. {
  85. list_splice_tail(list, &evlist->entries);
  86. evlist->nr_entries += nr_entries;
  87. }
  88. void __perf_evlist__set_leader(struct list_head *list)
  89. {
  90. struct perf_evsel *evsel, *leader;
  91. leader = list_entry(list->next, struct perf_evsel, node);
  92. list_for_each_entry(evsel, list, node) {
  93. if (evsel != leader)
  94. evsel->leader = leader;
  95. }
  96. }
  97. void perf_evlist__set_leader(struct perf_evlist *evlist)
  98. {
  99. if (evlist->nr_entries)
  100. __perf_evlist__set_leader(&evlist->entries);
  101. }
  102. int perf_evlist__add_default(struct perf_evlist *evlist)
  103. {
  104. struct perf_event_attr attr = {
  105. .type = PERF_TYPE_HARDWARE,
  106. .config = PERF_COUNT_HW_CPU_CYCLES,
  107. };
  108. struct perf_evsel *evsel;
  109. event_attr_init(&attr);
  110. evsel = perf_evsel__new(&attr, 0);
  111. if (evsel == NULL)
  112. goto error;
  113. /* use strdup() because free(evsel) assumes name is allocated */
  114. evsel->name = strdup("cycles");
  115. if (!evsel->name)
  116. goto error_free;
  117. perf_evlist__add(evlist, evsel);
  118. return 0;
  119. error_free:
  120. perf_evsel__delete(evsel);
  121. error:
  122. return -ENOMEM;
  123. }
  124. static int perf_evlist__add_attrs(struct perf_evlist *evlist,
  125. struct perf_event_attr *attrs, size_t nr_attrs)
  126. {
  127. struct perf_evsel *evsel, *n;
  128. LIST_HEAD(head);
  129. size_t i;
  130. for (i = 0; i < nr_attrs; i++) {
  131. evsel = perf_evsel__new(attrs + i, evlist->nr_entries + i);
  132. if (evsel == NULL)
  133. goto out_delete_partial_list;
  134. list_add_tail(&evsel->node, &head);
  135. }
  136. perf_evlist__splice_list_tail(evlist, &head, nr_attrs);
  137. return 0;
  138. out_delete_partial_list:
  139. list_for_each_entry_safe(evsel, n, &head, node)
  140. perf_evsel__delete(evsel);
  141. return -1;
  142. }
  143. int __perf_evlist__add_default_attrs(struct perf_evlist *evlist,
  144. struct perf_event_attr *attrs, size_t nr_attrs)
  145. {
  146. size_t i;
  147. for (i = 0; i < nr_attrs; i++)
  148. event_attr_init(attrs + i);
  149. return perf_evlist__add_attrs(evlist, attrs, nr_attrs);
  150. }
  151. struct perf_evsel *
  152. perf_evlist__find_tracepoint_by_id(struct perf_evlist *evlist, int id)
  153. {
  154. struct perf_evsel *evsel;
  155. list_for_each_entry(evsel, &evlist->entries, node) {
  156. if (evsel->attr.type == PERF_TYPE_TRACEPOINT &&
  157. (int)evsel->attr.config == id)
  158. return evsel;
  159. }
  160. return NULL;
  161. }
  162. int perf_evlist__add_newtp(struct perf_evlist *evlist,
  163. const char *sys, const char *name, void *handler)
  164. {
  165. struct perf_evsel *evsel;
  166. evsel = perf_evsel__newtp(sys, name, evlist->nr_entries);
  167. if (evsel == NULL)
  168. return -1;
  169. evsel->handler.func = handler;
  170. perf_evlist__add(evlist, evsel);
  171. return 0;
  172. }
  173. void perf_evlist__disable(struct perf_evlist *evlist)
  174. {
  175. int cpu, thread;
  176. struct perf_evsel *pos;
  177. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  178. list_for_each_entry(pos, &evlist->entries, node) {
  179. if (!perf_evsel__is_group_leader(pos))
  180. continue;
  181. for (thread = 0; thread < evlist->threads->nr; thread++)
  182. ioctl(FD(pos, cpu, thread),
  183. PERF_EVENT_IOC_DISABLE, 0);
  184. }
  185. }
  186. }
  187. void perf_evlist__enable(struct perf_evlist *evlist)
  188. {
  189. int cpu, thread;
  190. struct perf_evsel *pos;
  191. for (cpu = 0; cpu < cpu_map__nr(evlist->cpus); cpu++) {
  192. list_for_each_entry(pos, &evlist->entries, node) {
  193. if (!perf_evsel__is_group_leader(pos))
  194. continue;
  195. for (thread = 0; thread < evlist->threads->nr; thread++)
  196. ioctl(FD(pos, cpu, thread),
  197. PERF_EVENT_IOC_ENABLE, 0);
  198. }
  199. }
  200. }
  201. static int perf_evlist__alloc_pollfd(struct perf_evlist *evlist)
  202. {
  203. int nfds = cpu_map__nr(evlist->cpus) * evlist->threads->nr * evlist->nr_entries;
  204. evlist->pollfd = malloc(sizeof(struct pollfd) * nfds);
  205. return evlist->pollfd != NULL ? 0 : -ENOMEM;
  206. }
  207. void perf_evlist__add_pollfd(struct perf_evlist *evlist, int fd)
  208. {
  209. fcntl(fd, F_SETFL, O_NONBLOCK);
  210. evlist->pollfd[evlist->nr_fds].fd = fd;
  211. evlist->pollfd[evlist->nr_fds].events = POLLIN;
  212. evlist->nr_fds++;
  213. }
  214. static void perf_evlist__id_hash(struct perf_evlist *evlist,
  215. struct perf_evsel *evsel,
  216. int cpu, int thread, u64 id)
  217. {
  218. int hash;
  219. struct perf_sample_id *sid = SID(evsel, cpu, thread);
  220. sid->id = id;
  221. sid->evsel = evsel;
  222. hash = hash_64(sid->id, PERF_EVLIST__HLIST_BITS);
  223. hlist_add_head(&sid->node, &evlist->heads[hash]);
  224. }
  225. void perf_evlist__id_add(struct perf_evlist *evlist, struct perf_evsel *evsel,
  226. int cpu, int thread, u64 id)
  227. {
  228. perf_evlist__id_hash(evlist, evsel, cpu, thread, id);
  229. evsel->id[evsel->ids++] = id;
  230. }
  231. static int perf_evlist__id_add_fd(struct perf_evlist *evlist,
  232. struct perf_evsel *evsel,
  233. int cpu, int thread, int fd)
  234. {
  235. u64 read_data[4] = { 0, };
  236. int id_idx = 1; /* The first entry is the counter value */
  237. if (!(evsel->attr.read_format & PERF_FORMAT_ID) ||
  238. read(fd, &read_data, sizeof(read_data)) == -1)
  239. return -1;
  240. if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  241. ++id_idx;
  242. if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  243. ++id_idx;
  244. perf_evlist__id_add(evlist, evsel, cpu, thread, read_data[id_idx]);
  245. return 0;
  246. }
  247. struct perf_evsel *perf_evlist__id2evsel(struct perf_evlist *evlist, u64 id)
  248. {
  249. struct hlist_head *head;
  250. struct hlist_node *pos;
  251. struct perf_sample_id *sid;
  252. int hash;
  253. if (evlist->nr_entries == 1)
  254. return perf_evlist__first(evlist);
  255. hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
  256. head = &evlist->heads[hash];
  257. hlist_for_each_entry(sid, pos, head, node)
  258. if (sid->id == id)
  259. return sid->evsel;
  260. if (!perf_evlist__sample_id_all(evlist))
  261. return perf_evlist__first(evlist);
  262. return NULL;
  263. }
  264. union perf_event *perf_evlist__mmap_read(struct perf_evlist *evlist, int idx)
  265. {
  266. struct perf_mmap *md = &evlist->mmap[idx];
  267. unsigned int head = perf_mmap__read_head(md);
  268. unsigned int old = md->prev;
  269. unsigned char *data = md->base + page_size;
  270. union perf_event *event = NULL;
  271. if (evlist->overwrite) {
  272. /*
  273. * If we're further behind than half the buffer, there's a chance
  274. * the writer will bite our tail and mess up the samples under us.
  275. *
  276. * If we somehow ended up ahead of the head, we got messed up.
  277. *
  278. * In either case, truncate and restart at head.
  279. */
  280. int diff = head - old;
  281. if (diff > md->mask / 2 || diff < 0) {
  282. fprintf(stderr, "WARNING: failed to keep up with mmap data.\n");
  283. /*
  284. * head points to a known good entry, start there.
  285. */
  286. old = head;
  287. }
  288. }
  289. if (old != head) {
  290. size_t size;
  291. event = (union perf_event *)&data[old & md->mask];
  292. size = event->header.size;
  293. /*
  294. * Event straddles the mmap boundary -- header should always
  295. * be inside due to u64 alignment of output.
  296. */
  297. if ((old & md->mask) + size != ((old + size) & md->mask)) {
  298. unsigned int offset = old;
  299. unsigned int len = min(sizeof(*event), size), cpy;
  300. void *dst = &evlist->event_copy;
  301. do {
  302. cpy = min(md->mask + 1 - (offset & md->mask), len);
  303. memcpy(dst, &data[offset & md->mask], cpy);
  304. offset += cpy;
  305. dst += cpy;
  306. len -= cpy;
  307. } while (len);
  308. event = &evlist->event_copy;
  309. }
  310. old += size;
  311. }
  312. md->prev = old;
  313. if (!evlist->overwrite)
  314. perf_mmap__write_tail(md, old);
  315. return event;
  316. }
  317. void perf_evlist__munmap(struct perf_evlist *evlist)
  318. {
  319. int i;
  320. for (i = 0; i < evlist->nr_mmaps; i++) {
  321. if (evlist->mmap[i].base != NULL) {
  322. munmap(evlist->mmap[i].base, evlist->mmap_len);
  323. evlist->mmap[i].base = NULL;
  324. }
  325. }
  326. free(evlist->mmap);
  327. evlist->mmap = NULL;
  328. }
  329. static int perf_evlist__alloc_mmap(struct perf_evlist *evlist)
  330. {
  331. evlist->nr_mmaps = cpu_map__nr(evlist->cpus);
  332. if (cpu_map__all(evlist->cpus))
  333. evlist->nr_mmaps = evlist->threads->nr;
  334. evlist->mmap = zalloc(evlist->nr_mmaps * sizeof(struct perf_mmap));
  335. return evlist->mmap != NULL ? 0 : -ENOMEM;
  336. }
  337. static int __perf_evlist__mmap(struct perf_evlist *evlist,
  338. int idx, int prot, int mask, int fd)
  339. {
  340. evlist->mmap[idx].prev = 0;
  341. evlist->mmap[idx].mask = mask;
  342. evlist->mmap[idx].base = mmap(NULL, evlist->mmap_len, prot,
  343. MAP_SHARED, fd, 0);
  344. if (evlist->mmap[idx].base == MAP_FAILED) {
  345. evlist->mmap[idx].base = NULL;
  346. return -1;
  347. }
  348. perf_evlist__add_pollfd(evlist, fd);
  349. return 0;
  350. }
  351. static int perf_evlist__mmap_per_cpu(struct perf_evlist *evlist, int prot, int mask)
  352. {
  353. struct perf_evsel *evsel;
  354. int cpu, thread;
  355. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  356. int output = -1;
  357. for (thread = 0; thread < evlist->threads->nr; thread++) {
  358. list_for_each_entry(evsel, &evlist->entries, node) {
  359. int fd = FD(evsel, cpu, thread);
  360. if (output == -1) {
  361. output = fd;
  362. if (__perf_evlist__mmap(evlist, cpu,
  363. prot, mask, output) < 0)
  364. goto out_unmap;
  365. } else {
  366. if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
  367. goto out_unmap;
  368. }
  369. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  370. perf_evlist__id_add_fd(evlist, evsel, cpu, thread, fd) < 0)
  371. goto out_unmap;
  372. }
  373. }
  374. }
  375. return 0;
  376. out_unmap:
  377. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  378. if (evlist->mmap[cpu].base != NULL) {
  379. munmap(evlist->mmap[cpu].base, evlist->mmap_len);
  380. evlist->mmap[cpu].base = NULL;
  381. }
  382. }
  383. return -1;
  384. }
  385. static int perf_evlist__mmap_per_thread(struct perf_evlist *evlist, int prot, int mask)
  386. {
  387. struct perf_evsel *evsel;
  388. int thread;
  389. for (thread = 0; thread < evlist->threads->nr; thread++) {
  390. int output = -1;
  391. list_for_each_entry(evsel, &evlist->entries, node) {
  392. int fd = FD(evsel, 0, thread);
  393. if (output == -1) {
  394. output = fd;
  395. if (__perf_evlist__mmap(evlist, thread,
  396. prot, mask, output) < 0)
  397. goto out_unmap;
  398. } else {
  399. if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
  400. goto out_unmap;
  401. }
  402. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  403. perf_evlist__id_add_fd(evlist, evsel, 0, thread, fd) < 0)
  404. goto out_unmap;
  405. }
  406. }
  407. return 0;
  408. out_unmap:
  409. for (thread = 0; thread < evlist->threads->nr; thread++) {
  410. if (evlist->mmap[thread].base != NULL) {
  411. munmap(evlist->mmap[thread].base, evlist->mmap_len);
  412. evlist->mmap[thread].base = NULL;
  413. }
  414. }
  415. return -1;
  416. }
  417. /** perf_evlist__mmap - Create per cpu maps to receive events
  418. *
  419. * @evlist - list of events
  420. * @pages - map length in pages
  421. * @overwrite - overwrite older events?
  422. *
  423. * If overwrite is false the user needs to signal event consuption using:
  424. *
  425. * struct perf_mmap *m = &evlist->mmap[cpu];
  426. * unsigned int head = perf_mmap__read_head(m);
  427. *
  428. * perf_mmap__write_tail(m, head)
  429. *
  430. * Using perf_evlist__read_on_cpu does this automatically.
  431. */
  432. int perf_evlist__mmap(struct perf_evlist *evlist, unsigned int pages,
  433. bool overwrite)
  434. {
  435. struct perf_evsel *evsel;
  436. const struct cpu_map *cpus = evlist->cpus;
  437. const struct thread_map *threads = evlist->threads;
  438. int prot = PROT_READ | (overwrite ? 0 : PROT_WRITE), mask;
  439. /* 512 kiB: default amount of unprivileged mlocked memory */
  440. if (pages == UINT_MAX)
  441. pages = (512 * 1024) / page_size;
  442. else if (!is_power_of_2(pages))
  443. return -EINVAL;
  444. mask = pages * page_size - 1;
  445. if (evlist->mmap == NULL && perf_evlist__alloc_mmap(evlist) < 0)
  446. return -ENOMEM;
  447. if (evlist->pollfd == NULL && perf_evlist__alloc_pollfd(evlist) < 0)
  448. return -ENOMEM;
  449. evlist->overwrite = overwrite;
  450. evlist->mmap_len = (pages + 1) * page_size;
  451. list_for_each_entry(evsel, &evlist->entries, node) {
  452. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  453. evsel->sample_id == NULL &&
  454. perf_evsel__alloc_id(evsel, cpu_map__nr(cpus), threads->nr) < 0)
  455. return -ENOMEM;
  456. }
  457. if (cpu_map__all(cpus))
  458. return perf_evlist__mmap_per_thread(evlist, prot, mask);
  459. return perf_evlist__mmap_per_cpu(evlist, prot, mask);
  460. }
  461. int perf_evlist__create_maps(struct perf_evlist *evlist,
  462. struct perf_target *target)
  463. {
  464. evlist->threads = thread_map__new_str(target->pid, target->tid,
  465. target->uid);
  466. if (evlist->threads == NULL)
  467. return -1;
  468. if (perf_target__has_task(target))
  469. evlist->cpus = cpu_map__dummy_new();
  470. else if (!perf_target__has_cpu(target) && !target->uses_mmap)
  471. evlist->cpus = cpu_map__dummy_new();
  472. else
  473. evlist->cpus = cpu_map__new(target->cpu_list);
  474. if (evlist->cpus == NULL)
  475. goto out_delete_threads;
  476. return 0;
  477. out_delete_threads:
  478. thread_map__delete(evlist->threads);
  479. return -1;
  480. }
  481. void perf_evlist__delete_maps(struct perf_evlist *evlist)
  482. {
  483. cpu_map__delete(evlist->cpus);
  484. thread_map__delete(evlist->threads);
  485. evlist->cpus = NULL;
  486. evlist->threads = NULL;
  487. }
  488. int perf_evlist__apply_filters(struct perf_evlist *evlist)
  489. {
  490. struct perf_evsel *evsel;
  491. int err = 0;
  492. const int ncpus = cpu_map__nr(evlist->cpus),
  493. nthreads = evlist->threads->nr;
  494. list_for_each_entry(evsel, &evlist->entries, node) {
  495. if (evsel->filter == NULL)
  496. continue;
  497. err = perf_evsel__set_filter(evsel, ncpus, nthreads, evsel->filter);
  498. if (err)
  499. break;
  500. }
  501. return err;
  502. }
  503. int perf_evlist__set_filter(struct perf_evlist *evlist, const char *filter)
  504. {
  505. struct perf_evsel *evsel;
  506. int err = 0;
  507. const int ncpus = cpu_map__nr(evlist->cpus),
  508. nthreads = evlist->threads->nr;
  509. list_for_each_entry(evsel, &evlist->entries, node) {
  510. err = perf_evsel__set_filter(evsel, ncpus, nthreads, filter);
  511. if (err)
  512. break;
  513. }
  514. return err;
  515. }
  516. bool perf_evlist__valid_sample_type(struct perf_evlist *evlist)
  517. {
  518. struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
  519. list_for_each_entry_continue(pos, &evlist->entries, node) {
  520. if (first->attr.sample_type != pos->attr.sample_type)
  521. return false;
  522. }
  523. return true;
  524. }
  525. u64 perf_evlist__sample_type(struct perf_evlist *evlist)
  526. {
  527. struct perf_evsel *first = perf_evlist__first(evlist);
  528. return first->attr.sample_type;
  529. }
  530. u16 perf_evlist__id_hdr_size(struct perf_evlist *evlist)
  531. {
  532. struct perf_evsel *first = perf_evlist__first(evlist);
  533. struct perf_sample *data;
  534. u64 sample_type;
  535. u16 size = 0;
  536. if (!first->attr.sample_id_all)
  537. goto out;
  538. sample_type = first->attr.sample_type;
  539. if (sample_type & PERF_SAMPLE_TID)
  540. size += sizeof(data->tid) * 2;
  541. if (sample_type & PERF_SAMPLE_TIME)
  542. size += sizeof(data->time);
  543. if (sample_type & PERF_SAMPLE_ID)
  544. size += sizeof(data->id);
  545. if (sample_type & PERF_SAMPLE_STREAM_ID)
  546. size += sizeof(data->stream_id);
  547. if (sample_type & PERF_SAMPLE_CPU)
  548. size += sizeof(data->cpu) * 2;
  549. out:
  550. return size;
  551. }
  552. bool perf_evlist__valid_sample_id_all(struct perf_evlist *evlist)
  553. {
  554. struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
  555. list_for_each_entry_continue(pos, &evlist->entries, node) {
  556. if (first->attr.sample_id_all != pos->attr.sample_id_all)
  557. return false;
  558. }
  559. return true;
  560. }
  561. bool perf_evlist__sample_id_all(struct perf_evlist *evlist)
  562. {
  563. struct perf_evsel *first = perf_evlist__first(evlist);
  564. return first->attr.sample_id_all;
  565. }
  566. void perf_evlist__set_selected(struct perf_evlist *evlist,
  567. struct perf_evsel *evsel)
  568. {
  569. evlist->selected = evsel;
  570. }
  571. int perf_evlist__open(struct perf_evlist *evlist)
  572. {
  573. struct perf_evsel *evsel;
  574. int err, ncpus, nthreads;
  575. list_for_each_entry(evsel, &evlist->entries, node) {
  576. err = perf_evsel__open(evsel, evlist->cpus, evlist->threads);
  577. if (err < 0)
  578. goto out_err;
  579. }
  580. return 0;
  581. out_err:
  582. ncpus = evlist->cpus ? evlist->cpus->nr : 1;
  583. nthreads = evlist->threads ? evlist->threads->nr : 1;
  584. list_for_each_entry_reverse(evsel, &evlist->entries, node)
  585. perf_evsel__close(evsel, ncpus, nthreads);
  586. errno = -err;
  587. return err;
  588. }
  589. int perf_evlist__prepare_workload(struct perf_evlist *evlist,
  590. struct perf_record_opts *opts,
  591. const char *argv[])
  592. {
  593. int child_ready_pipe[2], go_pipe[2];
  594. char bf;
  595. if (pipe(child_ready_pipe) < 0) {
  596. perror("failed to create 'ready' pipe");
  597. return -1;
  598. }
  599. if (pipe(go_pipe) < 0) {
  600. perror("failed to create 'go' pipe");
  601. goto out_close_ready_pipe;
  602. }
  603. evlist->workload.pid = fork();
  604. if (evlist->workload.pid < 0) {
  605. perror("failed to fork");
  606. goto out_close_pipes;
  607. }
  608. if (!evlist->workload.pid) {
  609. if (opts->pipe_output)
  610. dup2(2, 1);
  611. close(child_ready_pipe[0]);
  612. close(go_pipe[1]);
  613. fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
  614. /*
  615. * Do a dummy execvp to get the PLT entry resolved,
  616. * so we avoid the resolver overhead on the real
  617. * execvp call.
  618. */
  619. execvp("", (char **)argv);
  620. /*
  621. * Tell the parent we're ready to go
  622. */
  623. close(child_ready_pipe[1]);
  624. /*
  625. * Wait until the parent tells us to go.
  626. */
  627. if (read(go_pipe[0], &bf, 1) == -1)
  628. perror("unable to read pipe");
  629. execvp(argv[0], (char **)argv);
  630. perror(argv[0]);
  631. kill(getppid(), SIGUSR1);
  632. exit(-1);
  633. }
  634. if (perf_target__none(&opts->target))
  635. evlist->threads->map[0] = evlist->workload.pid;
  636. close(child_ready_pipe[1]);
  637. close(go_pipe[0]);
  638. /*
  639. * wait for child to settle
  640. */
  641. if (read(child_ready_pipe[0], &bf, 1) == -1) {
  642. perror("unable to read pipe");
  643. goto out_close_pipes;
  644. }
  645. evlist->workload.cork_fd = go_pipe[1];
  646. close(child_ready_pipe[0]);
  647. return 0;
  648. out_close_pipes:
  649. close(go_pipe[0]);
  650. close(go_pipe[1]);
  651. out_close_ready_pipe:
  652. close(child_ready_pipe[0]);
  653. close(child_ready_pipe[1]);
  654. return -1;
  655. }
  656. int perf_evlist__start_workload(struct perf_evlist *evlist)
  657. {
  658. if (evlist->workload.cork_fd > 0) {
  659. /*
  660. * Remove the cork, let it rip!
  661. */
  662. return close(evlist->workload.cork_fd);
  663. }
  664. return 0;
  665. }
  666. int perf_evlist__parse_sample(struct perf_evlist *evlist, union perf_event *event,
  667. struct perf_sample *sample)
  668. {
  669. struct perf_evsel *evsel = perf_evlist__first(evlist);
  670. return perf_evsel__parse_sample(evsel, event, sample);
  671. }
  672. size_t perf_evlist__fprintf(struct perf_evlist *evlist, FILE *fp)
  673. {
  674. struct perf_evsel *evsel;
  675. size_t printed = 0;
  676. list_for_each_entry(evsel, &evlist->entries, node) {
  677. printed += fprintf(fp, "%s%s", evsel->idx ? ", " : "",
  678. perf_evsel__name(evsel));
  679. }
  680. return printed + fprintf(fp, "\n");;
  681. }