ctatc.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606
  1. /**
  2. * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
  3. *
  4. * This source file is released under GPL v2 license (no other versions).
  5. * See the COPYING file included in the main directory of this source
  6. * distribution for the license terms and conditions.
  7. *
  8. * @File ctatc.c
  9. *
  10. * @Brief
  11. * This file contains the implementation of the device resource management
  12. * object.
  13. *
  14. * @Author Liu Chun
  15. * @Date Mar 28 2008
  16. */
  17. #include "ctatc.h"
  18. #include "ctpcm.h"
  19. #include "ctmixer.h"
  20. #include "cthardware.h"
  21. #include "ctsrc.h"
  22. #include "ctamixer.h"
  23. #include "ctdaio.h"
  24. #include <linux/delay.h>
  25. #include <sound/pcm.h>
  26. #include <sound/control.h>
  27. #include <sound/asoundef.h>
  28. #define MONO_SUM_SCALE 0x19a8 /* 2^(-0.5) in 14-bit floating format */
  29. #define DAIONUM 7
  30. #define MAX_MULTI_CHN 8
  31. #define IEC958_DEFAULT_CON ((IEC958_AES0_NONAUDIO \
  32. | IEC958_AES0_CON_NOT_COPYRIGHT) \
  33. | ((IEC958_AES1_CON_MIXER \
  34. | IEC958_AES1_CON_ORIGINAL) << 8) \
  35. | (0x10 << 16) \
  36. | ((IEC958_AES3_CON_FS_48000) << 24))
  37. static const struct ct_atc_chip_sub_details atc_sub_details[NUM_CTCARDS] = {
  38. [CTSB0760] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_SB0760,
  39. .nm_model = "SB076x"},
  40. [CTHENDRIX] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_HENDRIX,
  41. .nm_model = "Hendrix"},
  42. [CTSB08801] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_SB08801,
  43. .nm_model = "SB0880"},
  44. [CTSB08802] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_SB08802,
  45. .nm_model = "SB0880"},
  46. [CTSB08803] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_SB08803,
  47. .nm_model = "SB0880"}
  48. };
  49. static struct ct_atc_chip_details atc_chip_details[] = {
  50. {.vendor = PCI_VENDOR_ID_CREATIVE,
  51. .device = PCI_DEVICE_ID_CREATIVE_20K1,
  52. .sub_details = NULL,
  53. .nm_card = "X-Fi 20k1"},
  54. {.vendor = PCI_VENDOR_ID_CREATIVE,
  55. .device = PCI_DEVICE_ID_CREATIVE_20K2,
  56. .sub_details = atc_sub_details,
  57. .nm_card = "X-Fi 20k2"},
  58. {} /* terminator */
  59. };
  60. static struct {
  61. int (*create)(struct ct_atc *atc,
  62. enum CTALSADEVS device, const char *device_name);
  63. int (*destroy)(void *alsa_dev);
  64. const char *public_name;
  65. } alsa_dev_funcs[NUM_CTALSADEVS] = {
  66. [FRONT] = { .create = ct_alsa_pcm_create,
  67. .destroy = NULL,
  68. .public_name = "Front/WaveIn"},
  69. [REAR] = { .create = ct_alsa_pcm_create,
  70. .destroy = NULL,
  71. .public_name = "Rear"},
  72. [CLFE] = { .create = ct_alsa_pcm_create,
  73. .destroy = NULL,
  74. .public_name = "Center/LFE"},
  75. [SURROUND] = { .create = ct_alsa_pcm_create,
  76. .destroy = NULL,
  77. .public_name = "Surround"},
  78. [IEC958] = { .create = ct_alsa_pcm_create,
  79. .destroy = NULL,
  80. .public_name = "IEC958 Non-audio"},
  81. [MIXER] = { .create = ct_alsa_mix_create,
  82. .destroy = NULL,
  83. .public_name = "Mixer"}
  84. };
  85. typedef int (*create_t)(void *, void **);
  86. typedef int (*destroy_t)(void *);
  87. static struct {
  88. int (*create)(void *hw, void **rmgr);
  89. int (*destroy)(void *mgr);
  90. } rsc_mgr_funcs[NUM_RSCTYP] = {
  91. [SRC] = { .create = (create_t)src_mgr_create,
  92. .destroy = (destroy_t)src_mgr_destroy },
  93. [SRCIMP] = { .create = (create_t)srcimp_mgr_create,
  94. .destroy = (destroy_t)srcimp_mgr_destroy },
  95. [AMIXER] = { .create = (create_t)amixer_mgr_create,
  96. .destroy = (destroy_t)amixer_mgr_destroy },
  97. [SUM] = { .create = (create_t)sum_mgr_create,
  98. .destroy = (destroy_t)sum_mgr_destroy },
  99. [DAIO] = { .create = (create_t)daio_mgr_create,
  100. .destroy = (destroy_t)daio_mgr_destroy }
  101. };
  102. static int
  103. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm);
  104. /* *
  105. * Only mono and interleaved modes are supported now.
  106. * Always allocates a contiguous channel block.
  107. * */
  108. static int ct_map_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  109. {
  110. struct snd_pcm_runtime *runtime;
  111. struct ct_vm *vm;
  112. if (NULL == apcm->substream)
  113. return 0;
  114. runtime = apcm->substream->runtime;
  115. vm = atc->vm;
  116. apcm->vm_block = vm->map(vm, runtime->dma_area, runtime->dma_bytes);
  117. if (NULL == apcm->vm_block)
  118. return -ENOENT;
  119. return 0;
  120. }
  121. static void ct_unmap_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  122. {
  123. struct ct_vm *vm;
  124. if (NULL == apcm->vm_block)
  125. return;
  126. vm = atc->vm;
  127. vm->unmap(vm, apcm->vm_block);
  128. apcm->vm_block = NULL;
  129. }
  130. static unsigned long atc_get_ptp_phys(struct ct_atc *atc, int index)
  131. {
  132. struct ct_vm *vm;
  133. void *kvirt_addr;
  134. unsigned long phys_addr;
  135. vm = atc->vm;
  136. kvirt_addr = vm->get_ptp_virt(vm, index);
  137. if (kvirt_addr == NULL)
  138. phys_addr = (~0UL);
  139. else
  140. phys_addr = virt_to_phys(kvirt_addr);
  141. return phys_addr;
  142. }
  143. static unsigned int convert_format(snd_pcm_format_t snd_format)
  144. {
  145. switch (snd_format) {
  146. case SNDRV_PCM_FORMAT_U8:
  147. case SNDRV_PCM_FORMAT_S8:
  148. return SRC_SF_U8;
  149. case SNDRV_PCM_FORMAT_S16_LE:
  150. case SNDRV_PCM_FORMAT_U16_LE:
  151. return SRC_SF_S16;
  152. case SNDRV_PCM_FORMAT_S24_3LE:
  153. return SRC_SF_S24;
  154. case SNDRV_PCM_FORMAT_S24_LE:
  155. case SNDRV_PCM_FORMAT_S32_LE:
  156. return SRC_SF_S32;
  157. default:
  158. printk(KERN_ERR "ctxfi: not recognized snd format is %d \n",
  159. snd_format);
  160. return SRC_SF_S16;
  161. }
  162. }
  163. static unsigned int
  164. atc_get_pitch(unsigned int input_rate, unsigned int output_rate)
  165. {
  166. unsigned int pitch = 0;
  167. int b = 0;
  168. /* get pitch and convert to fixed-point 8.24 format. */
  169. pitch = (input_rate / output_rate) << 24;
  170. input_rate %= output_rate;
  171. input_rate /= 100;
  172. output_rate /= 100;
  173. for (b = 31; ((b >= 0) && !(input_rate >> b)); )
  174. b--;
  175. if (b >= 0) {
  176. input_rate <<= (31 - b);
  177. input_rate /= output_rate;
  178. b = 24 - (31 - b);
  179. if (b >= 0)
  180. input_rate <<= b;
  181. else
  182. input_rate >>= -b;
  183. pitch |= input_rate;
  184. }
  185. return pitch;
  186. }
  187. static int select_rom(unsigned int pitch)
  188. {
  189. if ((pitch > 0x00428f5c) && (pitch < 0x01b851ec)) {
  190. /* 0.26 <= pitch <= 1.72 */
  191. return 1;
  192. } else if ((0x01d66666 == pitch) || (0x01d66667 == pitch)) {
  193. /* pitch == 1.8375 */
  194. return 2;
  195. } else if (0x02000000 == pitch) {
  196. /* pitch == 2 */
  197. return 3;
  198. } else if ((pitch >= 0x0) && (pitch <= 0x08000000)) {
  199. /* 0 <= pitch <= 8 */
  200. return 0;
  201. } else {
  202. return -ENOENT;
  203. }
  204. }
  205. static int atc_pcm_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  206. {
  207. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  208. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  209. struct src_desc desc = {0};
  210. struct amixer_desc mix_dsc = {0};
  211. struct src *src = NULL;
  212. struct amixer *amixer = NULL;
  213. int err = 0;
  214. int n_amixer = apcm->substream->runtime->channels, i = 0;
  215. int device = apcm->substream->pcm->device;
  216. unsigned int pitch = 0;
  217. unsigned long flags;
  218. if (NULL != apcm->src) {
  219. /* Prepared pcm playback */
  220. return 0;
  221. }
  222. /* first release old resources */
  223. atc->pcm_release_resources(atc, apcm);
  224. /* Get SRC resource */
  225. desc.multi = apcm->substream->runtime->channels;
  226. desc.msr = atc->msr;
  227. desc.mode = MEMRD;
  228. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  229. if (err)
  230. goto error1;
  231. pitch = atc_get_pitch(apcm->substream->runtime->rate,
  232. (atc->rsr * atc->msr));
  233. src = apcm->src;
  234. src->ops->set_pitch(src, pitch);
  235. src->ops->set_rom(src, select_rom(pitch));
  236. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  237. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  238. /* Get AMIXER resource */
  239. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  240. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  241. if (NULL == apcm->amixers) {
  242. err = -ENOMEM;
  243. goto error1;
  244. }
  245. mix_dsc.msr = atc->msr;
  246. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  247. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  248. (struct amixer **)&apcm->amixers[i]);
  249. if (err)
  250. goto error1;
  251. apcm->n_amixer++;
  252. }
  253. /* Set up device virtual mem map */
  254. err = ct_map_audio_buffer(atc, apcm);
  255. if (err < 0)
  256. goto error1;
  257. /* Connect resources */
  258. src = apcm->src;
  259. for (i = 0; i < n_amixer; i++) {
  260. amixer = apcm->amixers[i];
  261. spin_lock_irqsave(&atc->atc_lock, flags);
  262. amixer->ops->setup(amixer, &src->rsc,
  263. INIT_VOL, atc->pcm[i+device*2]);
  264. spin_unlock_irqrestore(&atc->atc_lock, flags);
  265. src = src->ops->next_interleave(src);
  266. if (NULL == src)
  267. src = apcm->src;
  268. }
  269. return 0;
  270. error1:
  271. atc_pcm_release_resources(atc, apcm);
  272. return err;
  273. }
  274. static int
  275. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  276. {
  277. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  278. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  279. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  280. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  281. struct srcimp *srcimp = NULL;
  282. int i = 0;
  283. if (NULL != apcm->srcimps) {
  284. for (i = 0; i < apcm->n_srcimp; i++) {
  285. srcimp = apcm->srcimps[i];
  286. srcimp->ops->unmap(srcimp);
  287. srcimp_mgr->put_srcimp(srcimp_mgr, srcimp);
  288. apcm->srcimps[i] = NULL;
  289. }
  290. kfree(apcm->srcimps);
  291. apcm->srcimps = NULL;
  292. }
  293. if (NULL != apcm->srccs) {
  294. for (i = 0; i < apcm->n_srcc; i++) {
  295. src_mgr->put_src(src_mgr, apcm->srccs[i]);
  296. apcm->srccs[i] = NULL;
  297. }
  298. kfree(apcm->srccs);
  299. apcm->srccs = NULL;
  300. }
  301. if (NULL != apcm->amixers) {
  302. for (i = 0; i < apcm->n_amixer; i++) {
  303. amixer_mgr->put_amixer(amixer_mgr, apcm->amixers[i]);
  304. apcm->amixers[i] = NULL;
  305. }
  306. kfree(apcm->amixers);
  307. apcm->amixers = NULL;
  308. }
  309. if (NULL != apcm->mono) {
  310. sum_mgr->put_sum(sum_mgr, apcm->mono);
  311. apcm->mono = NULL;
  312. }
  313. if (NULL != apcm->src) {
  314. src_mgr->put_src(src_mgr, apcm->src);
  315. apcm->src = NULL;
  316. }
  317. if (NULL != apcm->vm_block) {
  318. /* Undo device virtual mem map */
  319. ct_unmap_audio_buffer(atc, apcm);
  320. apcm->vm_block = NULL;
  321. }
  322. return 0;
  323. }
  324. static int atc_pcm_playback_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  325. {
  326. unsigned int max_cisz = 0;
  327. struct src *src = apcm->src;
  328. max_cisz = src->multi * src->rsc.msr;
  329. max_cisz = 0x80 * (max_cisz < 8 ? max_cisz : 8);
  330. src->ops->set_sa(src, apcm->vm_block->addr);
  331. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  332. src->ops->set_ca(src, apcm->vm_block->addr + max_cisz);
  333. src->ops->set_cisz(src, max_cisz);
  334. src->ops->set_bm(src, 1);
  335. src->ops->set_state(src, SRC_STATE_INIT);
  336. src->ops->commit_write(src);
  337. return 0;
  338. }
  339. static int atc_pcm_stop(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  340. {
  341. struct src *src = NULL;
  342. int i = 0;
  343. src = apcm->src;
  344. src->ops->set_bm(src, 0);
  345. src->ops->set_state(src, SRC_STATE_OFF);
  346. src->ops->commit_write(src);
  347. if (NULL != apcm->srccs) {
  348. for (i = 0; i < apcm->n_srcc; i++) {
  349. src = apcm->srccs[i];
  350. src->ops->set_bm(src, 0);
  351. src->ops->set_state(src, SRC_STATE_OFF);
  352. src->ops->commit_write(src);
  353. }
  354. }
  355. apcm->started = 0;
  356. return 0;
  357. }
  358. static int
  359. atc_pcm_playback_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  360. {
  361. struct src *src = apcm->src;
  362. u32 size = 0, max_cisz = 0;
  363. int position = 0;
  364. position = src->ops->get_ca(src);
  365. size = apcm->vm_block->size;
  366. max_cisz = src->multi * src->rsc.msr;
  367. max_cisz = 128 * (max_cisz < 8 ? max_cisz : 8);
  368. return (position + size - max_cisz - apcm->vm_block->addr) % size;
  369. }
  370. struct src_node_conf_t {
  371. unsigned int pitch;
  372. unsigned int msr:8;
  373. unsigned int mix_msr:8;
  374. unsigned int imp_msr:8;
  375. unsigned int vo:1;
  376. };
  377. static void setup_src_node_conf(struct ct_atc *atc, struct ct_atc_pcm *apcm,
  378. struct src_node_conf_t *conf, int *n_srcc)
  379. {
  380. unsigned int pitch = 0;
  381. /* get pitch and convert to fixed-point 8.24 format. */
  382. pitch = atc_get_pitch((atc->rsr * atc->msr),
  383. apcm->substream->runtime->rate);
  384. *n_srcc = 0;
  385. if (1 == atc->msr) {
  386. *n_srcc = apcm->substream->runtime->channels;
  387. conf[0].pitch = pitch;
  388. conf[0].mix_msr = conf[0].imp_msr = conf[0].msr = 1;
  389. conf[0].vo = 1;
  390. } else if (2 == atc->msr) {
  391. if (0x8000000 < pitch) {
  392. /* Need two-stage SRCs, SRCIMPs and
  393. * AMIXERs for converting format */
  394. conf[0].pitch = (atc->msr << 24);
  395. conf[0].msr = conf[0].mix_msr = 1;
  396. conf[0].imp_msr = atc->msr;
  397. conf[0].vo = 0;
  398. conf[1].pitch = atc_get_pitch(atc->rsr,
  399. apcm->substream->runtime->rate);
  400. conf[1].msr = conf[1].mix_msr = conf[1].imp_msr = 1;
  401. conf[1].vo = 1;
  402. *n_srcc = apcm->substream->runtime->channels * 2;
  403. } else if (0x1000000 < pitch) {
  404. /* Need one-stage SRCs, SRCIMPs and
  405. * AMIXERs for converting format */
  406. conf[0].pitch = pitch;
  407. conf[0].msr = conf[0].mix_msr
  408. = conf[0].imp_msr = atc->msr;
  409. conf[0].vo = 1;
  410. *n_srcc = apcm->substream->runtime->channels;
  411. }
  412. }
  413. }
  414. static int
  415. atc_pcm_capture_get_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  416. {
  417. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  418. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  419. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  420. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  421. struct src_desc src_dsc = {0};
  422. struct src *src = NULL;
  423. struct srcimp_desc srcimp_dsc = {0};
  424. struct srcimp *srcimp = NULL;
  425. struct amixer_desc mix_dsc = {0};
  426. struct sum_desc sum_dsc = {0};
  427. unsigned int pitch = 0;
  428. int multi = 0, err = 0, i = 0;
  429. int n_srcimp = 0, n_amixer = 0, n_srcc = 0, n_sum = 0;
  430. struct src_node_conf_t src_node_conf[2] = {{0} };
  431. /* first release old resources */
  432. atc->pcm_release_resources(atc, apcm);
  433. /* The numbers of converting SRCs and SRCIMPs should be determined
  434. * by pitch value. */
  435. multi = apcm->substream->runtime->channels;
  436. /* get pitch and convert to fixed-point 8.24 format. */
  437. pitch = atc_get_pitch((atc->rsr * atc->msr),
  438. apcm->substream->runtime->rate);
  439. setup_src_node_conf(atc, apcm, src_node_conf, &n_srcc);
  440. n_sum = (1 == multi) ? 1 : 0;
  441. n_amixer += n_sum * 2 + n_srcc;
  442. n_srcimp += n_srcc;
  443. if ((multi > 1) && (0x8000000 >= pitch)) {
  444. /* Need extra AMIXERs and SRCIMPs for special treatment
  445. * of interleaved recording of conjugate channels */
  446. n_amixer += multi * atc->msr;
  447. n_srcimp += multi * atc->msr;
  448. } else {
  449. n_srcimp += multi;
  450. }
  451. if (n_srcc) {
  452. apcm->srccs = kzalloc(sizeof(void *)*n_srcc, GFP_KERNEL);
  453. if (NULL == apcm->srccs)
  454. return -ENOMEM;
  455. }
  456. if (n_amixer) {
  457. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  458. if (NULL == apcm->amixers) {
  459. err = -ENOMEM;
  460. goto error1;
  461. }
  462. }
  463. apcm->srcimps = kzalloc(sizeof(void *)*n_srcimp, GFP_KERNEL);
  464. if (NULL == apcm->srcimps) {
  465. err = -ENOMEM;
  466. goto error1;
  467. }
  468. /* Allocate SRCs for sample rate conversion if needed */
  469. src_dsc.multi = 1;
  470. src_dsc.mode = ARCRW;
  471. for (i = 0, apcm->n_srcc = 0; i < n_srcc; i++) {
  472. src_dsc.msr = src_node_conf[i/multi].msr;
  473. err = src_mgr->get_src(src_mgr, &src_dsc,
  474. (struct src **)&apcm->srccs[i]);
  475. if (err)
  476. goto error1;
  477. src = apcm->srccs[i];
  478. pitch = src_node_conf[i/multi].pitch;
  479. src->ops->set_pitch(src, pitch);
  480. src->ops->set_rom(src, select_rom(pitch));
  481. src->ops->set_vo(src, src_node_conf[i/multi].vo);
  482. apcm->n_srcc++;
  483. }
  484. /* Allocate AMIXERs for routing SRCs of conversion if needed */
  485. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  486. if (i < (n_sum*2))
  487. mix_dsc.msr = atc->msr;
  488. else if (i < (n_sum*2+n_srcc))
  489. mix_dsc.msr = src_node_conf[(i-n_sum*2)/multi].mix_msr;
  490. else
  491. mix_dsc.msr = 1;
  492. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  493. (struct amixer **)&apcm->amixers[i]);
  494. if (err)
  495. goto error1;
  496. apcm->n_amixer++;
  497. }
  498. /* Allocate a SUM resource to mix all input channels together */
  499. sum_dsc.msr = atc->msr;
  500. err = sum_mgr->get_sum(sum_mgr, &sum_dsc, (struct sum **)&apcm->mono);
  501. if (err)
  502. goto error1;
  503. pitch = atc_get_pitch((atc->rsr * atc->msr),
  504. apcm->substream->runtime->rate);
  505. /* Allocate SRCIMP resources */
  506. for (i = 0, apcm->n_srcimp = 0; i < n_srcimp; i++) {
  507. if (i < (n_srcc))
  508. srcimp_dsc.msr = src_node_conf[i/multi].imp_msr;
  509. else if (1 == multi)
  510. srcimp_dsc.msr = (pitch <= 0x8000000) ? atc->msr : 1;
  511. else
  512. srcimp_dsc.msr = 1;
  513. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc, &srcimp);
  514. if (err)
  515. goto error1;
  516. apcm->srcimps[i] = srcimp;
  517. apcm->n_srcimp++;
  518. }
  519. /* Allocate a SRC for writing data to host memory */
  520. src_dsc.multi = apcm->substream->runtime->channels;
  521. src_dsc.msr = 1;
  522. src_dsc.mode = MEMWR;
  523. err = src_mgr->get_src(src_mgr, &src_dsc, (struct src **)&apcm->src);
  524. if (err)
  525. goto error1;
  526. src = apcm->src;
  527. src->ops->set_pitch(src, pitch);
  528. /* Set up device virtual mem map */
  529. err = ct_map_audio_buffer(atc, apcm);
  530. if (err < 0)
  531. goto error1;
  532. return 0;
  533. error1:
  534. atc_pcm_release_resources(atc, apcm);
  535. return err;
  536. }
  537. static int atc_pcm_capture_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  538. {
  539. struct src *src = NULL;
  540. struct amixer *amixer = NULL;
  541. struct srcimp *srcimp = NULL;
  542. struct ct_mixer *mixer = atc->mixer;
  543. struct sum *mono = NULL;
  544. struct rsc *out_ports[8] = {NULL};
  545. int err = 0, i = 0, j = 0, n_sum = 0, multi = 0;
  546. unsigned int pitch = 0;
  547. int mix_base = 0, imp_base = 0;
  548. if (NULL != apcm->src) {
  549. /* Prepared pcm capture */
  550. return 0;
  551. }
  552. /* Get needed resources. */
  553. err = atc_pcm_capture_get_resources(atc, apcm);
  554. if (err)
  555. return err;
  556. /* Connect resources */
  557. mixer->get_output_ports(mixer, MIX_PCMO_FRONT,
  558. &out_ports[0], &out_ports[1]);
  559. multi = apcm->substream->runtime->channels;
  560. if (1 == multi) {
  561. mono = apcm->mono;
  562. for (i = 0; i < 2; i++) {
  563. amixer = apcm->amixers[i];
  564. amixer->ops->setup(amixer, out_ports[i],
  565. MONO_SUM_SCALE, mono);
  566. }
  567. out_ports[0] = &mono->rsc;
  568. n_sum = 1;
  569. mix_base = n_sum * 2;
  570. }
  571. for (i = 0; i < apcm->n_srcc; i++) {
  572. src = apcm->srccs[i];
  573. srcimp = apcm->srcimps[imp_base+i];
  574. amixer = apcm->amixers[mix_base+i];
  575. srcimp->ops->map(srcimp, src, out_ports[i%multi]);
  576. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  577. out_ports[i%multi] = &amixer->rsc;
  578. }
  579. pitch = atc_get_pitch((atc->rsr * atc->msr),
  580. apcm->substream->runtime->rate);
  581. if ((multi > 1) && (pitch <= 0x8000000)) {
  582. /* Special connection for interleaved
  583. * recording with conjugate channels */
  584. for (i = 0; i < multi; i++) {
  585. out_ports[i]->ops->master(out_ports[i]);
  586. for (j = 0; j < atc->msr; j++) {
  587. amixer = apcm->amixers[apcm->n_srcc+j*multi+i];
  588. amixer->ops->set_input(amixer, out_ports[i]);
  589. amixer->ops->set_scale(amixer, INIT_VOL);
  590. amixer->ops->set_sum(amixer, NULL);
  591. amixer->ops->commit_raw_write(amixer);
  592. out_ports[i]->ops->next_conj(out_ports[i]);
  593. srcimp = apcm->srcimps[apcm->n_srcc+j*multi+i];
  594. srcimp->ops->map(srcimp, apcm->src,
  595. &amixer->rsc);
  596. }
  597. }
  598. } else {
  599. for (i = 0; i < multi; i++) {
  600. srcimp = apcm->srcimps[apcm->n_srcc+i];
  601. srcimp->ops->map(srcimp, apcm->src, out_ports[i]);
  602. }
  603. }
  604. return 0;
  605. }
  606. static int atc_pcm_capture_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  607. {
  608. struct src *src = NULL;
  609. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  610. int i = 0, multi = 0;
  611. if (apcm->started)
  612. return 0;
  613. apcm->started = 1;
  614. multi = apcm->substream->runtime->channels;
  615. /* Set up converting SRCs */
  616. for (i = 0; i < apcm->n_srcc; i++) {
  617. src = apcm->srccs[i];
  618. src->ops->set_pm(src, ((i%multi) != (multi-1)));
  619. src_mgr->src_disable(src_mgr, src);
  620. }
  621. /* Set up recording SRC */
  622. src = apcm->src;
  623. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  624. src->ops->set_sa(src, apcm->vm_block->addr);
  625. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  626. src->ops->set_ca(src, apcm->vm_block->addr);
  627. src_mgr->src_disable(src_mgr, src);
  628. /* Disable relevant SRCs firstly */
  629. src_mgr->commit_write(src_mgr);
  630. /* Enable SRCs respectively */
  631. for (i = 0; i < apcm->n_srcc; i++) {
  632. src = apcm->srccs[i];
  633. src->ops->set_state(src, SRC_STATE_RUN);
  634. src->ops->commit_write(src);
  635. src_mgr->src_enable_s(src_mgr, src);
  636. }
  637. src = apcm->src;
  638. src->ops->set_bm(src, 1);
  639. src->ops->set_state(src, SRC_STATE_RUN);
  640. src->ops->commit_write(src);
  641. src_mgr->src_enable_s(src_mgr, src);
  642. /* Enable relevant SRCs synchronously */
  643. src_mgr->commit_write(src_mgr);
  644. return 0;
  645. }
  646. static int
  647. atc_pcm_capture_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  648. {
  649. struct src *src = apcm->src;
  650. return src->ops->get_ca(src) - apcm->vm_block->addr;
  651. }
  652. static int spdif_passthru_playback_get_resources(struct ct_atc *atc,
  653. struct ct_atc_pcm *apcm)
  654. {
  655. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  656. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  657. struct src_desc desc = {0};
  658. struct amixer_desc mix_dsc = {0};
  659. struct src *src = NULL;
  660. int err = 0;
  661. int n_amixer = apcm->substream->runtime->channels, i = 0;
  662. unsigned int pitch = 0, rsr = atc->pll_rate;
  663. /* first release old resources */
  664. atc->pcm_release_resources(atc, apcm);
  665. /* Get SRC resource */
  666. desc.multi = apcm->substream->runtime->channels;
  667. desc.msr = 1;
  668. while (apcm->substream->runtime->rate > (rsr * desc.msr))
  669. desc.msr <<= 1;
  670. desc.mode = MEMRD;
  671. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  672. if (err)
  673. goto error1;
  674. pitch = atc_get_pitch(apcm->substream->runtime->rate, (rsr * desc.msr));
  675. src = apcm->src;
  676. src->ops->set_pitch(src, pitch);
  677. src->ops->set_rom(src, select_rom(pitch));
  678. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  679. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  680. src->ops->set_bp(src, 1);
  681. /* Get AMIXER resource */
  682. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  683. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  684. if (NULL == apcm->amixers) {
  685. err = -ENOMEM;
  686. goto error1;
  687. }
  688. mix_dsc.msr = desc.msr;
  689. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  690. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  691. (struct amixer **)&apcm->amixers[i]);
  692. if (err)
  693. goto error1;
  694. apcm->n_amixer++;
  695. }
  696. /* Set up device virtual mem map */
  697. err = ct_map_audio_buffer(atc, apcm);
  698. if (err < 0)
  699. goto error1;
  700. return 0;
  701. error1:
  702. atc_pcm_release_resources(atc, apcm);
  703. return err;
  704. }
  705. static int
  706. spdif_passthru_playback_setup(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  707. {
  708. struct dao *dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  709. unsigned long flags;
  710. unsigned int rate = apcm->substream->runtime->rate;
  711. unsigned int status = 0;
  712. int err = 0;
  713. unsigned char iec958_con_fs = 0;
  714. switch (rate) {
  715. case 48000:
  716. iec958_con_fs = IEC958_AES3_CON_FS_48000;
  717. break;
  718. case 44100:
  719. iec958_con_fs = IEC958_AES3_CON_FS_44100;
  720. break;
  721. case 32000:
  722. iec958_con_fs = IEC958_AES3_CON_FS_32000;
  723. break;
  724. default:
  725. return -ENOENT;
  726. }
  727. spin_lock_irqsave(&atc->atc_lock, flags);
  728. dao->ops->get_spos(dao, &status);
  729. if (((status >> 24) & IEC958_AES3_CON_FS) != iec958_con_fs) {
  730. status &= ((~IEC958_AES3_CON_FS) << 24);
  731. status |= (iec958_con_fs << 24);
  732. dao->ops->set_spos(dao, status);
  733. dao->ops->commit_write(dao);
  734. }
  735. if ((rate != atc->pll_rate) && (32000 != rate)) {
  736. err = ((struct hw *)atc->hw)->pll_init(atc->hw, rate);
  737. atc->pll_rate = err ? 0 : rate;
  738. }
  739. spin_unlock_irqrestore(&atc->atc_lock, flags);
  740. return err;
  741. }
  742. static int
  743. spdif_passthru_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  744. {
  745. struct src *src = NULL;
  746. struct amixer *amixer = NULL;
  747. struct dao *dao = NULL;
  748. int err = 0;
  749. int i = 0;
  750. unsigned long flags;
  751. if (NULL != apcm->src)
  752. return 0;
  753. /* Configure SPDIFOO and PLL to passthrough mode;
  754. * determine pll_rate. */
  755. err = spdif_passthru_playback_setup(atc, apcm);
  756. if (err)
  757. return err;
  758. /* Get needed resources. */
  759. err = spdif_passthru_playback_get_resources(atc, apcm);
  760. if (err)
  761. return err;
  762. /* Connect resources */
  763. src = apcm->src;
  764. for (i = 0; i < apcm->n_amixer; i++) {
  765. amixer = apcm->amixers[i];
  766. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  767. src = src->ops->next_interleave(src);
  768. if (NULL == src)
  769. src = apcm->src;
  770. }
  771. /* Connect to SPDIFOO */
  772. spin_lock_irqsave(&atc->atc_lock, flags);
  773. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  774. amixer = apcm->amixers[0];
  775. dao->ops->set_left_input(dao, &amixer->rsc);
  776. amixer = apcm->amixers[1];
  777. dao->ops->set_right_input(dao, &amixer->rsc);
  778. spin_unlock_irqrestore(&atc->atc_lock, flags);
  779. return 0;
  780. }
  781. static int atc_select_line_in(struct ct_atc *atc)
  782. {
  783. struct hw *hw = atc->hw;
  784. struct ct_mixer *mixer = atc->mixer;
  785. struct src *src = NULL;
  786. if (hw->is_adc_source_selected(hw, ADC_LINEIN))
  787. return 0;
  788. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  789. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  790. hw->select_adc_source(hw, ADC_LINEIN);
  791. src = atc->srcs[2];
  792. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  793. src = atc->srcs[3];
  794. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  795. return 0;
  796. }
  797. static int atc_select_mic_in(struct ct_atc *atc)
  798. {
  799. struct hw *hw = atc->hw;
  800. struct ct_mixer *mixer = atc->mixer;
  801. struct src *src = NULL;
  802. if (hw->is_adc_source_selected(hw, ADC_MICIN))
  803. return 0;
  804. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  805. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  806. hw->select_adc_source(hw, ADC_MICIN);
  807. src = atc->srcs[2];
  808. mixer->set_input_left(mixer, MIX_MIC_IN, &src->rsc);
  809. src = atc->srcs[3];
  810. mixer->set_input_right(mixer, MIX_MIC_IN, &src->rsc);
  811. return 0;
  812. }
  813. static int atc_have_digit_io_switch(struct ct_atc *atc)
  814. {
  815. struct hw *hw = atc->hw;
  816. return hw->have_digit_io_switch(hw);
  817. }
  818. static int atc_select_digit_io(struct ct_atc *atc)
  819. {
  820. struct hw *hw = atc->hw;
  821. if (hw->is_adc_source_selected(hw, ADC_NONE))
  822. return 0;
  823. hw->select_adc_source(hw, ADC_NONE);
  824. return 0;
  825. }
  826. static int atc_daio_unmute(struct ct_atc *atc, unsigned char state, int type)
  827. {
  828. struct daio_mgr *daio_mgr = atc->rsc_mgrs[DAIO];
  829. if (state)
  830. daio_mgr->daio_enable(daio_mgr, atc->daios[type]);
  831. else
  832. daio_mgr->daio_disable(daio_mgr, atc->daios[type]);
  833. daio_mgr->commit_write(daio_mgr);
  834. return 0;
  835. }
  836. static int
  837. atc_dao_get_status(struct ct_atc *atc, unsigned int *status, int type)
  838. {
  839. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  840. return dao->ops->get_spos(dao, status);
  841. }
  842. static int
  843. atc_dao_set_status(struct ct_atc *atc, unsigned int status, int type)
  844. {
  845. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  846. dao->ops->set_spos(dao, status);
  847. dao->ops->commit_write(dao);
  848. return 0;
  849. }
  850. static int atc_line_front_unmute(struct ct_atc *atc, unsigned char state)
  851. {
  852. return atc_daio_unmute(atc, state, LINEO1);
  853. }
  854. static int atc_line_surround_unmute(struct ct_atc *atc, unsigned char state)
  855. {
  856. return atc_daio_unmute(atc, state, LINEO4);
  857. }
  858. static int atc_line_clfe_unmute(struct ct_atc *atc, unsigned char state)
  859. {
  860. return atc_daio_unmute(atc, state, LINEO3);
  861. }
  862. static int atc_line_rear_unmute(struct ct_atc *atc, unsigned char state)
  863. {
  864. return atc_daio_unmute(atc, state, LINEO2);
  865. }
  866. static int atc_line_in_unmute(struct ct_atc *atc, unsigned char state)
  867. {
  868. return atc_daio_unmute(atc, state, LINEIM);
  869. }
  870. static int atc_spdif_out_unmute(struct ct_atc *atc, unsigned char state)
  871. {
  872. return atc_daio_unmute(atc, state, SPDIFOO);
  873. }
  874. static int atc_spdif_in_unmute(struct ct_atc *atc, unsigned char state)
  875. {
  876. return atc_daio_unmute(atc, state, SPDIFIO);
  877. }
  878. static int atc_spdif_out_get_status(struct ct_atc *atc, unsigned int *status)
  879. {
  880. return atc_dao_get_status(atc, status, SPDIFOO);
  881. }
  882. static int atc_spdif_out_set_status(struct ct_atc *atc, unsigned int status)
  883. {
  884. return atc_dao_set_status(atc, status, SPDIFOO);
  885. }
  886. static int atc_spdif_out_passthru(struct ct_atc *atc, unsigned char state)
  887. {
  888. unsigned long flags;
  889. struct dao_desc da_dsc = {0};
  890. struct dao *dao = NULL;
  891. int err = 0;
  892. struct ct_mixer *mixer = atc->mixer;
  893. struct rsc *rscs[2] = {NULL};
  894. unsigned int spos = 0;
  895. spin_lock_irqsave(&atc->atc_lock, flags);
  896. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  897. da_dsc.msr = state ? 1 : atc->msr;
  898. da_dsc.passthru = state ? 1 : 0;
  899. err = dao->ops->reinit(dao, &da_dsc);
  900. if (state) {
  901. spos = IEC958_DEFAULT_CON;
  902. } else {
  903. mixer->get_output_ports(mixer, MIX_SPDIF_OUT,
  904. &rscs[0], &rscs[1]);
  905. dao->ops->set_left_input(dao, rscs[0]);
  906. dao->ops->set_right_input(dao, rscs[1]);
  907. /* Restore PLL to atc->rsr if needed. */
  908. if (atc->pll_rate != atc->rsr) {
  909. err = ((struct hw *)atc->hw)->pll_init(atc->hw,
  910. atc->rsr);
  911. atc->pll_rate = err ? 0 : atc->rsr;
  912. }
  913. }
  914. dao->ops->set_spos(dao, spos);
  915. dao->ops->commit_write(dao);
  916. spin_unlock_irqrestore(&atc->atc_lock, flags);
  917. return err;
  918. }
  919. static int ct_atc_destroy(struct ct_atc *atc)
  920. {
  921. struct daio_mgr *daio_mgr = NULL;
  922. struct dao *dao = NULL;
  923. struct dai *dai = NULL;
  924. struct daio *daio = NULL;
  925. struct sum_mgr *sum_mgr = NULL;
  926. struct src_mgr *src_mgr = NULL;
  927. struct srcimp_mgr *srcimp_mgr = NULL;
  928. struct srcimp *srcimp = NULL;
  929. struct ct_mixer *mixer = NULL;
  930. int i = 0;
  931. if (NULL == atc)
  932. return 0;
  933. /* Stop hardware and disable all interrupts */
  934. if (NULL != atc->hw)
  935. ((struct hw *)atc->hw)->card_stop(atc->hw);
  936. /* Destroy internal mixer objects */
  937. if (NULL != atc->mixer) {
  938. mixer = atc->mixer;
  939. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  940. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  941. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  942. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  943. mixer->set_input_left(mixer, MIX_SPDIF_IN, NULL);
  944. mixer->set_input_right(mixer, MIX_SPDIF_IN, NULL);
  945. ct_mixer_destroy(atc->mixer);
  946. }
  947. if (NULL != atc->daios) {
  948. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  949. for (i = 0; i < atc->n_daio; i++) {
  950. daio = atc->daios[i];
  951. if (daio->type < LINEIM) {
  952. dao = container_of(daio, struct dao, daio);
  953. dao->ops->clear_left_input(dao);
  954. dao->ops->clear_right_input(dao);
  955. } else {
  956. dai = container_of(daio, struct dai, daio);
  957. /* some thing to do for dai ... */
  958. }
  959. daio_mgr->put_daio(daio_mgr, daio);
  960. }
  961. kfree(atc->daios);
  962. }
  963. if (NULL != atc->pcm) {
  964. sum_mgr = atc->rsc_mgrs[SUM];
  965. for (i = 0; i < atc->n_pcm; i++)
  966. sum_mgr->put_sum(sum_mgr, atc->pcm[i]);
  967. kfree(atc->pcm);
  968. }
  969. if (NULL != atc->srcs) {
  970. src_mgr = atc->rsc_mgrs[SRC];
  971. for (i = 0; i < atc->n_src; i++)
  972. src_mgr->put_src(src_mgr, atc->srcs[i]);
  973. kfree(atc->srcs);
  974. }
  975. if (NULL != atc->srcimps) {
  976. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  977. for (i = 0; i < atc->n_srcimp; i++) {
  978. srcimp = atc->srcimps[i];
  979. srcimp->ops->unmap(srcimp);
  980. srcimp_mgr->put_srcimp(srcimp_mgr, atc->srcimps[i]);
  981. }
  982. kfree(atc->srcimps);
  983. }
  984. for (i = 0; i < NUM_RSCTYP; i++) {
  985. if ((NULL != rsc_mgr_funcs[i].destroy) &&
  986. (NULL != atc->rsc_mgrs[i]))
  987. rsc_mgr_funcs[i].destroy(atc->rsc_mgrs[i]);
  988. }
  989. if (NULL != atc->hw)
  990. destroy_hw_obj((struct hw *)atc->hw);
  991. /* Destroy device virtual memory manager object */
  992. if (NULL != atc->vm) {
  993. ct_vm_destroy(atc->vm);
  994. atc->vm = NULL;
  995. }
  996. kfree(atc);
  997. return 0;
  998. }
  999. static int atc_dev_free(struct snd_device *dev)
  1000. {
  1001. struct ct_atc *atc = dev->device_data;
  1002. return ct_atc_destroy(atc);
  1003. }
  1004. static int atc_identify_card(struct ct_atc *atc)
  1005. {
  1006. u16 subsys;
  1007. u8 revision;
  1008. struct pci_dev *pci = atc->pci;
  1009. const struct ct_atc_chip_details *d;
  1010. enum CTCARDS i;
  1011. subsys = pci->subsystem_device;
  1012. revision = pci->revision;
  1013. atc->chip_details = NULL;
  1014. atc->model = NUM_CTCARDS;
  1015. for (d = atc_chip_details; d->vendor; d++) {
  1016. if (d->vendor != pci->vendor || d->device != pci->device)
  1017. continue;
  1018. if (NULL == d->sub_details) {
  1019. atc->chip_details = d;
  1020. break;
  1021. }
  1022. for (i = 0; i < NUM_CTCARDS; i++) {
  1023. if ((d->sub_details[i].subsys == subsys) ||
  1024. (((subsys & 0x6000) == 0x6000) &&
  1025. ((d->sub_details[i].subsys & 0x6000) == 0x6000))) {
  1026. atc->model = i;
  1027. break;
  1028. }
  1029. }
  1030. if (i >= NUM_CTCARDS)
  1031. continue;
  1032. atc->chip_details = d;
  1033. break;
  1034. /* not take revision into consideration now */
  1035. }
  1036. if (!d->vendor)
  1037. return -ENOENT;
  1038. return 0;
  1039. }
  1040. static int ct_create_alsa_devs(struct ct_atc *atc)
  1041. {
  1042. enum CTALSADEVS i;
  1043. struct hw *hw = atc->hw;
  1044. int err;
  1045. switch (hw->get_chip_type(hw)) {
  1046. case ATC20K1:
  1047. alsa_dev_funcs[MIXER].public_name = "20K1";
  1048. break;
  1049. case ATC20K2:
  1050. alsa_dev_funcs[MIXER].public_name = "20K2";
  1051. break;
  1052. default:
  1053. alsa_dev_funcs[MIXER].public_name = "Unknown";
  1054. break;
  1055. }
  1056. for (i = 0; i < NUM_CTALSADEVS; i++) {
  1057. if (NULL == alsa_dev_funcs[i].create)
  1058. continue;
  1059. err = alsa_dev_funcs[i].create(atc, i,
  1060. alsa_dev_funcs[i].public_name);
  1061. if (err) {
  1062. printk(KERN_ERR "ctxfi: "
  1063. "Creating alsa device %d failed!\n", i);
  1064. return err;
  1065. }
  1066. }
  1067. return 0;
  1068. }
  1069. static int atc_create_hw_devs(struct ct_atc *atc)
  1070. {
  1071. struct hw *hw = NULL;
  1072. struct card_conf info = {0};
  1073. int i = 0, err = 0;
  1074. err = create_hw_obj(atc->pci, &hw);
  1075. if (err) {
  1076. printk(KERN_ERR "Failed to create hw obj!!!\n");
  1077. return err;
  1078. }
  1079. atc->hw = hw;
  1080. /* Initialize card hardware. */
  1081. info.rsr = atc->rsr;
  1082. info.msr = atc->msr;
  1083. info.vm_pgt_phys = atc_get_ptp_phys(atc, 0);
  1084. err = hw->card_init(hw, &info);
  1085. if (err < 0)
  1086. return err;
  1087. for (i = 0; i < NUM_RSCTYP; i++) {
  1088. if (NULL == rsc_mgr_funcs[i].create)
  1089. continue;
  1090. err = rsc_mgr_funcs[i].create(atc->hw, &atc->rsc_mgrs[i]);
  1091. if (err) {
  1092. printk(KERN_ERR "ctxfi: "
  1093. "Failed to create rsc_mgr %d!!!\n", i);
  1094. return err;
  1095. }
  1096. }
  1097. return 0;
  1098. }
  1099. static int atc_get_resources(struct ct_atc *atc)
  1100. {
  1101. struct daio_desc da_desc = {0};
  1102. struct daio_mgr *daio_mgr = NULL;
  1103. struct src_desc src_dsc = {0};
  1104. struct src_mgr *src_mgr = NULL;
  1105. struct srcimp_desc srcimp_dsc = {0};
  1106. struct srcimp_mgr *srcimp_mgr = NULL;
  1107. struct sum_desc sum_dsc = {0};
  1108. struct sum_mgr *sum_mgr = NULL;
  1109. int err = 0, i = 0;
  1110. unsigned short subsys_id;
  1111. atc->daios = kzalloc(sizeof(void *)*(DAIONUM), GFP_KERNEL);
  1112. if (NULL == atc->daios)
  1113. return -ENOMEM;
  1114. atc->srcs = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
  1115. if (NULL == atc->srcs)
  1116. return -ENOMEM;
  1117. atc->srcimps = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
  1118. if (NULL == atc->srcimps)
  1119. return -ENOMEM;
  1120. atc->pcm = kzalloc(sizeof(void *)*(2*4), GFP_KERNEL);
  1121. if (NULL == atc->pcm)
  1122. return -ENOMEM;
  1123. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  1124. da_desc.msr = atc->msr;
  1125. for (i = 0, atc->n_daio = 0; i < DAIONUM-1; i++) {
  1126. da_desc.type = i;
  1127. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1128. (struct daio **)&atc->daios[i]);
  1129. if (err) {
  1130. printk(KERN_ERR "ctxfi: Failed to get DAIO "
  1131. "resource %d!!!\n", i);
  1132. return err;
  1133. }
  1134. atc->n_daio++;
  1135. }
  1136. subsys_id = atc->pci->subsystem_device;
  1137. if ((subsys_id == 0x0029) || (subsys_id == 0x0031)) {
  1138. /* SB073x cards */
  1139. da_desc.type = SPDIFI1;
  1140. } else {
  1141. da_desc.type = SPDIFIO;
  1142. }
  1143. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1144. (struct daio **)&atc->daios[i]);
  1145. if (err) {
  1146. printk(KERN_ERR "ctxfi: Failed to get S/PDIF-in resource!!!\n");
  1147. return err;
  1148. }
  1149. atc->n_daio++;
  1150. src_mgr = atc->rsc_mgrs[SRC];
  1151. src_dsc.multi = 1;
  1152. src_dsc.msr = atc->msr;
  1153. src_dsc.mode = ARCRW;
  1154. for (i = 0, atc->n_src = 0; i < (2*2); i++) {
  1155. err = src_mgr->get_src(src_mgr, &src_dsc,
  1156. (struct src **)&atc->srcs[i]);
  1157. if (err)
  1158. return err;
  1159. atc->n_src++;
  1160. }
  1161. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  1162. srcimp_dsc.msr = 8; /* SRCIMPs for S/PDIFIn SRT */
  1163. for (i = 0, atc->n_srcimp = 0; i < (2*1); i++) {
  1164. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1165. (struct srcimp **)&atc->srcimps[i]);
  1166. if (err)
  1167. return err;
  1168. atc->n_srcimp++;
  1169. }
  1170. srcimp_dsc.msr = 8; /* SRCIMPs for LINE/MICIn SRT */
  1171. for (i = 0; i < (2*1); i++) {
  1172. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1173. (struct srcimp **)&atc->srcimps[2*1+i]);
  1174. if (err)
  1175. return err;
  1176. atc->n_srcimp++;
  1177. }
  1178. sum_mgr = atc->rsc_mgrs[SUM];
  1179. sum_dsc.msr = atc->msr;
  1180. for (i = 0, atc->n_pcm = 0; i < (2*4); i++) {
  1181. err = sum_mgr->get_sum(sum_mgr, &sum_dsc,
  1182. (struct sum **)&atc->pcm[i]);
  1183. if (err)
  1184. return err;
  1185. atc->n_pcm++;
  1186. }
  1187. err = ct_mixer_create(atc, (struct ct_mixer **)&atc->mixer);
  1188. if (err) {
  1189. printk(KERN_ERR "ctxfi: Failed to create mixer obj!!!\n");
  1190. return err;
  1191. }
  1192. return 0;
  1193. }
  1194. static void
  1195. atc_connect_dai(struct src_mgr *src_mgr, struct dai *dai,
  1196. struct src **srcs, struct srcimp **srcimps)
  1197. {
  1198. struct rsc *rscs[2] = {NULL};
  1199. struct src *src = NULL;
  1200. struct srcimp *srcimp = NULL;
  1201. int i = 0;
  1202. rscs[0] = &dai->daio.rscl;
  1203. rscs[1] = &dai->daio.rscr;
  1204. for (i = 0; i < 2; i++) {
  1205. src = srcs[i];
  1206. srcimp = srcimps[i];
  1207. srcimp->ops->map(srcimp, src, rscs[i]);
  1208. src_mgr->src_disable(src_mgr, src);
  1209. }
  1210. src_mgr->commit_write(src_mgr); /* Actually disable SRCs */
  1211. src = srcs[0];
  1212. src->ops->set_pm(src, 1);
  1213. for (i = 0; i < 2; i++) {
  1214. src = srcs[i];
  1215. src->ops->set_state(src, SRC_STATE_RUN);
  1216. src->ops->commit_write(src);
  1217. src_mgr->src_enable_s(src_mgr, src);
  1218. }
  1219. dai->ops->set_srt_srcl(dai, &(srcs[0]->rsc));
  1220. dai->ops->set_srt_srcr(dai, &(srcs[1]->rsc));
  1221. dai->ops->set_enb_src(dai, 1);
  1222. dai->ops->set_enb_srt(dai, 1);
  1223. dai->ops->commit_write(dai);
  1224. src_mgr->commit_write(src_mgr); /* Synchronously enable SRCs */
  1225. }
  1226. static void atc_connect_resources(struct ct_atc *atc)
  1227. {
  1228. struct dai *dai = NULL;
  1229. struct dao *dao = NULL;
  1230. struct src *src = NULL;
  1231. struct sum *sum = NULL;
  1232. struct ct_mixer *mixer = NULL;
  1233. struct rsc *rscs[2] = {NULL};
  1234. int i = 0, j = 0;
  1235. mixer = atc->mixer;
  1236. for (i = MIX_WAVE_FRONT, j = LINEO1; i <= MIX_SPDIF_OUT; i++, j++) {
  1237. mixer->get_output_ports(mixer, i, &rscs[0], &rscs[1]);
  1238. dao = container_of(atc->daios[j], struct dao, daio);
  1239. dao->ops->set_left_input(dao, rscs[0]);
  1240. dao->ops->set_right_input(dao, rscs[1]);
  1241. }
  1242. dai = container_of(atc->daios[LINEIM], struct dai, daio);
  1243. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1244. (struct src **)&atc->srcs[2],
  1245. (struct srcimp **)&atc->srcimps[2]);
  1246. src = atc->srcs[2];
  1247. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  1248. src = atc->srcs[3];
  1249. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  1250. dai = container_of(atc->daios[SPDIFIO], struct dai, daio);
  1251. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1252. (struct src **)&atc->srcs[0],
  1253. (struct srcimp **)&atc->srcimps[0]);
  1254. src = atc->srcs[0];
  1255. mixer->set_input_left(mixer, MIX_SPDIF_IN, &src->rsc);
  1256. src = atc->srcs[1];
  1257. mixer->set_input_right(mixer, MIX_SPDIF_IN, &src->rsc);
  1258. for (i = MIX_PCMI_FRONT, j = 0; i <= MIX_PCMI_SURROUND; i++, j += 2) {
  1259. sum = atc->pcm[j];
  1260. mixer->set_input_left(mixer, i, &sum->rsc);
  1261. sum = atc->pcm[j+1];
  1262. mixer->set_input_right(mixer, i, &sum->rsc);
  1263. }
  1264. }
  1265. static void atc_set_ops(struct ct_atc *atc)
  1266. {
  1267. /* Set operations */
  1268. atc->map_audio_buffer = ct_map_audio_buffer;
  1269. atc->unmap_audio_buffer = ct_unmap_audio_buffer;
  1270. atc->pcm_playback_prepare = atc_pcm_playback_prepare;
  1271. atc->pcm_release_resources = atc_pcm_release_resources;
  1272. atc->pcm_playback_start = atc_pcm_playback_start;
  1273. atc->pcm_playback_stop = atc_pcm_stop;
  1274. atc->pcm_playback_position = atc_pcm_playback_position;
  1275. atc->pcm_capture_prepare = atc_pcm_capture_prepare;
  1276. atc->pcm_capture_start = atc_pcm_capture_start;
  1277. atc->pcm_capture_stop = atc_pcm_stop;
  1278. atc->pcm_capture_position = atc_pcm_capture_position;
  1279. atc->spdif_passthru_playback_prepare = spdif_passthru_playback_prepare;
  1280. atc->get_ptp_phys = atc_get_ptp_phys;
  1281. atc->select_line_in = atc_select_line_in;
  1282. atc->select_mic_in = atc_select_mic_in;
  1283. atc->select_digit_io = atc_select_digit_io;
  1284. atc->line_front_unmute = atc_line_front_unmute;
  1285. atc->line_surround_unmute = atc_line_surround_unmute;
  1286. atc->line_clfe_unmute = atc_line_clfe_unmute;
  1287. atc->line_rear_unmute = atc_line_rear_unmute;
  1288. atc->line_in_unmute = atc_line_in_unmute;
  1289. atc->spdif_out_unmute = atc_spdif_out_unmute;
  1290. atc->spdif_in_unmute = atc_spdif_in_unmute;
  1291. atc->spdif_out_get_status = atc_spdif_out_get_status;
  1292. atc->spdif_out_set_status = atc_spdif_out_set_status;
  1293. atc->spdif_out_passthru = atc_spdif_out_passthru;
  1294. atc->have_digit_io_switch = atc_have_digit_io_switch;
  1295. }
  1296. /**
  1297. * ct_atc_create - create and initialize a hardware manager
  1298. * @card: corresponding alsa card object
  1299. * @pci: corresponding kernel pci device object
  1300. * @ratc: return created object address in it
  1301. *
  1302. * Creates and initializes a hardware manager.
  1303. *
  1304. * Creates kmallocated ct_atc structure. Initializes hardware.
  1305. * Returns 0 if suceeds, or negative error code if fails.
  1306. */
  1307. int ct_atc_create(struct snd_card *card, struct pci_dev *pci,
  1308. unsigned int rsr, unsigned int msr, struct ct_atc **ratc)
  1309. {
  1310. struct ct_atc *atc = NULL;
  1311. static struct snd_device_ops ops = {
  1312. .dev_free = atc_dev_free,
  1313. };
  1314. int err = 0;
  1315. *ratc = NULL;
  1316. atc = kzalloc(sizeof(*atc), GFP_KERNEL);
  1317. if (NULL == atc)
  1318. return -ENOMEM;
  1319. atc->card = card;
  1320. atc->pci = pci;
  1321. atc->rsr = rsr;
  1322. atc->msr = msr;
  1323. /* Set operations */
  1324. atc_set_ops(atc);
  1325. spin_lock_init(&atc->atc_lock);
  1326. /* Find card model */
  1327. err = atc_identify_card(atc);
  1328. if (err < 0) {
  1329. printk(KERN_ERR "ctatc: Card not recognised\n");
  1330. goto error1;
  1331. }
  1332. /* Set up device virtual memory management object */
  1333. err = ct_vm_create(&atc->vm);
  1334. if (err < 0)
  1335. goto error1;
  1336. /* Create all atc hw devices */
  1337. err = atc_create_hw_devs(atc);
  1338. if (err < 0)
  1339. goto error1;
  1340. /* Get resources */
  1341. err = atc_get_resources(atc);
  1342. if (err < 0)
  1343. goto error1;
  1344. /* Build topology */
  1345. atc_connect_resources(atc);
  1346. atc->create_alsa_devs = ct_create_alsa_devs;
  1347. err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, atc, &ops);
  1348. if (err < 0)
  1349. goto error1;
  1350. snd_card_set_dev(card, &pci->dev);
  1351. *ratc = atc;
  1352. return 0;
  1353. error1:
  1354. ct_atc_destroy(atc);
  1355. printk(KERN_ERR "ctxfi: Something wrong!!!\n");
  1356. return err;
  1357. }