common.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552
  1. /*
  2. * arch/arm/mach-ixp4xx/common.c
  3. *
  4. * Generic code shared across all IXP4XX platforms
  5. *
  6. * Maintainer: Deepak Saxena <dsaxena@plexity.net>
  7. *
  8. * Copyright 2002 (c) Intel Corporation
  9. * Copyright 2003-2004 (c) MontaVista, Software, Inc.
  10. *
  11. * This file is licensed under the terms of the GNU General Public
  12. * License version 2. This program is licensed "as is" without any
  13. * warranty of any kind, whether express or implied.
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/mm.h>
  17. #include <linux/init.h>
  18. #include <linux/serial.h>
  19. #include <linux/tty.h>
  20. #include <linux/platform_device.h>
  21. #include <linux/serial_core.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/bitops.h>
  24. #include <linux/time.h>
  25. #include <linux/timex.h>
  26. #include <linux/clocksource.h>
  27. #include <linux/clockchips.h>
  28. #include <linux/io.h>
  29. #include <linux/export.h>
  30. #include <mach/udc.h>
  31. #include <mach/hardware.h>
  32. #include <mach/io.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/pgtable.h>
  35. #include <asm/page.h>
  36. #include <asm/irq.h>
  37. #include <asm/sched_clock.h>
  38. #include <asm/mach/map.h>
  39. #include <asm/mach/irq.h>
  40. #include <asm/mach/time.h>
  41. static void __init ixp4xx_clocksource_init(void);
  42. static void __init ixp4xx_clockevent_init(void);
  43. static struct clock_event_device clockevent_ixp4xx;
  44. /*************************************************************************
  45. * IXP4xx chipset I/O mapping
  46. *************************************************************************/
  47. static struct map_desc ixp4xx_io_desc[] __initdata = {
  48. { /* UART, Interrupt ctrl, GPIO, timers, NPEs, MACs, USB .... */
  49. .virtual = IXP4XX_PERIPHERAL_BASE_VIRT,
  50. .pfn = __phys_to_pfn(IXP4XX_PERIPHERAL_BASE_PHYS),
  51. .length = IXP4XX_PERIPHERAL_REGION_SIZE,
  52. .type = MT_DEVICE
  53. }, { /* Expansion Bus Config Registers */
  54. .virtual = IXP4XX_EXP_CFG_BASE_VIRT,
  55. .pfn = __phys_to_pfn(IXP4XX_EXP_CFG_BASE_PHYS),
  56. .length = IXP4XX_EXP_CFG_REGION_SIZE,
  57. .type = MT_DEVICE
  58. }, { /* PCI Registers */
  59. .virtual = IXP4XX_PCI_CFG_BASE_VIRT,
  60. .pfn = __phys_to_pfn(IXP4XX_PCI_CFG_BASE_PHYS),
  61. .length = IXP4XX_PCI_CFG_REGION_SIZE,
  62. .type = MT_DEVICE
  63. },
  64. #ifdef CONFIG_DEBUG_LL
  65. { /* Debug UART mapping */
  66. .virtual = IXP4XX_DEBUG_UART_BASE_VIRT,
  67. .pfn = __phys_to_pfn(IXP4XX_DEBUG_UART_BASE_PHYS),
  68. .length = IXP4XX_DEBUG_UART_REGION_SIZE,
  69. .type = MT_DEVICE
  70. }
  71. #endif
  72. };
  73. void __init ixp4xx_map_io(void)
  74. {
  75. iotable_init(ixp4xx_io_desc, ARRAY_SIZE(ixp4xx_io_desc));
  76. }
  77. /*************************************************************************
  78. * IXP4xx chipset IRQ handling
  79. *
  80. * TODO: GPIO IRQs should be marked invalid until the user of the IRQ
  81. * (be it PCI or something else) configures that GPIO line
  82. * as an IRQ.
  83. **************************************************************************/
  84. enum ixp4xx_irq_type {
  85. IXP4XX_IRQ_LEVEL, IXP4XX_IRQ_EDGE
  86. };
  87. /* Each bit represents an IRQ: 1: edge-triggered, 0: level triggered */
  88. static unsigned long long ixp4xx_irq_edge = 0;
  89. /*
  90. * IRQ -> GPIO mapping table
  91. */
  92. static signed char irq2gpio[32] = {
  93. -1, -1, -1, -1, -1, -1, 0, 1,
  94. -1, -1, -1, -1, -1, -1, -1, -1,
  95. -1, -1, -1, 2, 3, 4, 5, 6,
  96. 7, 8, 9, 10, 11, 12, -1, -1,
  97. };
  98. int gpio_to_irq(int gpio)
  99. {
  100. int irq;
  101. for (irq = 0; irq < 32; irq++) {
  102. if (irq2gpio[irq] == gpio)
  103. return irq;
  104. }
  105. return -EINVAL;
  106. }
  107. EXPORT_SYMBOL(gpio_to_irq);
  108. int irq_to_gpio(unsigned int irq)
  109. {
  110. int gpio = (irq < 32) ? irq2gpio[irq] : -EINVAL;
  111. if (gpio == -1)
  112. return -EINVAL;
  113. return gpio;
  114. }
  115. EXPORT_SYMBOL(irq_to_gpio);
  116. static int ixp4xx_set_irq_type(struct irq_data *d, unsigned int type)
  117. {
  118. int line = irq2gpio[d->irq];
  119. u32 int_style;
  120. enum ixp4xx_irq_type irq_type;
  121. volatile u32 *int_reg;
  122. /*
  123. * Only for GPIO IRQs
  124. */
  125. if (line < 0)
  126. return -EINVAL;
  127. switch (type){
  128. case IRQ_TYPE_EDGE_BOTH:
  129. int_style = IXP4XX_GPIO_STYLE_TRANSITIONAL;
  130. irq_type = IXP4XX_IRQ_EDGE;
  131. break;
  132. case IRQ_TYPE_EDGE_RISING:
  133. int_style = IXP4XX_GPIO_STYLE_RISING_EDGE;
  134. irq_type = IXP4XX_IRQ_EDGE;
  135. break;
  136. case IRQ_TYPE_EDGE_FALLING:
  137. int_style = IXP4XX_GPIO_STYLE_FALLING_EDGE;
  138. irq_type = IXP4XX_IRQ_EDGE;
  139. break;
  140. case IRQ_TYPE_LEVEL_HIGH:
  141. int_style = IXP4XX_GPIO_STYLE_ACTIVE_HIGH;
  142. irq_type = IXP4XX_IRQ_LEVEL;
  143. break;
  144. case IRQ_TYPE_LEVEL_LOW:
  145. int_style = IXP4XX_GPIO_STYLE_ACTIVE_LOW;
  146. irq_type = IXP4XX_IRQ_LEVEL;
  147. break;
  148. default:
  149. return -EINVAL;
  150. }
  151. if (irq_type == IXP4XX_IRQ_EDGE)
  152. ixp4xx_irq_edge |= (1 << d->irq);
  153. else
  154. ixp4xx_irq_edge &= ~(1 << d->irq);
  155. if (line >= 8) { /* pins 8-15 */
  156. line -= 8;
  157. int_reg = IXP4XX_GPIO_GPIT2R;
  158. } else { /* pins 0-7 */
  159. int_reg = IXP4XX_GPIO_GPIT1R;
  160. }
  161. /* Clear the style for the appropriate pin */
  162. *int_reg &= ~(IXP4XX_GPIO_STYLE_CLEAR <<
  163. (line * IXP4XX_GPIO_STYLE_SIZE));
  164. *IXP4XX_GPIO_GPISR = (1 << line);
  165. /* Set the new style */
  166. *int_reg |= (int_style << (line * IXP4XX_GPIO_STYLE_SIZE));
  167. /* Configure the line as an input */
  168. gpio_line_config(irq2gpio[d->irq], IXP4XX_GPIO_IN);
  169. return 0;
  170. }
  171. static void ixp4xx_irq_mask(struct irq_data *d)
  172. {
  173. if ((cpu_is_ixp46x() || cpu_is_ixp43x()) && d->irq >= 32)
  174. *IXP4XX_ICMR2 &= ~(1 << (d->irq - 32));
  175. else
  176. *IXP4XX_ICMR &= ~(1 << d->irq);
  177. }
  178. static void ixp4xx_irq_ack(struct irq_data *d)
  179. {
  180. int line = (d->irq < 32) ? irq2gpio[d->irq] : -1;
  181. if (line >= 0)
  182. *IXP4XX_GPIO_GPISR = (1 << line);
  183. }
  184. /*
  185. * Level triggered interrupts on GPIO lines can only be cleared when the
  186. * interrupt condition disappears.
  187. */
  188. static void ixp4xx_irq_unmask(struct irq_data *d)
  189. {
  190. if (!(ixp4xx_irq_edge & (1 << d->irq)))
  191. ixp4xx_irq_ack(d);
  192. if ((cpu_is_ixp46x() || cpu_is_ixp43x()) && d->irq >= 32)
  193. *IXP4XX_ICMR2 |= (1 << (d->irq - 32));
  194. else
  195. *IXP4XX_ICMR |= (1 << d->irq);
  196. }
  197. static struct irq_chip ixp4xx_irq_chip = {
  198. .name = "IXP4xx",
  199. .irq_ack = ixp4xx_irq_ack,
  200. .irq_mask = ixp4xx_irq_mask,
  201. .irq_unmask = ixp4xx_irq_unmask,
  202. .irq_set_type = ixp4xx_set_irq_type,
  203. };
  204. void __init ixp4xx_init_irq(void)
  205. {
  206. int i = 0;
  207. /*
  208. * ixp4xx does not implement the XScale PWRMODE register
  209. * so it must not call cpu_do_idle().
  210. */
  211. disable_hlt();
  212. /* Route all sources to IRQ instead of FIQ */
  213. *IXP4XX_ICLR = 0x0;
  214. /* Disable all interrupt */
  215. *IXP4XX_ICMR = 0x0;
  216. if (cpu_is_ixp46x() || cpu_is_ixp43x()) {
  217. /* Route upper 32 sources to IRQ instead of FIQ */
  218. *IXP4XX_ICLR2 = 0x00;
  219. /* Disable upper 32 interrupts */
  220. *IXP4XX_ICMR2 = 0x00;
  221. }
  222. /* Default to all level triggered */
  223. for(i = 0; i < NR_IRQS; i++) {
  224. irq_set_chip_and_handler(i, &ixp4xx_irq_chip,
  225. handle_level_irq);
  226. set_irq_flags(i, IRQF_VALID);
  227. }
  228. }
  229. /*************************************************************************
  230. * IXP4xx timer tick
  231. * We use OS timer1 on the CPU for the timer tick and the timestamp
  232. * counter as a source of real clock ticks to account for missed jiffies.
  233. *************************************************************************/
  234. static irqreturn_t ixp4xx_timer_interrupt(int irq, void *dev_id)
  235. {
  236. struct clock_event_device *evt = dev_id;
  237. /* Clear Pending Interrupt by writing '1' to it */
  238. *IXP4XX_OSST = IXP4XX_OSST_TIMER_1_PEND;
  239. evt->event_handler(evt);
  240. return IRQ_HANDLED;
  241. }
  242. static struct irqaction ixp4xx_timer_irq = {
  243. .name = "timer1",
  244. .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
  245. .handler = ixp4xx_timer_interrupt,
  246. .dev_id = &clockevent_ixp4xx,
  247. };
  248. void __init ixp4xx_timer_init(void)
  249. {
  250. /* Reset/disable counter */
  251. *IXP4XX_OSRT1 = 0;
  252. /* Clear Pending Interrupt by writing '1' to it */
  253. *IXP4XX_OSST = IXP4XX_OSST_TIMER_1_PEND;
  254. /* Reset time-stamp counter */
  255. *IXP4XX_OSTS = 0;
  256. /* Connect the interrupt handler and enable the interrupt */
  257. setup_irq(IRQ_IXP4XX_TIMER1, &ixp4xx_timer_irq);
  258. ixp4xx_clocksource_init();
  259. ixp4xx_clockevent_init();
  260. }
  261. struct sys_timer ixp4xx_timer = {
  262. .init = ixp4xx_timer_init,
  263. };
  264. static struct pxa2xx_udc_mach_info ixp4xx_udc_info;
  265. void __init ixp4xx_set_udc_info(struct pxa2xx_udc_mach_info *info)
  266. {
  267. memcpy(&ixp4xx_udc_info, info, sizeof *info);
  268. }
  269. static struct resource ixp4xx_udc_resources[] = {
  270. [0] = {
  271. .start = 0xc800b000,
  272. .end = 0xc800bfff,
  273. .flags = IORESOURCE_MEM,
  274. },
  275. [1] = {
  276. .start = IRQ_IXP4XX_USB,
  277. .end = IRQ_IXP4XX_USB,
  278. .flags = IORESOURCE_IRQ,
  279. },
  280. };
  281. /*
  282. * USB device controller. The IXP4xx uses the same controller as PXA25X,
  283. * so we just use the same device.
  284. */
  285. static struct platform_device ixp4xx_udc_device = {
  286. .name = "pxa25x-udc",
  287. .id = -1,
  288. .num_resources = 2,
  289. .resource = ixp4xx_udc_resources,
  290. .dev = {
  291. .platform_data = &ixp4xx_udc_info,
  292. },
  293. };
  294. static struct platform_device *ixp4xx_devices[] __initdata = {
  295. &ixp4xx_udc_device,
  296. };
  297. static struct resource ixp46x_i2c_resources[] = {
  298. [0] = {
  299. .start = 0xc8011000,
  300. .end = 0xc801101c,
  301. .flags = IORESOURCE_MEM,
  302. },
  303. [1] = {
  304. .start = IRQ_IXP4XX_I2C,
  305. .end = IRQ_IXP4XX_I2C,
  306. .flags = IORESOURCE_IRQ
  307. }
  308. };
  309. /*
  310. * I2C controller. The IXP46x uses the same block as the IOP3xx, so
  311. * we just use the same device name.
  312. */
  313. static struct platform_device ixp46x_i2c_controller = {
  314. .name = "IOP3xx-I2C",
  315. .id = 0,
  316. .num_resources = 2,
  317. .resource = ixp46x_i2c_resources
  318. };
  319. static struct platform_device *ixp46x_devices[] __initdata = {
  320. &ixp46x_i2c_controller
  321. };
  322. unsigned long ixp4xx_exp_bus_size;
  323. EXPORT_SYMBOL(ixp4xx_exp_bus_size);
  324. void __init ixp4xx_sys_init(void)
  325. {
  326. ixp4xx_exp_bus_size = SZ_16M;
  327. platform_add_devices(ixp4xx_devices, ARRAY_SIZE(ixp4xx_devices));
  328. if (cpu_is_ixp46x()) {
  329. int region;
  330. platform_add_devices(ixp46x_devices,
  331. ARRAY_SIZE(ixp46x_devices));
  332. for (region = 0; region < 7; region++) {
  333. if((*(IXP4XX_EXP_REG(0x4 * region)) & 0x200)) {
  334. ixp4xx_exp_bus_size = SZ_32M;
  335. break;
  336. }
  337. }
  338. }
  339. printk("IXP4xx: Using %luMiB expansion bus window size\n",
  340. ixp4xx_exp_bus_size >> 20);
  341. }
  342. /*
  343. * sched_clock()
  344. */
  345. static u32 notrace ixp4xx_read_sched_clock(void)
  346. {
  347. return *IXP4XX_OSTS;
  348. }
  349. /*
  350. * clocksource
  351. */
  352. static cycle_t ixp4xx_clocksource_read(struct clocksource *c)
  353. {
  354. return *IXP4XX_OSTS;
  355. }
  356. unsigned long ixp4xx_timer_freq = IXP4XX_TIMER_FREQ;
  357. EXPORT_SYMBOL(ixp4xx_timer_freq);
  358. static void __init ixp4xx_clocksource_init(void)
  359. {
  360. setup_sched_clock(ixp4xx_read_sched_clock, 32, ixp4xx_timer_freq);
  361. clocksource_mmio_init(NULL, "OSTS", ixp4xx_timer_freq, 200, 32,
  362. ixp4xx_clocksource_read);
  363. }
  364. /*
  365. * clockevents
  366. */
  367. static int ixp4xx_set_next_event(unsigned long evt,
  368. struct clock_event_device *unused)
  369. {
  370. unsigned long opts = *IXP4XX_OSRT1 & IXP4XX_OST_RELOAD_MASK;
  371. *IXP4XX_OSRT1 = (evt & ~IXP4XX_OST_RELOAD_MASK) | opts;
  372. return 0;
  373. }
  374. static void ixp4xx_set_mode(enum clock_event_mode mode,
  375. struct clock_event_device *evt)
  376. {
  377. unsigned long opts = *IXP4XX_OSRT1 & IXP4XX_OST_RELOAD_MASK;
  378. unsigned long osrt = *IXP4XX_OSRT1 & ~IXP4XX_OST_RELOAD_MASK;
  379. switch (mode) {
  380. case CLOCK_EVT_MODE_PERIODIC:
  381. osrt = LATCH & ~IXP4XX_OST_RELOAD_MASK;
  382. opts = IXP4XX_OST_ENABLE;
  383. break;
  384. case CLOCK_EVT_MODE_ONESHOT:
  385. /* period set by 'set next_event' */
  386. osrt = 0;
  387. opts = IXP4XX_OST_ENABLE | IXP4XX_OST_ONE_SHOT;
  388. break;
  389. case CLOCK_EVT_MODE_SHUTDOWN:
  390. opts &= ~IXP4XX_OST_ENABLE;
  391. break;
  392. case CLOCK_EVT_MODE_RESUME:
  393. opts |= IXP4XX_OST_ENABLE;
  394. break;
  395. case CLOCK_EVT_MODE_UNUSED:
  396. default:
  397. osrt = opts = 0;
  398. break;
  399. }
  400. *IXP4XX_OSRT1 = osrt | opts;
  401. }
  402. static struct clock_event_device clockevent_ixp4xx = {
  403. .name = "ixp4xx timer1",
  404. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  405. .rating = 200,
  406. .shift = 24,
  407. .set_mode = ixp4xx_set_mode,
  408. .set_next_event = ixp4xx_set_next_event,
  409. };
  410. static void __init ixp4xx_clockevent_init(void)
  411. {
  412. clockevent_ixp4xx.mult = div_sc(IXP4XX_TIMER_FREQ, NSEC_PER_SEC,
  413. clockevent_ixp4xx.shift);
  414. clockevent_ixp4xx.max_delta_ns =
  415. clockevent_delta2ns(0xfffffffe, &clockevent_ixp4xx);
  416. clockevent_ixp4xx.min_delta_ns =
  417. clockevent_delta2ns(0xf, &clockevent_ixp4xx);
  418. clockevent_ixp4xx.cpumask = cpumask_of(0);
  419. clockevents_register_device(&clockevent_ixp4xx);
  420. }
  421. void ixp4xx_restart(char mode, const char *cmd)
  422. {
  423. if ( 1 && mode == 's') {
  424. /* Jump into ROM at address 0 */
  425. soft_restart(0);
  426. } else {
  427. /* Use on-chip reset capability */
  428. /* set the "key" register to enable access to
  429. * "timer" and "enable" registers
  430. */
  431. *IXP4XX_OSWK = IXP4XX_WDT_KEY;
  432. /* write 0 to the timer register for an immediate reset */
  433. *IXP4XX_OSWT = 0;
  434. *IXP4XX_OSWE = IXP4XX_WDT_RESET_ENABLE | IXP4XX_WDT_COUNT_ENABLE;
  435. }
  436. }
  437. #ifdef CONFIG_IXP4XX_INDIRECT_PCI
  438. /*
  439. * In the case of using indirect PCI, we simply return the actual PCI
  440. * address and our read/write implementation use that to drive the
  441. * access registers. If something outside of PCI is ioremap'd, we
  442. * fallback to the default.
  443. */
  444. static void __iomem *ixp4xx_ioremap_caller(unsigned long addr, size_t size,
  445. unsigned int mtype, void *caller)
  446. {
  447. if (!is_pci_memory(addr))
  448. return __arm_ioremap_caller(addr, size, mtype, caller);
  449. return (void __iomem *)addr;
  450. }
  451. static void ixp4xx_iounmap(void __iomem *addr)
  452. {
  453. if (!is_pci_memory((__force u32)addr))
  454. __iounmap(addr);
  455. }
  456. void __init ixp4xx_init_early(void)
  457. {
  458. arch_ioremap_caller = ixp4xx_ioremap_caller;
  459. arch_iounmap = ixp4xx_iounmap;
  460. }
  461. #else
  462. void __init ixp4xx_init_early(void) {}
  463. #endif