txrx.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829
  1. /*
  2. * Copyright (c) 2004-2011 Atheros Communications Inc.
  3. * Copyright (c) 2011-2012 Qualcomm Atheros, Inc.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. #include "core.h"
  18. #include "debug.h"
  19. /*
  20. * tid - tid_mux0..tid_mux3
  21. * aid - tid_mux4..tid_mux7
  22. */
  23. #define ATH6KL_TID_MASK 0xf
  24. #define ATH6KL_AID_SHIFT 4
  25. static inline u8 ath6kl_get_tid(u8 tid_mux)
  26. {
  27. return tid_mux & ATH6KL_TID_MASK;
  28. }
  29. static inline u8 ath6kl_get_aid(u8 tid_mux)
  30. {
  31. return tid_mux >> ATH6KL_AID_SHIFT;
  32. }
  33. static u8 ath6kl_ibss_map_epid(struct sk_buff *skb, struct net_device *dev,
  34. u32 *map_no)
  35. {
  36. struct ath6kl *ar = ath6kl_priv(dev);
  37. struct ethhdr *eth_hdr;
  38. u32 i, ep_map = -1;
  39. u8 *datap;
  40. *map_no = 0;
  41. datap = skb->data;
  42. eth_hdr = (struct ethhdr *) (datap + sizeof(struct wmi_data_hdr));
  43. if (is_multicast_ether_addr(eth_hdr->h_dest))
  44. return ENDPOINT_2;
  45. for (i = 0; i < ar->node_num; i++) {
  46. if (memcmp(eth_hdr->h_dest, ar->node_map[i].mac_addr,
  47. ETH_ALEN) == 0) {
  48. *map_no = i + 1;
  49. ar->node_map[i].tx_pend++;
  50. return ar->node_map[i].ep_id;
  51. }
  52. if ((ep_map == -1) && !ar->node_map[i].tx_pend)
  53. ep_map = i;
  54. }
  55. if (ep_map == -1) {
  56. ep_map = ar->node_num;
  57. ar->node_num++;
  58. if (ar->node_num > MAX_NODE_NUM)
  59. return ENDPOINT_UNUSED;
  60. }
  61. memcpy(ar->node_map[ep_map].mac_addr, eth_hdr->h_dest, ETH_ALEN);
  62. for (i = ENDPOINT_2; i <= ENDPOINT_5; i++) {
  63. if (!ar->tx_pending[i]) {
  64. ar->node_map[ep_map].ep_id = i;
  65. break;
  66. }
  67. /*
  68. * No free endpoint is available, start redistribution on
  69. * the inuse endpoints.
  70. */
  71. if (i == ENDPOINT_5) {
  72. ar->node_map[ep_map].ep_id = ar->next_ep_id;
  73. ar->next_ep_id++;
  74. if (ar->next_ep_id > ENDPOINT_5)
  75. ar->next_ep_id = ENDPOINT_2;
  76. }
  77. }
  78. *map_no = ep_map + 1;
  79. ar->node_map[ep_map].tx_pend++;
  80. return ar->node_map[ep_map].ep_id;
  81. }
  82. static bool ath6kl_process_uapsdq(struct ath6kl_sta *conn,
  83. struct ath6kl_vif *vif,
  84. struct sk_buff *skb,
  85. u32 *flags)
  86. {
  87. struct ath6kl *ar = vif->ar;
  88. bool is_apsdq_empty = false;
  89. struct ethhdr *datap = (struct ethhdr *) skb->data;
  90. u8 up = 0, traffic_class, *ip_hdr;
  91. u16 ether_type;
  92. struct ath6kl_llc_snap_hdr *llc_hdr;
  93. if (conn->sta_flags & STA_PS_APSD_TRIGGER) {
  94. /*
  95. * This tx is because of a uAPSD trigger, determine
  96. * more and EOSP bit. Set EOSP if queue is empty
  97. * or sufficient frames are delivered for this trigger.
  98. */
  99. spin_lock_bh(&conn->psq_lock);
  100. if (!skb_queue_empty(&conn->apsdq))
  101. *flags |= WMI_DATA_HDR_FLAGS_MORE;
  102. else if (conn->sta_flags & STA_PS_APSD_EOSP)
  103. *flags |= WMI_DATA_HDR_FLAGS_EOSP;
  104. *flags |= WMI_DATA_HDR_FLAGS_UAPSD;
  105. spin_unlock_bh(&conn->psq_lock);
  106. return false;
  107. } else if (!conn->apsd_info)
  108. return false;
  109. if (test_bit(WMM_ENABLED, &vif->flags)) {
  110. ether_type = be16_to_cpu(datap->h_proto);
  111. if (is_ethertype(ether_type)) {
  112. /* packet is in DIX format */
  113. ip_hdr = (u8 *)(datap + 1);
  114. } else {
  115. /* packet is in 802.3 format */
  116. llc_hdr = (struct ath6kl_llc_snap_hdr *)
  117. (datap + 1);
  118. ether_type = be16_to_cpu(llc_hdr->eth_type);
  119. ip_hdr = (u8 *)(llc_hdr + 1);
  120. }
  121. if (ether_type == IP_ETHERTYPE)
  122. up = ath6kl_wmi_determine_user_priority(
  123. ip_hdr, 0);
  124. }
  125. traffic_class = ath6kl_wmi_get_traffic_class(up);
  126. if ((conn->apsd_info & (1 << traffic_class)) == 0)
  127. return false;
  128. /* Queue the frames if the STA is sleeping */
  129. spin_lock_bh(&conn->psq_lock);
  130. is_apsdq_empty = skb_queue_empty(&conn->apsdq);
  131. skb_queue_tail(&conn->apsdq, skb);
  132. spin_unlock_bh(&conn->psq_lock);
  133. /*
  134. * If this is the first pkt getting queued
  135. * for this STA, update the PVB for this STA
  136. */
  137. if (is_apsdq_empty) {
  138. ath6kl_wmi_set_apsd_bfrd_traf(ar->wmi,
  139. vif->fw_vif_idx,
  140. conn->aid, 1, 0);
  141. }
  142. *flags |= WMI_DATA_HDR_FLAGS_UAPSD;
  143. return true;
  144. }
  145. static bool ath6kl_process_psq(struct ath6kl_sta *conn,
  146. struct ath6kl_vif *vif,
  147. struct sk_buff *skb,
  148. u32 *flags)
  149. {
  150. bool is_psq_empty = false;
  151. struct ath6kl *ar = vif->ar;
  152. if (conn->sta_flags & STA_PS_POLLED) {
  153. spin_lock_bh(&conn->psq_lock);
  154. if (!skb_queue_empty(&conn->psq))
  155. *flags |= WMI_DATA_HDR_FLAGS_MORE;
  156. spin_unlock_bh(&conn->psq_lock);
  157. return false;
  158. }
  159. /* Queue the frames if the STA is sleeping */
  160. spin_lock_bh(&conn->psq_lock);
  161. is_psq_empty = skb_queue_empty(&conn->psq);
  162. skb_queue_tail(&conn->psq, skb);
  163. spin_unlock_bh(&conn->psq_lock);
  164. /*
  165. * If this is the first pkt getting queued
  166. * for this STA, update the PVB for this
  167. * STA.
  168. */
  169. if (is_psq_empty)
  170. ath6kl_wmi_set_pvb_cmd(ar->wmi,
  171. vif->fw_vif_idx,
  172. conn->aid, 1);
  173. return true;
  174. }
  175. static bool ath6kl_powersave_ap(struct ath6kl_vif *vif, struct sk_buff *skb,
  176. u32 *flags)
  177. {
  178. struct ethhdr *datap = (struct ethhdr *) skb->data;
  179. struct ath6kl_sta *conn = NULL;
  180. bool ps_queued = false;
  181. struct ath6kl *ar = vif->ar;
  182. if (is_multicast_ether_addr(datap->h_dest)) {
  183. u8 ctr = 0;
  184. bool q_mcast = false;
  185. for (ctr = 0; ctr < AP_MAX_NUM_STA; ctr++) {
  186. if (ar->sta_list[ctr].sta_flags & STA_PS_SLEEP) {
  187. q_mcast = true;
  188. break;
  189. }
  190. }
  191. if (q_mcast) {
  192. /*
  193. * If this transmit is not because of a Dtim Expiry
  194. * q it.
  195. */
  196. if (!test_bit(DTIM_EXPIRED, &vif->flags)) {
  197. bool is_mcastq_empty = false;
  198. spin_lock_bh(&ar->mcastpsq_lock);
  199. is_mcastq_empty =
  200. skb_queue_empty(&ar->mcastpsq);
  201. skb_queue_tail(&ar->mcastpsq, skb);
  202. spin_unlock_bh(&ar->mcastpsq_lock);
  203. /*
  204. * If this is the first Mcast pkt getting
  205. * queued indicate to the target to set the
  206. * BitmapControl LSB of the TIM IE.
  207. */
  208. if (is_mcastq_empty)
  209. ath6kl_wmi_set_pvb_cmd(ar->wmi,
  210. vif->fw_vif_idx,
  211. MCAST_AID, 1);
  212. ps_queued = true;
  213. } else {
  214. /*
  215. * This transmit is because of Dtim expiry.
  216. * Determine if MoreData bit has to be set.
  217. */
  218. spin_lock_bh(&ar->mcastpsq_lock);
  219. if (!skb_queue_empty(&ar->mcastpsq))
  220. *flags |= WMI_DATA_HDR_FLAGS_MORE;
  221. spin_unlock_bh(&ar->mcastpsq_lock);
  222. }
  223. }
  224. } else {
  225. conn = ath6kl_find_sta(vif, datap->h_dest);
  226. if (!conn) {
  227. dev_kfree_skb(skb);
  228. /* Inform the caller that the skb is consumed */
  229. return true;
  230. }
  231. if (conn->sta_flags & STA_PS_SLEEP) {
  232. ps_queued = ath6kl_process_uapsdq(conn,
  233. vif, skb, flags);
  234. if (!(*flags & WMI_DATA_HDR_FLAGS_UAPSD))
  235. ps_queued = ath6kl_process_psq(conn,
  236. vif, skb, flags);
  237. }
  238. }
  239. return ps_queued;
  240. }
  241. /* Tx functions */
  242. int ath6kl_control_tx(void *devt, struct sk_buff *skb,
  243. enum htc_endpoint_id eid)
  244. {
  245. struct ath6kl *ar = devt;
  246. int status = 0;
  247. struct ath6kl_cookie *cookie = NULL;
  248. spin_lock_bh(&ar->lock);
  249. ath6kl_dbg(ATH6KL_DBG_WLAN_TX,
  250. "%s: skb=0x%p, len=0x%x eid =%d\n", __func__,
  251. skb, skb->len, eid);
  252. if (test_bit(WMI_CTRL_EP_FULL, &ar->flag) && (eid == ar->ctrl_ep)) {
  253. /*
  254. * Control endpoint is full, don't allocate resources, we
  255. * are just going to drop this packet.
  256. */
  257. cookie = NULL;
  258. ath6kl_err("wmi ctrl ep full, dropping pkt : 0x%p, len:%d\n",
  259. skb, skb->len);
  260. } else
  261. cookie = ath6kl_alloc_cookie(ar);
  262. if (cookie == NULL) {
  263. spin_unlock_bh(&ar->lock);
  264. status = -ENOMEM;
  265. goto fail_ctrl_tx;
  266. }
  267. ar->tx_pending[eid]++;
  268. if (eid != ar->ctrl_ep)
  269. ar->total_tx_data_pend++;
  270. spin_unlock_bh(&ar->lock);
  271. cookie->skb = skb;
  272. cookie->map_no = 0;
  273. set_htc_pkt_info(&cookie->htc_pkt, cookie, skb->data, skb->len,
  274. eid, ATH6KL_CONTROL_PKT_TAG);
  275. /*
  276. * This interface is asynchronous, if there is an error, cleanup
  277. * will happen in the TX completion callback.
  278. */
  279. ath6kl_htc_tx(ar->htc_target, &cookie->htc_pkt);
  280. return 0;
  281. fail_ctrl_tx:
  282. dev_kfree_skb(skb);
  283. return status;
  284. }
  285. int ath6kl_data_tx(struct sk_buff *skb, struct net_device *dev)
  286. {
  287. struct ath6kl *ar = ath6kl_priv(dev);
  288. struct ath6kl_cookie *cookie = NULL;
  289. enum htc_endpoint_id eid = ENDPOINT_UNUSED;
  290. struct ath6kl_vif *vif = netdev_priv(dev);
  291. u32 map_no = 0;
  292. u16 htc_tag = ATH6KL_DATA_PKT_TAG;
  293. u8 ac = 99 ; /* initialize to unmapped ac */
  294. bool chk_adhoc_ps_mapping = false;
  295. int ret;
  296. struct wmi_tx_meta_v2 meta_v2;
  297. void *meta;
  298. u8 csum_start = 0, csum_dest = 0, csum = skb->ip_summed;
  299. u8 meta_ver = 0;
  300. u32 flags = 0;
  301. ath6kl_dbg(ATH6KL_DBG_WLAN_TX,
  302. "%s: skb=0x%p, data=0x%p, len=0x%x\n", __func__,
  303. skb, skb->data, skb->len);
  304. /* If target is not associated */
  305. if (!test_bit(CONNECTED, &vif->flags)) {
  306. dev_kfree_skb(skb);
  307. return 0;
  308. }
  309. if (!test_bit(WMI_READY, &ar->flag))
  310. goto fail_tx;
  311. /* AP mode Power saving processing */
  312. if (vif->nw_type == AP_NETWORK) {
  313. if (ath6kl_powersave_ap(vif, skb, &flags))
  314. return 0;
  315. }
  316. if (test_bit(WMI_ENABLED, &ar->flag)) {
  317. if ((dev->features & NETIF_F_IP_CSUM) &&
  318. (csum == CHECKSUM_PARTIAL)) {
  319. csum_start = skb->csum_start -
  320. (skb_network_header(skb) - skb->head) +
  321. sizeof(struct ath6kl_llc_snap_hdr);
  322. csum_dest = skb->csum_offset + csum_start;
  323. }
  324. if (skb_headroom(skb) < dev->needed_headroom) {
  325. struct sk_buff *tmp_skb = skb;
  326. skb = skb_realloc_headroom(skb, dev->needed_headroom);
  327. kfree_skb(tmp_skb);
  328. if (skb == NULL) {
  329. vif->net_stats.tx_dropped++;
  330. return 0;
  331. }
  332. }
  333. if (ath6kl_wmi_dix_2_dot3(ar->wmi, skb)) {
  334. ath6kl_err("ath6kl_wmi_dix_2_dot3 failed\n");
  335. goto fail_tx;
  336. }
  337. if ((dev->features & NETIF_F_IP_CSUM) &&
  338. (csum == CHECKSUM_PARTIAL)) {
  339. meta_v2.csum_start = csum_start;
  340. meta_v2.csum_dest = csum_dest;
  341. /* instruct target to calculate checksum */
  342. meta_v2.csum_flags = WMI_META_V2_FLAG_CSUM_OFFLOAD;
  343. meta_ver = WMI_META_VERSION_2;
  344. meta = &meta_v2;
  345. } else {
  346. meta_ver = 0;
  347. meta = NULL;
  348. }
  349. ret = ath6kl_wmi_data_hdr_add(ar->wmi, skb,
  350. DATA_MSGTYPE, flags, 0,
  351. meta_ver,
  352. meta, vif->fw_vif_idx);
  353. if (ret) {
  354. ath6kl_warn("failed to add wmi data header:%d\n"
  355. , ret);
  356. goto fail_tx;
  357. }
  358. if ((vif->nw_type == ADHOC_NETWORK) &&
  359. ar->ibss_ps_enable && test_bit(CONNECTED, &vif->flags))
  360. chk_adhoc_ps_mapping = true;
  361. else {
  362. /* get the stream mapping */
  363. ret = ath6kl_wmi_implicit_create_pstream(ar->wmi,
  364. vif->fw_vif_idx, skb,
  365. 0, test_bit(WMM_ENABLED, &vif->flags), &ac);
  366. if (ret)
  367. goto fail_tx;
  368. }
  369. } else
  370. goto fail_tx;
  371. spin_lock_bh(&ar->lock);
  372. if (chk_adhoc_ps_mapping)
  373. eid = ath6kl_ibss_map_epid(skb, dev, &map_no);
  374. else
  375. eid = ar->ac2ep_map[ac];
  376. if (eid == 0 || eid == ENDPOINT_UNUSED) {
  377. ath6kl_err("eid %d is not mapped!\n", eid);
  378. spin_unlock_bh(&ar->lock);
  379. goto fail_tx;
  380. }
  381. /* allocate resource for this packet */
  382. cookie = ath6kl_alloc_cookie(ar);
  383. if (!cookie) {
  384. spin_unlock_bh(&ar->lock);
  385. goto fail_tx;
  386. }
  387. /* update counts while the lock is held */
  388. ar->tx_pending[eid]++;
  389. ar->total_tx_data_pend++;
  390. spin_unlock_bh(&ar->lock);
  391. if (!IS_ALIGNED((unsigned long) skb->data - HTC_HDR_LENGTH, 4) &&
  392. skb_cloned(skb)) {
  393. /*
  394. * We will touch (move the buffer data to align it. Since the
  395. * skb buffer is cloned and not only the header is changed, we
  396. * have to copy it to allow the changes. Since we are copying
  397. * the data here, we may as well align it by reserving suitable
  398. * headroom to avoid the memmove in ath6kl_htc_tx_buf_align().
  399. */
  400. struct sk_buff *nskb;
  401. nskb = skb_copy_expand(skb, HTC_HDR_LENGTH, 0, GFP_ATOMIC);
  402. if (nskb == NULL)
  403. goto fail_tx;
  404. kfree_skb(skb);
  405. skb = nskb;
  406. }
  407. cookie->skb = skb;
  408. cookie->map_no = map_no;
  409. set_htc_pkt_info(&cookie->htc_pkt, cookie, skb->data, skb->len,
  410. eid, htc_tag);
  411. ath6kl_dbg_dump(ATH6KL_DBG_RAW_BYTES, __func__, "tx ",
  412. skb->data, skb->len);
  413. /*
  414. * HTC interface is asynchronous, if this fails, cleanup will
  415. * happen in the ath6kl_tx_complete callback.
  416. */
  417. ath6kl_htc_tx(ar->htc_target, &cookie->htc_pkt);
  418. return 0;
  419. fail_tx:
  420. dev_kfree_skb(skb);
  421. vif->net_stats.tx_dropped++;
  422. vif->net_stats.tx_aborted_errors++;
  423. return 0;
  424. }
  425. /* indicate tx activity or inactivity on a WMI stream */
  426. void ath6kl_indicate_tx_activity(void *devt, u8 traffic_class, bool active)
  427. {
  428. struct ath6kl *ar = devt;
  429. enum htc_endpoint_id eid;
  430. int i;
  431. eid = ar->ac2ep_map[traffic_class];
  432. if (!test_bit(WMI_ENABLED, &ar->flag))
  433. goto notify_htc;
  434. spin_lock_bh(&ar->lock);
  435. ar->ac_stream_active[traffic_class] = active;
  436. if (active) {
  437. /*
  438. * Keep track of the active stream with the highest
  439. * priority.
  440. */
  441. if (ar->ac_stream_pri_map[traffic_class] >
  442. ar->hiac_stream_active_pri)
  443. /* set the new highest active priority */
  444. ar->hiac_stream_active_pri =
  445. ar->ac_stream_pri_map[traffic_class];
  446. } else {
  447. /*
  448. * We may have to search for the next active stream
  449. * that is the highest priority.
  450. */
  451. if (ar->hiac_stream_active_pri ==
  452. ar->ac_stream_pri_map[traffic_class]) {
  453. /*
  454. * The highest priority stream just went inactive
  455. * reset and search for the "next" highest "active"
  456. * priority stream.
  457. */
  458. ar->hiac_stream_active_pri = 0;
  459. for (i = 0; i < WMM_NUM_AC; i++) {
  460. if (ar->ac_stream_active[i] &&
  461. (ar->ac_stream_pri_map[i] >
  462. ar->hiac_stream_active_pri))
  463. /*
  464. * Set the new highest active
  465. * priority.
  466. */
  467. ar->hiac_stream_active_pri =
  468. ar->ac_stream_pri_map[i];
  469. }
  470. }
  471. }
  472. spin_unlock_bh(&ar->lock);
  473. notify_htc:
  474. /* notify HTC, this may cause credit distribution changes */
  475. ath6kl_htc_indicate_activity_change(ar->htc_target, eid, active);
  476. }
  477. enum htc_send_full_action ath6kl_tx_queue_full(struct htc_target *target,
  478. struct htc_packet *packet)
  479. {
  480. struct ath6kl *ar = target->dev->ar;
  481. struct ath6kl_vif *vif;
  482. enum htc_endpoint_id endpoint = packet->endpoint;
  483. enum htc_send_full_action action = HTC_SEND_FULL_KEEP;
  484. if (endpoint == ar->ctrl_ep) {
  485. /*
  486. * Under normal WMI if this is getting full, then something
  487. * is running rampant the host should not be exhausting the
  488. * WMI queue with too many commands the only exception to
  489. * this is during testing using endpointping.
  490. */
  491. set_bit(WMI_CTRL_EP_FULL, &ar->flag);
  492. ath6kl_err("wmi ctrl ep is full\n");
  493. return action;
  494. }
  495. if (packet->info.tx.tag == ATH6KL_CONTROL_PKT_TAG)
  496. return action;
  497. /*
  498. * The last MAX_HI_COOKIE_NUM "batch" of cookies are reserved for
  499. * the highest active stream.
  500. */
  501. if (ar->ac_stream_pri_map[ar->ep2ac_map[endpoint]] <
  502. ar->hiac_stream_active_pri &&
  503. ar->cookie_count <=
  504. target->endpoint[endpoint].tx_drop_packet_threshold)
  505. /*
  506. * Give preference to the highest priority stream by
  507. * dropping the packets which overflowed.
  508. */
  509. action = HTC_SEND_FULL_DROP;
  510. /* FIXME: Locking */
  511. spin_lock_bh(&ar->list_lock);
  512. list_for_each_entry(vif, &ar->vif_list, list) {
  513. if (vif->nw_type == ADHOC_NETWORK ||
  514. action != HTC_SEND_FULL_DROP) {
  515. spin_unlock_bh(&ar->list_lock);
  516. set_bit(NETQ_STOPPED, &vif->flags);
  517. netif_stop_queue(vif->ndev);
  518. return action;
  519. }
  520. }
  521. spin_unlock_bh(&ar->list_lock);
  522. return action;
  523. }
  524. /* TODO this needs to be looked at */
  525. static void ath6kl_tx_clear_node_map(struct ath6kl_vif *vif,
  526. enum htc_endpoint_id eid, u32 map_no)
  527. {
  528. struct ath6kl *ar = vif->ar;
  529. u32 i;
  530. if (vif->nw_type != ADHOC_NETWORK)
  531. return;
  532. if (!ar->ibss_ps_enable)
  533. return;
  534. if (eid == ar->ctrl_ep)
  535. return;
  536. if (map_no == 0)
  537. return;
  538. map_no--;
  539. ar->node_map[map_no].tx_pend--;
  540. if (ar->node_map[map_no].tx_pend)
  541. return;
  542. if (map_no != (ar->node_num - 1))
  543. return;
  544. for (i = ar->node_num; i > 0; i--) {
  545. if (ar->node_map[i - 1].tx_pend)
  546. break;
  547. memset(&ar->node_map[i - 1], 0,
  548. sizeof(struct ath6kl_node_mapping));
  549. ar->node_num--;
  550. }
  551. }
  552. void ath6kl_tx_complete(void *context, struct list_head *packet_queue)
  553. {
  554. struct ath6kl *ar = context;
  555. struct sk_buff_head skb_queue;
  556. struct htc_packet *packet;
  557. struct sk_buff *skb;
  558. struct ath6kl_cookie *ath6kl_cookie;
  559. u32 map_no = 0;
  560. int status;
  561. enum htc_endpoint_id eid;
  562. bool wake_event = false;
  563. bool flushing[ATH6KL_VIF_MAX] = {false};
  564. u8 if_idx;
  565. struct ath6kl_vif *vif;
  566. skb_queue_head_init(&skb_queue);
  567. /* lock the driver as we update internal state */
  568. spin_lock_bh(&ar->lock);
  569. /* reap completed packets */
  570. while (!list_empty(packet_queue)) {
  571. packet = list_first_entry(packet_queue, struct htc_packet,
  572. list);
  573. list_del(&packet->list);
  574. ath6kl_cookie = (struct ath6kl_cookie *)packet->pkt_cntxt;
  575. if (!ath6kl_cookie)
  576. goto fatal;
  577. status = packet->status;
  578. skb = ath6kl_cookie->skb;
  579. eid = packet->endpoint;
  580. map_no = ath6kl_cookie->map_no;
  581. if (!skb || !skb->data)
  582. goto fatal;
  583. __skb_queue_tail(&skb_queue, skb);
  584. if (!status && (packet->act_len != skb->len))
  585. goto fatal;
  586. ar->tx_pending[eid]--;
  587. if (eid != ar->ctrl_ep)
  588. ar->total_tx_data_pend--;
  589. if (eid == ar->ctrl_ep) {
  590. if (test_bit(WMI_CTRL_EP_FULL, &ar->flag))
  591. clear_bit(WMI_CTRL_EP_FULL, &ar->flag);
  592. if (ar->tx_pending[eid] == 0)
  593. wake_event = true;
  594. }
  595. if (eid == ar->ctrl_ep) {
  596. if_idx = wmi_cmd_hdr_get_if_idx(
  597. (struct wmi_cmd_hdr *) packet->buf);
  598. } else {
  599. if_idx = wmi_data_hdr_get_if_idx(
  600. (struct wmi_data_hdr *) packet->buf);
  601. }
  602. vif = ath6kl_get_vif_by_index(ar, if_idx);
  603. if (!vif) {
  604. ath6kl_free_cookie(ar, ath6kl_cookie);
  605. continue;
  606. }
  607. if (status) {
  608. if (status == -ECANCELED)
  609. /* a packet was flushed */
  610. flushing[if_idx] = true;
  611. vif->net_stats.tx_errors++;
  612. if (status != -ENOSPC && status != -ECANCELED)
  613. ath6kl_warn("tx complete error: %d\n", status);
  614. ath6kl_dbg(ATH6KL_DBG_WLAN_TX,
  615. "%s: skb=0x%p data=0x%p len=0x%x eid=%d %s\n",
  616. __func__, skb, packet->buf, packet->act_len,
  617. eid, "error!");
  618. } else {
  619. ath6kl_dbg(ATH6KL_DBG_WLAN_TX,
  620. "%s: skb=0x%p data=0x%p len=0x%x eid=%d %s\n",
  621. __func__, skb, packet->buf, packet->act_len,
  622. eid, "OK");
  623. flushing[if_idx] = false;
  624. vif->net_stats.tx_packets++;
  625. vif->net_stats.tx_bytes += skb->len;
  626. }
  627. ath6kl_tx_clear_node_map(vif, eid, map_no);
  628. ath6kl_free_cookie(ar, ath6kl_cookie);
  629. if (test_bit(NETQ_STOPPED, &vif->flags))
  630. clear_bit(NETQ_STOPPED, &vif->flags);
  631. }
  632. spin_unlock_bh(&ar->lock);
  633. __skb_queue_purge(&skb_queue);
  634. /* FIXME: Locking */
  635. spin_lock_bh(&ar->list_lock);
  636. list_for_each_entry(vif, &ar->vif_list, list) {
  637. if (test_bit(CONNECTED, &vif->flags) &&
  638. !flushing[vif->fw_vif_idx]) {
  639. spin_unlock_bh(&ar->list_lock);
  640. netif_wake_queue(vif->ndev);
  641. spin_lock_bh(&ar->list_lock);
  642. }
  643. }
  644. spin_unlock_bh(&ar->list_lock);
  645. if (wake_event)
  646. wake_up(&ar->event_wq);
  647. return;
  648. fatal:
  649. WARN_ON(1);
  650. spin_unlock_bh(&ar->lock);
  651. return;
  652. }
  653. void ath6kl_tx_data_cleanup(struct ath6kl *ar)
  654. {
  655. int i;
  656. /* flush all the data (non-control) streams */
  657. for (i = 0; i < WMM_NUM_AC; i++)
  658. ath6kl_htc_flush_txep(ar->htc_target, ar->ac2ep_map[i],
  659. ATH6KL_DATA_PKT_TAG);
  660. }
  661. /* Rx functions */
  662. static void ath6kl_deliver_frames_to_nw_stack(struct net_device *dev,
  663. struct sk_buff *skb)
  664. {
  665. if (!skb)
  666. return;
  667. skb->dev = dev;
  668. if (!(skb->dev->flags & IFF_UP)) {
  669. dev_kfree_skb(skb);
  670. return;
  671. }
  672. skb->protocol = eth_type_trans(skb, skb->dev);
  673. netif_rx_ni(skb);
  674. }
  675. static void ath6kl_alloc_netbufs(struct sk_buff_head *q, u16 num)
  676. {
  677. struct sk_buff *skb;
  678. while (num) {
  679. skb = ath6kl_buf_alloc(ATH6KL_BUFFER_SIZE);
  680. if (!skb) {
  681. ath6kl_err("netbuf allocation failed\n");
  682. return;
  683. }
  684. skb_queue_tail(q, skb);
  685. num--;
  686. }
  687. }
  688. static struct sk_buff *aggr_get_free_skb(struct aggr_info *p_aggr)
  689. {
  690. struct sk_buff *skb = NULL;
  691. if (skb_queue_len(&p_aggr->rx_amsdu_freeq) <
  692. (AGGR_NUM_OF_FREE_NETBUFS >> 2))
  693. ath6kl_alloc_netbufs(&p_aggr->rx_amsdu_freeq,
  694. AGGR_NUM_OF_FREE_NETBUFS);
  695. skb = skb_dequeue(&p_aggr->rx_amsdu_freeq);
  696. return skb;
  697. }
  698. void ath6kl_rx_refill(struct htc_target *target, enum htc_endpoint_id endpoint)
  699. {
  700. struct ath6kl *ar = target->dev->ar;
  701. struct sk_buff *skb;
  702. int rx_buf;
  703. int n_buf_refill;
  704. struct htc_packet *packet;
  705. struct list_head queue;
  706. n_buf_refill = ATH6KL_MAX_RX_BUFFERS -
  707. ath6kl_htc_get_rxbuf_num(ar->htc_target, endpoint);
  708. if (n_buf_refill <= 0)
  709. return;
  710. INIT_LIST_HEAD(&queue);
  711. ath6kl_dbg(ATH6KL_DBG_WLAN_RX,
  712. "%s: providing htc with %d buffers at eid=%d\n",
  713. __func__, n_buf_refill, endpoint);
  714. for (rx_buf = 0; rx_buf < n_buf_refill; rx_buf++) {
  715. skb = ath6kl_buf_alloc(ATH6KL_BUFFER_SIZE);
  716. if (!skb)
  717. break;
  718. packet = (struct htc_packet *) skb->head;
  719. if (!IS_ALIGNED((unsigned long) skb->data, 4))
  720. skb->data = PTR_ALIGN(skb->data - 4, 4);
  721. set_htc_rxpkt_info(packet, skb, skb->data,
  722. ATH6KL_BUFFER_SIZE, endpoint);
  723. list_add_tail(&packet->list, &queue);
  724. }
  725. if (!list_empty(&queue))
  726. ath6kl_htc_add_rxbuf_multiple(ar->htc_target, &queue);
  727. }
  728. void ath6kl_refill_amsdu_rxbufs(struct ath6kl *ar, int count)
  729. {
  730. struct htc_packet *packet;
  731. struct sk_buff *skb;
  732. while (count) {
  733. skb = ath6kl_buf_alloc(ATH6KL_AMSDU_BUFFER_SIZE);
  734. if (!skb)
  735. return;
  736. packet = (struct htc_packet *) skb->head;
  737. if (!IS_ALIGNED((unsigned long) skb->data, 4))
  738. skb->data = PTR_ALIGN(skb->data - 4, 4);
  739. set_htc_rxpkt_info(packet, skb, skb->data,
  740. ATH6KL_AMSDU_BUFFER_SIZE, 0);
  741. spin_lock_bh(&ar->lock);
  742. list_add_tail(&packet->list, &ar->amsdu_rx_buffer_queue);
  743. spin_unlock_bh(&ar->lock);
  744. count--;
  745. }
  746. }
  747. /*
  748. * Callback to allocate a receive buffer for a pending packet. We use a
  749. * pre-allocated list of buffers of maximum AMSDU size (4K).
  750. */
  751. struct htc_packet *ath6kl_alloc_amsdu_rxbuf(struct htc_target *target,
  752. enum htc_endpoint_id endpoint,
  753. int len)
  754. {
  755. struct ath6kl *ar = target->dev->ar;
  756. struct htc_packet *packet = NULL;
  757. struct list_head *pkt_pos;
  758. int refill_cnt = 0, depth = 0;
  759. ath6kl_dbg(ATH6KL_DBG_WLAN_RX, "%s: eid=%d, len:%d\n",
  760. __func__, endpoint, len);
  761. if ((len <= ATH6KL_BUFFER_SIZE) ||
  762. (len > ATH6KL_AMSDU_BUFFER_SIZE))
  763. return NULL;
  764. spin_lock_bh(&ar->lock);
  765. if (list_empty(&ar->amsdu_rx_buffer_queue)) {
  766. spin_unlock_bh(&ar->lock);
  767. refill_cnt = ATH6KL_MAX_AMSDU_RX_BUFFERS;
  768. goto refill_buf;
  769. }
  770. packet = list_first_entry(&ar->amsdu_rx_buffer_queue,
  771. struct htc_packet, list);
  772. list_del(&packet->list);
  773. list_for_each(pkt_pos, &ar->amsdu_rx_buffer_queue)
  774. depth++;
  775. refill_cnt = ATH6KL_MAX_AMSDU_RX_BUFFERS - depth;
  776. spin_unlock_bh(&ar->lock);
  777. /* set actual endpoint ID */
  778. packet->endpoint = endpoint;
  779. refill_buf:
  780. if (refill_cnt >= ATH6KL_AMSDU_REFILL_THRESHOLD)
  781. ath6kl_refill_amsdu_rxbufs(ar, refill_cnt);
  782. return packet;
  783. }
  784. static void aggr_slice_amsdu(struct aggr_info *p_aggr,
  785. struct rxtid *rxtid, struct sk_buff *skb)
  786. {
  787. struct sk_buff *new_skb;
  788. struct ethhdr *hdr;
  789. u16 frame_8023_len, payload_8023_len, mac_hdr_len, amsdu_len;
  790. u8 *framep;
  791. mac_hdr_len = sizeof(struct ethhdr);
  792. framep = skb->data + mac_hdr_len;
  793. amsdu_len = skb->len - mac_hdr_len;
  794. while (amsdu_len > mac_hdr_len) {
  795. hdr = (struct ethhdr *) framep;
  796. payload_8023_len = ntohs(hdr->h_proto);
  797. if (payload_8023_len < MIN_MSDU_SUBFRAME_PAYLOAD_LEN ||
  798. payload_8023_len > MAX_MSDU_SUBFRAME_PAYLOAD_LEN) {
  799. ath6kl_err("802.3 AMSDU frame bound check failed. len %d\n",
  800. payload_8023_len);
  801. break;
  802. }
  803. frame_8023_len = payload_8023_len + mac_hdr_len;
  804. new_skb = aggr_get_free_skb(p_aggr);
  805. if (!new_skb) {
  806. ath6kl_err("no buffer available\n");
  807. break;
  808. }
  809. memcpy(new_skb->data, framep, frame_8023_len);
  810. skb_put(new_skb, frame_8023_len);
  811. if (ath6kl_wmi_dot3_2_dix(new_skb)) {
  812. ath6kl_err("dot3_2_dix error\n");
  813. dev_kfree_skb(new_skb);
  814. break;
  815. }
  816. skb_queue_tail(&rxtid->q, new_skb);
  817. /* Is this the last subframe within this aggregate ? */
  818. if ((amsdu_len - frame_8023_len) == 0)
  819. break;
  820. /* Add the length of A-MSDU subframe padding bytes -
  821. * Round to nearest word.
  822. */
  823. frame_8023_len = ALIGN(frame_8023_len, 4);
  824. framep += frame_8023_len;
  825. amsdu_len -= frame_8023_len;
  826. }
  827. dev_kfree_skb(skb);
  828. }
  829. static void aggr_deque_frms(struct aggr_info_conn *agg_conn, u8 tid,
  830. u16 seq_no, u8 order)
  831. {
  832. struct sk_buff *skb;
  833. struct rxtid *rxtid;
  834. struct skb_hold_q *node;
  835. u16 idx, idx_end, seq_end;
  836. struct rxtid_stats *stats;
  837. rxtid = &agg_conn->rx_tid[tid];
  838. stats = &agg_conn->stat[tid];
  839. idx = AGGR_WIN_IDX(rxtid->seq_next, rxtid->hold_q_sz);
  840. /*
  841. * idx_end is typically the last possible frame in the window,
  842. * but changes to 'the' seq_no, when BAR comes. If seq_no
  843. * is non-zero, we will go up to that and stop.
  844. * Note: last seq no in current window will occupy the same
  845. * index position as index that is just previous to start.
  846. * An imp point : if win_sz is 7, for seq_no space of 4095,
  847. * then, there would be holes when sequence wrap around occurs.
  848. * Target should judiciously choose the win_sz, based on
  849. * this condition. For 4095, (TID_WINDOW_SZ = 2 x win_sz
  850. * 2, 4, 8, 16 win_sz works fine).
  851. * We must deque from "idx" to "idx_end", including both.
  852. */
  853. seq_end = seq_no ? seq_no : rxtid->seq_next;
  854. idx_end = AGGR_WIN_IDX(seq_end, rxtid->hold_q_sz);
  855. spin_lock_bh(&rxtid->lock);
  856. do {
  857. node = &rxtid->hold_q[idx];
  858. if ((order == 1) && (!node->skb))
  859. break;
  860. if (node->skb) {
  861. if (node->is_amsdu)
  862. aggr_slice_amsdu(agg_conn->aggr_info, rxtid,
  863. node->skb);
  864. else
  865. skb_queue_tail(&rxtid->q, node->skb);
  866. node->skb = NULL;
  867. } else
  868. stats->num_hole++;
  869. rxtid->seq_next = ATH6KL_NEXT_SEQ_NO(rxtid->seq_next);
  870. idx = AGGR_WIN_IDX(rxtid->seq_next, rxtid->hold_q_sz);
  871. } while (idx != idx_end);
  872. spin_unlock_bh(&rxtid->lock);
  873. stats->num_delivered += skb_queue_len(&rxtid->q);
  874. while ((skb = skb_dequeue(&rxtid->q)))
  875. ath6kl_deliver_frames_to_nw_stack(agg_conn->dev, skb);
  876. }
  877. static bool aggr_process_recv_frm(struct aggr_info_conn *agg_conn, u8 tid,
  878. u16 seq_no,
  879. bool is_amsdu, struct sk_buff *frame)
  880. {
  881. struct rxtid *rxtid;
  882. struct rxtid_stats *stats;
  883. struct sk_buff *skb;
  884. struct skb_hold_q *node;
  885. u16 idx, st, cur, end;
  886. bool is_queued = false;
  887. u16 extended_end;
  888. rxtid = &agg_conn->rx_tid[tid];
  889. stats = &agg_conn->stat[tid];
  890. stats->num_into_aggr++;
  891. if (!rxtid->aggr) {
  892. if (is_amsdu) {
  893. aggr_slice_amsdu(agg_conn->aggr_info, rxtid, frame);
  894. is_queued = true;
  895. stats->num_amsdu++;
  896. while ((skb = skb_dequeue(&rxtid->q)))
  897. ath6kl_deliver_frames_to_nw_stack(agg_conn->dev,
  898. skb);
  899. }
  900. return is_queued;
  901. }
  902. /* Check the incoming sequence no, if it's in the window */
  903. st = rxtid->seq_next;
  904. cur = seq_no;
  905. end = (st + rxtid->hold_q_sz-1) & ATH6KL_MAX_SEQ_NO;
  906. if (((st < end) && (cur < st || cur > end)) ||
  907. ((st > end) && (cur > end) && (cur < st))) {
  908. extended_end = (end + rxtid->hold_q_sz - 1) &
  909. ATH6KL_MAX_SEQ_NO;
  910. if (((end < extended_end) &&
  911. (cur < end || cur > extended_end)) ||
  912. ((end > extended_end) && (cur > extended_end) &&
  913. (cur < end))) {
  914. aggr_deque_frms(agg_conn, tid, 0, 0);
  915. if (cur >= rxtid->hold_q_sz - 1)
  916. rxtid->seq_next = cur - (rxtid->hold_q_sz - 1);
  917. else
  918. rxtid->seq_next = ATH6KL_MAX_SEQ_NO -
  919. (rxtid->hold_q_sz - 2 - cur);
  920. } else {
  921. /*
  922. * Dequeue only those frames that are outside the
  923. * new shifted window.
  924. */
  925. if (cur >= rxtid->hold_q_sz - 1)
  926. st = cur - (rxtid->hold_q_sz - 1);
  927. else
  928. st = ATH6KL_MAX_SEQ_NO -
  929. (rxtid->hold_q_sz - 2 - cur);
  930. aggr_deque_frms(agg_conn, tid, st, 0);
  931. }
  932. stats->num_oow++;
  933. }
  934. idx = AGGR_WIN_IDX(seq_no, rxtid->hold_q_sz);
  935. node = &rxtid->hold_q[idx];
  936. spin_lock_bh(&rxtid->lock);
  937. /*
  938. * Is the cur frame duplicate or something beyond our window(hold_q
  939. * -> which is 2x, already)?
  940. *
  941. * 1. Duplicate is easy - drop incoming frame.
  942. * 2. Not falling in current sliding window.
  943. * 2a. is the frame_seq_no preceding current tid_seq_no?
  944. * -> drop the frame. perhaps sender did not get our ACK.
  945. * this is taken care of above.
  946. * 2b. is the frame_seq_no beyond window(st, TID_WINDOW_SZ);
  947. * -> Taken care of it above, by moving window forward.
  948. */
  949. dev_kfree_skb(node->skb);
  950. stats->num_dups++;
  951. node->skb = frame;
  952. is_queued = true;
  953. node->is_amsdu = is_amsdu;
  954. node->seq_no = seq_no;
  955. if (node->is_amsdu)
  956. stats->num_amsdu++;
  957. else
  958. stats->num_mpdu++;
  959. spin_unlock_bh(&rxtid->lock);
  960. aggr_deque_frms(agg_conn, tid, 0, 1);
  961. if (agg_conn->timer_scheduled)
  962. rxtid->progress = true;
  963. else
  964. for (idx = 0 ; idx < rxtid->hold_q_sz; idx++) {
  965. if (rxtid->hold_q[idx].skb) {
  966. /*
  967. * There is a frame in the queue and no
  968. * timer so start a timer to ensure that
  969. * the frame doesn't remain stuck
  970. * forever.
  971. */
  972. agg_conn->timer_scheduled = true;
  973. mod_timer(&agg_conn->timer,
  974. (jiffies +
  975. HZ * (AGGR_RX_TIMEOUT) / 1000));
  976. rxtid->progress = false;
  977. rxtid->timer_mon = true;
  978. break;
  979. }
  980. }
  981. return is_queued;
  982. }
  983. static void ath6kl_uapsd_trigger_frame_rx(struct ath6kl_vif *vif,
  984. struct ath6kl_sta *conn)
  985. {
  986. struct ath6kl *ar = vif->ar;
  987. bool is_apsdq_empty, is_apsdq_empty_at_start;
  988. u32 num_frames_to_deliver, flags;
  989. struct sk_buff *skb = NULL;
  990. /*
  991. * If the APSD q for this STA is not empty, dequeue and
  992. * send a pkt from the head of the q. Also update the
  993. * More data bit in the WMI_DATA_HDR if there are
  994. * more pkts for this STA in the APSD q.
  995. * If there are no more pkts for this STA,
  996. * update the APSD bitmap for this STA.
  997. */
  998. num_frames_to_deliver = (conn->apsd_info >> ATH6KL_APSD_NUM_OF_AC) &
  999. ATH6KL_APSD_FRAME_MASK;
  1000. /*
  1001. * Number of frames to send in a service period is
  1002. * indicated by the station
  1003. * in the QOS_INFO of the association request
  1004. * If it is zero, send all frames
  1005. */
  1006. if (!num_frames_to_deliver)
  1007. num_frames_to_deliver = ATH6KL_APSD_ALL_FRAME;
  1008. spin_lock_bh(&conn->psq_lock);
  1009. is_apsdq_empty = skb_queue_empty(&conn->apsdq);
  1010. spin_unlock_bh(&conn->psq_lock);
  1011. is_apsdq_empty_at_start = is_apsdq_empty;
  1012. while ((!is_apsdq_empty) && (num_frames_to_deliver)) {
  1013. spin_lock_bh(&conn->psq_lock);
  1014. skb = skb_dequeue(&conn->apsdq);
  1015. is_apsdq_empty = skb_queue_empty(&conn->apsdq);
  1016. spin_unlock_bh(&conn->psq_lock);
  1017. /*
  1018. * Set the STA flag to Trigger delivery,
  1019. * so that the frame will go out
  1020. */
  1021. conn->sta_flags |= STA_PS_APSD_TRIGGER;
  1022. num_frames_to_deliver--;
  1023. /* Last frame in the service period, set EOSP or queue empty */
  1024. if ((is_apsdq_empty) || (!num_frames_to_deliver))
  1025. conn->sta_flags |= STA_PS_APSD_EOSP;
  1026. ath6kl_data_tx(skb, vif->ndev);
  1027. conn->sta_flags &= ~(STA_PS_APSD_TRIGGER);
  1028. conn->sta_flags &= ~(STA_PS_APSD_EOSP);
  1029. }
  1030. if (is_apsdq_empty) {
  1031. if (is_apsdq_empty_at_start)
  1032. flags = WMI_AP_APSD_NO_DELIVERY_FRAMES;
  1033. else
  1034. flags = 0;
  1035. ath6kl_wmi_set_apsd_bfrd_traf(ar->wmi,
  1036. vif->fw_vif_idx,
  1037. conn->aid, 0, flags);
  1038. }
  1039. return;
  1040. }
  1041. void ath6kl_rx(struct htc_target *target, struct htc_packet *packet)
  1042. {
  1043. struct ath6kl *ar = target->dev->ar;
  1044. struct sk_buff *skb = packet->pkt_cntxt;
  1045. struct wmi_rx_meta_v2 *meta;
  1046. struct wmi_data_hdr *dhdr;
  1047. int min_hdr_len;
  1048. u8 meta_type, dot11_hdr = 0;
  1049. int status = packet->status;
  1050. enum htc_endpoint_id ept = packet->endpoint;
  1051. bool is_amsdu, prev_ps, ps_state = false;
  1052. bool trig_state = false;
  1053. struct ath6kl_sta *conn = NULL;
  1054. struct sk_buff *skb1 = NULL;
  1055. struct ethhdr *datap = NULL;
  1056. struct ath6kl_vif *vif;
  1057. struct aggr_info_conn *aggr_conn;
  1058. u16 seq_no, offset;
  1059. u8 tid, if_idx;
  1060. ath6kl_dbg(ATH6KL_DBG_WLAN_RX,
  1061. "%s: ar=0x%p eid=%d, skb=0x%p, data=0x%p, len=0x%x status:%d",
  1062. __func__, ar, ept, skb, packet->buf,
  1063. packet->act_len, status);
  1064. if (status || !(skb->data + HTC_HDR_LENGTH)) {
  1065. dev_kfree_skb(skb);
  1066. return;
  1067. }
  1068. skb_put(skb, packet->act_len + HTC_HDR_LENGTH);
  1069. skb_pull(skb, HTC_HDR_LENGTH);
  1070. ath6kl_dbg_dump(ATH6KL_DBG_RAW_BYTES, __func__, "rx ",
  1071. skb->data, skb->len);
  1072. if (ept == ar->ctrl_ep) {
  1073. if (test_bit(WMI_ENABLED, &ar->flag)) {
  1074. ath6kl_check_wow_status(ar);
  1075. ath6kl_wmi_control_rx(ar->wmi, skb);
  1076. return;
  1077. }
  1078. if_idx =
  1079. wmi_cmd_hdr_get_if_idx((struct wmi_cmd_hdr *) skb->data);
  1080. } else {
  1081. if_idx =
  1082. wmi_data_hdr_get_if_idx((struct wmi_data_hdr *) skb->data);
  1083. }
  1084. vif = ath6kl_get_vif_by_index(ar, if_idx);
  1085. if (!vif) {
  1086. dev_kfree_skb(skb);
  1087. return;
  1088. }
  1089. /*
  1090. * Take lock to protect buffer counts and adaptive power throughput
  1091. * state.
  1092. */
  1093. spin_lock_bh(&vif->if_lock);
  1094. vif->net_stats.rx_packets++;
  1095. vif->net_stats.rx_bytes += packet->act_len;
  1096. spin_unlock_bh(&vif->if_lock);
  1097. skb->dev = vif->ndev;
  1098. if (!test_bit(WMI_ENABLED, &ar->flag)) {
  1099. if (EPPING_ALIGNMENT_PAD > 0)
  1100. skb_pull(skb, EPPING_ALIGNMENT_PAD);
  1101. ath6kl_deliver_frames_to_nw_stack(vif->ndev, skb);
  1102. return;
  1103. }
  1104. ath6kl_check_wow_status(ar);
  1105. min_hdr_len = sizeof(struct ethhdr) + sizeof(struct wmi_data_hdr) +
  1106. sizeof(struct ath6kl_llc_snap_hdr);
  1107. dhdr = (struct wmi_data_hdr *) skb->data;
  1108. /*
  1109. * In the case of AP mode we may receive NULL data frames
  1110. * that do not have LLC hdr. They are 16 bytes in size.
  1111. * Allow these frames in the AP mode.
  1112. */
  1113. if (vif->nw_type != AP_NETWORK &&
  1114. ((packet->act_len < min_hdr_len) ||
  1115. (packet->act_len > WMI_MAX_AMSDU_RX_DATA_FRAME_LENGTH))) {
  1116. ath6kl_info("frame len is too short or too long\n");
  1117. vif->net_stats.rx_errors++;
  1118. vif->net_stats.rx_length_errors++;
  1119. dev_kfree_skb(skb);
  1120. return;
  1121. }
  1122. /* Get the Power save state of the STA */
  1123. if (vif->nw_type == AP_NETWORK) {
  1124. meta_type = wmi_data_hdr_get_meta(dhdr);
  1125. ps_state = !!((dhdr->info >> WMI_DATA_HDR_PS_SHIFT) &
  1126. WMI_DATA_HDR_PS_MASK);
  1127. offset = sizeof(struct wmi_data_hdr);
  1128. trig_state = !!(le16_to_cpu(dhdr->info3) & WMI_DATA_HDR_TRIG);
  1129. switch (meta_type) {
  1130. case 0:
  1131. break;
  1132. case WMI_META_VERSION_1:
  1133. offset += sizeof(struct wmi_rx_meta_v1);
  1134. break;
  1135. case WMI_META_VERSION_2:
  1136. offset += sizeof(struct wmi_rx_meta_v2);
  1137. break;
  1138. default:
  1139. break;
  1140. }
  1141. datap = (struct ethhdr *) (skb->data + offset);
  1142. conn = ath6kl_find_sta(vif, datap->h_source);
  1143. if (!conn) {
  1144. dev_kfree_skb(skb);
  1145. return;
  1146. }
  1147. /*
  1148. * If there is a change in PS state of the STA,
  1149. * take appropriate steps:
  1150. *
  1151. * 1. If Sleep-->Awake, flush the psq for the STA
  1152. * Clear the PVB for the STA.
  1153. * 2. If Awake-->Sleep, Starting queueing frames
  1154. * the STA.
  1155. */
  1156. prev_ps = !!(conn->sta_flags & STA_PS_SLEEP);
  1157. if (ps_state)
  1158. conn->sta_flags |= STA_PS_SLEEP;
  1159. else
  1160. conn->sta_flags &= ~STA_PS_SLEEP;
  1161. /* Accept trigger only when the station is in sleep */
  1162. if ((conn->sta_flags & STA_PS_SLEEP) && trig_state)
  1163. ath6kl_uapsd_trigger_frame_rx(vif, conn);
  1164. if (prev_ps ^ !!(conn->sta_flags & STA_PS_SLEEP)) {
  1165. if (!(conn->sta_flags & STA_PS_SLEEP)) {
  1166. struct sk_buff *skbuff = NULL;
  1167. bool is_apsdq_empty;
  1168. struct ath6kl_mgmt_buff *mgmt;
  1169. u8 idx;
  1170. spin_lock_bh(&conn->psq_lock);
  1171. while (conn->mgmt_psq_len > 0) {
  1172. mgmt = list_first_entry(
  1173. &conn->mgmt_psq,
  1174. struct ath6kl_mgmt_buff,
  1175. list);
  1176. list_del(&mgmt->list);
  1177. conn->mgmt_psq_len--;
  1178. spin_unlock_bh(&conn->psq_lock);
  1179. idx = vif->fw_vif_idx;
  1180. ath6kl_wmi_send_mgmt_cmd(ar->wmi,
  1181. idx,
  1182. mgmt->id,
  1183. mgmt->freq,
  1184. mgmt->wait,
  1185. mgmt->buf,
  1186. mgmt->len,
  1187. mgmt->no_cck);
  1188. kfree(mgmt);
  1189. spin_lock_bh(&conn->psq_lock);
  1190. }
  1191. conn->mgmt_psq_len = 0;
  1192. while ((skbuff = skb_dequeue(&conn->psq))) {
  1193. spin_unlock_bh(&conn->psq_lock);
  1194. ath6kl_data_tx(skbuff, vif->ndev);
  1195. spin_lock_bh(&conn->psq_lock);
  1196. }
  1197. is_apsdq_empty = skb_queue_empty(&conn->apsdq);
  1198. while ((skbuff = skb_dequeue(&conn->apsdq))) {
  1199. spin_unlock_bh(&conn->psq_lock);
  1200. ath6kl_data_tx(skbuff, vif->ndev);
  1201. spin_lock_bh(&conn->psq_lock);
  1202. }
  1203. spin_unlock_bh(&conn->psq_lock);
  1204. if (!is_apsdq_empty)
  1205. ath6kl_wmi_set_apsd_bfrd_traf(
  1206. ar->wmi,
  1207. vif->fw_vif_idx,
  1208. conn->aid, 0, 0);
  1209. /* Clear the PVB for this STA */
  1210. ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx,
  1211. conn->aid, 0);
  1212. }
  1213. }
  1214. /* drop NULL data frames here */
  1215. if ((packet->act_len < min_hdr_len) ||
  1216. (packet->act_len >
  1217. WMI_MAX_AMSDU_RX_DATA_FRAME_LENGTH)) {
  1218. dev_kfree_skb(skb);
  1219. return;
  1220. }
  1221. }
  1222. is_amsdu = wmi_data_hdr_is_amsdu(dhdr) ? true : false;
  1223. tid = wmi_data_hdr_get_up(dhdr);
  1224. seq_no = wmi_data_hdr_get_seqno(dhdr);
  1225. meta_type = wmi_data_hdr_get_meta(dhdr);
  1226. dot11_hdr = wmi_data_hdr_get_dot11(dhdr);
  1227. skb_pull(skb, sizeof(struct wmi_data_hdr));
  1228. switch (meta_type) {
  1229. case WMI_META_VERSION_1:
  1230. skb_pull(skb, sizeof(struct wmi_rx_meta_v1));
  1231. break;
  1232. case WMI_META_VERSION_2:
  1233. meta = (struct wmi_rx_meta_v2 *) skb->data;
  1234. if (meta->csum_flags & 0x1) {
  1235. skb->ip_summed = CHECKSUM_COMPLETE;
  1236. skb->csum = (__force __wsum) meta->csum;
  1237. }
  1238. skb_pull(skb, sizeof(struct wmi_rx_meta_v2));
  1239. break;
  1240. default:
  1241. break;
  1242. }
  1243. if (dot11_hdr)
  1244. status = ath6kl_wmi_dot11_hdr_remove(ar->wmi, skb);
  1245. else if (!is_amsdu)
  1246. status = ath6kl_wmi_dot3_2_dix(skb);
  1247. if (status) {
  1248. /*
  1249. * Drop frames that could not be processed (lack of
  1250. * memory, etc.)
  1251. */
  1252. dev_kfree_skb(skb);
  1253. return;
  1254. }
  1255. if (!(vif->ndev->flags & IFF_UP)) {
  1256. dev_kfree_skb(skb);
  1257. return;
  1258. }
  1259. if (vif->nw_type == AP_NETWORK) {
  1260. datap = (struct ethhdr *) skb->data;
  1261. if (is_multicast_ether_addr(datap->h_dest))
  1262. /*
  1263. * Bcast/Mcast frames should be sent to the
  1264. * OS stack as well as on the air.
  1265. */
  1266. skb1 = skb_copy(skb, GFP_ATOMIC);
  1267. else {
  1268. /*
  1269. * Search for a connected STA with dstMac
  1270. * as the Mac address. If found send the
  1271. * frame to it on the air else send the
  1272. * frame up the stack.
  1273. */
  1274. conn = ath6kl_find_sta(vif, datap->h_dest);
  1275. if (conn && ar->intra_bss) {
  1276. skb1 = skb;
  1277. skb = NULL;
  1278. } else if (conn && !ar->intra_bss) {
  1279. dev_kfree_skb(skb);
  1280. skb = NULL;
  1281. }
  1282. }
  1283. if (skb1)
  1284. ath6kl_data_tx(skb1, vif->ndev);
  1285. if (skb == NULL) {
  1286. /* nothing to deliver up the stack */
  1287. return;
  1288. }
  1289. }
  1290. datap = (struct ethhdr *) skb->data;
  1291. if (is_unicast_ether_addr(datap->h_dest)) {
  1292. if (vif->nw_type == AP_NETWORK) {
  1293. conn = ath6kl_find_sta(vif, datap->h_source);
  1294. if (!conn)
  1295. return;
  1296. aggr_conn = conn->aggr_conn;
  1297. } else
  1298. aggr_conn = vif->aggr_cntxt->aggr_conn;
  1299. if (aggr_process_recv_frm(aggr_conn, tid, seq_no,
  1300. is_amsdu, skb)) {
  1301. /* aggregation code will handle the skb */
  1302. return;
  1303. }
  1304. }
  1305. ath6kl_deliver_frames_to_nw_stack(vif->ndev, skb);
  1306. }
  1307. static void aggr_timeout(unsigned long arg)
  1308. {
  1309. u8 i, j;
  1310. struct aggr_info_conn *aggr_conn = (struct aggr_info_conn *) arg;
  1311. struct rxtid *rxtid;
  1312. struct rxtid_stats *stats;
  1313. for (i = 0; i < NUM_OF_TIDS; i++) {
  1314. rxtid = &aggr_conn->rx_tid[i];
  1315. stats = &aggr_conn->stat[i];
  1316. if (!rxtid->aggr || !rxtid->timer_mon || rxtid->progress)
  1317. continue;
  1318. stats->num_timeouts++;
  1319. ath6kl_dbg(ATH6KL_DBG_AGGR,
  1320. "aggr timeout (st %d end %d)\n",
  1321. rxtid->seq_next,
  1322. ((rxtid->seq_next + rxtid->hold_q_sz-1) &
  1323. ATH6KL_MAX_SEQ_NO));
  1324. aggr_deque_frms(aggr_conn, i, 0, 0);
  1325. }
  1326. aggr_conn->timer_scheduled = false;
  1327. for (i = 0; i < NUM_OF_TIDS; i++) {
  1328. rxtid = &aggr_conn->rx_tid[i];
  1329. if (rxtid->aggr && rxtid->hold_q) {
  1330. for (j = 0; j < rxtid->hold_q_sz; j++) {
  1331. if (rxtid->hold_q[j].skb) {
  1332. aggr_conn->timer_scheduled = true;
  1333. rxtid->timer_mon = true;
  1334. rxtid->progress = false;
  1335. break;
  1336. }
  1337. }
  1338. if (j >= rxtid->hold_q_sz)
  1339. rxtid->timer_mon = false;
  1340. }
  1341. }
  1342. if (aggr_conn->timer_scheduled)
  1343. mod_timer(&aggr_conn->timer,
  1344. jiffies + msecs_to_jiffies(AGGR_RX_TIMEOUT));
  1345. }
  1346. static void aggr_delete_tid_state(struct aggr_info_conn *aggr_conn, u8 tid)
  1347. {
  1348. struct rxtid *rxtid;
  1349. struct rxtid_stats *stats;
  1350. if (!aggr_conn || tid >= NUM_OF_TIDS)
  1351. return;
  1352. rxtid = &aggr_conn->rx_tid[tid];
  1353. stats = &aggr_conn->stat[tid];
  1354. if (rxtid->aggr)
  1355. aggr_deque_frms(aggr_conn, tid, 0, 0);
  1356. rxtid->aggr = false;
  1357. rxtid->progress = false;
  1358. rxtid->timer_mon = false;
  1359. rxtid->win_sz = 0;
  1360. rxtid->seq_next = 0;
  1361. rxtid->hold_q_sz = 0;
  1362. kfree(rxtid->hold_q);
  1363. rxtid->hold_q = NULL;
  1364. memset(stats, 0, sizeof(struct rxtid_stats));
  1365. }
  1366. void aggr_recv_addba_req_evt(struct ath6kl_vif *vif, u8 tid_mux, u16 seq_no,
  1367. u8 win_sz)
  1368. {
  1369. struct ath6kl_sta *sta;
  1370. struct aggr_info_conn *aggr_conn = NULL;
  1371. struct rxtid *rxtid;
  1372. struct rxtid_stats *stats;
  1373. u16 hold_q_size;
  1374. u8 tid, aid;
  1375. if (vif->nw_type == AP_NETWORK) {
  1376. aid = ath6kl_get_aid(tid_mux);
  1377. sta = ath6kl_find_sta_by_aid(vif->ar, aid);
  1378. if (sta)
  1379. aggr_conn = sta->aggr_conn;
  1380. } else
  1381. aggr_conn = vif->aggr_cntxt->aggr_conn;
  1382. if (!aggr_conn)
  1383. return;
  1384. tid = ath6kl_get_tid(tid_mux);
  1385. if (tid >= NUM_OF_TIDS)
  1386. return;
  1387. rxtid = &aggr_conn->rx_tid[tid];
  1388. stats = &aggr_conn->stat[tid];
  1389. if (win_sz < AGGR_WIN_SZ_MIN || win_sz > AGGR_WIN_SZ_MAX)
  1390. ath6kl_dbg(ATH6KL_DBG_WLAN_RX, "%s: win_sz %d, tid %d\n",
  1391. __func__, win_sz, tid);
  1392. if (rxtid->aggr)
  1393. aggr_delete_tid_state(aggr_conn, tid);
  1394. rxtid->seq_next = seq_no;
  1395. hold_q_size = TID_WINDOW_SZ(win_sz) * sizeof(struct skb_hold_q);
  1396. rxtid->hold_q = kzalloc(hold_q_size, GFP_KERNEL);
  1397. if (!rxtid->hold_q)
  1398. return;
  1399. rxtid->win_sz = win_sz;
  1400. rxtid->hold_q_sz = TID_WINDOW_SZ(win_sz);
  1401. if (!skb_queue_empty(&rxtid->q))
  1402. return;
  1403. rxtid->aggr = true;
  1404. }
  1405. void aggr_conn_init(struct ath6kl_vif *vif, struct aggr_info *aggr_info,
  1406. struct aggr_info_conn *aggr_conn)
  1407. {
  1408. struct rxtid *rxtid;
  1409. u8 i;
  1410. aggr_conn->aggr_sz = AGGR_SZ_DEFAULT;
  1411. aggr_conn->dev = vif->ndev;
  1412. init_timer(&aggr_conn->timer);
  1413. aggr_conn->timer.function = aggr_timeout;
  1414. aggr_conn->timer.data = (unsigned long) aggr_conn;
  1415. aggr_conn->aggr_info = aggr_info;
  1416. aggr_conn->timer_scheduled = false;
  1417. for (i = 0; i < NUM_OF_TIDS; i++) {
  1418. rxtid = &aggr_conn->rx_tid[i];
  1419. rxtid->aggr = false;
  1420. rxtid->progress = false;
  1421. rxtid->timer_mon = false;
  1422. skb_queue_head_init(&rxtid->q);
  1423. spin_lock_init(&rxtid->lock);
  1424. }
  1425. }
  1426. struct aggr_info *aggr_init(struct ath6kl_vif *vif)
  1427. {
  1428. struct aggr_info *p_aggr = NULL;
  1429. p_aggr = kzalloc(sizeof(struct aggr_info), GFP_KERNEL);
  1430. if (!p_aggr) {
  1431. ath6kl_err("failed to alloc memory for aggr_node\n");
  1432. return NULL;
  1433. }
  1434. p_aggr->aggr_conn = kzalloc(sizeof(struct aggr_info_conn), GFP_KERNEL);
  1435. if (!p_aggr->aggr_conn) {
  1436. ath6kl_err("failed to alloc memory for connection specific aggr info\n");
  1437. kfree(p_aggr);
  1438. return NULL;
  1439. }
  1440. aggr_conn_init(vif, p_aggr, p_aggr->aggr_conn);
  1441. skb_queue_head_init(&p_aggr->rx_amsdu_freeq);
  1442. ath6kl_alloc_netbufs(&p_aggr->rx_amsdu_freeq, AGGR_NUM_OF_FREE_NETBUFS);
  1443. return p_aggr;
  1444. }
  1445. void aggr_recv_delba_req_evt(struct ath6kl_vif *vif, u8 tid_mux)
  1446. {
  1447. struct ath6kl_sta *sta;
  1448. struct rxtid *rxtid;
  1449. struct aggr_info_conn *aggr_conn = NULL;
  1450. u8 tid, aid;
  1451. if (vif->nw_type == AP_NETWORK) {
  1452. aid = ath6kl_get_aid(tid_mux);
  1453. sta = ath6kl_find_sta_by_aid(vif->ar, aid);
  1454. if (sta)
  1455. aggr_conn = sta->aggr_conn;
  1456. } else
  1457. aggr_conn = vif->aggr_cntxt->aggr_conn;
  1458. if (!aggr_conn)
  1459. return;
  1460. tid = ath6kl_get_tid(tid_mux);
  1461. if (tid >= NUM_OF_TIDS)
  1462. return;
  1463. rxtid = &aggr_conn->rx_tid[tid];
  1464. if (rxtid->aggr)
  1465. aggr_delete_tid_state(aggr_conn, tid);
  1466. }
  1467. void aggr_reset_state(struct aggr_info_conn *aggr_conn)
  1468. {
  1469. u8 tid;
  1470. if (!aggr_conn)
  1471. return;
  1472. if (aggr_conn->timer_scheduled) {
  1473. del_timer(&aggr_conn->timer);
  1474. aggr_conn->timer_scheduled = false;
  1475. }
  1476. for (tid = 0; tid < NUM_OF_TIDS; tid++)
  1477. aggr_delete_tid_state(aggr_conn, tid);
  1478. }
  1479. /* clean up our amsdu buffer list */
  1480. void ath6kl_cleanup_amsdu_rxbufs(struct ath6kl *ar)
  1481. {
  1482. struct htc_packet *packet, *tmp_pkt;
  1483. spin_lock_bh(&ar->lock);
  1484. if (list_empty(&ar->amsdu_rx_buffer_queue)) {
  1485. spin_unlock_bh(&ar->lock);
  1486. return;
  1487. }
  1488. list_for_each_entry_safe(packet, tmp_pkt, &ar->amsdu_rx_buffer_queue,
  1489. list) {
  1490. list_del(&packet->list);
  1491. spin_unlock_bh(&ar->lock);
  1492. dev_kfree_skb(packet->pkt_cntxt);
  1493. spin_lock_bh(&ar->lock);
  1494. }
  1495. spin_unlock_bh(&ar->lock);
  1496. }
  1497. void aggr_module_destroy(struct aggr_info *aggr_info)
  1498. {
  1499. if (!aggr_info)
  1500. return;
  1501. aggr_reset_state(aggr_info->aggr_conn);
  1502. skb_queue_purge(&aggr_info->rx_amsdu_freeq);
  1503. kfree(aggr_info->aggr_conn);
  1504. kfree(aggr_info);
  1505. }