huge_memory.c 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <linux/freezer.h>
  18. #include <linux/mman.h>
  19. #include <asm/tlb.h>
  20. #include <asm/pgalloc.h>
  21. #include "internal.h"
  22. /*
  23. * By default transparent hugepage support is enabled for all mappings
  24. * and khugepaged scans all mappings. Defrag is only invoked by
  25. * khugepaged hugepage allocations and by page faults inside
  26. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  27. * allocations.
  28. */
  29. unsigned long transparent_hugepage_flags __read_mostly =
  30. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  31. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  32. #endif
  33. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  34. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  35. #endif
  36. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  37. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  38. /* default scan 8*512 pte (or vmas) every 30 second */
  39. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  40. static unsigned int khugepaged_pages_collapsed;
  41. static unsigned int khugepaged_full_scans;
  42. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  43. /* during fragmentation poll the hugepage allocator once every minute */
  44. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  45. static struct task_struct *khugepaged_thread __read_mostly;
  46. static DEFINE_MUTEX(khugepaged_mutex);
  47. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  48. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  49. /*
  50. * default collapse hugepages if there is at least one pte mapped like
  51. * it would have happened if the vma was large enough during page
  52. * fault.
  53. */
  54. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  55. static int khugepaged(void *none);
  56. static int mm_slots_hash_init(void);
  57. static int khugepaged_slab_init(void);
  58. static void khugepaged_slab_free(void);
  59. #define MM_SLOTS_HASH_HEADS 1024
  60. static struct hlist_head *mm_slots_hash __read_mostly;
  61. static struct kmem_cache *mm_slot_cache __read_mostly;
  62. /**
  63. * struct mm_slot - hash lookup from mm to mm_slot
  64. * @hash: hash collision list
  65. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  66. * @mm: the mm that this information is valid for
  67. */
  68. struct mm_slot {
  69. struct hlist_node hash;
  70. struct list_head mm_node;
  71. struct mm_struct *mm;
  72. };
  73. /**
  74. * struct khugepaged_scan - cursor for scanning
  75. * @mm_head: the head of the mm list to scan
  76. * @mm_slot: the current mm_slot we are scanning
  77. * @address: the next address inside that to be scanned
  78. *
  79. * There is only the one khugepaged_scan instance of this cursor structure.
  80. */
  81. struct khugepaged_scan {
  82. struct list_head mm_head;
  83. struct mm_slot *mm_slot;
  84. unsigned long address;
  85. } khugepaged_scan = {
  86. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  87. };
  88. static int set_recommended_min_free_kbytes(void)
  89. {
  90. struct zone *zone;
  91. int nr_zones = 0;
  92. unsigned long recommended_min;
  93. extern int min_free_kbytes;
  94. if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
  95. &transparent_hugepage_flags) &&
  96. !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  97. &transparent_hugepage_flags))
  98. return 0;
  99. for_each_populated_zone(zone)
  100. nr_zones++;
  101. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  102. recommended_min = pageblock_nr_pages * nr_zones * 2;
  103. /*
  104. * Make sure that on average at least two pageblocks are almost free
  105. * of another type, one for a migratetype to fall back to and a
  106. * second to avoid subsequent fallbacks of other types There are 3
  107. * MIGRATE_TYPES we care about.
  108. */
  109. recommended_min += pageblock_nr_pages * nr_zones *
  110. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  111. /* don't ever allow to reserve more than 5% of the lowmem */
  112. recommended_min = min(recommended_min,
  113. (unsigned long) nr_free_buffer_pages() / 20);
  114. recommended_min <<= (PAGE_SHIFT-10);
  115. if (recommended_min > min_free_kbytes)
  116. min_free_kbytes = recommended_min;
  117. setup_per_zone_wmarks();
  118. return 0;
  119. }
  120. late_initcall(set_recommended_min_free_kbytes);
  121. static int start_khugepaged(void)
  122. {
  123. int err = 0;
  124. if (khugepaged_enabled()) {
  125. int wakeup;
  126. if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
  127. err = -ENOMEM;
  128. goto out;
  129. }
  130. mutex_lock(&khugepaged_mutex);
  131. if (!khugepaged_thread)
  132. khugepaged_thread = kthread_run(khugepaged, NULL,
  133. "khugepaged");
  134. if (unlikely(IS_ERR(khugepaged_thread))) {
  135. printk(KERN_ERR
  136. "khugepaged: kthread_run(khugepaged) failed\n");
  137. err = PTR_ERR(khugepaged_thread);
  138. khugepaged_thread = NULL;
  139. }
  140. wakeup = !list_empty(&khugepaged_scan.mm_head);
  141. mutex_unlock(&khugepaged_mutex);
  142. if (wakeup)
  143. wake_up_interruptible(&khugepaged_wait);
  144. set_recommended_min_free_kbytes();
  145. } else
  146. /* wakeup to exit */
  147. wake_up_interruptible(&khugepaged_wait);
  148. out:
  149. return err;
  150. }
  151. #ifdef CONFIG_SYSFS
  152. static ssize_t double_flag_show(struct kobject *kobj,
  153. struct kobj_attribute *attr, char *buf,
  154. enum transparent_hugepage_flag enabled,
  155. enum transparent_hugepage_flag req_madv)
  156. {
  157. if (test_bit(enabled, &transparent_hugepage_flags)) {
  158. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  159. return sprintf(buf, "[always] madvise never\n");
  160. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  161. return sprintf(buf, "always [madvise] never\n");
  162. else
  163. return sprintf(buf, "always madvise [never]\n");
  164. }
  165. static ssize_t double_flag_store(struct kobject *kobj,
  166. struct kobj_attribute *attr,
  167. const char *buf, size_t count,
  168. enum transparent_hugepage_flag enabled,
  169. enum transparent_hugepage_flag req_madv)
  170. {
  171. if (!memcmp("always", buf,
  172. min(sizeof("always")-1, count))) {
  173. set_bit(enabled, &transparent_hugepage_flags);
  174. clear_bit(req_madv, &transparent_hugepage_flags);
  175. } else if (!memcmp("madvise", buf,
  176. min(sizeof("madvise")-1, count))) {
  177. clear_bit(enabled, &transparent_hugepage_flags);
  178. set_bit(req_madv, &transparent_hugepage_flags);
  179. } else if (!memcmp("never", buf,
  180. min(sizeof("never")-1, count))) {
  181. clear_bit(enabled, &transparent_hugepage_flags);
  182. clear_bit(req_madv, &transparent_hugepage_flags);
  183. } else
  184. return -EINVAL;
  185. return count;
  186. }
  187. static ssize_t enabled_show(struct kobject *kobj,
  188. struct kobj_attribute *attr, char *buf)
  189. {
  190. return double_flag_show(kobj, attr, buf,
  191. TRANSPARENT_HUGEPAGE_FLAG,
  192. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  193. }
  194. static ssize_t enabled_store(struct kobject *kobj,
  195. struct kobj_attribute *attr,
  196. const char *buf, size_t count)
  197. {
  198. ssize_t ret;
  199. ret = double_flag_store(kobj, attr, buf, count,
  200. TRANSPARENT_HUGEPAGE_FLAG,
  201. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  202. if (ret > 0) {
  203. int err = start_khugepaged();
  204. if (err)
  205. ret = err;
  206. }
  207. if (ret > 0 &&
  208. (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
  209. &transparent_hugepage_flags) ||
  210. test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  211. &transparent_hugepage_flags)))
  212. set_recommended_min_free_kbytes();
  213. return ret;
  214. }
  215. static struct kobj_attribute enabled_attr =
  216. __ATTR(enabled, 0644, enabled_show, enabled_store);
  217. static ssize_t single_flag_show(struct kobject *kobj,
  218. struct kobj_attribute *attr, char *buf,
  219. enum transparent_hugepage_flag flag)
  220. {
  221. if (test_bit(flag, &transparent_hugepage_flags))
  222. return sprintf(buf, "[yes] no\n");
  223. else
  224. return sprintf(buf, "yes [no]\n");
  225. }
  226. static ssize_t single_flag_store(struct kobject *kobj,
  227. struct kobj_attribute *attr,
  228. const char *buf, size_t count,
  229. enum transparent_hugepage_flag flag)
  230. {
  231. if (!memcmp("yes", buf,
  232. min(sizeof("yes")-1, count))) {
  233. set_bit(flag, &transparent_hugepage_flags);
  234. } else if (!memcmp("no", buf,
  235. min(sizeof("no")-1, count))) {
  236. clear_bit(flag, &transparent_hugepage_flags);
  237. } else
  238. return -EINVAL;
  239. return count;
  240. }
  241. /*
  242. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  243. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  244. * memory just to allocate one more hugepage.
  245. */
  246. static ssize_t defrag_show(struct kobject *kobj,
  247. struct kobj_attribute *attr, char *buf)
  248. {
  249. return double_flag_show(kobj, attr, buf,
  250. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  251. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  252. }
  253. static ssize_t defrag_store(struct kobject *kobj,
  254. struct kobj_attribute *attr,
  255. const char *buf, size_t count)
  256. {
  257. return double_flag_store(kobj, attr, buf, count,
  258. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  259. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  260. }
  261. static struct kobj_attribute defrag_attr =
  262. __ATTR(defrag, 0644, defrag_show, defrag_store);
  263. #ifdef CONFIG_DEBUG_VM
  264. static ssize_t debug_cow_show(struct kobject *kobj,
  265. struct kobj_attribute *attr, char *buf)
  266. {
  267. return single_flag_show(kobj, attr, buf,
  268. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  269. }
  270. static ssize_t debug_cow_store(struct kobject *kobj,
  271. struct kobj_attribute *attr,
  272. const char *buf, size_t count)
  273. {
  274. return single_flag_store(kobj, attr, buf, count,
  275. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  276. }
  277. static struct kobj_attribute debug_cow_attr =
  278. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  279. #endif /* CONFIG_DEBUG_VM */
  280. static struct attribute *hugepage_attr[] = {
  281. &enabled_attr.attr,
  282. &defrag_attr.attr,
  283. #ifdef CONFIG_DEBUG_VM
  284. &debug_cow_attr.attr,
  285. #endif
  286. NULL,
  287. };
  288. static struct attribute_group hugepage_attr_group = {
  289. .attrs = hugepage_attr,
  290. };
  291. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  292. struct kobj_attribute *attr,
  293. char *buf)
  294. {
  295. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  296. }
  297. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  298. struct kobj_attribute *attr,
  299. const char *buf, size_t count)
  300. {
  301. unsigned long msecs;
  302. int err;
  303. err = strict_strtoul(buf, 10, &msecs);
  304. if (err || msecs > UINT_MAX)
  305. return -EINVAL;
  306. khugepaged_scan_sleep_millisecs = msecs;
  307. wake_up_interruptible(&khugepaged_wait);
  308. return count;
  309. }
  310. static struct kobj_attribute scan_sleep_millisecs_attr =
  311. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  312. scan_sleep_millisecs_store);
  313. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  314. struct kobj_attribute *attr,
  315. char *buf)
  316. {
  317. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  318. }
  319. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  320. struct kobj_attribute *attr,
  321. const char *buf, size_t count)
  322. {
  323. unsigned long msecs;
  324. int err;
  325. err = strict_strtoul(buf, 10, &msecs);
  326. if (err || msecs > UINT_MAX)
  327. return -EINVAL;
  328. khugepaged_alloc_sleep_millisecs = msecs;
  329. wake_up_interruptible(&khugepaged_wait);
  330. return count;
  331. }
  332. static struct kobj_attribute alloc_sleep_millisecs_attr =
  333. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  334. alloc_sleep_millisecs_store);
  335. static ssize_t pages_to_scan_show(struct kobject *kobj,
  336. struct kobj_attribute *attr,
  337. char *buf)
  338. {
  339. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  340. }
  341. static ssize_t pages_to_scan_store(struct kobject *kobj,
  342. struct kobj_attribute *attr,
  343. const char *buf, size_t count)
  344. {
  345. int err;
  346. unsigned long pages;
  347. err = strict_strtoul(buf, 10, &pages);
  348. if (err || !pages || pages > UINT_MAX)
  349. return -EINVAL;
  350. khugepaged_pages_to_scan = pages;
  351. return count;
  352. }
  353. static struct kobj_attribute pages_to_scan_attr =
  354. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  355. pages_to_scan_store);
  356. static ssize_t pages_collapsed_show(struct kobject *kobj,
  357. struct kobj_attribute *attr,
  358. char *buf)
  359. {
  360. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  361. }
  362. static struct kobj_attribute pages_collapsed_attr =
  363. __ATTR_RO(pages_collapsed);
  364. static ssize_t full_scans_show(struct kobject *kobj,
  365. struct kobj_attribute *attr,
  366. char *buf)
  367. {
  368. return sprintf(buf, "%u\n", khugepaged_full_scans);
  369. }
  370. static struct kobj_attribute full_scans_attr =
  371. __ATTR_RO(full_scans);
  372. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  373. struct kobj_attribute *attr, char *buf)
  374. {
  375. return single_flag_show(kobj, attr, buf,
  376. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  377. }
  378. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  379. struct kobj_attribute *attr,
  380. const char *buf, size_t count)
  381. {
  382. return single_flag_store(kobj, attr, buf, count,
  383. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  384. }
  385. static struct kobj_attribute khugepaged_defrag_attr =
  386. __ATTR(defrag, 0644, khugepaged_defrag_show,
  387. khugepaged_defrag_store);
  388. /*
  389. * max_ptes_none controls if khugepaged should collapse hugepages over
  390. * any unmapped ptes in turn potentially increasing the memory
  391. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  392. * reduce the available free memory in the system as it
  393. * runs. Increasing max_ptes_none will instead potentially reduce the
  394. * free memory in the system during the khugepaged scan.
  395. */
  396. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  397. struct kobj_attribute *attr,
  398. char *buf)
  399. {
  400. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  401. }
  402. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  403. struct kobj_attribute *attr,
  404. const char *buf, size_t count)
  405. {
  406. int err;
  407. unsigned long max_ptes_none;
  408. err = strict_strtoul(buf, 10, &max_ptes_none);
  409. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  410. return -EINVAL;
  411. khugepaged_max_ptes_none = max_ptes_none;
  412. return count;
  413. }
  414. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  415. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  416. khugepaged_max_ptes_none_store);
  417. static struct attribute *khugepaged_attr[] = {
  418. &khugepaged_defrag_attr.attr,
  419. &khugepaged_max_ptes_none_attr.attr,
  420. &pages_to_scan_attr.attr,
  421. &pages_collapsed_attr.attr,
  422. &full_scans_attr.attr,
  423. &scan_sleep_millisecs_attr.attr,
  424. &alloc_sleep_millisecs_attr.attr,
  425. NULL,
  426. };
  427. static struct attribute_group khugepaged_attr_group = {
  428. .attrs = khugepaged_attr,
  429. .name = "khugepaged",
  430. };
  431. #endif /* CONFIG_SYSFS */
  432. static int __init hugepage_init(void)
  433. {
  434. int err;
  435. #ifdef CONFIG_SYSFS
  436. static struct kobject *hugepage_kobj;
  437. #endif
  438. err = -EINVAL;
  439. if (!has_transparent_hugepage()) {
  440. transparent_hugepage_flags = 0;
  441. goto out;
  442. }
  443. #ifdef CONFIG_SYSFS
  444. err = -ENOMEM;
  445. hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  446. if (unlikely(!hugepage_kobj)) {
  447. printk(KERN_ERR "hugepage: failed kobject create\n");
  448. goto out;
  449. }
  450. err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
  451. if (err) {
  452. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  453. goto out;
  454. }
  455. err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
  456. if (err) {
  457. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  458. goto out;
  459. }
  460. #endif
  461. err = khugepaged_slab_init();
  462. if (err)
  463. goto out;
  464. err = mm_slots_hash_init();
  465. if (err) {
  466. khugepaged_slab_free();
  467. goto out;
  468. }
  469. /*
  470. * By default disable transparent hugepages on smaller systems,
  471. * where the extra memory used could hurt more than TLB overhead
  472. * is likely to save. The admin can still enable it through /sys.
  473. */
  474. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  475. transparent_hugepage_flags = 0;
  476. start_khugepaged();
  477. set_recommended_min_free_kbytes();
  478. out:
  479. return err;
  480. }
  481. module_init(hugepage_init)
  482. static int __init setup_transparent_hugepage(char *str)
  483. {
  484. int ret = 0;
  485. if (!str)
  486. goto out;
  487. if (!strcmp(str, "always")) {
  488. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  489. &transparent_hugepage_flags);
  490. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  491. &transparent_hugepage_flags);
  492. ret = 1;
  493. } else if (!strcmp(str, "madvise")) {
  494. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  495. &transparent_hugepage_flags);
  496. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  497. &transparent_hugepage_flags);
  498. ret = 1;
  499. } else if (!strcmp(str, "never")) {
  500. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  501. &transparent_hugepage_flags);
  502. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  503. &transparent_hugepage_flags);
  504. ret = 1;
  505. }
  506. out:
  507. if (!ret)
  508. printk(KERN_WARNING
  509. "transparent_hugepage= cannot parse, ignored\n");
  510. return ret;
  511. }
  512. __setup("transparent_hugepage=", setup_transparent_hugepage);
  513. static void prepare_pmd_huge_pte(pgtable_t pgtable,
  514. struct mm_struct *mm)
  515. {
  516. assert_spin_locked(&mm->page_table_lock);
  517. /* FIFO */
  518. if (!mm->pmd_huge_pte)
  519. INIT_LIST_HEAD(&pgtable->lru);
  520. else
  521. list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
  522. mm->pmd_huge_pte = pgtable;
  523. }
  524. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  525. {
  526. if (likely(vma->vm_flags & VM_WRITE))
  527. pmd = pmd_mkwrite(pmd);
  528. return pmd;
  529. }
  530. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  531. struct vm_area_struct *vma,
  532. unsigned long haddr, pmd_t *pmd,
  533. struct page *page)
  534. {
  535. int ret = 0;
  536. pgtable_t pgtable;
  537. VM_BUG_ON(!PageCompound(page));
  538. pgtable = pte_alloc_one(mm, haddr);
  539. if (unlikely(!pgtable)) {
  540. mem_cgroup_uncharge_page(page);
  541. put_page(page);
  542. return VM_FAULT_OOM;
  543. }
  544. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  545. __SetPageUptodate(page);
  546. spin_lock(&mm->page_table_lock);
  547. if (unlikely(!pmd_none(*pmd))) {
  548. spin_unlock(&mm->page_table_lock);
  549. mem_cgroup_uncharge_page(page);
  550. put_page(page);
  551. pte_free(mm, pgtable);
  552. } else {
  553. pmd_t entry;
  554. entry = mk_pmd(page, vma->vm_page_prot);
  555. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  556. entry = pmd_mkhuge(entry);
  557. /*
  558. * The spinlocking to take the lru_lock inside
  559. * page_add_new_anon_rmap() acts as a full memory
  560. * barrier to be sure clear_huge_page writes become
  561. * visible after the set_pmd_at() write.
  562. */
  563. page_add_new_anon_rmap(page, vma, haddr);
  564. set_pmd_at(mm, haddr, pmd, entry);
  565. prepare_pmd_huge_pte(pgtable, mm);
  566. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  567. spin_unlock(&mm->page_table_lock);
  568. }
  569. return ret;
  570. }
  571. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  572. {
  573. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  574. }
  575. static inline struct page *alloc_hugepage_vma(int defrag,
  576. struct vm_area_struct *vma,
  577. unsigned long haddr, int nd,
  578. gfp_t extra_gfp)
  579. {
  580. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  581. HPAGE_PMD_ORDER, vma, haddr, nd);
  582. }
  583. #ifndef CONFIG_NUMA
  584. static inline struct page *alloc_hugepage(int defrag)
  585. {
  586. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  587. HPAGE_PMD_ORDER);
  588. }
  589. #endif
  590. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  591. unsigned long address, pmd_t *pmd,
  592. unsigned int flags)
  593. {
  594. struct page *page;
  595. unsigned long haddr = address & HPAGE_PMD_MASK;
  596. pte_t *pte;
  597. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  598. if (unlikely(anon_vma_prepare(vma)))
  599. return VM_FAULT_OOM;
  600. if (unlikely(khugepaged_enter(vma)))
  601. return VM_FAULT_OOM;
  602. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  603. vma, haddr, numa_node_id(), 0);
  604. if (unlikely(!page)) {
  605. count_vm_event(THP_FAULT_FALLBACK);
  606. goto out;
  607. }
  608. count_vm_event(THP_FAULT_ALLOC);
  609. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  610. put_page(page);
  611. goto out;
  612. }
  613. return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
  614. }
  615. out:
  616. /*
  617. * Use __pte_alloc instead of pte_alloc_map, because we can't
  618. * run pte_offset_map on the pmd, if an huge pmd could
  619. * materialize from under us from a different thread.
  620. */
  621. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  622. return VM_FAULT_OOM;
  623. /* if an huge pmd materialized from under us just retry later */
  624. if (unlikely(pmd_trans_huge(*pmd)))
  625. return 0;
  626. /*
  627. * A regular pmd is established and it can't morph into a huge pmd
  628. * from under us anymore at this point because we hold the mmap_sem
  629. * read mode and khugepaged takes it in write mode. So now it's
  630. * safe to run pte_offset_map().
  631. */
  632. pte = pte_offset_map(pmd, address);
  633. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  634. }
  635. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  636. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  637. struct vm_area_struct *vma)
  638. {
  639. struct page *src_page;
  640. pmd_t pmd;
  641. pgtable_t pgtable;
  642. int ret;
  643. ret = -ENOMEM;
  644. pgtable = pte_alloc_one(dst_mm, addr);
  645. if (unlikely(!pgtable))
  646. goto out;
  647. spin_lock(&dst_mm->page_table_lock);
  648. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  649. ret = -EAGAIN;
  650. pmd = *src_pmd;
  651. if (unlikely(!pmd_trans_huge(pmd))) {
  652. pte_free(dst_mm, pgtable);
  653. goto out_unlock;
  654. }
  655. if (unlikely(pmd_trans_splitting(pmd))) {
  656. /* split huge page running from under us */
  657. spin_unlock(&src_mm->page_table_lock);
  658. spin_unlock(&dst_mm->page_table_lock);
  659. pte_free(dst_mm, pgtable);
  660. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  661. goto out;
  662. }
  663. src_page = pmd_page(pmd);
  664. VM_BUG_ON(!PageHead(src_page));
  665. get_page(src_page);
  666. page_dup_rmap(src_page);
  667. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  668. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  669. pmd = pmd_mkold(pmd_wrprotect(pmd));
  670. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  671. prepare_pmd_huge_pte(pgtable, dst_mm);
  672. ret = 0;
  673. out_unlock:
  674. spin_unlock(&src_mm->page_table_lock);
  675. spin_unlock(&dst_mm->page_table_lock);
  676. out:
  677. return ret;
  678. }
  679. /* no "address" argument so destroys page coloring of some arch */
  680. pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
  681. {
  682. pgtable_t pgtable;
  683. assert_spin_locked(&mm->page_table_lock);
  684. /* FIFO */
  685. pgtable = mm->pmd_huge_pte;
  686. if (list_empty(&pgtable->lru))
  687. mm->pmd_huge_pte = NULL;
  688. else {
  689. mm->pmd_huge_pte = list_entry(pgtable->lru.next,
  690. struct page, lru);
  691. list_del(&pgtable->lru);
  692. }
  693. return pgtable;
  694. }
  695. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  696. struct vm_area_struct *vma,
  697. unsigned long address,
  698. pmd_t *pmd, pmd_t orig_pmd,
  699. struct page *page,
  700. unsigned long haddr)
  701. {
  702. pgtable_t pgtable;
  703. pmd_t _pmd;
  704. int ret = 0, i;
  705. struct page **pages;
  706. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  707. GFP_KERNEL);
  708. if (unlikely(!pages)) {
  709. ret |= VM_FAULT_OOM;
  710. goto out;
  711. }
  712. for (i = 0; i < HPAGE_PMD_NR; i++) {
  713. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  714. __GFP_OTHER_NODE,
  715. vma, address, page_to_nid(page));
  716. if (unlikely(!pages[i] ||
  717. mem_cgroup_newpage_charge(pages[i], mm,
  718. GFP_KERNEL))) {
  719. if (pages[i])
  720. put_page(pages[i]);
  721. mem_cgroup_uncharge_start();
  722. while (--i >= 0) {
  723. mem_cgroup_uncharge_page(pages[i]);
  724. put_page(pages[i]);
  725. }
  726. mem_cgroup_uncharge_end();
  727. kfree(pages);
  728. ret |= VM_FAULT_OOM;
  729. goto out;
  730. }
  731. }
  732. for (i = 0; i < HPAGE_PMD_NR; i++) {
  733. copy_user_highpage(pages[i], page + i,
  734. haddr + PAGE_SHIFT*i, vma);
  735. __SetPageUptodate(pages[i]);
  736. cond_resched();
  737. }
  738. spin_lock(&mm->page_table_lock);
  739. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  740. goto out_free_pages;
  741. VM_BUG_ON(!PageHead(page));
  742. pmdp_clear_flush_notify(vma, haddr, pmd);
  743. /* leave pmd empty until pte is filled */
  744. pgtable = get_pmd_huge_pte(mm);
  745. pmd_populate(mm, &_pmd, pgtable);
  746. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  747. pte_t *pte, entry;
  748. entry = mk_pte(pages[i], vma->vm_page_prot);
  749. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  750. page_add_new_anon_rmap(pages[i], vma, haddr);
  751. pte = pte_offset_map(&_pmd, haddr);
  752. VM_BUG_ON(!pte_none(*pte));
  753. set_pte_at(mm, haddr, pte, entry);
  754. pte_unmap(pte);
  755. }
  756. kfree(pages);
  757. mm->nr_ptes++;
  758. smp_wmb(); /* make pte visible before pmd */
  759. pmd_populate(mm, pmd, pgtable);
  760. page_remove_rmap(page);
  761. spin_unlock(&mm->page_table_lock);
  762. ret |= VM_FAULT_WRITE;
  763. put_page(page);
  764. out:
  765. return ret;
  766. out_free_pages:
  767. spin_unlock(&mm->page_table_lock);
  768. mem_cgroup_uncharge_start();
  769. for (i = 0; i < HPAGE_PMD_NR; i++) {
  770. mem_cgroup_uncharge_page(pages[i]);
  771. put_page(pages[i]);
  772. }
  773. mem_cgroup_uncharge_end();
  774. kfree(pages);
  775. goto out;
  776. }
  777. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  778. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  779. {
  780. int ret = 0;
  781. struct page *page, *new_page;
  782. unsigned long haddr;
  783. VM_BUG_ON(!vma->anon_vma);
  784. spin_lock(&mm->page_table_lock);
  785. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  786. goto out_unlock;
  787. page = pmd_page(orig_pmd);
  788. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  789. haddr = address & HPAGE_PMD_MASK;
  790. if (page_mapcount(page) == 1) {
  791. pmd_t entry;
  792. entry = pmd_mkyoung(orig_pmd);
  793. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  794. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  795. update_mmu_cache(vma, address, entry);
  796. ret |= VM_FAULT_WRITE;
  797. goto out_unlock;
  798. }
  799. get_page(page);
  800. spin_unlock(&mm->page_table_lock);
  801. if (transparent_hugepage_enabled(vma) &&
  802. !transparent_hugepage_debug_cow())
  803. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  804. vma, haddr, numa_node_id(), 0);
  805. else
  806. new_page = NULL;
  807. if (unlikely(!new_page)) {
  808. count_vm_event(THP_FAULT_FALLBACK);
  809. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  810. pmd, orig_pmd, page, haddr);
  811. put_page(page);
  812. goto out;
  813. }
  814. count_vm_event(THP_FAULT_ALLOC);
  815. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  816. put_page(new_page);
  817. put_page(page);
  818. ret |= VM_FAULT_OOM;
  819. goto out;
  820. }
  821. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  822. __SetPageUptodate(new_page);
  823. spin_lock(&mm->page_table_lock);
  824. put_page(page);
  825. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  826. mem_cgroup_uncharge_page(new_page);
  827. put_page(new_page);
  828. } else {
  829. pmd_t entry;
  830. VM_BUG_ON(!PageHead(page));
  831. entry = mk_pmd(new_page, vma->vm_page_prot);
  832. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  833. entry = pmd_mkhuge(entry);
  834. pmdp_clear_flush_notify(vma, haddr, pmd);
  835. page_add_new_anon_rmap(new_page, vma, haddr);
  836. set_pmd_at(mm, haddr, pmd, entry);
  837. update_mmu_cache(vma, address, entry);
  838. page_remove_rmap(page);
  839. put_page(page);
  840. ret |= VM_FAULT_WRITE;
  841. }
  842. out_unlock:
  843. spin_unlock(&mm->page_table_lock);
  844. out:
  845. return ret;
  846. }
  847. struct page *follow_trans_huge_pmd(struct mm_struct *mm,
  848. unsigned long addr,
  849. pmd_t *pmd,
  850. unsigned int flags)
  851. {
  852. struct page *page = NULL;
  853. assert_spin_locked(&mm->page_table_lock);
  854. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  855. goto out;
  856. page = pmd_page(*pmd);
  857. VM_BUG_ON(!PageHead(page));
  858. if (flags & FOLL_TOUCH) {
  859. pmd_t _pmd;
  860. /*
  861. * We should set the dirty bit only for FOLL_WRITE but
  862. * for now the dirty bit in the pmd is meaningless.
  863. * And if the dirty bit will become meaningful and
  864. * we'll only set it with FOLL_WRITE, an atomic
  865. * set_bit will be required on the pmd to set the
  866. * young bit, instead of the current set_pmd_at.
  867. */
  868. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  869. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  870. }
  871. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  872. VM_BUG_ON(!PageCompound(page));
  873. if (flags & FOLL_GET)
  874. get_page(page);
  875. out:
  876. return page;
  877. }
  878. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  879. pmd_t *pmd)
  880. {
  881. int ret = 0;
  882. spin_lock(&tlb->mm->page_table_lock);
  883. if (likely(pmd_trans_huge(*pmd))) {
  884. if (unlikely(pmd_trans_splitting(*pmd))) {
  885. spin_unlock(&tlb->mm->page_table_lock);
  886. wait_split_huge_page(vma->anon_vma,
  887. pmd);
  888. } else {
  889. struct page *page;
  890. pgtable_t pgtable;
  891. pgtable = get_pmd_huge_pte(tlb->mm);
  892. page = pmd_page(*pmd);
  893. pmd_clear(pmd);
  894. page_remove_rmap(page);
  895. VM_BUG_ON(page_mapcount(page) < 0);
  896. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  897. VM_BUG_ON(!PageHead(page));
  898. spin_unlock(&tlb->mm->page_table_lock);
  899. tlb_remove_page(tlb, page);
  900. pte_free(tlb->mm, pgtable);
  901. ret = 1;
  902. }
  903. } else
  904. spin_unlock(&tlb->mm->page_table_lock);
  905. return ret;
  906. }
  907. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  908. unsigned long addr, unsigned long end,
  909. unsigned char *vec)
  910. {
  911. int ret = 0;
  912. spin_lock(&vma->vm_mm->page_table_lock);
  913. if (likely(pmd_trans_huge(*pmd))) {
  914. ret = !pmd_trans_splitting(*pmd);
  915. spin_unlock(&vma->vm_mm->page_table_lock);
  916. if (unlikely(!ret))
  917. wait_split_huge_page(vma->anon_vma, pmd);
  918. else {
  919. /*
  920. * All logical pages in the range are present
  921. * if backed by a huge page.
  922. */
  923. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  924. }
  925. } else
  926. spin_unlock(&vma->vm_mm->page_table_lock);
  927. return ret;
  928. }
  929. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  930. unsigned long addr, pgprot_t newprot)
  931. {
  932. struct mm_struct *mm = vma->vm_mm;
  933. int ret = 0;
  934. spin_lock(&mm->page_table_lock);
  935. if (likely(pmd_trans_huge(*pmd))) {
  936. if (unlikely(pmd_trans_splitting(*pmd))) {
  937. spin_unlock(&mm->page_table_lock);
  938. wait_split_huge_page(vma->anon_vma, pmd);
  939. } else {
  940. pmd_t entry;
  941. entry = pmdp_get_and_clear(mm, addr, pmd);
  942. entry = pmd_modify(entry, newprot);
  943. set_pmd_at(mm, addr, pmd, entry);
  944. spin_unlock(&vma->vm_mm->page_table_lock);
  945. flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
  946. ret = 1;
  947. }
  948. } else
  949. spin_unlock(&vma->vm_mm->page_table_lock);
  950. return ret;
  951. }
  952. pmd_t *page_check_address_pmd(struct page *page,
  953. struct mm_struct *mm,
  954. unsigned long address,
  955. enum page_check_address_pmd_flag flag)
  956. {
  957. pgd_t *pgd;
  958. pud_t *pud;
  959. pmd_t *pmd, *ret = NULL;
  960. if (address & ~HPAGE_PMD_MASK)
  961. goto out;
  962. pgd = pgd_offset(mm, address);
  963. if (!pgd_present(*pgd))
  964. goto out;
  965. pud = pud_offset(pgd, address);
  966. if (!pud_present(*pud))
  967. goto out;
  968. pmd = pmd_offset(pud, address);
  969. if (pmd_none(*pmd))
  970. goto out;
  971. if (pmd_page(*pmd) != page)
  972. goto out;
  973. /*
  974. * split_vma() may create temporary aliased mappings. There is
  975. * no risk as long as all huge pmd are found and have their
  976. * splitting bit set before __split_huge_page_refcount
  977. * runs. Finding the same huge pmd more than once during the
  978. * same rmap walk is not a problem.
  979. */
  980. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  981. pmd_trans_splitting(*pmd))
  982. goto out;
  983. if (pmd_trans_huge(*pmd)) {
  984. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  985. !pmd_trans_splitting(*pmd));
  986. ret = pmd;
  987. }
  988. out:
  989. return ret;
  990. }
  991. static int __split_huge_page_splitting(struct page *page,
  992. struct vm_area_struct *vma,
  993. unsigned long address)
  994. {
  995. struct mm_struct *mm = vma->vm_mm;
  996. pmd_t *pmd;
  997. int ret = 0;
  998. spin_lock(&mm->page_table_lock);
  999. pmd = page_check_address_pmd(page, mm, address,
  1000. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1001. if (pmd) {
  1002. /*
  1003. * We can't temporarily set the pmd to null in order
  1004. * to split it, the pmd must remain marked huge at all
  1005. * times or the VM won't take the pmd_trans_huge paths
  1006. * and it won't wait on the anon_vma->root->lock to
  1007. * serialize against split_huge_page*.
  1008. */
  1009. pmdp_splitting_flush_notify(vma, address, pmd);
  1010. ret = 1;
  1011. }
  1012. spin_unlock(&mm->page_table_lock);
  1013. return ret;
  1014. }
  1015. static void __split_huge_page_refcount(struct page *page)
  1016. {
  1017. int i;
  1018. unsigned long head_index = page->index;
  1019. struct zone *zone = page_zone(page);
  1020. int zonestat;
  1021. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1022. spin_lock_irq(&zone->lru_lock);
  1023. compound_lock(page);
  1024. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1025. struct page *page_tail = page + i;
  1026. /* tail_page->_count cannot change */
  1027. atomic_sub(atomic_read(&page_tail->_count), &page->_count);
  1028. BUG_ON(page_count(page) <= 0);
  1029. atomic_add(page_mapcount(page) + 1, &page_tail->_count);
  1030. BUG_ON(atomic_read(&page_tail->_count) <= 0);
  1031. /* after clearing PageTail the gup refcount can be released */
  1032. smp_mb();
  1033. /*
  1034. * retain hwpoison flag of the poisoned tail page:
  1035. * fix for the unsuitable process killed on Guest Machine(KVM)
  1036. * by the memory-failure.
  1037. */
  1038. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1039. page_tail->flags |= (page->flags &
  1040. ((1L << PG_referenced) |
  1041. (1L << PG_swapbacked) |
  1042. (1L << PG_mlocked) |
  1043. (1L << PG_uptodate)));
  1044. page_tail->flags |= (1L << PG_dirty);
  1045. /*
  1046. * 1) clear PageTail before overwriting first_page
  1047. * 2) clear PageTail before clearing PageHead for VM_BUG_ON
  1048. */
  1049. smp_wmb();
  1050. /*
  1051. * __split_huge_page_splitting() already set the
  1052. * splitting bit in all pmd that could map this
  1053. * hugepage, that will ensure no CPU can alter the
  1054. * mapcount on the head page. The mapcount is only
  1055. * accounted in the head page and it has to be
  1056. * transferred to all tail pages in the below code. So
  1057. * for this code to be safe, the split the mapcount
  1058. * can't change. But that doesn't mean userland can't
  1059. * keep changing and reading the page contents while
  1060. * we transfer the mapcount, so the pmd splitting
  1061. * status is achieved setting a reserved bit in the
  1062. * pmd, not by clearing the present bit.
  1063. */
  1064. BUG_ON(page_mapcount(page_tail));
  1065. page_tail->_mapcount = page->_mapcount;
  1066. BUG_ON(page_tail->mapping);
  1067. page_tail->mapping = page->mapping;
  1068. page_tail->index = ++head_index;
  1069. BUG_ON(!PageAnon(page_tail));
  1070. BUG_ON(!PageUptodate(page_tail));
  1071. BUG_ON(!PageDirty(page_tail));
  1072. BUG_ON(!PageSwapBacked(page_tail));
  1073. mem_cgroup_split_huge_fixup(page, page_tail);
  1074. lru_add_page_tail(zone, page, page_tail);
  1075. }
  1076. __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  1077. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1078. /*
  1079. * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
  1080. * so adjust those appropriately if this page is on the LRU.
  1081. */
  1082. if (PageLRU(page)) {
  1083. zonestat = NR_LRU_BASE + page_lru(page);
  1084. __mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
  1085. }
  1086. ClearPageCompound(page);
  1087. compound_unlock(page);
  1088. spin_unlock_irq(&zone->lru_lock);
  1089. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1090. struct page *page_tail = page + i;
  1091. BUG_ON(page_count(page_tail) <= 0);
  1092. /*
  1093. * Tail pages may be freed if there wasn't any mapping
  1094. * like if add_to_swap() is running on a lru page that
  1095. * had its mapping zapped. And freeing these pages
  1096. * requires taking the lru_lock so we do the put_page
  1097. * of the tail pages after the split is complete.
  1098. */
  1099. put_page(page_tail);
  1100. }
  1101. /*
  1102. * Only the head page (now become a regular page) is required
  1103. * to be pinned by the caller.
  1104. */
  1105. BUG_ON(page_count(page) <= 0);
  1106. }
  1107. static int __split_huge_page_map(struct page *page,
  1108. struct vm_area_struct *vma,
  1109. unsigned long address)
  1110. {
  1111. struct mm_struct *mm = vma->vm_mm;
  1112. pmd_t *pmd, _pmd;
  1113. int ret = 0, i;
  1114. pgtable_t pgtable;
  1115. unsigned long haddr;
  1116. spin_lock(&mm->page_table_lock);
  1117. pmd = page_check_address_pmd(page, mm, address,
  1118. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1119. if (pmd) {
  1120. pgtable = get_pmd_huge_pte(mm);
  1121. pmd_populate(mm, &_pmd, pgtable);
  1122. for (i = 0, haddr = address; i < HPAGE_PMD_NR;
  1123. i++, haddr += PAGE_SIZE) {
  1124. pte_t *pte, entry;
  1125. BUG_ON(PageCompound(page+i));
  1126. entry = mk_pte(page + i, vma->vm_page_prot);
  1127. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1128. if (!pmd_write(*pmd))
  1129. entry = pte_wrprotect(entry);
  1130. else
  1131. BUG_ON(page_mapcount(page) != 1);
  1132. if (!pmd_young(*pmd))
  1133. entry = pte_mkold(entry);
  1134. pte = pte_offset_map(&_pmd, haddr);
  1135. BUG_ON(!pte_none(*pte));
  1136. set_pte_at(mm, haddr, pte, entry);
  1137. pte_unmap(pte);
  1138. }
  1139. mm->nr_ptes++;
  1140. smp_wmb(); /* make pte visible before pmd */
  1141. /*
  1142. * Up to this point the pmd is present and huge and
  1143. * userland has the whole access to the hugepage
  1144. * during the split (which happens in place). If we
  1145. * overwrite the pmd with the not-huge version
  1146. * pointing to the pte here (which of course we could
  1147. * if all CPUs were bug free), userland could trigger
  1148. * a small page size TLB miss on the small sized TLB
  1149. * while the hugepage TLB entry is still established
  1150. * in the huge TLB. Some CPU doesn't like that. See
  1151. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1152. * Erratum 383 on page 93. Intel should be safe but is
  1153. * also warns that it's only safe if the permission
  1154. * and cache attributes of the two entries loaded in
  1155. * the two TLB is identical (which should be the case
  1156. * here). But it is generally safer to never allow
  1157. * small and huge TLB entries for the same virtual
  1158. * address to be loaded simultaneously. So instead of
  1159. * doing "pmd_populate(); flush_tlb_range();" we first
  1160. * mark the current pmd notpresent (atomically because
  1161. * here the pmd_trans_huge and pmd_trans_splitting
  1162. * must remain set at all times on the pmd until the
  1163. * split is complete for this pmd), then we flush the
  1164. * SMP TLB and finally we write the non-huge version
  1165. * of the pmd entry with pmd_populate.
  1166. */
  1167. set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
  1168. flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
  1169. pmd_populate(mm, pmd, pgtable);
  1170. ret = 1;
  1171. }
  1172. spin_unlock(&mm->page_table_lock);
  1173. return ret;
  1174. }
  1175. /* must be called with anon_vma->root->lock hold */
  1176. static void __split_huge_page(struct page *page,
  1177. struct anon_vma *anon_vma)
  1178. {
  1179. int mapcount, mapcount2;
  1180. struct anon_vma_chain *avc;
  1181. BUG_ON(!PageHead(page));
  1182. BUG_ON(PageTail(page));
  1183. mapcount = 0;
  1184. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1185. struct vm_area_struct *vma = avc->vma;
  1186. unsigned long addr = vma_address(page, vma);
  1187. BUG_ON(is_vma_temporary_stack(vma));
  1188. if (addr == -EFAULT)
  1189. continue;
  1190. mapcount += __split_huge_page_splitting(page, vma, addr);
  1191. }
  1192. /*
  1193. * It is critical that new vmas are added to the tail of the
  1194. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1195. * and establishes a child pmd before
  1196. * __split_huge_page_splitting() freezes the parent pmd (so if
  1197. * we fail to prevent copy_huge_pmd() from running until the
  1198. * whole __split_huge_page() is complete), we will still see
  1199. * the newly established pmd of the child later during the
  1200. * walk, to be able to set it as pmd_trans_splitting too.
  1201. */
  1202. if (mapcount != page_mapcount(page))
  1203. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1204. mapcount, page_mapcount(page));
  1205. BUG_ON(mapcount != page_mapcount(page));
  1206. __split_huge_page_refcount(page);
  1207. mapcount2 = 0;
  1208. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1209. struct vm_area_struct *vma = avc->vma;
  1210. unsigned long addr = vma_address(page, vma);
  1211. BUG_ON(is_vma_temporary_stack(vma));
  1212. if (addr == -EFAULT)
  1213. continue;
  1214. mapcount2 += __split_huge_page_map(page, vma, addr);
  1215. }
  1216. if (mapcount != mapcount2)
  1217. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1218. mapcount, mapcount2, page_mapcount(page));
  1219. BUG_ON(mapcount != mapcount2);
  1220. }
  1221. int split_huge_page(struct page *page)
  1222. {
  1223. struct anon_vma *anon_vma;
  1224. int ret = 1;
  1225. BUG_ON(!PageAnon(page));
  1226. anon_vma = page_lock_anon_vma(page);
  1227. if (!anon_vma)
  1228. goto out;
  1229. ret = 0;
  1230. if (!PageCompound(page))
  1231. goto out_unlock;
  1232. BUG_ON(!PageSwapBacked(page));
  1233. __split_huge_page(page, anon_vma);
  1234. count_vm_event(THP_SPLIT);
  1235. BUG_ON(PageCompound(page));
  1236. out_unlock:
  1237. page_unlock_anon_vma(anon_vma);
  1238. out:
  1239. return ret;
  1240. }
  1241. int hugepage_madvise(struct vm_area_struct *vma,
  1242. unsigned long *vm_flags, int advice)
  1243. {
  1244. switch (advice) {
  1245. case MADV_HUGEPAGE:
  1246. /*
  1247. * Be somewhat over-protective like KSM for now!
  1248. */
  1249. if (*vm_flags & (VM_HUGEPAGE |
  1250. VM_SHARED | VM_MAYSHARE |
  1251. VM_PFNMAP | VM_IO | VM_DONTEXPAND |
  1252. VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
  1253. VM_MIXEDMAP | VM_SAO))
  1254. return -EINVAL;
  1255. *vm_flags &= ~VM_NOHUGEPAGE;
  1256. *vm_flags |= VM_HUGEPAGE;
  1257. /*
  1258. * If the vma become good for khugepaged to scan,
  1259. * register it here without waiting a page fault that
  1260. * may not happen any time soon.
  1261. */
  1262. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1263. return -ENOMEM;
  1264. break;
  1265. case MADV_NOHUGEPAGE:
  1266. /*
  1267. * Be somewhat over-protective like KSM for now!
  1268. */
  1269. if (*vm_flags & (VM_NOHUGEPAGE |
  1270. VM_SHARED | VM_MAYSHARE |
  1271. VM_PFNMAP | VM_IO | VM_DONTEXPAND |
  1272. VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
  1273. VM_MIXEDMAP | VM_SAO))
  1274. return -EINVAL;
  1275. *vm_flags &= ~VM_HUGEPAGE;
  1276. *vm_flags |= VM_NOHUGEPAGE;
  1277. /*
  1278. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1279. * this vma even if we leave the mm registered in khugepaged if
  1280. * it got registered before VM_NOHUGEPAGE was set.
  1281. */
  1282. break;
  1283. }
  1284. return 0;
  1285. }
  1286. static int __init khugepaged_slab_init(void)
  1287. {
  1288. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1289. sizeof(struct mm_slot),
  1290. __alignof__(struct mm_slot), 0, NULL);
  1291. if (!mm_slot_cache)
  1292. return -ENOMEM;
  1293. return 0;
  1294. }
  1295. static void __init khugepaged_slab_free(void)
  1296. {
  1297. kmem_cache_destroy(mm_slot_cache);
  1298. mm_slot_cache = NULL;
  1299. }
  1300. static inline struct mm_slot *alloc_mm_slot(void)
  1301. {
  1302. if (!mm_slot_cache) /* initialization failed */
  1303. return NULL;
  1304. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1305. }
  1306. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1307. {
  1308. kmem_cache_free(mm_slot_cache, mm_slot);
  1309. }
  1310. static int __init mm_slots_hash_init(void)
  1311. {
  1312. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1313. GFP_KERNEL);
  1314. if (!mm_slots_hash)
  1315. return -ENOMEM;
  1316. return 0;
  1317. }
  1318. #if 0
  1319. static void __init mm_slots_hash_free(void)
  1320. {
  1321. kfree(mm_slots_hash);
  1322. mm_slots_hash = NULL;
  1323. }
  1324. #endif
  1325. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1326. {
  1327. struct mm_slot *mm_slot;
  1328. struct hlist_head *bucket;
  1329. struct hlist_node *node;
  1330. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1331. % MM_SLOTS_HASH_HEADS];
  1332. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1333. if (mm == mm_slot->mm)
  1334. return mm_slot;
  1335. }
  1336. return NULL;
  1337. }
  1338. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1339. struct mm_slot *mm_slot)
  1340. {
  1341. struct hlist_head *bucket;
  1342. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1343. % MM_SLOTS_HASH_HEADS];
  1344. mm_slot->mm = mm;
  1345. hlist_add_head(&mm_slot->hash, bucket);
  1346. }
  1347. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1348. {
  1349. return atomic_read(&mm->mm_users) == 0;
  1350. }
  1351. int __khugepaged_enter(struct mm_struct *mm)
  1352. {
  1353. struct mm_slot *mm_slot;
  1354. int wakeup;
  1355. mm_slot = alloc_mm_slot();
  1356. if (!mm_slot)
  1357. return -ENOMEM;
  1358. /* __khugepaged_exit() must not run from under us */
  1359. VM_BUG_ON(khugepaged_test_exit(mm));
  1360. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1361. free_mm_slot(mm_slot);
  1362. return 0;
  1363. }
  1364. spin_lock(&khugepaged_mm_lock);
  1365. insert_to_mm_slots_hash(mm, mm_slot);
  1366. /*
  1367. * Insert just behind the scanning cursor, to let the area settle
  1368. * down a little.
  1369. */
  1370. wakeup = list_empty(&khugepaged_scan.mm_head);
  1371. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1372. spin_unlock(&khugepaged_mm_lock);
  1373. atomic_inc(&mm->mm_count);
  1374. if (wakeup)
  1375. wake_up_interruptible(&khugepaged_wait);
  1376. return 0;
  1377. }
  1378. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1379. {
  1380. unsigned long hstart, hend;
  1381. if (!vma->anon_vma)
  1382. /*
  1383. * Not yet faulted in so we will register later in the
  1384. * page fault if needed.
  1385. */
  1386. return 0;
  1387. if (vma->vm_file || vma->vm_ops)
  1388. /* khugepaged not yet working on file or special mappings */
  1389. return 0;
  1390. VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
  1391. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1392. hend = vma->vm_end & HPAGE_PMD_MASK;
  1393. if (hstart < hend)
  1394. return khugepaged_enter(vma);
  1395. return 0;
  1396. }
  1397. void __khugepaged_exit(struct mm_struct *mm)
  1398. {
  1399. struct mm_slot *mm_slot;
  1400. int free = 0;
  1401. spin_lock(&khugepaged_mm_lock);
  1402. mm_slot = get_mm_slot(mm);
  1403. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1404. hlist_del(&mm_slot->hash);
  1405. list_del(&mm_slot->mm_node);
  1406. free = 1;
  1407. }
  1408. if (free) {
  1409. spin_unlock(&khugepaged_mm_lock);
  1410. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1411. free_mm_slot(mm_slot);
  1412. mmdrop(mm);
  1413. } else if (mm_slot) {
  1414. spin_unlock(&khugepaged_mm_lock);
  1415. /*
  1416. * This is required to serialize against
  1417. * khugepaged_test_exit() (which is guaranteed to run
  1418. * under mmap sem read mode). Stop here (after we
  1419. * return all pagetables will be destroyed) until
  1420. * khugepaged has finished working on the pagetables
  1421. * under the mmap_sem.
  1422. */
  1423. down_write(&mm->mmap_sem);
  1424. up_write(&mm->mmap_sem);
  1425. } else
  1426. spin_unlock(&khugepaged_mm_lock);
  1427. }
  1428. static void release_pte_page(struct page *page)
  1429. {
  1430. /* 0 stands for page_is_file_cache(page) == false */
  1431. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1432. unlock_page(page);
  1433. putback_lru_page(page);
  1434. }
  1435. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1436. {
  1437. while (--_pte >= pte) {
  1438. pte_t pteval = *_pte;
  1439. if (!pte_none(pteval))
  1440. release_pte_page(pte_page(pteval));
  1441. }
  1442. }
  1443. static void release_all_pte_pages(pte_t *pte)
  1444. {
  1445. release_pte_pages(pte, pte + HPAGE_PMD_NR);
  1446. }
  1447. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1448. unsigned long address,
  1449. pte_t *pte)
  1450. {
  1451. struct page *page;
  1452. pte_t *_pte;
  1453. int referenced = 0, isolated = 0, none = 0;
  1454. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1455. _pte++, address += PAGE_SIZE) {
  1456. pte_t pteval = *_pte;
  1457. if (pte_none(pteval)) {
  1458. if (++none <= khugepaged_max_ptes_none)
  1459. continue;
  1460. else {
  1461. release_pte_pages(pte, _pte);
  1462. goto out;
  1463. }
  1464. }
  1465. if (!pte_present(pteval) || !pte_write(pteval)) {
  1466. release_pte_pages(pte, _pte);
  1467. goto out;
  1468. }
  1469. page = vm_normal_page(vma, address, pteval);
  1470. if (unlikely(!page)) {
  1471. release_pte_pages(pte, _pte);
  1472. goto out;
  1473. }
  1474. VM_BUG_ON(PageCompound(page));
  1475. BUG_ON(!PageAnon(page));
  1476. VM_BUG_ON(!PageSwapBacked(page));
  1477. /* cannot use mapcount: can't collapse if there's a gup pin */
  1478. if (page_count(page) != 1) {
  1479. release_pte_pages(pte, _pte);
  1480. goto out;
  1481. }
  1482. /*
  1483. * We can do it before isolate_lru_page because the
  1484. * page can't be freed from under us. NOTE: PG_lock
  1485. * is needed to serialize against split_huge_page
  1486. * when invoked from the VM.
  1487. */
  1488. if (!trylock_page(page)) {
  1489. release_pte_pages(pte, _pte);
  1490. goto out;
  1491. }
  1492. /*
  1493. * Isolate the page to avoid collapsing an hugepage
  1494. * currently in use by the VM.
  1495. */
  1496. if (isolate_lru_page(page)) {
  1497. unlock_page(page);
  1498. release_pte_pages(pte, _pte);
  1499. goto out;
  1500. }
  1501. /* 0 stands for page_is_file_cache(page) == false */
  1502. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1503. VM_BUG_ON(!PageLocked(page));
  1504. VM_BUG_ON(PageLRU(page));
  1505. /* If there is no mapped pte young don't collapse the page */
  1506. if (pte_young(pteval) || PageReferenced(page) ||
  1507. mmu_notifier_test_young(vma->vm_mm, address))
  1508. referenced = 1;
  1509. }
  1510. if (unlikely(!referenced))
  1511. release_all_pte_pages(pte);
  1512. else
  1513. isolated = 1;
  1514. out:
  1515. return isolated;
  1516. }
  1517. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1518. struct vm_area_struct *vma,
  1519. unsigned long address,
  1520. spinlock_t *ptl)
  1521. {
  1522. pte_t *_pte;
  1523. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1524. pte_t pteval = *_pte;
  1525. struct page *src_page;
  1526. if (pte_none(pteval)) {
  1527. clear_user_highpage(page, address);
  1528. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1529. } else {
  1530. src_page = pte_page(pteval);
  1531. copy_user_highpage(page, src_page, address, vma);
  1532. VM_BUG_ON(page_mapcount(src_page) != 1);
  1533. VM_BUG_ON(page_count(src_page) != 2);
  1534. release_pte_page(src_page);
  1535. /*
  1536. * ptl mostly unnecessary, but preempt has to
  1537. * be disabled to update the per-cpu stats
  1538. * inside page_remove_rmap().
  1539. */
  1540. spin_lock(ptl);
  1541. /*
  1542. * paravirt calls inside pte_clear here are
  1543. * superfluous.
  1544. */
  1545. pte_clear(vma->vm_mm, address, _pte);
  1546. page_remove_rmap(src_page);
  1547. spin_unlock(ptl);
  1548. free_page_and_swap_cache(src_page);
  1549. }
  1550. address += PAGE_SIZE;
  1551. page++;
  1552. }
  1553. }
  1554. static void collapse_huge_page(struct mm_struct *mm,
  1555. unsigned long address,
  1556. struct page **hpage,
  1557. struct vm_area_struct *vma,
  1558. int node)
  1559. {
  1560. pgd_t *pgd;
  1561. pud_t *pud;
  1562. pmd_t *pmd, _pmd;
  1563. pte_t *pte;
  1564. pgtable_t pgtable;
  1565. struct page *new_page;
  1566. spinlock_t *ptl;
  1567. int isolated;
  1568. unsigned long hstart, hend;
  1569. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1570. #ifndef CONFIG_NUMA
  1571. VM_BUG_ON(!*hpage);
  1572. new_page = *hpage;
  1573. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  1574. up_read(&mm->mmap_sem);
  1575. return;
  1576. }
  1577. #else
  1578. VM_BUG_ON(*hpage);
  1579. /*
  1580. * Allocate the page while the vma is still valid and under
  1581. * the mmap_sem read mode so there is no memory allocation
  1582. * later when we take the mmap_sem in write mode. This is more
  1583. * friendly behavior (OTOH it may actually hide bugs) to
  1584. * filesystems in userland with daemons allocating memory in
  1585. * the userland I/O paths. Allocating memory with the
  1586. * mmap_sem in read mode is good idea also to allow greater
  1587. * scalability.
  1588. */
  1589. new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1590. node, __GFP_OTHER_NODE);
  1591. if (unlikely(!new_page)) {
  1592. up_read(&mm->mmap_sem);
  1593. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1594. *hpage = ERR_PTR(-ENOMEM);
  1595. return;
  1596. }
  1597. count_vm_event(THP_COLLAPSE_ALLOC);
  1598. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  1599. up_read(&mm->mmap_sem);
  1600. put_page(new_page);
  1601. return;
  1602. }
  1603. #endif
  1604. /* after allocating the hugepage upgrade to mmap_sem write mode */
  1605. up_read(&mm->mmap_sem);
  1606. /*
  1607. * Prevent all access to pagetables with the exception of
  1608. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1609. * handled by the anon_vma lock + PG_lock.
  1610. */
  1611. down_write(&mm->mmap_sem);
  1612. if (unlikely(khugepaged_test_exit(mm)))
  1613. goto out;
  1614. vma = find_vma(mm, address);
  1615. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1616. hend = vma->vm_end & HPAGE_PMD_MASK;
  1617. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1618. goto out;
  1619. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1620. (vma->vm_flags & VM_NOHUGEPAGE))
  1621. goto out;
  1622. /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
  1623. if (!vma->anon_vma || vma->vm_ops || vma->vm_file)
  1624. goto out;
  1625. if (is_vma_temporary_stack(vma))
  1626. goto out;
  1627. VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
  1628. pgd = pgd_offset(mm, address);
  1629. if (!pgd_present(*pgd))
  1630. goto out;
  1631. pud = pud_offset(pgd, address);
  1632. if (!pud_present(*pud))
  1633. goto out;
  1634. pmd = pmd_offset(pud, address);
  1635. /* pmd can't go away or become huge under us */
  1636. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1637. goto out;
  1638. anon_vma_lock(vma->anon_vma);
  1639. pte = pte_offset_map(pmd, address);
  1640. ptl = pte_lockptr(mm, pmd);
  1641. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1642. /*
  1643. * After this gup_fast can't run anymore. This also removes
  1644. * any huge TLB entry from the CPU so we won't allow
  1645. * huge and small TLB entries for the same virtual address
  1646. * to avoid the risk of CPU bugs in that area.
  1647. */
  1648. _pmd = pmdp_clear_flush_notify(vma, address, pmd);
  1649. spin_unlock(&mm->page_table_lock);
  1650. spin_lock(ptl);
  1651. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1652. spin_unlock(ptl);
  1653. if (unlikely(!isolated)) {
  1654. pte_unmap(pte);
  1655. spin_lock(&mm->page_table_lock);
  1656. BUG_ON(!pmd_none(*pmd));
  1657. set_pmd_at(mm, address, pmd, _pmd);
  1658. spin_unlock(&mm->page_table_lock);
  1659. anon_vma_unlock(vma->anon_vma);
  1660. goto out;
  1661. }
  1662. /*
  1663. * All pages are isolated and locked so anon_vma rmap
  1664. * can't run anymore.
  1665. */
  1666. anon_vma_unlock(vma->anon_vma);
  1667. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1668. pte_unmap(pte);
  1669. __SetPageUptodate(new_page);
  1670. pgtable = pmd_pgtable(_pmd);
  1671. VM_BUG_ON(page_count(pgtable) != 1);
  1672. VM_BUG_ON(page_mapcount(pgtable) != 0);
  1673. _pmd = mk_pmd(new_page, vma->vm_page_prot);
  1674. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  1675. _pmd = pmd_mkhuge(_pmd);
  1676. /*
  1677. * spin_lock() below is not the equivalent of smp_wmb(), so
  1678. * this is needed to avoid the copy_huge_page writes to become
  1679. * visible after the set_pmd_at() write.
  1680. */
  1681. smp_wmb();
  1682. spin_lock(&mm->page_table_lock);
  1683. BUG_ON(!pmd_none(*pmd));
  1684. page_add_new_anon_rmap(new_page, vma, address);
  1685. set_pmd_at(mm, address, pmd, _pmd);
  1686. update_mmu_cache(vma, address, entry);
  1687. prepare_pmd_huge_pte(pgtable, mm);
  1688. mm->nr_ptes--;
  1689. spin_unlock(&mm->page_table_lock);
  1690. #ifndef CONFIG_NUMA
  1691. *hpage = NULL;
  1692. #endif
  1693. khugepaged_pages_collapsed++;
  1694. out_up_write:
  1695. up_write(&mm->mmap_sem);
  1696. return;
  1697. out:
  1698. mem_cgroup_uncharge_page(new_page);
  1699. #ifdef CONFIG_NUMA
  1700. put_page(new_page);
  1701. #endif
  1702. goto out_up_write;
  1703. }
  1704. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1705. struct vm_area_struct *vma,
  1706. unsigned long address,
  1707. struct page **hpage)
  1708. {
  1709. pgd_t *pgd;
  1710. pud_t *pud;
  1711. pmd_t *pmd;
  1712. pte_t *pte, *_pte;
  1713. int ret = 0, referenced = 0, none = 0;
  1714. struct page *page;
  1715. unsigned long _address;
  1716. spinlock_t *ptl;
  1717. int node = -1;
  1718. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1719. pgd = pgd_offset(mm, address);
  1720. if (!pgd_present(*pgd))
  1721. goto out;
  1722. pud = pud_offset(pgd, address);
  1723. if (!pud_present(*pud))
  1724. goto out;
  1725. pmd = pmd_offset(pud, address);
  1726. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1727. goto out;
  1728. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1729. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1730. _pte++, _address += PAGE_SIZE) {
  1731. pte_t pteval = *_pte;
  1732. if (pte_none(pteval)) {
  1733. if (++none <= khugepaged_max_ptes_none)
  1734. continue;
  1735. else
  1736. goto out_unmap;
  1737. }
  1738. if (!pte_present(pteval) || !pte_write(pteval))
  1739. goto out_unmap;
  1740. page = vm_normal_page(vma, _address, pteval);
  1741. if (unlikely(!page))
  1742. goto out_unmap;
  1743. /*
  1744. * Chose the node of the first page. This could
  1745. * be more sophisticated and look at more pages,
  1746. * but isn't for now.
  1747. */
  1748. if (node == -1)
  1749. node = page_to_nid(page);
  1750. VM_BUG_ON(PageCompound(page));
  1751. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1752. goto out_unmap;
  1753. /* cannot use mapcount: can't collapse if there's a gup pin */
  1754. if (page_count(page) != 1)
  1755. goto out_unmap;
  1756. if (pte_young(pteval) || PageReferenced(page) ||
  1757. mmu_notifier_test_young(vma->vm_mm, address))
  1758. referenced = 1;
  1759. }
  1760. if (referenced)
  1761. ret = 1;
  1762. out_unmap:
  1763. pte_unmap_unlock(pte, ptl);
  1764. if (ret)
  1765. /* collapse_huge_page will return with the mmap_sem released */
  1766. collapse_huge_page(mm, address, hpage, vma, node);
  1767. out:
  1768. return ret;
  1769. }
  1770. static void collect_mm_slot(struct mm_slot *mm_slot)
  1771. {
  1772. struct mm_struct *mm = mm_slot->mm;
  1773. VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
  1774. if (khugepaged_test_exit(mm)) {
  1775. /* free mm_slot */
  1776. hlist_del(&mm_slot->hash);
  1777. list_del(&mm_slot->mm_node);
  1778. /*
  1779. * Not strictly needed because the mm exited already.
  1780. *
  1781. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1782. */
  1783. /* khugepaged_mm_lock actually not necessary for the below */
  1784. free_mm_slot(mm_slot);
  1785. mmdrop(mm);
  1786. }
  1787. }
  1788. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1789. struct page **hpage)
  1790. {
  1791. struct mm_slot *mm_slot;
  1792. struct mm_struct *mm;
  1793. struct vm_area_struct *vma;
  1794. int progress = 0;
  1795. VM_BUG_ON(!pages);
  1796. VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
  1797. if (khugepaged_scan.mm_slot)
  1798. mm_slot = khugepaged_scan.mm_slot;
  1799. else {
  1800. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1801. struct mm_slot, mm_node);
  1802. khugepaged_scan.address = 0;
  1803. khugepaged_scan.mm_slot = mm_slot;
  1804. }
  1805. spin_unlock(&khugepaged_mm_lock);
  1806. mm = mm_slot->mm;
  1807. down_read(&mm->mmap_sem);
  1808. if (unlikely(khugepaged_test_exit(mm)))
  1809. vma = NULL;
  1810. else
  1811. vma = find_vma(mm, khugepaged_scan.address);
  1812. progress++;
  1813. for (; vma; vma = vma->vm_next) {
  1814. unsigned long hstart, hend;
  1815. cond_resched();
  1816. if (unlikely(khugepaged_test_exit(mm))) {
  1817. progress++;
  1818. break;
  1819. }
  1820. if ((!(vma->vm_flags & VM_HUGEPAGE) &&
  1821. !khugepaged_always()) ||
  1822. (vma->vm_flags & VM_NOHUGEPAGE)) {
  1823. skip:
  1824. progress++;
  1825. continue;
  1826. }
  1827. /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
  1828. if (!vma->anon_vma || vma->vm_ops || vma->vm_file)
  1829. goto skip;
  1830. if (is_vma_temporary_stack(vma))
  1831. goto skip;
  1832. VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
  1833. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1834. hend = vma->vm_end & HPAGE_PMD_MASK;
  1835. if (hstart >= hend)
  1836. goto skip;
  1837. if (khugepaged_scan.address > hend)
  1838. goto skip;
  1839. if (khugepaged_scan.address < hstart)
  1840. khugepaged_scan.address = hstart;
  1841. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  1842. while (khugepaged_scan.address < hend) {
  1843. int ret;
  1844. cond_resched();
  1845. if (unlikely(khugepaged_test_exit(mm)))
  1846. goto breakouterloop;
  1847. VM_BUG_ON(khugepaged_scan.address < hstart ||
  1848. khugepaged_scan.address + HPAGE_PMD_SIZE >
  1849. hend);
  1850. ret = khugepaged_scan_pmd(mm, vma,
  1851. khugepaged_scan.address,
  1852. hpage);
  1853. /* move to next address */
  1854. khugepaged_scan.address += HPAGE_PMD_SIZE;
  1855. progress += HPAGE_PMD_NR;
  1856. if (ret)
  1857. /* we released mmap_sem so break loop */
  1858. goto breakouterloop_mmap_sem;
  1859. if (progress >= pages)
  1860. goto breakouterloop;
  1861. }
  1862. }
  1863. breakouterloop:
  1864. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  1865. breakouterloop_mmap_sem:
  1866. spin_lock(&khugepaged_mm_lock);
  1867. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  1868. /*
  1869. * Release the current mm_slot if this mm is about to die, or
  1870. * if we scanned all vmas of this mm.
  1871. */
  1872. if (khugepaged_test_exit(mm) || !vma) {
  1873. /*
  1874. * Make sure that if mm_users is reaching zero while
  1875. * khugepaged runs here, khugepaged_exit will find
  1876. * mm_slot not pointing to the exiting mm.
  1877. */
  1878. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  1879. khugepaged_scan.mm_slot = list_entry(
  1880. mm_slot->mm_node.next,
  1881. struct mm_slot, mm_node);
  1882. khugepaged_scan.address = 0;
  1883. } else {
  1884. khugepaged_scan.mm_slot = NULL;
  1885. khugepaged_full_scans++;
  1886. }
  1887. collect_mm_slot(mm_slot);
  1888. }
  1889. return progress;
  1890. }
  1891. static int khugepaged_has_work(void)
  1892. {
  1893. return !list_empty(&khugepaged_scan.mm_head) &&
  1894. khugepaged_enabled();
  1895. }
  1896. static int khugepaged_wait_event(void)
  1897. {
  1898. return !list_empty(&khugepaged_scan.mm_head) ||
  1899. !khugepaged_enabled();
  1900. }
  1901. static void khugepaged_do_scan(struct page **hpage)
  1902. {
  1903. unsigned int progress = 0, pass_through_head = 0;
  1904. unsigned int pages = khugepaged_pages_to_scan;
  1905. barrier(); /* write khugepaged_pages_to_scan to local stack */
  1906. while (progress < pages) {
  1907. cond_resched();
  1908. #ifndef CONFIG_NUMA
  1909. if (!*hpage) {
  1910. *hpage = alloc_hugepage(khugepaged_defrag());
  1911. if (unlikely(!*hpage)) {
  1912. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1913. break;
  1914. }
  1915. count_vm_event(THP_COLLAPSE_ALLOC);
  1916. }
  1917. #else
  1918. if (IS_ERR(*hpage))
  1919. break;
  1920. #endif
  1921. if (unlikely(kthread_should_stop() || freezing(current)))
  1922. break;
  1923. spin_lock(&khugepaged_mm_lock);
  1924. if (!khugepaged_scan.mm_slot)
  1925. pass_through_head++;
  1926. if (khugepaged_has_work() &&
  1927. pass_through_head < 2)
  1928. progress += khugepaged_scan_mm_slot(pages - progress,
  1929. hpage);
  1930. else
  1931. progress = pages;
  1932. spin_unlock(&khugepaged_mm_lock);
  1933. }
  1934. }
  1935. static void khugepaged_alloc_sleep(void)
  1936. {
  1937. DEFINE_WAIT(wait);
  1938. add_wait_queue(&khugepaged_wait, &wait);
  1939. schedule_timeout_interruptible(
  1940. msecs_to_jiffies(
  1941. khugepaged_alloc_sleep_millisecs));
  1942. remove_wait_queue(&khugepaged_wait, &wait);
  1943. }
  1944. #ifndef CONFIG_NUMA
  1945. static struct page *khugepaged_alloc_hugepage(void)
  1946. {
  1947. struct page *hpage;
  1948. do {
  1949. hpage = alloc_hugepage(khugepaged_defrag());
  1950. if (!hpage) {
  1951. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1952. khugepaged_alloc_sleep();
  1953. } else
  1954. count_vm_event(THP_COLLAPSE_ALLOC);
  1955. } while (unlikely(!hpage) &&
  1956. likely(khugepaged_enabled()));
  1957. return hpage;
  1958. }
  1959. #endif
  1960. static void khugepaged_loop(void)
  1961. {
  1962. struct page *hpage;
  1963. #ifdef CONFIG_NUMA
  1964. hpage = NULL;
  1965. #endif
  1966. while (likely(khugepaged_enabled())) {
  1967. #ifndef CONFIG_NUMA
  1968. hpage = khugepaged_alloc_hugepage();
  1969. if (unlikely(!hpage)) {
  1970. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1971. break;
  1972. }
  1973. count_vm_event(THP_COLLAPSE_ALLOC);
  1974. #else
  1975. if (IS_ERR(hpage)) {
  1976. khugepaged_alloc_sleep();
  1977. hpage = NULL;
  1978. }
  1979. #endif
  1980. khugepaged_do_scan(&hpage);
  1981. #ifndef CONFIG_NUMA
  1982. if (hpage)
  1983. put_page(hpage);
  1984. #endif
  1985. try_to_freeze();
  1986. if (unlikely(kthread_should_stop()))
  1987. break;
  1988. if (khugepaged_has_work()) {
  1989. DEFINE_WAIT(wait);
  1990. if (!khugepaged_scan_sleep_millisecs)
  1991. continue;
  1992. add_wait_queue(&khugepaged_wait, &wait);
  1993. schedule_timeout_interruptible(
  1994. msecs_to_jiffies(
  1995. khugepaged_scan_sleep_millisecs));
  1996. remove_wait_queue(&khugepaged_wait, &wait);
  1997. } else if (khugepaged_enabled())
  1998. wait_event_freezable(khugepaged_wait,
  1999. khugepaged_wait_event());
  2000. }
  2001. }
  2002. static int khugepaged(void *none)
  2003. {
  2004. struct mm_slot *mm_slot;
  2005. set_freezable();
  2006. set_user_nice(current, 19);
  2007. /* serialize with start_khugepaged() */
  2008. mutex_lock(&khugepaged_mutex);
  2009. for (;;) {
  2010. mutex_unlock(&khugepaged_mutex);
  2011. VM_BUG_ON(khugepaged_thread != current);
  2012. khugepaged_loop();
  2013. VM_BUG_ON(khugepaged_thread != current);
  2014. mutex_lock(&khugepaged_mutex);
  2015. if (!khugepaged_enabled())
  2016. break;
  2017. if (unlikely(kthread_should_stop()))
  2018. break;
  2019. }
  2020. spin_lock(&khugepaged_mm_lock);
  2021. mm_slot = khugepaged_scan.mm_slot;
  2022. khugepaged_scan.mm_slot = NULL;
  2023. if (mm_slot)
  2024. collect_mm_slot(mm_slot);
  2025. spin_unlock(&khugepaged_mm_lock);
  2026. khugepaged_thread = NULL;
  2027. mutex_unlock(&khugepaged_mutex);
  2028. return 0;
  2029. }
  2030. void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
  2031. {
  2032. struct page *page;
  2033. spin_lock(&mm->page_table_lock);
  2034. if (unlikely(!pmd_trans_huge(*pmd))) {
  2035. spin_unlock(&mm->page_table_lock);
  2036. return;
  2037. }
  2038. page = pmd_page(*pmd);
  2039. VM_BUG_ON(!page_count(page));
  2040. get_page(page);
  2041. spin_unlock(&mm->page_table_lock);
  2042. split_huge_page(page);
  2043. put_page(page);
  2044. BUG_ON(pmd_trans_huge(*pmd));
  2045. }
  2046. static void split_huge_page_address(struct mm_struct *mm,
  2047. unsigned long address)
  2048. {
  2049. pgd_t *pgd;
  2050. pud_t *pud;
  2051. pmd_t *pmd;
  2052. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2053. pgd = pgd_offset(mm, address);
  2054. if (!pgd_present(*pgd))
  2055. return;
  2056. pud = pud_offset(pgd, address);
  2057. if (!pud_present(*pud))
  2058. return;
  2059. pmd = pmd_offset(pud, address);
  2060. if (!pmd_present(*pmd))
  2061. return;
  2062. /*
  2063. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2064. * materialize from under us.
  2065. */
  2066. split_huge_page_pmd(mm, pmd);
  2067. }
  2068. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2069. unsigned long start,
  2070. unsigned long end,
  2071. long adjust_next)
  2072. {
  2073. /*
  2074. * If the new start address isn't hpage aligned and it could
  2075. * previously contain an hugepage: check if we need to split
  2076. * an huge pmd.
  2077. */
  2078. if (start & ~HPAGE_PMD_MASK &&
  2079. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2080. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2081. split_huge_page_address(vma->vm_mm, start);
  2082. /*
  2083. * If the new end address isn't hpage aligned and it could
  2084. * previously contain an hugepage: check if we need to split
  2085. * an huge pmd.
  2086. */
  2087. if (end & ~HPAGE_PMD_MASK &&
  2088. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2089. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2090. split_huge_page_address(vma->vm_mm, end);
  2091. /*
  2092. * If we're also updating the vma->vm_next->vm_start, if the new
  2093. * vm_next->vm_start isn't page aligned and it could previously
  2094. * contain an hugepage: check if we need to split an huge pmd.
  2095. */
  2096. if (adjust_next > 0) {
  2097. struct vm_area_struct *next = vma->vm_next;
  2098. unsigned long nstart = next->vm_start;
  2099. nstart += adjust_next << PAGE_SHIFT;
  2100. if (nstart & ~HPAGE_PMD_MASK &&
  2101. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2102. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2103. split_huge_page_address(next->vm_mm, nstart);
  2104. }
  2105. }