hugetlb.c 89 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428
  1. /*
  2. * Generic hugetlb support.
  3. * (C) Nadia Yvette Chambers, April 2004
  4. */
  5. #include <linux/list.h>
  6. #include <linux/init.h>
  7. #include <linux/module.h>
  8. #include <linux/mm.h>
  9. #include <linux/seq_file.h>
  10. #include <linux/sysctl.h>
  11. #include <linux/highmem.h>
  12. #include <linux/mmu_notifier.h>
  13. #include <linux/nodemask.h>
  14. #include <linux/pagemap.h>
  15. #include <linux/mempolicy.h>
  16. #include <linux/cpuset.h>
  17. #include <linux/mutex.h>
  18. #include <linux/bootmem.h>
  19. #include <linux/sysfs.h>
  20. #include <linux/slab.h>
  21. #include <linux/rmap.h>
  22. #include <linux/swap.h>
  23. #include <linux/swapops.h>
  24. #include <asm/page.h>
  25. #include <asm/pgtable.h>
  26. #include <asm/tlb.h>
  27. #include <linux/io.h>
  28. #include <linux/hugetlb.h>
  29. #include <linux/hugetlb_cgroup.h>
  30. #include <linux/node.h>
  31. #include "internal.h"
  32. const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
  33. static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
  34. unsigned long hugepages_treat_as_movable;
  35. int hugetlb_max_hstate __read_mostly;
  36. unsigned int default_hstate_idx;
  37. struct hstate hstates[HUGE_MAX_HSTATE];
  38. __initdata LIST_HEAD(huge_boot_pages);
  39. /* for command line parsing */
  40. static struct hstate * __initdata parsed_hstate;
  41. static unsigned long __initdata default_hstate_max_huge_pages;
  42. static unsigned long __initdata default_hstate_size;
  43. /*
  44. * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
  45. */
  46. DEFINE_SPINLOCK(hugetlb_lock);
  47. static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  48. {
  49. bool free = (spool->count == 0) && (spool->used_hpages == 0);
  50. spin_unlock(&spool->lock);
  51. /* If no pages are used, and no other handles to the subpool
  52. * remain, free the subpool the subpool remain */
  53. if (free)
  54. kfree(spool);
  55. }
  56. struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
  57. {
  58. struct hugepage_subpool *spool;
  59. spool = kmalloc(sizeof(*spool), GFP_KERNEL);
  60. if (!spool)
  61. return NULL;
  62. spin_lock_init(&spool->lock);
  63. spool->count = 1;
  64. spool->max_hpages = nr_blocks;
  65. spool->used_hpages = 0;
  66. return spool;
  67. }
  68. void hugepage_put_subpool(struct hugepage_subpool *spool)
  69. {
  70. spin_lock(&spool->lock);
  71. BUG_ON(!spool->count);
  72. spool->count--;
  73. unlock_or_release_subpool(spool);
  74. }
  75. static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
  76. long delta)
  77. {
  78. int ret = 0;
  79. if (!spool)
  80. return 0;
  81. spin_lock(&spool->lock);
  82. if ((spool->used_hpages + delta) <= spool->max_hpages) {
  83. spool->used_hpages += delta;
  84. } else {
  85. ret = -ENOMEM;
  86. }
  87. spin_unlock(&spool->lock);
  88. return ret;
  89. }
  90. static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
  91. long delta)
  92. {
  93. if (!spool)
  94. return;
  95. spin_lock(&spool->lock);
  96. spool->used_hpages -= delta;
  97. /* If hugetlbfs_put_super couldn't free spool due to
  98. * an outstanding quota reference, free it now. */
  99. unlock_or_release_subpool(spool);
  100. }
  101. static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
  102. {
  103. return HUGETLBFS_SB(inode->i_sb)->spool;
  104. }
  105. static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
  106. {
  107. return subpool_inode(file_inode(vma->vm_file));
  108. }
  109. /*
  110. * Region tracking -- allows tracking of reservations and instantiated pages
  111. * across the pages in a mapping.
  112. *
  113. * The region data structures are protected by a combination of the mmap_sem
  114. * and the hugetlb_instantiation_mutex. To access or modify a region the caller
  115. * must either hold the mmap_sem for write, or the mmap_sem for read and
  116. * the hugetlb_instantiation_mutex:
  117. *
  118. * down_write(&mm->mmap_sem);
  119. * or
  120. * down_read(&mm->mmap_sem);
  121. * mutex_lock(&hugetlb_instantiation_mutex);
  122. */
  123. struct file_region {
  124. struct list_head link;
  125. long from;
  126. long to;
  127. };
  128. static long region_add(struct list_head *head, long f, long t)
  129. {
  130. struct file_region *rg, *nrg, *trg;
  131. /* Locate the region we are either in or before. */
  132. list_for_each_entry(rg, head, link)
  133. if (f <= rg->to)
  134. break;
  135. /* Round our left edge to the current segment if it encloses us. */
  136. if (f > rg->from)
  137. f = rg->from;
  138. /* Check for and consume any regions we now overlap with. */
  139. nrg = rg;
  140. list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
  141. if (&rg->link == head)
  142. break;
  143. if (rg->from > t)
  144. break;
  145. /* If this area reaches higher then extend our area to
  146. * include it completely. If this is not the first area
  147. * which we intend to reuse, free it. */
  148. if (rg->to > t)
  149. t = rg->to;
  150. if (rg != nrg) {
  151. list_del(&rg->link);
  152. kfree(rg);
  153. }
  154. }
  155. nrg->from = f;
  156. nrg->to = t;
  157. return 0;
  158. }
  159. static long region_chg(struct list_head *head, long f, long t)
  160. {
  161. struct file_region *rg, *nrg;
  162. long chg = 0;
  163. /* Locate the region we are before or in. */
  164. list_for_each_entry(rg, head, link)
  165. if (f <= rg->to)
  166. break;
  167. /* If we are below the current region then a new region is required.
  168. * Subtle, allocate a new region at the position but make it zero
  169. * size such that we can guarantee to record the reservation. */
  170. if (&rg->link == head || t < rg->from) {
  171. nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
  172. if (!nrg)
  173. return -ENOMEM;
  174. nrg->from = f;
  175. nrg->to = f;
  176. INIT_LIST_HEAD(&nrg->link);
  177. list_add(&nrg->link, rg->link.prev);
  178. return t - f;
  179. }
  180. /* Round our left edge to the current segment if it encloses us. */
  181. if (f > rg->from)
  182. f = rg->from;
  183. chg = t - f;
  184. /* Check for and consume any regions we now overlap with. */
  185. list_for_each_entry(rg, rg->link.prev, link) {
  186. if (&rg->link == head)
  187. break;
  188. if (rg->from > t)
  189. return chg;
  190. /* We overlap with this area, if it extends further than
  191. * us then we must extend ourselves. Account for its
  192. * existing reservation. */
  193. if (rg->to > t) {
  194. chg += rg->to - t;
  195. t = rg->to;
  196. }
  197. chg -= rg->to - rg->from;
  198. }
  199. return chg;
  200. }
  201. static long region_truncate(struct list_head *head, long end)
  202. {
  203. struct file_region *rg, *trg;
  204. long chg = 0;
  205. /* Locate the region we are either in or before. */
  206. list_for_each_entry(rg, head, link)
  207. if (end <= rg->to)
  208. break;
  209. if (&rg->link == head)
  210. return 0;
  211. /* If we are in the middle of a region then adjust it. */
  212. if (end > rg->from) {
  213. chg = rg->to - end;
  214. rg->to = end;
  215. rg = list_entry(rg->link.next, typeof(*rg), link);
  216. }
  217. /* Drop any remaining regions. */
  218. list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
  219. if (&rg->link == head)
  220. break;
  221. chg += rg->to - rg->from;
  222. list_del(&rg->link);
  223. kfree(rg);
  224. }
  225. return chg;
  226. }
  227. static long region_count(struct list_head *head, long f, long t)
  228. {
  229. struct file_region *rg;
  230. long chg = 0;
  231. /* Locate each segment we overlap with, and count that overlap. */
  232. list_for_each_entry(rg, head, link) {
  233. long seg_from;
  234. long seg_to;
  235. if (rg->to <= f)
  236. continue;
  237. if (rg->from >= t)
  238. break;
  239. seg_from = max(rg->from, f);
  240. seg_to = min(rg->to, t);
  241. chg += seg_to - seg_from;
  242. }
  243. return chg;
  244. }
  245. /*
  246. * Convert the address within this vma to the page offset within
  247. * the mapping, in pagecache page units; huge pages here.
  248. */
  249. static pgoff_t vma_hugecache_offset(struct hstate *h,
  250. struct vm_area_struct *vma, unsigned long address)
  251. {
  252. return ((address - vma->vm_start) >> huge_page_shift(h)) +
  253. (vma->vm_pgoff >> huge_page_order(h));
  254. }
  255. pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
  256. unsigned long address)
  257. {
  258. return vma_hugecache_offset(hstate_vma(vma), vma, address);
  259. }
  260. /*
  261. * Return the size of the pages allocated when backing a VMA. In the majority
  262. * cases this will be same size as used by the page table entries.
  263. */
  264. unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
  265. {
  266. struct hstate *hstate;
  267. if (!is_vm_hugetlb_page(vma))
  268. return PAGE_SIZE;
  269. hstate = hstate_vma(vma);
  270. return 1UL << huge_page_shift(hstate);
  271. }
  272. EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
  273. /*
  274. * Return the page size being used by the MMU to back a VMA. In the majority
  275. * of cases, the page size used by the kernel matches the MMU size. On
  276. * architectures where it differs, an architecture-specific version of this
  277. * function is required.
  278. */
  279. #ifndef vma_mmu_pagesize
  280. unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
  281. {
  282. return vma_kernel_pagesize(vma);
  283. }
  284. #endif
  285. /*
  286. * Flags for MAP_PRIVATE reservations. These are stored in the bottom
  287. * bits of the reservation map pointer, which are always clear due to
  288. * alignment.
  289. */
  290. #define HPAGE_RESV_OWNER (1UL << 0)
  291. #define HPAGE_RESV_UNMAPPED (1UL << 1)
  292. #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
  293. /*
  294. * These helpers are used to track how many pages are reserved for
  295. * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
  296. * is guaranteed to have their future faults succeed.
  297. *
  298. * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
  299. * the reserve counters are updated with the hugetlb_lock held. It is safe
  300. * to reset the VMA at fork() time as it is not in use yet and there is no
  301. * chance of the global counters getting corrupted as a result of the values.
  302. *
  303. * The private mapping reservation is represented in a subtly different
  304. * manner to a shared mapping. A shared mapping has a region map associated
  305. * with the underlying file, this region map represents the backing file
  306. * pages which have ever had a reservation assigned which this persists even
  307. * after the page is instantiated. A private mapping has a region map
  308. * associated with the original mmap which is attached to all VMAs which
  309. * reference it, this region map represents those offsets which have consumed
  310. * reservation ie. where pages have been instantiated.
  311. */
  312. static unsigned long get_vma_private_data(struct vm_area_struct *vma)
  313. {
  314. return (unsigned long)vma->vm_private_data;
  315. }
  316. static void set_vma_private_data(struct vm_area_struct *vma,
  317. unsigned long value)
  318. {
  319. vma->vm_private_data = (void *)value;
  320. }
  321. struct resv_map {
  322. struct kref refs;
  323. struct list_head regions;
  324. };
  325. static struct resv_map *resv_map_alloc(void)
  326. {
  327. struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
  328. if (!resv_map)
  329. return NULL;
  330. kref_init(&resv_map->refs);
  331. INIT_LIST_HEAD(&resv_map->regions);
  332. return resv_map;
  333. }
  334. static void resv_map_release(struct kref *ref)
  335. {
  336. struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
  337. /* Clear out any active regions before we release the map. */
  338. region_truncate(&resv_map->regions, 0);
  339. kfree(resv_map);
  340. }
  341. static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
  342. {
  343. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  344. if (!(vma->vm_flags & VM_MAYSHARE))
  345. return (struct resv_map *)(get_vma_private_data(vma) &
  346. ~HPAGE_RESV_MASK);
  347. return NULL;
  348. }
  349. static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
  350. {
  351. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  352. VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
  353. set_vma_private_data(vma, (get_vma_private_data(vma) &
  354. HPAGE_RESV_MASK) | (unsigned long)map);
  355. }
  356. static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
  357. {
  358. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  359. VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
  360. set_vma_private_data(vma, get_vma_private_data(vma) | flags);
  361. }
  362. static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
  363. {
  364. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  365. return (get_vma_private_data(vma) & flag) != 0;
  366. }
  367. /* Decrement the reserved pages in the hugepage pool by one */
  368. static void decrement_hugepage_resv_vma(struct hstate *h,
  369. struct vm_area_struct *vma)
  370. {
  371. if (vma->vm_flags & VM_NORESERVE)
  372. return;
  373. if (vma->vm_flags & VM_MAYSHARE) {
  374. /* Shared mappings always use reserves */
  375. h->resv_huge_pages--;
  376. } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
  377. /*
  378. * Only the process that called mmap() has reserves for
  379. * private mappings.
  380. */
  381. h->resv_huge_pages--;
  382. }
  383. }
  384. /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
  385. void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
  386. {
  387. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  388. if (!(vma->vm_flags & VM_MAYSHARE))
  389. vma->vm_private_data = (void *)0;
  390. }
  391. /* Returns true if the VMA has associated reserve pages */
  392. static int vma_has_reserves(struct vm_area_struct *vma)
  393. {
  394. if (vma->vm_flags & VM_MAYSHARE)
  395. return 1;
  396. if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
  397. return 1;
  398. return 0;
  399. }
  400. static void copy_gigantic_page(struct page *dst, struct page *src)
  401. {
  402. int i;
  403. struct hstate *h = page_hstate(src);
  404. struct page *dst_base = dst;
  405. struct page *src_base = src;
  406. for (i = 0; i < pages_per_huge_page(h); ) {
  407. cond_resched();
  408. copy_highpage(dst, src);
  409. i++;
  410. dst = mem_map_next(dst, dst_base, i);
  411. src = mem_map_next(src, src_base, i);
  412. }
  413. }
  414. void copy_huge_page(struct page *dst, struct page *src)
  415. {
  416. int i;
  417. struct hstate *h = page_hstate(src);
  418. if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
  419. copy_gigantic_page(dst, src);
  420. return;
  421. }
  422. might_sleep();
  423. for (i = 0; i < pages_per_huge_page(h); i++) {
  424. cond_resched();
  425. copy_highpage(dst + i, src + i);
  426. }
  427. }
  428. static void enqueue_huge_page(struct hstate *h, struct page *page)
  429. {
  430. int nid = page_to_nid(page);
  431. list_move(&page->lru, &h->hugepage_freelists[nid]);
  432. h->free_huge_pages++;
  433. h->free_huge_pages_node[nid]++;
  434. }
  435. static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
  436. {
  437. struct page *page;
  438. if (list_empty(&h->hugepage_freelists[nid]))
  439. return NULL;
  440. page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
  441. list_move(&page->lru, &h->hugepage_activelist);
  442. set_page_refcounted(page);
  443. h->free_huge_pages--;
  444. h->free_huge_pages_node[nid]--;
  445. return page;
  446. }
  447. static struct page *dequeue_huge_page_vma(struct hstate *h,
  448. struct vm_area_struct *vma,
  449. unsigned long address, int avoid_reserve)
  450. {
  451. struct page *page = NULL;
  452. struct mempolicy *mpol;
  453. nodemask_t *nodemask;
  454. struct zonelist *zonelist;
  455. struct zone *zone;
  456. struct zoneref *z;
  457. unsigned int cpuset_mems_cookie;
  458. /*
  459. * A child process with MAP_PRIVATE mappings created by their parent
  460. * have no page reserves. This check ensures that reservations are
  461. * not "stolen". The child may still get SIGKILLed
  462. */
  463. if (!vma_has_reserves(vma) &&
  464. h->free_huge_pages - h->resv_huge_pages == 0)
  465. goto err;
  466. /* If reserves cannot be used, ensure enough pages are in the pool */
  467. if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
  468. goto err;
  469. retry_cpuset:
  470. cpuset_mems_cookie = get_mems_allowed();
  471. zonelist = huge_zonelist(vma, address,
  472. htlb_alloc_mask, &mpol, &nodemask);
  473. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  474. MAX_NR_ZONES - 1, nodemask) {
  475. if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
  476. page = dequeue_huge_page_node(h, zone_to_nid(zone));
  477. if (page) {
  478. if (!avoid_reserve)
  479. decrement_hugepage_resv_vma(h, vma);
  480. break;
  481. }
  482. }
  483. }
  484. mpol_cond_put(mpol);
  485. if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
  486. goto retry_cpuset;
  487. return page;
  488. err:
  489. return NULL;
  490. }
  491. static void update_and_free_page(struct hstate *h, struct page *page)
  492. {
  493. int i;
  494. VM_BUG_ON(h->order >= MAX_ORDER);
  495. h->nr_huge_pages--;
  496. h->nr_huge_pages_node[page_to_nid(page)]--;
  497. for (i = 0; i < pages_per_huge_page(h); i++) {
  498. page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
  499. 1 << PG_referenced | 1 << PG_dirty |
  500. 1 << PG_active | 1 << PG_reserved |
  501. 1 << PG_private | 1 << PG_writeback);
  502. }
  503. VM_BUG_ON(hugetlb_cgroup_from_page(page));
  504. set_compound_page_dtor(page, NULL);
  505. set_page_refcounted(page);
  506. arch_release_hugepage(page);
  507. __free_pages(page, huge_page_order(h));
  508. }
  509. struct hstate *size_to_hstate(unsigned long size)
  510. {
  511. struct hstate *h;
  512. for_each_hstate(h) {
  513. if (huge_page_size(h) == size)
  514. return h;
  515. }
  516. return NULL;
  517. }
  518. static void free_huge_page(struct page *page)
  519. {
  520. /*
  521. * Can't pass hstate in here because it is called from the
  522. * compound page destructor.
  523. */
  524. struct hstate *h = page_hstate(page);
  525. int nid = page_to_nid(page);
  526. struct hugepage_subpool *spool =
  527. (struct hugepage_subpool *)page_private(page);
  528. set_page_private(page, 0);
  529. page->mapping = NULL;
  530. BUG_ON(page_count(page));
  531. BUG_ON(page_mapcount(page));
  532. spin_lock(&hugetlb_lock);
  533. hugetlb_cgroup_uncharge_page(hstate_index(h),
  534. pages_per_huge_page(h), page);
  535. if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
  536. /* remove the page from active list */
  537. list_del(&page->lru);
  538. update_and_free_page(h, page);
  539. h->surplus_huge_pages--;
  540. h->surplus_huge_pages_node[nid]--;
  541. } else {
  542. arch_clear_hugepage_flags(page);
  543. enqueue_huge_page(h, page);
  544. }
  545. spin_unlock(&hugetlb_lock);
  546. hugepage_subpool_put_pages(spool, 1);
  547. }
  548. static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
  549. {
  550. INIT_LIST_HEAD(&page->lru);
  551. set_compound_page_dtor(page, free_huge_page);
  552. spin_lock(&hugetlb_lock);
  553. set_hugetlb_cgroup(page, NULL);
  554. h->nr_huge_pages++;
  555. h->nr_huge_pages_node[nid]++;
  556. spin_unlock(&hugetlb_lock);
  557. put_page(page); /* free it into the hugepage allocator */
  558. }
  559. static void prep_compound_gigantic_page(struct page *page, unsigned long order)
  560. {
  561. int i;
  562. int nr_pages = 1 << order;
  563. struct page *p = page + 1;
  564. /* we rely on prep_new_huge_page to set the destructor */
  565. set_compound_order(page, order);
  566. __SetPageHead(page);
  567. for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
  568. __SetPageTail(p);
  569. set_page_count(p, 0);
  570. p->first_page = page;
  571. }
  572. }
  573. /*
  574. * PageHuge() only returns true for hugetlbfs pages, but not for normal or
  575. * transparent huge pages. See the PageTransHuge() documentation for more
  576. * details.
  577. */
  578. int PageHuge(struct page *page)
  579. {
  580. compound_page_dtor *dtor;
  581. if (!PageCompound(page))
  582. return 0;
  583. page = compound_head(page);
  584. dtor = get_compound_page_dtor(page);
  585. return dtor == free_huge_page;
  586. }
  587. EXPORT_SYMBOL_GPL(PageHuge);
  588. pgoff_t __basepage_index(struct page *page)
  589. {
  590. struct page *page_head = compound_head(page);
  591. pgoff_t index = page_index(page_head);
  592. unsigned long compound_idx;
  593. if (!PageHuge(page_head))
  594. return page_index(page);
  595. if (compound_order(page_head) >= MAX_ORDER)
  596. compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
  597. else
  598. compound_idx = page - page_head;
  599. return (index << compound_order(page_head)) + compound_idx;
  600. }
  601. static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
  602. {
  603. struct page *page;
  604. if (h->order >= MAX_ORDER)
  605. return NULL;
  606. page = alloc_pages_exact_node(nid,
  607. htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
  608. __GFP_REPEAT|__GFP_NOWARN,
  609. huge_page_order(h));
  610. if (page) {
  611. if (arch_prepare_hugepage(page)) {
  612. __free_pages(page, huge_page_order(h));
  613. return NULL;
  614. }
  615. prep_new_huge_page(h, page, nid);
  616. }
  617. return page;
  618. }
  619. /*
  620. * common helper functions for hstate_next_node_to_{alloc|free}.
  621. * We may have allocated or freed a huge page based on a different
  622. * nodes_allowed previously, so h->next_node_to_{alloc|free} might
  623. * be outside of *nodes_allowed. Ensure that we use an allowed
  624. * node for alloc or free.
  625. */
  626. static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
  627. {
  628. nid = next_node(nid, *nodes_allowed);
  629. if (nid == MAX_NUMNODES)
  630. nid = first_node(*nodes_allowed);
  631. VM_BUG_ON(nid >= MAX_NUMNODES);
  632. return nid;
  633. }
  634. static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
  635. {
  636. if (!node_isset(nid, *nodes_allowed))
  637. nid = next_node_allowed(nid, nodes_allowed);
  638. return nid;
  639. }
  640. /*
  641. * returns the previously saved node ["this node"] from which to
  642. * allocate a persistent huge page for the pool and advance the
  643. * next node from which to allocate, handling wrap at end of node
  644. * mask.
  645. */
  646. static int hstate_next_node_to_alloc(struct hstate *h,
  647. nodemask_t *nodes_allowed)
  648. {
  649. int nid;
  650. VM_BUG_ON(!nodes_allowed);
  651. nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
  652. h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
  653. return nid;
  654. }
  655. static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
  656. {
  657. struct page *page;
  658. int start_nid;
  659. int next_nid;
  660. int ret = 0;
  661. start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
  662. next_nid = start_nid;
  663. do {
  664. page = alloc_fresh_huge_page_node(h, next_nid);
  665. if (page) {
  666. ret = 1;
  667. break;
  668. }
  669. next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
  670. } while (next_nid != start_nid);
  671. if (ret)
  672. count_vm_event(HTLB_BUDDY_PGALLOC);
  673. else
  674. count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
  675. return ret;
  676. }
  677. /*
  678. * helper for free_pool_huge_page() - return the previously saved
  679. * node ["this node"] from which to free a huge page. Advance the
  680. * next node id whether or not we find a free huge page to free so
  681. * that the next attempt to free addresses the next node.
  682. */
  683. static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
  684. {
  685. int nid;
  686. VM_BUG_ON(!nodes_allowed);
  687. nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
  688. h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
  689. return nid;
  690. }
  691. /*
  692. * Free huge page from pool from next node to free.
  693. * Attempt to keep persistent huge pages more or less
  694. * balanced over allowed nodes.
  695. * Called with hugetlb_lock locked.
  696. */
  697. static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
  698. bool acct_surplus)
  699. {
  700. int start_nid;
  701. int next_nid;
  702. int ret = 0;
  703. start_nid = hstate_next_node_to_free(h, nodes_allowed);
  704. next_nid = start_nid;
  705. do {
  706. /*
  707. * If we're returning unused surplus pages, only examine
  708. * nodes with surplus pages.
  709. */
  710. if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
  711. !list_empty(&h->hugepage_freelists[next_nid])) {
  712. struct page *page =
  713. list_entry(h->hugepage_freelists[next_nid].next,
  714. struct page, lru);
  715. list_del(&page->lru);
  716. h->free_huge_pages--;
  717. h->free_huge_pages_node[next_nid]--;
  718. if (acct_surplus) {
  719. h->surplus_huge_pages--;
  720. h->surplus_huge_pages_node[next_nid]--;
  721. }
  722. update_and_free_page(h, page);
  723. ret = 1;
  724. break;
  725. }
  726. next_nid = hstate_next_node_to_free(h, nodes_allowed);
  727. } while (next_nid != start_nid);
  728. return ret;
  729. }
  730. static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
  731. {
  732. struct page *page;
  733. unsigned int r_nid;
  734. if (h->order >= MAX_ORDER)
  735. return NULL;
  736. /*
  737. * Assume we will successfully allocate the surplus page to
  738. * prevent racing processes from causing the surplus to exceed
  739. * overcommit
  740. *
  741. * This however introduces a different race, where a process B
  742. * tries to grow the static hugepage pool while alloc_pages() is
  743. * called by process A. B will only examine the per-node
  744. * counters in determining if surplus huge pages can be
  745. * converted to normal huge pages in adjust_pool_surplus(). A
  746. * won't be able to increment the per-node counter, until the
  747. * lock is dropped by B, but B doesn't drop hugetlb_lock until
  748. * no more huge pages can be converted from surplus to normal
  749. * state (and doesn't try to convert again). Thus, we have a
  750. * case where a surplus huge page exists, the pool is grown, and
  751. * the surplus huge page still exists after, even though it
  752. * should just have been converted to a normal huge page. This
  753. * does not leak memory, though, as the hugepage will be freed
  754. * once it is out of use. It also does not allow the counters to
  755. * go out of whack in adjust_pool_surplus() as we don't modify
  756. * the node values until we've gotten the hugepage and only the
  757. * per-node value is checked there.
  758. */
  759. spin_lock(&hugetlb_lock);
  760. if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
  761. spin_unlock(&hugetlb_lock);
  762. return NULL;
  763. } else {
  764. h->nr_huge_pages++;
  765. h->surplus_huge_pages++;
  766. }
  767. spin_unlock(&hugetlb_lock);
  768. if (nid == NUMA_NO_NODE)
  769. page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
  770. __GFP_REPEAT|__GFP_NOWARN,
  771. huge_page_order(h));
  772. else
  773. page = alloc_pages_exact_node(nid,
  774. htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
  775. __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
  776. if (page && arch_prepare_hugepage(page)) {
  777. __free_pages(page, huge_page_order(h));
  778. page = NULL;
  779. }
  780. spin_lock(&hugetlb_lock);
  781. if (page) {
  782. INIT_LIST_HEAD(&page->lru);
  783. r_nid = page_to_nid(page);
  784. set_compound_page_dtor(page, free_huge_page);
  785. set_hugetlb_cgroup(page, NULL);
  786. /*
  787. * We incremented the global counters already
  788. */
  789. h->nr_huge_pages_node[r_nid]++;
  790. h->surplus_huge_pages_node[r_nid]++;
  791. __count_vm_event(HTLB_BUDDY_PGALLOC);
  792. } else {
  793. h->nr_huge_pages--;
  794. h->surplus_huge_pages--;
  795. __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
  796. }
  797. spin_unlock(&hugetlb_lock);
  798. return page;
  799. }
  800. /*
  801. * This allocation function is useful in the context where vma is irrelevant.
  802. * E.g. soft-offlining uses this function because it only cares physical
  803. * address of error page.
  804. */
  805. struct page *alloc_huge_page_node(struct hstate *h, int nid)
  806. {
  807. struct page *page;
  808. spin_lock(&hugetlb_lock);
  809. page = dequeue_huge_page_node(h, nid);
  810. spin_unlock(&hugetlb_lock);
  811. if (!page)
  812. page = alloc_buddy_huge_page(h, nid);
  813. return page;
  814. }
  815. /*
  816. * Increase the hugetlb pool such that it can accommodate a reservation
  817. * of size 'delta'.
  818. */
  819. static int gather_surplus_pages(struct hstate *h, int delta)
  820. {
  821. struct list_head surplus_list;
  822. struct page *page, *tmp;
  823. int ret, i;
  824. int needed, allocated;
  825. bool alloc_ok = true;
  826. needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
  827. if (needed <= 0) {
  828. h->resv_huge_pages += delta;
  829. return 0;
  830. }
  831. allocated = 0;
  832. INIT_LIST_HEAD(&surplus_list);
  833. ret = -ENOMEM;
  834. retry:
  835. spin_unlock(&hugetlb_lock);
  836. for (i = 0; i < needed; i++) {
  837. page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
  838. if (!page) {
  839. alloc_ok = false;
  840. break;
  841. }
  842. list_add(&page->lru, &surplus_list);
  843. }
  844. allocated += i;
  845. /*
  846. * After retaking hugetlb_lock, we need to recalculate 'needed'
  847. * because either resv_huge_pages or free_huge_pages may have changed.
  848. */
  849. spin_lock(&hugetlb_lock);
  850. needed = (h->resv_huge_pages + delta) -
  851. (h->free_huge_pages + allocated);
  852. if (needed > 0) {
  853. if (alloc_ok)
  854. goto retry;
  855. /*
  856. * We were not able to allocate enough pages to
  857. * satisfy the entire reservation so we free what
  858. * we've allocated so far.
  859. */
  860. goto free;
  861. }
  862. /*
  863. * The surplus_list now contains _at_least_ the number of extra pages
  864. * needed to accommodate the reservation. Add the appropriate number
  865. * of pages to the hugetlb pool and free the extras back to the buddy
  866. * allocator. Commit the entire reservation here to prevent another
  867. * process from stealing the pages as they are added to the pool but
  868. * before they are reserved.
  869. */
  870. needed += allocated;
  871. h->resv_huge_pages += delta;
  872. ret = 0;
  873. /* Free the needed pages to the hugetlb pool */
  874. list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
  875. if ((--needed) < 0)
  876. break;
  877. /*
  878. * This page is now managed by the hugetlb allocator and has
  879. * no users -- drop the buddy allocator's reference.
  880. */
  881. put_page_testzero(page);
  882. VM_BUG_ON(page_count(page));
  883. enqueue_huge_page(h, page);
  884. }
  885. free:
  886. spin_unlock(&hugetlb_lock);
  887. /* Free unnecessary surplus pages to the buddy allocator */
  888. if (!list_empty(&surplus_list)) {
  889. list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
  890. put_page(page);
  891. }
  892. }
  893. spin_lock(&hugetlb_lock);
  894. return ret;
  895. }
  896. /*
  897. * When releasing a hugetlb pool reservation, any surplus pages that were
  898. * allocated to satisfy the reservation must be explicitly freed if they were
  899. * never used.
  900. * Called with hugetlb_lock held.
  901. */
  902. static void return_unused_surplus_pages(struct hstate *h,
  903. unsigned long unused_resv_pages)
  904. {
  905. unsigned long nr_pages;
  906. /* Uncommit the reservation */
  907. h->resv_huge_pages -= unused_resv_pages;
  908. /* Cannot return gigantic pages currently */
  909. if (h->order >= MAX_ORDER)
  910. return;
  911. nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
  912. /*
  913. * We want to release as many surplus pages as possible, spread
  914. * evenly across all nodes with memory. Iterate across these nodes
  915. * until we can no longer free unreserved surplus pages. This occurs
  916. * when the nodes with surplus pages have no free pages.
  917. * free_pool_huge_page() will balance the the freed pages across the
  918. * on-line nodes with memory and will handle the hstate accounting.
  919. */
  920. while (nr_pages--) {
  921. if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
  922. break;
  923. }
  924. }
  925. /*
  926. * Determine if the huge page at addr within the vma has an associated
  927. * reservation. Where it does not we will need to logically increase
  928. * reservation and actually increase subpool usage before an allocation
  929. * can occur. Where any new reservation would be required the
  930. * reservation change is prepared, but not committed. Once the page
  931. * has been allocated from the subpool and instantiated the change should
  932. * be committed via vma_commit_reservation. No action is required on
  933. * failure.
  934. */
  935. static long vma_needs_reservation(struct hstate *h,
  936. struct vm_area_struct *vma, unsigned long addr)
  937. {
  938. struct address_space *mapping = vma->vm_file->f_mapping;
  939. struct inode *inode = mapping->host;
  940. if (vma->vm_flags & VM_MAYSHARE) {
  941. pgoff_t idx = vma_hugecache_offset(h, vma, addr);
  942. return region_chg(&inode->i_mapping->private_list,
  943. idx, idx + 1);
  944. } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
  945. return 1;
  946. } else {
  947. long err;
  948. pgoff_t idx = vma_hugecache_offset(h, vma, addr);
  949. struct resv_map *reservations = vma_resv_map(vma);
  950. err = region_chg(&reservations->regions, idx, idx + 1);
  951. if (err < 0)
  952. return err;
  953. return 0;
  954. }
  955. }
  956. static void vma_commit_reservation(struct hstate *h,
  957. struct vm_area_struct *vma, unsigned long addr)
  958. {
  959. struct address_space *mapping = vma->vm_file->f_mapping;
  960. struct inode *inode = mapping->host;
  961. if (vma->vm_flags & VM_MAYSHARE) {
  962. pgoff_t idx = vma_hugecache_offset(h, vma, addr);
  963. region_add(&inode->i_mapping->private_list, idx, idx + 1);
  964. } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
  965. pgoff_t idx = vma_hugecache_offset(h, vma, addr);
  966. struct resv_map *reservations = vma_resv_map(vma);
  967. /* Mark this page used in the map. */
  968. region_add(&reservations->regions, idx, idx + 1);
  969. }
  970. }
  971. static struct page *alloc_huge_page(struct vm_area_struct *vma,
  972. unsigned long addr, int avoid_reserve)
  973. {
  974. struct hugepage_subpool *spool = subpool_vma(vma);
  975. struct hstate *h = hstate_vma(vma);
  976. struct page *page;
  977. long chg;
  978. int ret, idx;
  979. struct hugetlb_cgroup *h_cg;
  980. idx = hstate_index(h);
  981. /*
  982. * Processes that did not create the mapping will have no
  983. * reserves and will not have accounted against subpool
  984. * limit. Check that the subpool limit can be made before
  985. * satisfying the allocation MAP_NORESERVE mappings may also
  986. * need pages and subpool limit allocated allocated if no reserve
  987. * mapping overlaps.
  988. */
  989. chg = vma_needs_reservation(h, vma, addr);
  990. if (chg < 0)
  991. return ERR_PTR(-ENOMEM);
  992. if (chg)
  993. if (hugepage_subpool_get_pages(spool, chg))
  994. return ERR_PTR(-ENOSPC);
  995. ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
  996. if (ret) {
  997. hugepage_subpool_put_pages(spool, chg);
  998. return ERR_PTR(-ENOSPC);
  999. }
  1000. spin_lock(&hugetlb_lock);
  1001. page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
  1002. if (!page) {
  1003. spin_unlock(&hugetlb_lock);
  1004. page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
  1005. if (!page) {
  1006. hugetlb_cgroup_uncharge_cgroup(idx,
  1007. pages_per_huge_page(h),
  1008. h_cg);
  1009. hugepage_subpool_put_pages(spool, chg);
  1010. return ERR_PTR(-ENOSPC);
  1011. }
  1012. spin_lock(&hugetlb_lock);
  1013. list_move(&page->lru, &h->hugepage_activelist);
  1014. /* Fall through */
  1015. }
  1016. hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
  1017. spin_unlock(&hugetlb_lock);
  1018. set_page_private(page, (unsigned long)spool);
  1019. vma_commit_reservation(h, vma, addr);
  1020. return page;
  1021. }
  1022. int __weak alloc_bootmem_huge_page(struct hstate *h)
  1023. {
  1024. struct huge_bootmem_page *m;
  1025. int nr_nodes = nodes_weight(node_states[N_MEMORY]);
  1026. while (nr_nodes) {
  1027. void *addr;
  1028. addr = __alloc_bootmem_node_nopanic(
  1029. NODE_DATA(hstate_next_node_to_alloc(h,
  1030. &node_states[N_MEMORY])),
  1031. huge_page_size(h), huge_page_size(h), 0);
  1032. if (addr) {
  1033. /*
  1034. * Use the beginning of the huge page to store the
  1035. * huge_bootmem_page struct (until gather_bootmem
  1036. * puts them into the mem_map).
  1037. */
  1038. m = addr;
  1039. goto found;
  1040. }
  1041. nr_nodes--;
  1042. }
  1043. return 0;
  1044. found:
  1045. BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
  1046. /* Put them into a private list first because mem_map is not up yet */
  1047. list_add(&m->list, &huge_boot_pages);
  1048. m->hstate = h;
  1049. return 1;
  1050. }
  1051. static void prep_compound_huge_page(struct page *page, int order)
  1052. {
  1053. if (unlikely(order > (MAX_ORDER - 1)))
  1054. prep_compound_gigantic_page(page, order);
  1055. else
  1056. prep_compound_page(page, order);
  1057. }
  1058. /* Put bootmem huge pages into the standard lists after mem_map is up */
  1059. static void __init gather_bootmem_prealloc(void)
  1060. {
  1061. struct huge_bootmem_page *m;
  1062. list_for_each_entry(m, &huge_boot_pages, list) {
  1063. struct hstate *h = m->hstate;
  1064. struct page *page;
  1065. #ifdef CONFIG_HIGHMEM
  1066. page = pfn_to_page(m->phys >> PAGE_SHIFT);
  1067. free_bootmem_late((unsigned long)m,
  1068. sizeof(struct huge_bootmem_page));
  1069. #else
  1070. page = virt_to_page(m);
  1071. #endif
  1072. __ClearPageReserved(page);
  1073. WARN_ON(page_count(page) != 1);
  1074. prep_compound_huge_page(page, h->order);
  1075. prep_new_huge_page(h, page, page_to_nid(page));
  1076. /*
  1077. * If we had gigantic hugepages allocated at boot time, we need
  1078. * to restore the 'stolen' pages to totalram_pages in order to
  1079. * fix confusing memory reports from free(1) and another
  1080. * side-effects, like CommitLimit going negative.
  1081. */
  1082. if (h->order > (MAX_ORDER - 1))
  1083. adjust_managed_page_count(page, 1 << h->order);
  1084. }
  1085. }
  1086. static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
  1087. {
  1088. unsigned long i;
  1089. for (i = 0; i < h->max_huge_pages; ++i) {
  1090. if (h->order >= MAX_ORDER) {
  1091. if (!alloc_bootmem_huge_page(h))
  1092. break;
  1093. } else if (!alloc_fresh_huge_page(h,
  1094. &node_states[N_MEMORY]))
  1095. break;
  1096. }
  1097. h->max_huge_pages = i;
  1098. }
  1099. static void __init hugetlb_init_hstates(void)
  1100. {
  1101. struct hstate *h;
  1102. for_each_hstate(h) {
  1103. /* oversize hugepages were init'ed in early boot */
  1104. if (h->order < MAX_ORDER)
  1105. hugetlb_hstate_alloc_pages(h);
  1106. }
  1107. }
  1108. static char * __init memfmt(char *buf, unsigned long n)
  1109. {
  1110. if (n >= (1UL << 30))
  1111. sprintf(buf, "%lu GB", n >> 30);
  1112. else if (n >= (1UL << 20))
  1113. sprintf(buf, "%lu MB", n >> 20);
  1114. else
  1115. sprintf(buf, "%lu KB", n >> 10);
  1116. return buf;
  1117. }
  1118. static void __init report_hugepages(void)
  1119. {
  1120. struct hstate *h;
  1121. for_each_hstate(h) {
  1122. char buf[32];
  1123. pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
  1124. memfmt(buf, huge_page_size(h)),
  1125. h->free_huge_pages);
  1126. }
  1127. }
  1128. #ifdef CONFIG_HIGHMEM
  1129. static void try_to_free_low(struct hstate *h, unsigned long count,
  1130. nodemask_t *nodes_allowed)
  1131. {
  1132. int i;
  1133. if (h->order >= MAX_ORDER)
  1134. return;
  1135. for_each_node_mask(i, *nodes_allowed) {
  1136. struct page *page, *next;
  1137. struct list_head *freel = &h->hugepage_freelists[i];
  1138. list_for_each_entry_safe(page, next, freel, lru) {
  1139. if (count >= h->nr_huge_pages)
  1140. return;
  1141. if (PageHighMem(page))
  1142. continue;
  1143. list_del(&page->lru);
  1144. update_and_free_page(h, page);
  1145. h->free_huge_pages--;
  1146. h->free_huge_pages_node[page_to_nid(page)]--;
  1147. }
  1148. }
  1149. }
  1150. #else
  1151. static inline void try_to_free_low(struct hstate *h, unsigned long count,
  1152. nodemask_t *nodes_allowed)
  1153. {
  1154. }
  1155. #endif
  1156. /*
  1157. * Increment or decrement surplus_huge_pages. Keep node-specific counters
  1158. * balanced by operating on them in a round-robin fashion.
  1159. * Returns 1 if an adjustment was made.
  1160. */
  1161. static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
  1162. int delta)
  1163. {
  1164. int start_nid, next_nid;
  1165. int ret = 0;
  1166. VM_BUG_ON(delta != -1 && delta != 1);
  1167. if (delta < 0)
  1168. start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
  1169. else
  1170. start_nid = hstate_next_node_to_free(h, nodes_allowed);
  1171. next_nid = start_nid;
  1172. do {
  1173. int nid = next_nid;
  1174. if (delta < 0) {
  1175. /*
  1176. * To shrink on this node, there must be a surplus page
  1177. */
  1178. if (!h->surplus_huge_pages_node[nid]) {
  1179. next_nid = hstate_next_node_to_alloc(h,
  1180. nodes_allowed);
  1181. continue;
  1182. }
  1183. }
  1184. if (delta > 0) {
  1185. /*
  1186. * Surplus cannot exceed the total number of pages
  1187. */
  1188. if (h->surplus_huge_pages_node[nid] >=
  1189. h->nr_huge_pages_node[nid]) {
  1190. next_nid = hstate_next_node_to_free(h,
  1191. nodes_allowed);
  1192. continue;
  1193. }
  1194. }
  1195. h->surplus_huge_pages += delta;
  1196. h->surplus_huge_pages_node[nid] += delta;
  1197. ret = 1;
  1198. break;
  1199. } while (next_nid != start_nid);
  1200. return ret;
  1201. }
  1202. #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
  1203. static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
  1204. nodemask_t *nodes_allowed)
  1205. {
  1206. unsigned long min_count, ret;
  1207. if (h->order >= MAX_ORDER)
  1208. return h->max_huge_pages;
  1209. /*
  1210. * Increase the pool size
  1211. * First take pages out of surplus state. Then make up the
  1212. * remaining difference by allocating fresh huge pages.
  1213. *
  1214. * We might race with alloc_buddy_huge_page() here and be unable
  1215. * to convert a surplus huge page to a normal huge page. That is
  1216. * not critical, though, it just means the overall size of the
  1217. * pool might be one hugepage larger than it needs to be, but
  1218. * within all the constraints specified by the sysctls.
  1219. */
  1220. spin_lock(&hugetlb_lock);
  1221. while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
  1222. if (!adjust_pool_surplus(h, nodes_allowed, -1))
  1223. break;
  1224. }
  1225. while (count > persistent_huge_pages(h)) {
  1226. /*
  1227. * If this allocation races such that we no longer need the
  1228. * page, free_huge_page will handle it by freeing the page
  1229. * and reducing the surplus.
  1230. */
  1231. spin_unlock(&hugetlb_lock);
  1232. ret = alloc_fresh_huge_page(h, nodes_allowed);
  1233. spin_lock(&hugetlb_lock);
  1234. if (!ret)
  1235. goto out;
  1236. /* Bail for signals. Probably ctrl-c from user */
  1237. if (signal_pending(current))
  1238. goto out;
  1239. }
  1240. /*
  1241. * Decrease the pool size
  1242. * First return free pages to the buddy allocator (being careful
  1243. * to keep enough around to satisfy reservations). Then place
  1244. * pages into surplus state as needed so the pool will shrink
  1245. * to the desired size as pages become free.
  1246. *
  1247. * By placing pages into the surplus state independent of the
  1248. * overcommit value, we are allowing the surplus pool size to
  1249. * exceed overcommit. There are few sane options here. Since
  1250. * alloc_buddy_huge_page() is checking the global counter,
  1251. * though, we'll note that we're not allowed to exceed surplus
  1252. * and won't grow the pool anywhere else. Not until one of the
  1253. * sysctls are changed, or the surplus pages go out of use.
  1254. */
  1255. min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
  1256. min_count = max(count, min_count);
  1257. try_to_free_low(h, min_count, nodes_allowed);
  1258. while (min_count < persistent_huge_pages(h)) {
  1259. if (!free_pool_huge_page(h, nodes_allowed, 0))
  1260. break;
  1261. }
  1262. while (count < persistent_huge_pages(h)) {
  1263. if (!adjust_pool_surplus(h, nodes_allowed, 1))
  1264. break;
  1265. }
  1266. out:
  1267. ret = persistent_huge_pages(h);
  1268. spin_unlock(&hugetlb_lock);
  1269. return ret;
  1270. }
  1271. #define HSTATE_ATTR_RO(_name) \
  1272. static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
  1273. #define HSTATE_ATTR(_name) \
  1274. static struct kobj_attribute _name##_attr = \
  1275. __ATTR(_name, 0644, _name##_show, _name##_store)
  1276. static struct kobject *hugepages_kobj;
  1277. static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
  1278. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
  1279. static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
  1280. {
  1281. int i;
  1282. for (i = 0; i < HUGE_MAX_HSTATE; i++)
  1283. if (hstate_kobjs[i] == kobj) {
  1284. if (nidp)
  1285. *nidp = NUMA_NO_NODE;
  1286. return &hstates[i];
  1287. }
  1288. return kobj_to_node_hstate(kobj, nidp);
  1289. }
  1290. static ssize_t nr_hugepages_show_common(struct kobject *kobj,
  1291. struct kobj_attribute *attr, char *buf)
  1292. {
  1293. struct hstate *h;
  1294. unsigned long nr_huge_pages;
  1295. int nid;
  1296. h = kobj_to_hstate(kobj, &nid);
  1297. if (nid == NUMA_NO_NODE)
  1298. nr_huge_pages = h->nr_huge_pages;
  1299. else
  1300. nr_huge_pages = h->nr_huge_pages_node[nid];
  1301. return sprintf(buf, "%lu\n", nr_huge_pages);
  1302. }
  1303. static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
  1304. struct kobject *kobj, struct kobj_attribute *attr,
  1305. const char *buf, size_t len)
  1306. {
  1307. int err;
  1308. int nid;
  1309. unsigned long count;
  1310. struct hstate *h;
  1311. NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
  1312. err = kstrtoul(buf, 10, &count);
  1313. if (err)
  1314. goto out;
  1315. h = kobj_to_hstate(kobj, &nid);
  1316. if (h->order >= MAX_ORDER) {
  1317. err = -EINVAL;
  1318. goto out;
  1319. }
  1320. if (nid == NUMA_NO_NODE) {
  1321. /*
  1322. * global hstate attribute
  1323. */
  1324. if (!(obey_mempolicy &&
  1325. init_nodemask_of_mempolicy(nodes_allowed))) {
  1326. NODEMASK_FREE(nodes_allowed);
  1327. nodes_allowed = &node_states[N_MEMORY];
  1328. }
  1329. } else if (nodes_allowed) {
  1330. /*
  1331. * per node hstate attribute: adjust count to global,
  1332. * but restrict alloc/free to the specified node.
  1333. */
  1334. count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
  1335. init_nodemask_of_node(nodes_allowed, nid);
  1336. } else
  1337. nodes_allowed = &node_states[N_MEMORY];
  1338. h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
  1339. if (nodes_allowed != &node_states[N_MEMORY])
  1340. NODEMASK_FREE(nodes_allowed);
  1341. return len;
  1342. out:
  1343. NODEMASK_FREE(nodes_allowed);
  1344. return err;
  1345. }
  1346. static ssize_t nr_hugepages_show(struct kobject *kobj,
  1347. struct kobj_attribute *attr, char *buf)
  1348. {
  1349. return nr_hugepages_show_common(kobj, attr, buf);
  1350. }
  1351. static ssize_t nr_hugepages_store(struct kobject *kobj,
  1352. struct kobj_attribute *attr, const char *buf, size_t len)
  1353. {
  1354. return nr_hugepages_store_common(false, kobj, attr, buf, len);
  1355. }
  1356. HSTATE_ATTR(nr_hugepages);
  1357. #ifdef CONFIG_NUMA
  1358. /*
  1359. * hstate attribute for optionally mempolicy-based constraint on persistent
  1360. * huge page alloc/free.
  1361. */
  1362. static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
  1363. struct kobj_attribute *attr, char *buf)
  1364. {
  1365. return nr_hugepages_show_common(kobj, attr, buf);
  1366. }
  1367. static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
  1368. struct kobj_attribute *attr, const char *buf, size_t len)
  1369. {
  1370. return nr_hugepages_store_common(true, kobj, attr, buf, len);
  1371. }
  1372. HSTATE_ATTR(nr_hugepages_mempolicy);
  1373. #endif
  1374. static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
  1375. struct kobj_attribute *attr, char *buf)
  1376. {
  1377. struct hstate *h = kobj_to_hstate(kobj, NULL);
  1378. return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
  1379. }
  1380. static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
  1381. struct kobj_attribute *attr, const char *buf, size_t count)
  1382. {
  1383. int err;
  1384. unsigned long input;
  1385. struct hstate *h = kobj_to_hstate(kobj, NULL);
  1386. if (h->order >= MAX_ORDER)
  1387. return -EINVAL;
  1388. err = kstrtoul(buf, 10, &input);
  1389. if (err)
  1390. return err;
  1391. spin_lock(&hugetlb_lock);
  1392. h->nr_overcommit_huge_pages = input;
  1393. spin_unlock(&hugetlb_lock);
  1394. return count;
  1395. }
  1396. HSTATE_ATTR(nr_overcommit_hugepages);
  1397. static ssize_t free_hugepages_show(struct kobject *kobj,
  1398. struct kobj_attribute *attr, char *buf)
  1399. {
  1400. struct hstate *h;
  1401. unsigned long free_huge_pages;
  1402. int nid;
  1403. h = kobj_to_hstate(kobj, &nid);
  1404. if (nid == NUMA_NO_NODE)
  1405. free_huge_pages = h->free_huge_pages;
  1406. else
  1407. free_huge_pages = h->free_huge_pages_node[nid];
  1408. return sprintf(buf, "%lu\n", free_huge_pages);
  1409. }
  1410. HSTATE_ATTR_RO(free_hugepages);
  1411. static ssize_t resv_hugepages_show(struct kobject *kobj,
  1412. struct kobj_attribute *attr, char *buf)
  1413. {
  1414. struct hstate *h = kobj_to_hstate(kobj, NULL);
  1415. return sprintf(buf, "%lu\n", h->resv_huge_pages);
  1416. }
  1417. HSTATE_ATTR_RO(resv_hugepages);
  1418. static ssize_t surplus_hugepages_show(struct kobject *kobj,
  1419. struct kobj_attribute *attr, char *buf)
  1420. {
  1421. struct hstate *h;
  1422. unsigned long surplus_huge_pages;
  1423. int nid;
  1424. h = kobj_to_hstate(kobj, &nid);
  1425. if (nid == NUMA_NO_NODE)
  1426. surplus_huge_pages = h->surplus_huge_pages;
  1427. else
  1428. surplus_huge_pages = h->surplus_huge_pages_node[nid];
  1429. return sprintf(buf, "%lu\n", surplus_huge_pages);
  1430. }
  1431. HSTATE_ATTR_RO(surplus_hugepages);
  1432. static struct attribute *hstate_attrs[] = {
  1433. &nr_hugepages_attr.attr,
  1434. &nr_overcommit_hugepages_attr.attr,
  1435. &free_hugepages_attr.attr,
  1436. &resv_hugepages_attr.attr,
  1437. &surplus_hugepages_attr.attr,
  1438. #ifdef CONFIG_NUMA
  1439. &nr_hugepages_mempolicy_attr.attr,
  1440. #endif
  1441. NULL,
  1442. };
  1443. static struct attribute_group hstate_attr_group = {
  1444. .attrs = hstate_attrs,
  1445. };
  1446. static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
  1447. struct kobject **hstate_kobjs,
  1448. struct attribute_group *hstate_attr_group)
  1449. {
  1450. int retval;
  1451. int hi = hstate_index(h);
  1452. hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
  1453. if (!hstate_kobjs[hi])
  1454. return -ENOMEM;
  1455. retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
  1456. if (retval)
  1457. kobject_put(hstate_kobjs[hi]);
  1458. return retval;
  1459. }
  1460. static void __init hugetlb_sysfs_init(void)
  1461. {
  1462. struct hstate *h;
  1463. int err;
  1464. hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
  1465. if (!hugepages_kobj)
  1466. return;
  1467. for_each_hstate(h) {
  1468. err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
  1469. hstate_kobjs, &hstate_attr_group);
  1470. if (err)
  1471. pr_err("Hugetlb: Unable to add hstate %s", h->name);
  1472. }
  1473. }
  1474. #ifdef CONFIG_NUMA
  1475. /*
  1476. * node_hstate/s - associate per node hstate attributes, via their kobjects,
  1477. * with node devices in node_devices[] using a parallel array. The array
  1478. * index of a node device or _hstate == node id.
  1479. * This is here to avoid any static dependency of the node device driver, in
  1480. * the base kernel, on the hugetlb module.
  1481. */
  1482. struct node_hstate {
  1483. struct kobject *hugepages_kobj;
  1484. struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
  1485. };
  1486. struct node_hstate node_hstates[MAX_NUMNODES];
  1487. /*
  1488. * A subset of global hstate attributes for node devices
  1489. */
  1490. static struct attribute *per_node_hstate_attrs[] = {
  1491. &nr_hugepages_attr.attr,
  1492. &free_hugepages_attr.attr,
  1493. &surplus_hugepages_attr.attr,
  1494. NULL,
  1495. };
  1496. static struct attribute_group per_node_hstate_attr_group = {
  1497. .attrs = per_node_hstate_attrs,
  1498. };
  1499. /*
  1500. * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
  1501. * Returns node id via non-NULL nidp.
  1502. */
  1503. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
  1504. {
  1505. int nid;
  1506. for (nid = 0; nid < nr_node_ids; nid++) {
  1507. struct node_hstate *nhs = &node_hstates[nid];
  1508. int i;
  1509. for (i = 0; i < HUGE_MAX_HSTATE; i++)
  1510. if (nhs->hstate_kobjs[i] == kobj) {
  1511. if (nidp)
  1512. *nidp = nid;
  1513. return &hstates[i];
  1514. }
  1515. }
  1516. BUG();
  1517. return NULL;
  1518. }
  1519. /*
  1520. * Unregister hstate attributes from a single node device.
  1521. * No-op if no hstate attributes attached.
  1522. */
  1523. static void hugetlb_unregister_node(struct node *node)
  1524. {
  1525. struct hstate *h;
  1526. struct node_hstate *nhs = &node_hstates[node->dev.id];
  1527. if (!nhs->hugepages_kobj)
  1528. return; /* no hstate attributes */
  1529. for_each_hstate(h) {
  1530. int idx = hstate_index(h);
  1531. if (nhs->hstate_kobjs[idx]) {
  1532. kobject_put(nhs->hstate_kobjs[idx]);
  1533. nhs->hstate_kobjs[idx] = NULL;
  1534. }
  1535. }
  1536. kobject_put(nhs->hugepages_kobj);
  1537. nhs->hugepages_kobj = NULL;
  1538. }
  1539. /*
  1540. * hugetlb module exit: unregister hstate attributes from node devices
  1541. * that have them.
  1542. */
  1543. static void hugetlb_unregister_all_nodes(void)
  1544. {
  1545. int nid;
  1546. /*
  1547. * disable node device registrations.
  1548. */
  1549. register_hugetlbfs_with_node(NULL, NULL);
  1550. /*
  1551. * remove hstate attributes from any nodes that have them.
  1552. */
  1553. for (nid = 0; nid < nr_node_ids; nid++)
  1554. hugetlb_unregister_node(node_devices[nid]);
  1555. }
  1556. /*
  1557. * Register hstate attributes for a single node device.
  1558. * No-op if attributes already registered.
  1559. */
  1560. static void hugetlb_register_node(struct node *node)
  1561. {
  1562. struct hstate *h;
  1563. struct node_hstate *nhs = &node_hstates[node->dev.id];
  1564. int err;
  1565. if (nhs->hugepages_kobj)
  1566. return; /* already allocated */
  1567. nhs->hugepages_kobj = kobject_create_and_add("hugepages",
  1568. &node->dev.kobj);
  1569. if (!nhs->hugepages_kobj)
  1570. return;
  1571. for_each_hstate(h) {
  1572. err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
  1573. nhs->hstate_kobjs,
  1574. &per_node_hstate_attr_group);
  1575. if (err) {
  1576. pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
  1577. h->name, node->dev.id);
  1578. hugetlb_unregister_node(node);
  1579. break;
  1580. }
  1581. }
  1582. }
  1583. /*
  1584. * hugetlb init time: register hstate attributes for all registered node
  1585. * devices of nodes that have memory. All on-line nodes should have
  1586. * registered their associated device by this time.
  1587. */
  1588. static void hugetlb_register_all_nodes(void)
  1589. {
  1590. int nid;
  1591. for_each_node_state(nid, N_MEMORY) {
  1592. struct node *node = node_devices[nid];
  1593. if (node->dev.id == nid)
  1594. hugetlb_register_node(node);
  1595. }
  1596. /*
  1597. * Let the node device driver know we're here so it can
  1598. * [un]register hstate attributes on node hotplug.
  1599. */
  1600. register_hugetlbfs_with_node(hugetlb_register_node,
  1601. hugetlb_unregister_node);
  1602. }
  1603. #else /* !CONFIG_NUMA */
  1604. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
  1605. {
  1606. BUG();
  1607. if (nidp)
  1608. *nidp = -1;
  1609. return NULL;
  1610. }
  1611. static void hugetlb_unregister_all_nodes(void) { }
  1612. static void hugetlb_register_all_nodes(void) { }
  1613. #endif
  1614. static void __exit hugetlb_exit(void)
  1615. {
  1616. struct hstate *h;
  1617. hugetlb_unregister_all_nodes();
  1618. for_each_hstate(h) {
  1619. kobject_put(hstate_kobjs[hstate_index(h)]);
  1620. }
  1621. kobject_put(hugepages_kobj);
  1622. }
  1623. module_exit(hugetlb_exit);
  1624. static int __init hugetlb_init(void)
  1625. {
  1626. /* Some platform decide whether they support huge pages at boot
  1627. * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
  1628. * there is no such support
  1629. */
  1630. if (HPAGE_SHIFT == 0)
  1631. return 0;
  1632. if (!size_to_hstate(default_hstate_size)) {
  1633. default_hstate_size = HPAGE_SIZE;
  1634. if (!size_to_hstate(default_hstate_size))
  1635. hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
  1636. }
  1637. default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
  1638. if (default_hstate_max_huge_pages)
  1639. default_hstate.max_huge_pages = default_hstate_max_huge_pages;
  1640. hugetlb_init_hstates();
  1641. gather_bootmem_prealloc();
  1642. report_hugepages();
  1643. hugetlb_sysfs_init();
  1644. hugetlb_register_all_nodes();
  1645. hugetlb_cgroup_file_init();
  1646. return 0;
  1647. }
  1648. module_init(hugetlb_init);
  1649. /* Should be called on processing a hugepagesz=... option */
  1650. void __init hugetlb_add_hstate(unsigned order)
  1651. {
  1652. struct hstate *h;
  1653. unsigned long i;
  1654. if (size_to_hstate(PAGE_SIZE << order)) {
  1655. pr_warning("hugepagesz= specified twice, ignoring\n");
  1656. return;
  1657. }
  1658. BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
  1659. BUG_ON(order == 0);
  1660. h = &hstates[hugetlb_max_hstate++];
  1661. h->order = order;
  1662. h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
  1663. h->nr_huge_pages = 0;
  1664. h->free_huge_pages = 0;
  1665. for (i = 0; i < MAX_NUMNODES; ++i)
  1666. INIT_LIST_HEAD(&h->hugepage_freelists[i]);
  1667. INIT_LIST_HEAD(&h->hugepage_activelist);
  1668. h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
  1669. h->next_nid_to_free = first_node(node_states[N_MEMORY]);
  1670. snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
  1671. huge_page_size(h)/1024);
  1672. parsed_hstate = h;
  1673. }
  1674. static int __init hugetlb_nrpages_setup(char *s)
  1675. {
  1676. unsigned long *mhp;
  1677. static unsigned long *last_mhp;
  1678. /*
  1679. * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
  1680. * so this hugepages= parameter goes to the "default hstate".
  1681. */
  1682. if (!hugetlb_max_hstate)
  1683. mhp = &default_hstate_max_huge_pages;
  1684. else
  1685. mhp = &parsed_hstate->max_huge_pages;
  1686. if (mhp == last_mhp) {
  1687. pr_warning("hugepages= specified twice without "
  1688. "interleaving hugepagesz=, ignoring\n");
  1689. return 1;
  1690. }
  1691. if (sscanf(s, "%lu", mhp) <= 0)
  1692. *mhp = 0;
  1693. /*
  1694. * Global state is always initialized later in hugetlb_init.
  1695. * But we need to allocate >= MAX_ORDER hstates here early to still
  1696. * use the bootmem allocator.
  1697. */
  1698. if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
  1699. hugetlb_hstate_alloc_pages(parsed_hstate);
  1700. last_mhp = mhp;
  1701. return 1;
  1702. }
  1703. __setup("hugepages=", hugetlb_nrpages_setup);
  1704. static int __init hugetlb_default_setup(char *s)
  1705. {
  1706. default_hstate_size = memparse(s, &s);
  1707. return 1;
  1708. }
  1709. __setup("default_hugepagesz=", hugetlb_default_setup);
  1710. static unsigned int cpuset_mems_nr(unsigned int *array)
  1711. {
  1712. int node;
  1713. unsigned int nr = 0;
  1714. for_each_node_mask(node, cpuset_current_mems_allowed)
  1715. nr += array[node];
  1716. return nr;
  1717. }
  1718. #ifdef CONFIG_SYSCTL
  1719. static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
  1720. struct ctl_table *table, int write,
  1721. void __user *buffer, size_t *length, loff_t *ppos)
  1722. {
  1723. struct hstate *h = &default_hstate;
  1724. unsigned long tmp;
  1725. int ret;
  1726. tmp = h->max_huge_pages;
  1727. if (write && h->order >= MAX_ORDER)
  1728. return -EINVAL;
  1729. table->data = &tmp;
  1730. table->maxlen = sizeof(unsigned long);
  1731. ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
  1732. if (ret)
  1733. goto out;
  1734. if (write) {
  1735. NODEMASK_ALLOC(nodemask_t, nodes_allowed,
  1736. GFP_KERNEL | __GFP_NORETRY);
  1737. if (!(obey_mempolicy &&
  1738. init_nodemask_of_mempolicy(nodes_allowed))) {
  1739. NODEMASK_FREE(nodes_allowed);
  1740. nodes_allowed = &node_states[N_MEMORY];
  1741. }
  1742. h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
  1743. if (nodes_allowed != &node_states[N_MEMORY])
  1744. NODEMASK_FREE(nodes_allowed);
  1745. }
  1746. out:
  1747. return ret;
  1748. }
  1749. int hugetlb_sysctl_handler(struct ctl_table *table, int write,
  1750. void __user *buffer, size_t *length, loff_t *ppos)
  1751. {
  1752. return hugetlb_sysctl_handler_common(false, table, write,
  1753. buffer, length, ppos);
  1754. }
  1755. #ifdef CONFIG_NUMA
  1756. int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
  1757. void __user *buffer, size_t *length, loff_t *ppos)
  1758. {
  1759. return hugetlb_sysctl_handler_common(true, table, write,
  1760. buffer, length, ppos);
  1761. }
  1762. #endif /* CONFIG_NUMA */
  1763. int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
  1764. void __user *buffer,
  1765. size_t *length, loff_t *ppos)
  1766. {
  1767. proc_dointvec(table, write, buffer, length, ppos);
  1768. if (hugepages_treat_as_movable)
  1769. htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
  1770. else
  1771. htlb_alloc_mask = GFP_HIGHUSER;
  1772. return 0;
  1773. }
  1774. int hugetlb_overcommit_handler(struct ctl_table *table, int write,
  1775. void __user *buffer,
  1776. size_t *length, loff_t *ppos)
  1777. {
  1778. struct hstate *h = &default_hstate;
  1779. unsigned long tmp;
  1780. int ret;
  1781. tmp = h->nr_overcommit_huge_pages;
  1782. if (write && h->order >= MAX_ORDER)
  1783. return -EINVAL;
  1784. table->data = &tmp;
  1785. table->maxlen = sizeof(unsigned long);
  1786. ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
  1787. if (ret)
  1788. goto out;
  1789. if (write) {
  1790. spin_lock(&hugetlb_lock);
  1791. h->nr_overcommit_huge_pages = tmp;
  1792. spin_unlock(&hugetlb_lock);
  1793. }
  1794. out:
  1795. return ret;
  1796. }
  1797. #endif /* CONFIG_SYSCTL */
  1798. void hugetlb_report_meminfo(struct seq_file *m)
  1799. {
  1800. struct hstate *h = &default_hstate;
  1801. seq_printf(m,
  1802. "HugePages_Total: %5lu\n"
  1803. "HugePages_Free: %5lu\n"
  1804. "HugePages_Rsvd: %5lu\n"
  1805. "HugePages_Surp: %5lu\n"
  1806. "Hugepagesize: %8lu kB\n",
  1807. h->nr_huge_pages,
  1808. h->free_huge_pages,
  1809. h->resv_huge_pages,
  1810. h->surplus_huge_pages,
  1811. 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
  1812. }
  1813. int hugetlb_report_node_meminfo(int nid, char *buf)
  1814. {
  1815. struct hstate *h = &default_hstate;
  1816. return sprintf(buf,
  1817. "Node %d HugePages_Total: %5u\n"
  1818. "Node %d HugePages_Free: %5u\n"
  1819. "Node %d HugePages_Surp: %5u\n",
  1820. nid, h->nr_huge_pages_node[nid],
  1821. nid, h->free_huge_pages_node[nid],
  1822. nid, h->surplus_huge_pages_node[nid]);
  1823. }
  1824. void hugetlb_show_meminfo(void)
  1825. {
  1826. struct hstate *h;
  1827. int nid;
  1828. for_each_node_state(nid, N_MEMORY)
  1829. for_each_hstate(h)
  1830. pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
  1831. nid,
  1832. h->nr_huge_pages_node[nid],
  1833. h->free_huge_pages_node[nid],
  1834. h->surplus_huge_pages_node[nid],
  1835. 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
  1836. }
  1837. /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
  1838. unsigned long hugetlb_total_pages(void)
  1839. {
  1840. struct hstate *h;
  1841. unsigned long nr_total_pages = 0;
  1842. for_each_hstate(h)
  1843. nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
  1844. return nr_total_pages;
  1845. }
  1846. static int hugetlb_acct_memory(struct hstate *h, long delta)
  1847. {
  1848. int ret = -ENOMEM;
  1849. spin_lock(&hugetlb_lock);
  1850. /*
  1851. * When cpuset is configured, it breaks the strict hugetlb page
  1852. * reservation as the accounting is done on a global variable. Such
  1853. * reservation is completely rubbish in the presence of cpuset because
  1854. * the reservation is not checked against page availability for the
  1855. * current cpuset. Application can still potentially OOM'ed by kernel
  1856. * with lack of free htlb page in cpuset that the task is in.
  1857. * Attempt to enforce strict accounting with cpuset is almost
  1858. * impossible (or too ugly) because cpuset is too fluid that
  1859. * task or memory node can be dynamically moved between cpusets.
  1860. *
  1861. * The change of semantics for shared hugetlb mapping with cpuset is
  1862. * undesirable. However, in order to preserve some of the semantics,
  1863. * we fall back to check against current free page availability as
  1864. * a best attempt and hopefully to minimize the impact of changing
  1865. * semantics that cpuset has.
  1866. */
  1867. if (delta > 0) {
  1868. if (gather_surplus_pages(h, delta) < 0)
  1869. goto out;
  1870. if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
  1871. return_unused_surplus_pages(h, delta);
  1872. goto out;
  1873. }
  1874. }
  1875. ret = 0;
  1876. if (delta < 0)
  1877. return_unused_surplus_pages(h, (unsigned long) -delta);
  1878. out:
  1879. spin_unlock(&hugetlb_lock);
  1880. return ret;
  1881. }
  1882. static void hugetlb_vm_op_open(struct vm_area_struct *vma)
  1883. {
  1884. struct resv_map *reservations = vma_resv_map(vma);
  1885. /*
  1886. * This new VMA should share its siblings reservation map if present.
  1887. * The VMA will only ever have a valid reservation map pointer where
  1888. * it is being copied for another still existing VMA. As that VMA
  1889. * has a reference to the reservation map it cannot disappear until
  1890. * after this open call completes. It is therefore safe to take a
  1891. * new reference here without additional locking.
  1892. */
  1893. if (reservations)
  1894. kref_get(&reservations->refs);
  1895. }
  1896. static void resv_map_put(struct vm_area_struct *vma)
  1897. {
  1898. struct resv_map *reservations = vma_resv_map(vma);
  1899. if (!reservations)
  1900. return;
  1901. kref_put(&reservations->refs, resv_map_release);
  1902. }
  1903. static void hugetlb_vm_op_close(struct vm_area_struct *vma)
  1904. {
  1905. struct hstate *h = hstate_vma(vma);
  1906. struct resv_map *reservations = vma_resv_map(vma);
  1907. struct hugepage_subpool *spool = subpool_vma(vma);
  1908. unsigned long reserve;
  1909. unsigned long start;
  1910. unsigned long end;
  1911. if (reservations) {
  1912. start = vma_hugecache_offset(h, vma, vma->vm_start);
  1913. end = vma_hugecache_offset(h, vma, vma->vm_end);
  1914. reserve = (end - start) -
  1915. region_count(&reservations->regions, start, end);
  1916. resv_map_put(vma);
  1917. if (reserve) {
  1918. hugetlb_acct_memory(h, -reserve);
  1919. hugepage_subpool_put_pages(spool, reserve);
  1920. }
  1921. }
  1922. }
  1923. /*
  1924. * We cannot handle pagefaults against hugetlb pages at all. They cause
  1925. * handle_mm_fault() to try to instantiate regular-sized pages in the
  1926. * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
  1927. * this far.
  1928. */
  1929. static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1930. {
  1931. BUG();
  1932. return 0;
  1933. }
  1934. const struct vm_operations_struct hugetlb_vm_ops = {
  1935. .fault = hugetlb_vm_op_fault,
  1936. .open = hugetlb_vm_op_open,
  1937. .close = hugetlb_vm_op_close,
  1938. };
  1939. static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
  1940. int writable)
  1941. {
  1942. pte_t entry;
  1943. if (writable) {
  1944. entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
  1945. vma->vm_page_prot)));
  1946. } else {
  1947. entry = huge_pte_wrprotect(mk_huge_pte(page,
  1948. vma->vm_page_prot));
  1949. }
  1950. entry = pte_mkyoung(entry);
  1951. entry = pte_mkhuge(entry);
  1952. entry = arch_make_huge_pte(entry, vma, page, writable);
  1953. return entry;
  1954. }
  1955. static void set_huge_ptep_writable(struct vm_area_struct *vma,
  1956. unsigned long address, pte_t *ptep)
  1957. {
  1958. pte_t entry;
  1959. entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
  1960. if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
  1961. update_mmu_cache(vma, address, ptep);
  1962. }
  1963. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  1964. struct vm_area_struct *vma)
  1965. {
  1966. pte_t *src_pte, *dst_pte, entry;
  1967. struct page *ptepage;
  1968. unsigned long addr;
  1969. int cow;
  1970. struct hstate *h = hstate_vma(vma);
  1971. unsigned long sz = huge_page_size(h);
  1972. cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  1973. for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
  1974. src_pte = huge_pte_offset(src, addr);
  1975. if (!src_pte)
  1976. continue;
  1977. dst_pte = huge_pte_alloc(dst, addr, sz);
  1978. if (!dst_pte)
  1979. goto nomem;
  1980. /* If the pagetables are shared don't copy or take references */
  1981. if (dst_pte == src_pte)
  1982. continue;
  1983. spin_lock(&dst->page_table_lock);
  1984. spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
  1985. if (!huge_pte_none(huge_ptep_get(src_pte))) {
  1986. if (cow)
  1987. huge_ptep_set_wrprotect(src, addr, src_pte);
  1988. entry = huge_ptep_get(src_pte);
  1989. ptepage = pte_page(entry);
  1990. get_page(ptepage);
  1991. page_dup_rmap(ptepage);
  1992. set_huge_pte_at(dst, addr, dst_pte, entry);
  1993. }
  1994. spin_unlock(&src->page_table_lock);
  1995. spin_unlock(&dst->page_table_lock);
  1996. }
  1997. return 0;
  1998. nomem:
  1999. return -ENOMEM;
  2000. }
  2001. static int is_hugetlb_entry_migration(pte_t pte)
  2002. {
  2003. swp_entry_t swp;
  2004. if (huge_pte_none(pte) || pte_present(pte))
  2005. return 0;
  2006. swp = pte_to_swp_entry(pte);
  2007. if (non_swap_entry(swp) && is_migration_entry(swp))
  2008. return 1;
  2009. else
  2010. return 0;
  2011. }
  2012. static int is_hugetlb_entry_hwpoisoned(pte_t pte)
  2013. {
  2014. swp_entry_t swp;
  2015. if (huge_pte_none(pte) || pte_present(pte))
  2016. return 0;
  2017. swp = pte_to_swp_entry(pte);
  2018. if (non_swap_entry(swp) && is_hwpoison_entry(swp))
  2019. return 1;
  2020. else
  2021. return 0;
  2022. }
  2023. void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
  2024. unsigned long start, unsigned long end,
  2025. struct page *ref_page)
  2026. {
  2027. int force_flush = 0;
  2028. struct mm_struct *mm = vma->vm_mm;
  2029. unsigned long address;
  2030. pte_t *ptep;
  2031. pte_t pte;
  2032. struct page *page;
  2033. struct hstate *h = hstate_vma(vma);
  2034. unsigned long sz = huge_page_size(h);
  2035. const unsigned long mmun_start = start; /* For mmu_notifiers */
  2036. const unsigned long mmun_end = end; /* For mmu_notifiers */
  2037. WARN_ON(!is_vm_hugetlb_page(vma));
  2038. BUG_ON(start & ~huge_page_mask(h));
  2039. BUG_ON(end & ~huge_page_mask(h));
  2040. tlb_start_vma(tlb, vma);
  2041. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2042. again:
  2043. spin_lock(&mm->page_table_lock);
  2044. for (address = start; address < end; address += sz) {
  2045. ptep = huge_pte_offset(mm, address);
  2046. if (!ptep)
  2047. continue;
  2048. if (huge_pmd_unshare(mm, &address, ptep))
  2049. continue;
  2050. pte = huge_ptep_get(ptep);
  2051. if (huge_pte_none(pte))
  2052. continue;
  2053. /*
  2054. * HWPoisoned hugepage is already unmapped and dropped reference
  2055. */
  2056. if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
  2057. huge_pte_clear(mm, address, ptep);
  2058. continue;
  2059. }
  2060. page = pte_page(pte);
  2061. /*
  2062. * If a reference page is supplied, it is because a specific
  2063. * page is being unmapped, not a range. Ensure the page we
  2064. * are about to unmap is the actual page of interest.
  2065. */
  2066. if (ref_page) {
  2067. if (page != ref_page)
  2068. continue;
  2069. /*
  2070. * Mark the VMA as having unmapped its page so that
  2071. * future faults in this VMA will fail rather than
  2072. * looking like data was lost
  2073. */
  2074. set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
  2075. }
  2076. pte = huge_ptep_get_and_clear(mm, address, ptep);
  2077. tlb_remove_tlb_entry(tlb, ptep, address);
  2078. if (huge_pte_dirty(pte))
  2079. set_page_dirty(page);
  2080. page_remove_rmap(page);
  2081. force_flush = !__tlb_remove_page(tlb, page);
  2082. if (force_flush)
  2083. break;
  2084. /* Bail out after unmapping reference page if supplied */
  2085. if (ref_page)
  2086. break;
  2087. }
  2088. spin_unlock(&mm->page_table_lock);
  2089. /*
  2090. * mmu_gather ran out of room to batch pages, we break out of
  2091. * the PTE lock to avoid doing the potential expensive TLB invalidate
  2092. * and page-free while holding it.
  2093. */
  2094. if (force_flush) {
  2095. force_flush = 0;
  2096. tlb_flush_mmu(tlb);
  2097. if (address < end && !ref_page)
  2098. goto again;
  2099. }
  2100. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2101. tlb_end_vma(tlb, vma);
  2102. }
  2103. void __unmap_hugepage_range_final(struct mmu_gather *tlb,
  2104. struct vm_area_struct *vma, unsigned long start,
  2105. unsigned long end, struct page *ref_page)
  2106. {
  2107. __unmap_hugepage_range(tlb, vma, start, end, ref_page);
  2108. /*
  2109. * Clear this flag so that x86's huge_pmd_share page_table_shareable
  2110. * test will fail on a vma being torn down, and not grab a page table
  2111. * on its way out. We're lucky that the flag has such an appropriate
  2112. * name, and can in fact be safely cleared here. We could clear it
  2113. * before the __unmap_hugepage_range above, but all that's necessary
  2114. * is to clear it before releasing the i_mmap_mutex. This works
  2115. * because in the context this is called, the VMA is about to be
  2116. * destroyed and the i_mmap_mutex is held.
  2117. */
  2118. vma->vm_flags &= ~VM_MAYSHARE;
  2119. }
  2120. void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  2121. unsigned long end, struct page *ref_page)
  2122. {
  2123. struct mm_struct *mm;
  2124. struct mmu_gather tlb;
  2125. mm = vma->vm_mm;
  2126. tlb_gather_mmu(&tlb, mm, start, end);
  2127. __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
  2128. tlb_finish_mmu(&tlb, start, end);
  2129. }
  2130. /*
  2131. * This is called when the original mapper is failing to COW a MAP_PRIVATE
  2132. * mappping it owns the reserve page for. The intention is to unmap the page
  2133. * from other VMAs and let the children be SIGKILLed if they are faulting the
  2134. * same region.
  2135. */
  2136. static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
  2137. struct page *page, unsigned long address)
  2138. {
  2139. struct hstate *h = hstate_vma(vma);
  2140. struct vm_area_struct *iter_vma;
  2141. struct address_space *mapping;
  2142. pgoff_t pgoff;
  2143. /*
  2144. * vm_pgoff is in PAGE_SIZE units, hence the different calculation
  2145. * from page cache lookup which is in HPAGE_SIZE units.
  2146. */
  2147. address = address & huge_page_mask(h);
  2148. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
  2149. vma->vm_pgoff;
  2150. mapping = file_inode(vma->vm_file)->i_mapping;
  2151. /*
  2152. * Take the mapping lock for the duration of the table walk. As
  2153. * this mapping should be shared between all the VMAs,
  2154. * __unmap_hugepage_range() is called as the lock is already held
  2155. */
  2156. mutex_lock(&mapping->i_mmap_mutex);
  2157. vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
  2158. /* Do not unmap the current VMA */
  2159. if (iter_vma == vma)
  2160. continue;
  2161. /*
  2162. * Unmap the page from other VMAs without their own reserves.
  2163. * They get marked to be SIGKILLed if they fault in these
  2164. * areas. This is because a future no-page fault on this VMA
  2165. * could insert a zeroed page instead of the data existing
  2166. * from the time of fork. This would look like data corruption
  2167. */
  2168. if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
  2169. unmap_hugepage_range(iter_vma, address,
  2170. address + huge_page_size(h), page);
  2171. }
  2172. mutex_unlock(&mapping->i_mmap_mutex);
  2173. return 1;
  2174. }
  2175. /*
  2176. * Hugetlb_cow() should be called with page lock of the original hugepage held.
  2177. * Called with hugetlb_instantiation_mutex held and pte_page locked so we
  2178. * cannot race with other handlers or page migration.
  2179. * Keep the pte_same checks anyway to make transition from the mutex easier.
  2180. */
  2181. static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
  2182. unsigned long address, pte_t *ptep, pte_t pte,
  2183. struct page *pagecache_page)
  2184. {
  2185. struct hstate *h = hstate_vma(vma);
  2186. struct page *old_page, *new_page;
  2187. int avoidcopy;
  2188. int outside_reserve = 0;
  2189. unsigned long mmun_start; /* For mmu_notifiers */
  2190. unsigned long mmun_end; /* For mmu_notifiers */
  2191. old_page = pte_page(pte);
  2192. retry_avoidcopy:
  2193. /* If no-one else is actually using this page, avoid the copy
  2194. * and just make the page writable */
  2195. avoidcopy = (page_mapcount(old_page) == 1);
  2196. if (avoidcopy) {
  2197. if (PageAnon(old_page))
  2198. page_move_anon_rmap(old_page, vma, address);
  2199. set_huge_ptep_writable(vma, address, ptep);
  2200. return 0;
  2201. }
  2202. /*
  2203. * If the process that created a MAP_PRIVATE mapping is about to
  2204. * perform a COW due to a shared page count, attempt to satisfy
  2205. * the allocation without using the existing reserves. The pagecache
  2206. * page is used to determine if the reserve at this address was
  2207. * consumed or not. If reserves were used, a partial faulted mapping
  2208. * at the time of fork() could consume its reserves on COW instead
  2209. * of the full address range.
  2210. */
  2211. if (!(vma->vm_flags & VM_MAYSHARE) &&
  2212. is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
  2213. old_page != pagecache_page)
  2214. outside_reserve = 1;
  2215. page_cache_get(old_page);
  2216. /* Drop page_table_lock as buddy allocator may be called */
  2217. spin_unlock(&mm->page_table_lock);
  2218. new_page = alloc_huge_page(vma, address, outside_reserve);
  2219. if (IS_ERR(new_page)) {
  2220. long err = PTR_ERR(new_page);
  2221. page_cache_release(old_page);
  2222. /*
  2223. * If a process owning a MAP_PRIVATE mapping fails to COW,
  2224. * it is due to references held by a child and an insufficient
  2225. * huge page pool. To guarantee the original mappers
  2226. * reliability, unmap the page from child processes. The child
  2227. * may get SIGKILLed if it later faults.
  2228. */
  2229. if (outside_reserve) {
  2230. BUG_ON(huge_pte_none(pte));
  2231. if (unmap_ref_private(mm, vma, old_page, address)) {
  2232. BUG_ON(huge_pte_none(pte));
  2233. spin_lock(&mm->page_table_lock);
  2234. ptep = huge_pte_offset(mm, address & huge_page_mask(h));
  2235. if (likely(pte_same(huge_ptep_get(ptep), pte)))
  2236. goto retry_avoidcopy;
  2237. /*
  2238. * race occurs while re-acquiring page_table_lock, and
  2239. * our job is done.
  2240. */
  2241. return 0;
  2242. }
  2243. WARN_ON_ONCE(1);
  2244. }
  2245. /* Caller expects lock to be held */
  2246. spin_lock(&mm->page_table_lock);
  2247. if (err == -ENOMEM)
  2248. return VM_FAULT_OOM;
  2249. else
  2250. return VM_FAULT_SIGBUS;
  2251. }
  2252. /*
  2253. * When the original hugepage is shared one, it does not have
  2254. * anon_vma prepared.
  2255. */
  2256. if (unlikely(anon_vma_prepare(vma))) {
  2257. page_cache_release(new_page);
  2258. page_cache_release(old_page);
  2259. /* Caller expects lock to be held */
  2260. spin_lock(&mm->page_table_lock);
  2261. return VM_FAULT_OOM;
  2262. }
  2263. copy_user_huge_page(new_page, old_page, address, vma,
  2264. pages_per_huge_page(h));
  2265. __SetPageUptodate(new_page);
  2266. mmun_start = address & huge_page_mask(h);
  2267. mmun_end = mmun_start + huge_page_size(h);
  2268. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2269. /*
  2270. * Retake the page_table_lock to check for racing updates
  2271. * before the page tables are altered
  2272. */
  2273. spin_lock(&mm->page_table_lock);
  2274. ptep = huge_pte_offset(mm, address & huge_page_mask(h));
  2275. if (likely(pte_same(huge_ptep_get(ptep), pte))) {
  2276. /* Break COW */
  2277. huge_ptep_clear_flush(vma, address, ptep);
  2278. set_huge_pte_at(mm, address, ptep,
  2279. make_huge_pte(vma, new_page, 1));
  2280. page_remove_rmap(old_page);
  2281. hugepage_add_new_anon_rmap(new_page, vma, address);
  2282. /* Make the old page be freed below */
  2283. new_page = old_page;
  2284. }
  2285. spin_unlock(&mm->page_table_lock);
  2286. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2287. /* Caller expects lock to be held */
  2288. spin_lock(&mm->page_table_lock);
  2289. page_cache_release(new_page);
  2290. page_cache_release(old_page);
  2291. return 0;
  2292. }
  2293. /* Return the pagecache page at a given address within a VMA */
  2294. static struct page *hugetlbfs_pagecache_page(struct hstate *h,
  2295. struct vm_area_struct *vma, unsigned long address)
  2296. {
  2297. struct address_space *mapping;
  2298. pgoff_t idx;
  2299. mapping = vma->vm_file->f_mapping;
  2300. idx = vma_hugecache_offset(h, vma, address);
  2301. return find_lock_page(mapping, idx);
  2302. }
  2303. /*
  2304. * Return whether there is a pagecache page to back given address within VMA.
  2305. * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
  2306. */
  2307. static bool hugetlbfs_pagecache_present(struct hstate *h,
  2308. struct vm_area_struct *vma, unsigned long address)
  2309. {
  2310. struct address_space *mapping;
  2311. pgoff_t idx;
  2312. struct page *page;
  2313. mapping = vma->vm_file->f_mapping;
  2314. idx = vma_hugecache_offset(h, vma, address);
  2315. page = find_get_page(mapping, idx);
  2316. if (page)
  2317. put_page(page);
  2318. return page != NULL;
  2319. }
  2320. static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2321. unsigned long address, pte_t *ptep, unsigned int flags)
  2322. {
  2323. struct hstate *h = hstate_vma(vma);
  2324. int ret = VM_FAULT_SIGBUS;
  2325. int anon_rmap = 0;
  2326. pgoff_t idx;
  2327. unsigned long size;
  2328. struct page *page;
  2329. struct address_space *mapping;
  2330. pte_t new_pte;
  2331. /*
  2332. * Currently, we are forced to kill the process in the event the
  2333. * original mapper has unmapped pages from the child due to a failed
  2334. * COW. Warn that such a situation has occurred as it may not be obvious
  2335. */
  2336. if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
  2337. pr_warning("PID %d killed due to inadequate hugepage pool\n",
  2338. current->pid);
  2339. return ret;
  2340. }
  2341. mapping = vma->vm_file->f_mapping;
  2342. idx = vma_hugecache_offset(h, vma, address);
  2343. /*
  2344. * Use page lock to guard against racing truncation
  2345. * before we get page_table_lock.
  2346. */
  2347. retry:
  2348. page = find_lock_page(mapping, idx);
  2349. if (!page) {
  2350. size = i_size_read(mapping->host) >> huge_page_shift(h);
  2351. if (idx >= size)
  2352. goto out;
  2353. page = alloc_huge_page(vma, address, 0);
  2354. if (IS_ERR(page)) {
  2355. ret = PTR_ERR(page);
  2356. if (ret == -ENOMEM)
  2357. ret = VM_FAULT_OOM;
  2358. else
  2359. ret = VM_FAULT_SIGBUS;
  2360. goto out;
  2361. }
  2362. clear_huge_page(page, address, pages_per_huge_page(h));
  2363. __SetPageUptodate(page);
  2364. if (vma->vm_flags & VM_MAYSHARE) {
  2365. int err;
  2366. struct inode *inode = mapping->host;
  2367. err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
  2368. if (err) {
  2369. put_page(page);
  2370. if (err == -EEXIST)
  2371. goto retry;
  2372. goto out;
  2373. }
  2374. spin_lock(&inode->i_lock);
  2375. inode->i_blocks += blocks_per_huge_page(h);
  2376. spin_unlock(&inode->i_lock);
  2377. } else {
  2378. lock_page(page);
  2379. if (unlikely(anon_vma_prepare(vma))) {
  2380. ret = VM_FAULT_OOM;
  2381. goto backout_unlocked;
  2382. }
  2383. anon_rmap = 1;
  2384. }
  2385. } else {
  2386. /*
  2387. * If memory error occurs between mmap() and fault, some process
  2388. * don't have hwpoisoned swap entry for errored virtual address.
  2389. * So we need to block hugepage fault by PG_hwpoison bit check.
  2390. */
  2391. if (unlikely(PageHWPoison(page))) {
  2392. ret = VM_FAULT_HWPOISON |
  2393. VM_FAULT_SET_HINDEX(hstate_index(h));
  2394. goto backout_unlocked;
  2395. }
  2396. }
  2397. /*
  2398. * If we are going to COW a private mapping later, we examine the
  2399. * pending reservations for this page now. This will ensure that
  2400. * any allocations necessary to record that reservation occur outside
  2401. * the spinlock.
  2402. */
  2403. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
  2404. if (vma_needs_reservation(h, vma, address) < 0) {
  2405. ret = VM_FAULT_OOM;
  2406. goto backout_unlocked;
  2407. }
  2408. spin_lock(&mm->page_table_lock);
  2409. size = i_size_read(mapping->host) >> huge_page_shift(h);
  2410. if (idx >= size)
  2411. goto backout;
  2412. ret = 0;
  2413. if (!huge_pte_none(huge_ptep_get(ptep)))
  2414. goto backout;
  2415. if (anon_rmap)
  2416. hugepage_add_new_anon_rmap(page, vma, address);
  2417. else
  2418. page_dup_rmap(page);
  2419. new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
  2420. && (vma->vm_flags & VM_SHARED)));
  2421. set_huge_pte_at(mm, address, ptep, new_pte);
  2422. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
  2423. /* Optimization, do the COW without a second fault */
  2424. ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
  2425. }
  2426. spin_unlock(&mm->page_table_lock);
  2427. unlock_page(page);
  2428. out:
  2429. return ret;
  2430. backout:
  2431. spin_unlock(&mm->page_table_lock);
  2432. backout_unlocked:
  2433. unlock_page(page);
  2434. put_page(page);
  2435. goto out;
  2436. }
  2437. int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2438. unsigned long address, unsigned int flags)
  2439. {
  2440. pte_t *ptep;
  2441. pte_t entry;
  2442. int ret;
  2443. struct page *page = NULL;
  2444. struct page *pagecache_page = NULL;
  2445. static DEFINE_MUTEX(hugetlb_instantiation_mutex);
  2446. struct hstate *h = hstate_vma(vma);
  2447. address &= huge_page_mask(h);
  2448. ptep = huge_pte_offset(mm, address);
  2449. if (ptep) {
  2450. entry = huge_ptep_get(ptep);
  2451. if (unlikely(is_hugetlb_entry_migration(entry))) {
  2452. migration_entry_wait_huge(mm, ptep);
  2453. return 0;
  2454. } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
  2455. return VM_FAULT_HWPOISON_LARGE |
  2456. VM_FAULT_SET_HINDEX(hstate_index(h));
  2457. }
  2458. ptep = huge_pte_alloc(mm, address, huge_page_size(h));
  2459. if (!ptep)
  2460. return VM_FAULT_OOM;
  2461. /*
  2462. * Serialize hugepage allocation and instantiation, so that we don't
  2463. * get spurious allocation failures if two CPUs race to instantiate
  2464. * the same page in the page cache.
  2465. */
  2466. mutex_lock(&hugetlb_instantiation_mutex);
  2467. entry = huge_ptep_get(ptep);
  2468. if (huge_pte_none(entry)) {
  2469. ret = hugetlb_no_page(mm, vma, address, ptep, flags);
  2470. goto out_mutex;
  2471. }
  2472. ret = 0;
  2473. /*
  2474. * If we are going to COW the mapping later, we examine the pending
  2475. * reservations for this page now. This will ensure that any
  2476. * allocations necessary to record that reservation occur outside the
  2477. * spinlock. For private mappings, we also lookup the pagecache
  2478. * page now as it is used to determine if a reservation has been
  2479. * consumed.
  2480. */
  2481. if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
  2482. if (vma_needs_reservation(h, vma, address) < 0) {
  2483. ret = VM_FAULT_OOM;
  2484. goto out_mutex;
  2485. }
  2486. if (!(vma->vm_flags & VM_MAYSHARE))
  2487. pagecache_page = hugetlbfs_pagecache_page(h,
  2488. vma, address);
  2489. }
  2490. /*
  2491. * hugetlb_cow() requires page locks of pte_page(entry) and
  2492. * pagecache_page, so here we need take the former one
  2493. * when page != pagecache_page or !pagecache_page.
  2494. * Note that locking order is always pagecache_page -> page,
  2495. * so no worry about deadlock.
  2496. */
  2497. page = pte_page(entry);
  2498. get_page(page);
  2499. if (page != pagecache_page)
  2500. lock_page(page);
  2501. spin_lock(&mm->page_table_lock);
  2502. /* Check for a racing update before calling hugetlb_cow */
  2503. if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
  2504. goto out_page_table_lock;
  2505. if (flags & FAULT_FLAG_WRITE) {
  2506. if (!huge_pte_write(entry)) {
  2507. ret = hugetlb_cow(mm, vma, address, ptep, entry,
  2508. pagecache_page);
  2509. goto out_page_table_lock;
  2510. }
  2511. entry = huge_pte_mkdirty(entry);
  2512. }
  2513. entry = pte_mkyoung(entry);
  2514. if (huge_ptep_set_access_flags(vma, address, ptep, entry,
  2515. flags & FAULT_FLAG_WRITE))
  2516. update_mmu_cache(vma, address, ptep);
  2517. out_page_table_lock:
  2518. spin_unlock(&mm->page_table_lock);
  2519. if (pagecache_page) {
  2520. unlock_page(pagecache_page);
  2521. put_page(pagecache_page);
  2522. }
  2523. if (page != pagecache_page)
  2524. unlock_page(page);
  2525. put_page(page);
  2526. out_mutex:
  2527. mutex_unlock(&hugetlb_instantiation_mutex);
  2528. return ret;
  2529. }
  2530. long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2531. struct page **pages, struct vm_area_struct **vmas,
  2532. unsigned long *position, unsigned long *nr_pages,
  2533. long i, unsigned int flags)
  2534. {
  2535. unsigned long pfn_offset;
  2536. unsigned long vaddr = *position;
  2537. unsigned long remainder = *nr_pages;
  2538. struct hstate *h = hstate_vma(vma);
  2539. spin_lock(&mm->page_table_lock);
  2540. while (vaddr < vma->vm_end && remainder) {
  2541. pte_t *pte;
  2542. int absent;
  2543. struct page *page;
  2544. /*
  2545. * Some archs (sparc64, sh*) have multiple pte_ts to
  2546. * each hugepage. We have to make sure we get the
  2547. * first, for the page indexing below to work.
  2548. */
  2549. pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
  2550. absent = !pte || huge_pte_none(huge_ptep_get(pte));
  2551. /*
  2552. * When coredumping, it suits get_dump_page if we just return
  2553. * an error where there's an empty slot with no huge pagecache
  2554. * to back it. This way, we avoid allocating a hugepage, and
  2555. * the sparse dumpfile avoids allocating disk blocks, but its
  2556. * huge holes still show up with zeroes where they need to be.
  2557. */
  2558. if (absent && (flags & FOLL_DUMP) &&
  2559. !hugetlbfs_pagecache_present(h, vma, vaddr)) {
  2560. remainder = 0;
  2561. break;
  2562. }
  2563. /*
  2564. * We need call hugetlb_fault for both hugepages under migration
  2565. * (in which case hugetlb_fault waits for the migration,) and
  2566. * hwpoisoned hugepages (in which case we need to prevent the
  2567. * caller from accessing to them.) In order to do this, we use
  2568. * here is_swap_pte instead of is_hugetlb_entry_migration and
  2569. * is_hugetlb_entry_hwpoisoned. This is because it simply covers
  2570. * both cases, and because we can't follow correct pages
  2571. * directly from any kind of swap entries.
  2572. */
  2573. if (absent || is_swap_pte(huge_ptep_get(pte)) ||
  2574. ((flags & FOLL_WRITE) &&
  2575. !huge_pte_write(huge_ptep_get(pte)))) {
  2576. int ret;
  2577. spin_unlock(&mm->page_table_lock);
  2578. ret = hugetlb_fault(mm, vma, vaddr,
  2579. (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
  2580. spin_lock(&mm->page_table_lock);
  2581. if (!(ret & VM_FAULT_ERROR))
  2582. continue;
  2583. remainder = 0;
  2584. break;
  2585. }
  2586. pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
  2587. page = pte_page(huge_ptep_get(pte));
  2588. same_page:
  2589. if (pages) {
  2590. pages[i] = mem_map_offset(page, pfn_offset);
  2591. get_page(pages[i]);
  2592. }
  2593. if (vmas)
  2594. vmas[i] = vma;
  2595. vaddr += PAGE_SIZE;
  2596. ++pfn_offset;
  2597. --remainder;
  2598. ++i;
  2599. if (vaddr < vma->vm_end && remainder &&
  2600. pfn_offset < pages_per_huge_page(h)) {
  2601. /*
  2602. * We use pfn_offset to avoid touching the pageframes
  2603. * of this compound page.
  2604. */
  2605. goto same_page;
  2606. }
  2607. }
  2608. spin_unlock(&mm->page_table_lock);
  2609. *nr_pages = remainder;
  2610. *position = vaddr;
  2611. return i ? i : -EFAULT;
  2612. }
  2613. unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
  2614. unsigned long address, unsigned long end, pgprot_t newprot)
  2615. {
  2616. struct mm_struct *mm = vma->vm_mm;
  2617. unsigned long start = address;
  2618. pte_t *ptep;
  2619. pte_t pte;
  2620. struct hstate *h = hstate_vma(vma);
  2621. unsigned long pages = 0;
  2622. BUG_ON(address >= end);
  2623. flush_cache_range(vma, address, end);
  2624. mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
  2625. spin_lock(&mm->page_table_lock);
  2626. for (; address < end; address += huge_page_size(h)) {
  2627. ptep = huge_pte_offset(mm, address);
  2628. if (!ptep)
  2629. continue;
  2630. if (huge_pmd_unshare(mm, &address, ptep)) {
  2631. pages++;
  2632. continue;
  2633. }
  2634. if (!huge_pte_none(huge_ptep_get(ptep))) {
  2635. pte = huge_ptep_get_and_clear(mm, address, ptep);
  2636. pte = pte_mkhuge(huge_pte_modify(pte, newprot));
  2637. pte = arch_make_huge_pte(pte, vma, NULL, 0);
  2638. set_huge_pte_at(mm, address, ptep, pte);
  2639. pages++;
  2640. }
  2641. }
  2642. spin_unlock(&mm->page_table_lock);
  2643. /*
  2644. * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
  2645. * may have cleared our pud entry and done put_page on the page table:
  2646. * once we release i_mmap_mutex, another task can do the final put_page
  2647. * and that page table be reused and filled with junk.
  2648. */
  2649. flush_tlb_range(vma, start, end);
  2650. mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
  2651. return pages << h->order;
  2652. }
  2653. int hugetlb_reserve_pages(struct inode *inode,
  2654. long from, long to,
  2655. struct vm_area_struct *vma,
  2656. vm_flags_t vm_flags)
  2657. {
  2658. long ret, chg;
  2659. struct hstate *h = hstate_inode(inode);
  2660. struct hugepage_subpool *spool = subpool_inode(inode);
  2661. /*
  2662. * Only apply hugepage reservation if asked. At fault time, an
  2663. * attempt will be made for VM_NORESERVE to allocate a page
  2664. * without using reserves
  2665. */
  2666. if (vm_flags & VM_NORESERVE)
  2667. return 0;
  2668. /*
  2669. * Shared mappings base their reservation on the number of pages that
  2670. * are already allocated on behalf of the file. Private mappings need
  2671. * to reserve the full area even if read-only as mprotect() may be
  2672. * called to make the mapping read-write. Assume !vma is a shm mapping
  2673. */
  2674. if (!vma || vma->vm_flags & VM_MAYSHARE)
  2675. chg = region_chg(&inode->i_mapping->private_list, from, to);
  2676. else {
  2677. struct resv_map *resv_map = resv_map_alloc();
  2678. if (!resv_map)
  2679. return -ENOMEM;
  2680. chg = to - from;
  2681. set_vma_resv_map(vma, resv_map);
  2682. set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
  2683. }
  2684. if (chg < 0) {
  2685. ret = chg;
  2686. goto out_err;
  2687. }
  2688. /* There must be enough pages in the subpool for the mapping */
  2689. if (hugepage_subpool_get_pages(spool, chg)) {
  2690. ret = -ENOSPC;
  2691. goto out_err;
  2692. }
  2693. /*
  2694. * Check enough hugepages are available for the reservation.
  2695. * Hand the pages back to the subpool if there are not
  2696. */
  2697. ret = hugetlb_acct_memory(h, chg);
  2698. if (ret < 0) {
  2699. hugepage_subpool_put_pages(spool, chg);
  2700. goto out_err;
  2701. }
  2702. /*
  2703. * Account for the reservations made. Shared mappings record regions
  2704. * that have reservations as they are shared by multiple VMAs.
  2705. * When the last VMA disappears, the region map says how much
  2706. * the reservation was and the page cache tells how much of
  2707. * the reservation was consumed. Private mappings are per-VMA and
  2708. * only the consumed reservations are tracked. When the VMA
  2709. * disappears, the original reservation is the VMA size and the
  2710. * consumed reservations are stored in the map. Hence, nothing
  2711. * else has to be done for private mappings here
  2712. */
  2713. if (!vma || vma->vm_flags & VM_MAYSHARE)
  2714. region_add(&inode->i_mapping->private_list, from, to);
  2715. return 0;
  2716. out_err:
  2717. if (vma)
  2718. resv_map_put(vma);
  2719. return ret;
  2720. }
  2721. void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
  2722. {
  2723. struct hstate *h = hstate_inode(inode);
  2724. long chg = region_truncate(&inode->i_mapping->private_list, offset);
  2725. struct hugepage_subpool *spool = subpool_inode(inode);
  2726. spin_lock(&inode->i_lock);
  2727. inode->i_blocks -= (blocks_per_huge_page(h) * freed);
  2728. spin_unlock(&inode->i_lock);
  2729. hugepage_subpool_put_pages(spool, (chg - freed));
  2730. hugetlb_acct_memory(h, -(chg - freed));
  2731. }
  2732. #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
  2733. static unsigned long page_table_shareable(struct vm_area_struct *svma,
  2734. struct vm_area_struct *vma,
  2735. unsigned long addr, pgoff_t idx)
  2736. {
  2737. unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
  2738. svma->vm_start;
  2739. unsigned long sbase = saddr & PUD_MASK;
  2740. unsigned long s_end = sbase + PUD_SIZE;
  2741. /* Allow segments to share if only one is marked locked */
  2742. unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
  2743. unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
  2744. /*
  2745. * match the virtual addresses, permission and the alignment of the
  2746. * page table page.
  2747. */
  2748. if (pmd_index(addr) != pmd_index(saddr) ||
  2749. vm_flags != svm_flags ||
  2750. sbase < svma->vm_start || svma->vm_end < s_end)
  2751. return 0;
  2752. return saddr;
  2753. }
  2754. static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
  2755. {
  2756. unsigned long base = addr & PUD_MASK;
  2757. unsigned long end = base + PUD_SIZE;
  2758. /*
  2759. * check on proper vm_flags and page table alignment
  2760. */
  2761. if (vma->vm_flags & VM_MAYSHARE &&
  2762. vma->vm_start <= base && end <= vma->vm_end)
  2763. return 1;
  2764. return 0;
  2765. }
  2766. /*
  2767. * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
  2768. * and returns the corresponding pte. While this is not necessary for the
  2769. * !shared pmd case because we can allocate the pmd later as well, it makes the
  2770. * code much cleaner. pmd allocation is essential for the shared case because
  2771. * pud has to be populated inside the same i_mmap_mutex section - otherwise
  2772. * racing tasks could either miss the sharing (see huge_pte_offset) or select a
  2773. * bad pmd for sharing.
  2774. */
  2775. pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
  2776. {
  2777. struct vm_area_struct *vma = find_vma(mm, addr);
  2778. struct address_space *mapping = vma->vm_file->f_mapping;
  2779. pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  2780. vma->vm_pgoff;
  2781. struct vm_area_struct *svma;
  2782. unsigned long saddr;
  2783. pte_t *spte = NULL;
  2784. pte_t *pte;
  2785. if (!vma_shareable(vma, addr))
  2786. return (pte_t *)pmd_alloc(mm, pud, addr);
  2787. mutex_lock(&mapping->i_mmap_mutex);
  2788. vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
  2789. if (svma == vma)
  2790. continue;
  2791. saddr = page_table_shareable(svma, vma, addr, idx);
  2792. if (saddr) {
  2793. spte = huge_pte_offset(svma->vm_mm, saddr);
  2794. if (spte) {
  2795. get_page(virt_to_page(spte));
  2796. break;
  2797. }
  2798. }
  2799. }
  2800. if (!spte)
  2801. goto out;
  2802. spin_lock(&mm->page_table_lock);
  2803. if (pud_none(*pud))
  2804. pud_populate(mm, pud,
  2805. (pmd_t *)((unsigned long)spte & PAGE_MASK));
  2806. else
  2807. put_page(virt_to_page(spte));
  2808. spin_unlock(&mm->page_table_lock);
  2809. out:
  2810. pte = (pte_t *)pmd_alloc(mm, pud, addr);
  2811. mutex_unlock(&mapping->i_mmap_mutex);
  2812. return pte;
  2813. }
  2814. /*
  2815. * unmap huge page backed by shared pte.
  2816. *
  2817. * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
  2818. * indicated by page_count > 1, unmap is achieved by clearing pud and
  2819. * decrementing the ref count. If count == 1, the pte page is not shared.
  2820. *
  2821. * called with vma->vm_mm->page_table_lock held.
  2822. *
  2823. * returns: 1 successfully unmapped a shared pte page
  2824. * 0 the underlying pte page is not shared, or it is the last user
  2825. */
  2826. int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
  2827. {
  2828. pgd_t *pgd = pgd_offset(mm, *addr);
  2829. pud_t *pud = pud_offset(pgd, *addr);
  2830. BUG_ON(page_count(virt_to_page(ptep)) == 0);
  2831. if (page_count(virt_to_page(ptep)) == 1)
  2832. return 0;
  2833. pud_clear(pud);
  2834. put_page(virt_to_page(ptep));
  2835. *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
  2836. return 1;
  2837. }
  2838. #define want_pmd_share() (1)
  2839. #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
  2840. pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
  2841. {
  2842. return NULL;
  2843. }
  2844. #define want_pmd_share() (0)
  2845. #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
  2846. #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
  2847. pte_t *huge_pte_alloc(struct mm_struct *mm,
  2848. unsigned long addr, unsigned long sz)
  2849. {
  2850. pgd_t *pgd;
  2851. pud_t *pud;
  2852. pte_t *pte = NULL;
  2853. pgd = pgd_offset(mm, addr);
  2854. pud = pud_alloc(mm, pgd, addr);
  2855. if (pud) {
  2856. if (sz == PUD_SIZE) {
  2857. pte = (pte_t *)pud;
  2858. } else {
  2859. BUG_ON(sz != PMD_SIZE);
  2860. if (want_pmd_share() && pud_none(*pud))
  2861. pte = huge_pmd_share(mm, addr, pud);
  2862. else
  2863. pte = (pte_t *)pmd_alloc(mm, pud, addr);
  2864. }
  2865. }
  2866. BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
  2867. return pte;
  2868. }
  2869. pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
  2870. {
  2871. pgd_t *pgd;
  2872. pud_t *pud;
  2873. pmd_t *pmd = NULL;
  2874. pgd = pgd_offset(mm, addr);
  2875. if (pgd_present(*pgd)) {
  2876. pud = pud_offset(pgd, addr);
  2877. if (pud_present(*pud)) {
  2878. if (pud_huge(*pud))
  2879. return (pte_t *)pud;
  2880. pmd = pmd_offset(pud, addr);
  2881. }
  2882. }
  2883. return (pte_t *) pmd;
  2884. }
  2885. struct page *
  2886. follow_huge_pmd(struct mm_struct *mm, unsigned long address,
  2887. pmd_t *pmd, int write)
  2888. {
  2889. struct page *page;
  2890. page = pte_page(*(pte_t *)pmd);
  2891. if (page)
  2892. page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
  2893. return page;
  2894. }
  2895. struct page *
  2896. follow_huge_pud(struct mm_struct *mm, unsigned long address,
  2897. pud_t *pud, int write)
  2898. {
  2899. struct page *page;
  2900. page = pte_page(*(pte_t *)pud);
  2901. if (page)
  2902. page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
  2903. return page;
  2904. }
  2905. #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
  2906. /* Can be overriden by architectures */
  2907. __attribute__((weak)) struct page *
  2908. follow_huge_pud(struct mm_struct *mm, unsigned long address,
  2909. pud_t *pud, int write)
  2910. {
  2911. BUG();
  2912. return NULL;
  2913. }
  2914. #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
  2915. #ifdef CONFIG_MEMORY_FAILURE
  2916. /* Should be called in hugetlb_lock */
  2917. static int is_hugepage_on_freelist(struct page *hpage)
  2918. {
  2919. struct page *page;
  2920. struct page *tmp;
  2921. struct hstate *h = page_hstate(hpage);
  2922. int nid = page_to_nid(hpage);
  2923. list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
  2924. if (page == hpage)
  2925. return 1;
  2926. return 0;
  2927. }
  2928. /*
  2929. * This function is called from memory failure code.
  2930. * Assume the caller holds page lock of the head page.
  2931. */
  2932. int dequeue_hwpoisoned_huge_page(struct page *hpage)
  2933. {
  2934. struct hstate *h = page_hstate(hpage);
  2935. int nid = page_to_nid(hpage);
  2936. int ret = -EBUSY;
  2937. spin_lock(&hugetlb_lock);
  2938. if (is_hugepage_on_freelist(hpage)) {
  2939. /*
  2940. * Hwpoisoned hugepage isn't linked to activelist or freelist,
  2941. * but dangling hpage->lru can trigger list-debug warnings
  2942. * (this happens when we call unpoison_memory() on it),
  2943. * so let it point to itself with list_del_init().
  2944. */
  2945. list_del_init(&hpage->lru);
  2946. set_page_refcounted(hpage);
  2947. h->free_huge_pages--;
  2948. h->free_huge_pages_node[nid]--;
  2949. ret = 0;
  2950. }
  2951. spin_unlock(&hugetlb_lock);
  2952. return ret;
  2953. }
  2954. #endif