af_iucv.c 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451
  1. /*
  2. * IUCV protocol stack for Linux on zSeries
  3. *
  4. * Copyright IBM Corp. 2006, 2009
  5. *
  6. * Author(s): Jennifer Hunt <jenhunt@us.ibm.com>
  7. * Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
  8. * PM functions:
  9. * Ursula Braun <ursula.braun@de.ibm.com>
  10. */
  11. #define KMSG_COMPONENT "af_iucv"
  12. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  13. #include <linux/module.h>
  14. #include <linux/types.h>
  15. #include <linux/list.h>
  16. #include <linux/errno.h>
  17. #include <linux/kernel.h>
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/init.h>
  22. #include <linux/poll.h>
  23. #include <net/sock.h>
  24. #include <asm/ebcdic.h>
  25. #include <asm/cpcmd.h>
  26. #include <linux/kmod.h>
  27. #include <net/iucv/af_iucv.h>
  28. #define VERSION "1.2"
  29. static char iucv_userid[80];
  30. static const struct proto_ops iucv_sock_ops;
  31. static struct proto iucv_proto = {
  32. .name = "AF_IUCV",
  33. .owner = THIS_MODULE,
  34. .obj_size = sizeof(struct iucv_sock),
  35. };
  36. static struct iucv_interface *pr_iucv;
  37. /* special AF_IUCV IPRM messages */
  38. static const u8 iprm_shutdown[8] =
  39. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
  40. #define TRGCLS_SIZE (sizeof(((struct iucv_message *)0)->class))
  41. /* macros to set/get socket control buffer at correct offset */
  42. #define CB_TAG(skb) ((skb)->cb) /* iucv message tag */
  43. #define CB_TAG_LEN (sizeof(((struct iucv_message *) 0)->tag))
  44. #define CB_TRGCLS(skb) ((skb)->cb + CB_TAG_LEN) /* iucv msg target class */
  45. #define CB_TRGCLS_LEN (TRGCLS_SIZE)
  46. #define __iucv_sock_wait(sk, condition, timeo, ret) \
  47. do { \
  48. DEFINE_WAIT(__wait); \
  49. long __timeo = timeo; \
  50. ret = 0; \
  51. prepare_to_wait(sk_sleep(sk), &__wait, TASK_INTERRUPTIBLE); \
  52. while (!(condition)) { \
  53. if (!__timeo) { \
  54. ret = -EAGAIN; \
  55. break; \
  56. } \
  57. if (signal_pending(current)) { \
  58. ret = sock_intr_errno(__timeo); \
  59. break; \
  60. } \
  61. release_sock(sk); \
  62. __timeo = schedule_timeout(__timeo); \
  63. lock_sock(sk); \
  64. ret = sock_error(sk); \
  65. if (ret) \
  66. break; \
  67. } \
  68. finish_wait(sk_sleep(sk), &__wait); \
  69. } while (0)
  70. #define iucv_sock_wait(sk, condition, timeo) \
  71. ({ \
  72. int __ret = 0; \
  73. if (!(condition)) \
  74. __iucv_sock_wait(sk, condition, timeo, __ret); \
  75. __ret; \
  76. })
  77. static void iucv_sock_kill(struct sock *sk);
  78. static void iucv_sock_close(struct sock *sk);
  79. static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
  80. struct packet_type *pt, struct net_device *orig_dev);
  81. static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
  82. struct sk_buff *skb, u8 flags);
  83. static void afiucv_hs_callback_txnotify(struct sk_buff *, enum iucv_tx_notify);
  84. /* Call Back functions */
  85. static void iucv_callback_rx(struct iucv_path *, struct iucv_message *);
  86. static void iucv_callback_txdone(struct iucv_path *, struct iucv_message *);
  87. static void iucv_callback_connack(struct iucv_path *, u8 ipuser[16]);
  88. static int iucv_callback_connreq(struct iucv_path *, u8 ipvmid[8],
  89. u8 ipuser[16]);
  90. static void iucv_callback_connrej(struct iucv_path *, u8 ipuser[16]);
  91. static void iucv_callback_shutdown(struct iucv_path *, u8 ipuser[16]);
  92. static struct iucv_sock_list iucv_sk_list = {
  93. .lock = __RW_LOCK_UNLOCKED(iucv_sk_list.lock),
  94. .autobind_name = ATOMIC_INIT(0)
  95. };
  96. static struct iucv_handler af_iucv_handler = {
  97. .path_pending = iucv_callback_connreq,
  98. .path_complete = iucv_callback_connack,
  99. .path_severed = iucv_callback_connrej,
  100. .message_pending = iucv_callback_rx,
  101. .message_complete = iucv_callback_txdone,
  102. .path_quiesced = iucv_callback_shutdown,
  103. };
  104. static inline void high_nmcpy(unsigned char *dst, char *src)
  105. {
  106. memcpy(dst, src, 8);
  107. }
  108. static inline void low_nmcpy(unsigned char *dst, char *src)
  109. {
  110. memcpy(&dst[8], src, 8);
  111. }
  112. static void iucv_skb_queue_purge(struct sk_buff_head *list)
  113. {
  114. struct sk_buff *skb;
  115. while ((skb = skb_dequeue(list)) != NULL) {
  116. if (skb->dev)
  117. dev_put(skb->dev);
  118. kfree_skb(skb);
  119. }
  120. }
  121. static int afiucv_pm_prepare(struct device *dev)
  122. {
  123. #ifdef CONFIG_PM_DEBUG
  124. printk(KERN_WARNING "afiucv_pm_prepare\n");
  125. #endif
  126. return 0;
  127. }
  128. static void afiucv_pm_complete(struct device *dev)
  129. {
  130. #ifdef CONFIG_PM_DEBUG
  131. printk(KERN_WARNING "afiucv_pm_complete\n");
  132. #endif
  133. }
  134. /**
  135. * afiucv_pm_freeze() - Freeze PM callback
  136. * @dev: AFIUCV dummy device
  137. *
  138. * Sever all established IUCV communication pathes
  139. */
  140. static int afiucv_pm_freeze(struct device *dev)
  141. {
  142. struct iucv_sock *iucv;
  143. struct sock *sk;
  144. struct hlist_node *node;
  145. int err = 0;
  146. #ifdef CONFIG_PM_DEBUG
  147. printk(KERN_WARNING "afiucv_pm_freeze\n");
  148. #endif
  149. read_lock(&iucv_sk_list.lock);
  150. sk_for_each(sk, node, &iucv_sk_list.head) {
  151. iucv = iucv_sk(sk);
  152. iucv_skb_queue_purge(&iucv->send_skb_q);
  153. skb_queue_purge(&iucv->backlog_skb_q);
  154. switch (sk->sk_state) {
  155. case IUCV_SEVERED:
  156. case IUCV_DISCONN:
  157. case IUCV_CLOSING:
  158. case IUCV_CONNECTED:
  159. if (iucv->path) {
  160. err = pr_iucv->path_sever(iucv->path, NULL);
  161. iucv_path_free(iucv->path);
  162. iucv->path = NULL;
  163. }
  164. break;
  165. case IUCV_OPEN:
  166. case IUCV_BOUND:
  167. case IUCV_LISTEN:
  168. case IUCV_CLOSED:
  169. default:
  170. break;
  171. }
  172. }
  173. read_unlock(&iucv_sk_list.lock);
  174. return err;
  175. }
  176. /**
  177. * afiucv_pm_restore_thaw() - Thaw and restore PM callback
  178. * @dev: AFIUCV dummy device
  179. *
  180. * socket clean up after freeze
  181. */
  182. static int afiucv_pm_restore_thaw(struct device *dev)
  183. {
  184. struct sock *sk;
  185. struct hlist_node *node;
  186. #ifdef CONFIG_PM_DEBUG
  187. printk(KERN_WARNING "afiucv_pm_restore_thaw\n");
  188. #endif
  189. read_lock(&iucv_sk_list.lock);
  190. sk_for_each(sk, node, &iucv_sk_list.head) {
  191. switch (sk->sk_state) {
  192. case IUCV_CONNECTED:
  193. sk->sk_err = EPIPE;
  194. sk->sk_state = IUCV_DISCONN;
  195. sk->sk_state_change(sk);
  196. break;
  197. case IUCV_DISCONN:
  198. case IUCV_SEVERED:
  199. case IUCV_CLOSING:
  200. case IUCV_LISTEN:
  201. case IUCV_BOUND:
  202. case IUCV_OPEN:
  203. default:
  204. break;
  205. }
  206. }
  207. read_unlock(&iucv_sk_list.lock);
  208. return 0;
  209. }
  210. static const struct dev_pm_ops afiucv_pm_ops = {
  211. .prepare = afiucv_pm_prepare,
  212. .complete = afiucv_pm_complete,
  213. .freeze = afiucv_pm_freeze,
  214. .thaw = afiucv_pm_restore_thaw,
  215. .restore = afiucv_pm_restore_thaw,
  216. };
  217. static struct device_driver af_iucv_driver = {
  218. .owner = THIS_MODULE,
  219. .name = "afiucv",
  220. .bus = NULL,
  221. .pm = &afiucv_pm_ops,
  222. };
  223. /* dummy device used as trigger for PM functions */
  224. static struct device *af_iucv_dev;
  225. /**
  226. * iucv_msg_length() - Returns the length of an iucv message.
  227. * @msg: Pointer to struct iucv_message, MUST NOT be NULL
  228. *
  229. * The function returns the length of the specified iucv message @msg of data
  230. * stored in a buffer and of data stored in the parameter list (PRMDATA).
  231. *
  232. * For IUCV_IPRMDATA, AF_IUCV uses the following convention to transport socket
  233. * data:
  234. * PRMDATA[0..6] socket data (max 7 bytes);
  235. * PRMDATA[7] socket data length value (len is 0xff - PRMDATA[7])
  236. *
  237. * The socket data length is computed by subtracting the socket data length
  238. * value from 0xFF.
  239. * If the socket data len is greater 7, then PRMDATA can be used for special
  240. * notifications (see iucv_sock_shutdown); and further,
  241. * if the socket data len is > 7, the function returns 8.
  242. *
  243. * Use this function to allocate socket buffers to store iucv message data.
  244. */
  245. static inline size_t iucv_msg_length(struct iucv_message *msg)
  246. {
  247. size_t datalen;
  248. if (msg->flags & IUCV_IPRMDATA) {
  249. datalen = 0xff - msg->rmmsg[7];
  250. return (datalen < 8) ? datalen : 8;
  251. }
  252. return msg->length;
  253. }
  254. /**
  255. * iucv_sock_in_state() - check for specific states
  256. * @sk: sock structure
  257. * @state: first iucv sk state
  258. * @state: second iucv sk state
  259. *
  260. * Returns true if the socket in either in the first or second state.
  261. */
  262. static int iucv_sock_in_state(struct sock *sk, int state, int state2)
  263. {
  264. return (sk->sk_state == state || sk->sk_state == state2);
  265. }
  266. /**
  267. * iucv_below_msglim() - function to check if messages can be sent
  268. * @sk: sock structure
  269. *
  270. * Returns true if the send queue length is lower than the message limit.
  271. * Always returns true if the socket is not connected (no iucv path for
  272. * checking the message limit).
  273. */
  274. static inline int iucv_below_msglim(struct sock *sk)
  275. {
  276. struct iucv_sock *iucv = iucv_sk(sk);
  277. if (sk->sk_state != IUCV_CONNECTED)
  278. return 1;
  279. if (iucv->transport == AF_IUCV_TRANS_IUCV)
  280. return (skb_queue_len(&iucv->send_skb_q) < iucv->path->msglim);
  281. else
  282. return ((atomic_read(&iucv->msg_sent) < iucv->msglimit_peer) &&
  283. (atomic_read(&iucv->pendings) <= 0));
  284. }
  285. /**
  286. * iucv_sock_wake_msglim() - Wake up thread waiting on msg limit
  287. */
  288. static void iucv_sock_wake_msglim(struct sock *sk)
  289. {
  290. struct socket_wq *wq;
  291. rcu_read_lock();
  292. wq = rcu_dereference(sk->sk_wq);
  293. if (wq_has_sleeper(wq))
  294. wake_up_interruptible_all(&wq->wait);
  295. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  296. rcu_read_unlock();
  297. }
  298. /**
  299. * afiucv_hs_send() - send a message through HiperSockets transport
  300. */
  301. static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
  302. struct sk_buff *skb, u8 flags)
  303. {
  304. struct net *net = sock_net(sock);
  305. struct iucv_sock *iucv = iucv_sk(sock);
  306. struct af_iucv_trans_hdr *phs_hdr;
  307. struct sk_buff *nskb;
  308. int err, confirm_recv = 0;
  309. memset(skb->head, 0, ETH_HLEN);
  310. phs_hdr = (struct af_iucv_trans_hdr *)skb_push(skb,
  311. sizeof(struct af_iucv_trans_hdr));
  312. skb_reset_mac_header(skb);
  313. skb_reset_network_header(skb);
  314. skb_push(skb, ETH_HLEN);
  315. skb_reset_mac_header(skb);
  316. memset(phs_hdr, 0, sizeof(struct af_iucv_trans_hdr));
  317. phs_hdr->magic = ETH_P_AF_IUCV;
  318. phs_hdr->version = 1;
  319. phs_hdr->flags = flags;
  320. if (flags == AF_IUCV_FLAG_SYN)
  321. phs_hdr->window = iucv->msglimit;
  322. else if ((flags == AF_IUCV_FLAG_WIN) || !flags) {
  323. confirm_recv = atomic_read(&iucv->msg_recv);
  324. phs_hdr->window = confirm_recv;
  325. if (confirm_recv)
  326. phs_hdr->flags = phs_hdr->flags | AF_IUCV_FLAG_WIN;
  327. }
  328. memcpy(phs_hdr->destUserID, iucv->dst_user_id, 8);
  329. memcpy(phs_hdr->destAppName, iucv->dst_name, 8);
  330. memcpy(phs_hdr->srcUserID, iucv->src_user_id, 8);
  331. memcpy(phs_hdr->srcAppName, iucv->src_name, 8);
  332. ASCEBC(phs_hdr->destUserID, sizeof(phs_hdr->destUserID));
  333. ASCEBC(phs_hdr->destAppName, sizeof(phs_hdr->destAppName));
  334. ASCEBC(phs_hdr->srcUserID, sizeof(phs_hdr->srcUserID));
  335. ASCEBC(phs_hdr->srcAppName, sizeof(phs_hdr->srcAppName));
  336. if (imsg)
  337. memcpy(&phs_hdr->iucv_hdr, imsg, sizeof(struct iucv_message));
  338. skb->dev = dev_get_by_index(net, sock->sk_bound_dev_if);
  339. if (!skb->dev)
  340. return -ENODEV;
  341. if (!(skb->dev->flags & IFF_UP))
  342. return -ENETDOWN;
  343. if (skb->len > skb->dev->mtu) {
  344. if (sock->sk_type == SOCK_SEQPACKET)
  345. return -EMSGSIZE;
  346. else
  347. skb_trim(skb, skb->dev->mtu);
  348. }
  349. skb->protocol = ETH_P_AF_IUCV;
  350. skb_shinfo(skb)->tx_flags |= SKBTX_DRV_NEEDS_SK_REF;
  351. nskb = skb_clone(skb, GFP_ATOMIC);
  352. if (!nskb)
  353. return -ENOMEM;
  354. skb_queue_tail(&iucv->send_skb_q, nskb);
  355. err = dev_queue_xmit(skb);
  356. if (err) {
  357. skb_unlink(nskb, &iucv->send_skb_q);
  358. dev_put(nskb->dev);
  359. kfree_skb(nskb);
  360. } else {
  361. atomic_sub(confirm_recv, &iucv->msg_recv);
  362. WARN_ON(atomic_read(&iucv->msg_recv) < 0);
  363. }
  364. return err;
  365. }
  366. /* Timers */
  367. static void iucv_sock_timeout(unsigned long arg)
  368. {
  369. struct sock *sk = (struct sock *)arg;
  370. bh_lock_sock(sk);
  371. sk->sk_err = ETIMEDOUT;
  372. sk->sk_state_change(sk);
  373. bh_unlock_sock(sk);
  374. iucv_sock_kill(sk);
  375. sock_put(sk);
  376. }
  377. static void iucv_sock_clear_timer(struct sock *sk)
  378. {
  379. sk_stop_timer(sk, &sk->sk_timer);
  380. }
  381. static struct sock *__iucv_get_sock_by_name(char *nm)
  382. {
  383. struct sock *sk;
  384. struct hlist_node *node;
  385. sk_for_each(sk, node, &iucv_sk_list.head)
  386. if (!memcmp(&iucv_sk(sk)->src_name, nm, 8))
  387. return sk;
  388. return NULL;
  389. }
  390. static void iucv_sock_destruct(struct sock *sk)
  391. {
  392. skb_queue_purge(&sk->sk_receive_queue);
  393. skb_queue_purge(&sk->sk_write_queue);
  394. }
  395. /* Cleanup Listen */
  396. static void iucv_sock_cleanup_listen(struct sock *parent)
  397. {
  398. struct sock *sk;
  399. /* Close non-accepted connections */
  400. while ((sk = iucv_accept_dequeue(parent, NULL))) {
  401. iucv_sock_close(sk);
  402. iucv_sock_kill(sk);
  403. }
  404. parent->sk_state = IUCV_CLOSED;
  405. }
  406. /* Kill socket (only if zapped and orphaned) */
  407. static void iucv_sock_kill(struct sock *sk)
  408. {
  409. if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
  410. return;
  411. iucv_sock_unlink(&iucv_sk_list, sk);
  412. sock_set_flag(sk, SOCK_DEAD);
  413. sock_put(sk);
  414. }
  415. /* Close an IUCV socket */
  416. static void iucv_sock_close(struct sock *sk)
  417. {
  418. unsigned char user_data[16];
  419. struct iucv_sock *iucv = iucv_sk(sk);
  420. unsigned long timeo;
  421. int err, blen;
  422. struct sk_buff *skb;
  423. iucv_sock_clear_timer(sk);
  424. lock_sock(sk);
  425. switch (sk->sk_state) {
  426. case IUCV_LISTEN:
  427. iucv_sock_cleanup_listen(sk);
  428. break;
  429. case IUCV_CONNECTED:
  430. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  431. /* send fin */
  432. blen = sizeof(struct af_iucv_trans_hdr) + ETH_HLEN;
  433. skb = sock_alloc_send_skb(sk, blen, 1, &err);
  434. if (skb) {
  435. skb_reserve(skb, blen);
  436. err = afiucv_hs_send(NULL, sk, skb,
  437. AF_IUCV_FLAG_FIN);
  438. }
  439. sk->sk_state = IUCV_DISCONN;
  440. sk->sk_state_change(sk);
  441. }
  442. case IUCV_DISCONN: /* fall through */
  443. sk->sk_state = IUCV_CLOSING;
  444. sk->sk_state_change(sk);
  445. if (!skb_queue_empty(&iucv->send_skb_q)) {
  446. if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
  447. timeo = sk->sk_lingertime;
  448. else
  449. timeo = IUCV_DISCONN_TIMEOUT;
  450. iucv_sock_wait(sk,
  451. iucv_sock_in_state(sk, IUCV_CLOSED, 0),
  452. timeo);
  453. }
  454. case IUCV_CLOSING: /* fall through */
  455. sk->sk_state = IUCV_CLOSED;
  456. sk->sk_state_change(sk);
  457. if (iucv->path) {
  458. low_nmcpy(user_data, iucv->src_name);
  459. high_nmcpy(user_data, iucv->dst_name);
  460. ASCEBC(user_data, sizeof(user_data));
  461. pr_iucv->path_sever(iucv->path, user_data);
  462. iucv_path_free(iucv->path);
  463. iucv->path = NULL;
  464. }
  465. sk->sk_err = ECONNRESET;
  466. sk->sk_state_change(sk);
  467. iucv_skb_queue_purge(&iucv->send_skb_q);
  468. skb_queue_purge(&iucv->backlog_skb_q);
  469. break;
  470. default:
  471. /* nothing to do here */
  472. break;
  473. }
  474. /* mark socket for deletion by iucv_sock_kill() */
  475. sock_set_flag(sk, SOCK_ZAPPED);
  476. release_sock(sk);
  477. }
  478. static void iucv_sock_init(struct sock *sk, struct sock *parent)
  479. {
  480. if (parent)
  481. sk->sk_type = parent->sk_type;
  482. }
  483. static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio)
  484. {
  485. struct sock *sk;
  486. struct iucv_sock *iucv;
  487. sk = sk_alloc(&init_net, PF_IUCV, prio, &iucv_proto);
  488. if (!sk)
  489. return NULL;
  490. iucv = iucv_sk(sk);
  491. sock_init_data(sock, sk);
  492. INIT_LIST_HEAD(&iucv->accept_q);
  493. spin_lock_init(&iucv->accept_q_lock);
  494. skb_queue_head_init(&iucv->send_skb_q);
  495. INIT_LIST_HEAD(&iucv->message_q.list);
  496. spin_lock_init(&iucv->message_q.lock);
  497. skb_queue_head_init(&iucv->backlog_skb_q);
  498. iucv->send_tag = 0;
  499. atomic_set(&iucv->pendings, 0);
  500. iucv->flags = 0;
  501. iucv->msglimit = 0;
  502. atomic_set(&iucv->msg_sent, 0);
  503. atomic_set(&iucv->msg_recv, 0);
  504. iucv->path = NULL;
  505. iucv->sk_txnotify = afiucv_hs_callback_txnotify;
  506. memset(&iucv->src_user_id , 0, 32);
  507. if (pr_iucv)
  508. iucv->transport = AF_IUCV_TRANS_IUCV;
  509. else
  510. iucv->transport = AF_IUCV_TRANS_HIPER;
  511. sk->sk_destruct = iucv_sock_destruct;
  512. sk->sk_sndtimeo = IUCV_CONN_TIMEOUT;
  513. sk->sk_allocation = GFP_DMA;
  514. sock_reset_flag(sk, SOCK_ZAPPED);
  515. sk->sk_protocol = proto;
  516. sk->sk_state = IUCV_OPEN;
  517. setup_timer(&sk->sk_timer, iucv_sock_timeout, (unsigned long)sk);
  518. iucv_sock_link(&iucv_sk_list, sk);
  519. return sk;
  520. }
  521. /* Create an IUCV socket */
  522. static int iucv_sock_create(struct net *net, struct socket *sock, int protocol,
  523. int kern)
  524. {
  525. struct sock *sk;
  526. if (protocol && protocol != PF_IUCV)
  527. return -EPROTONOSUPPORT;
  528. sock->state = SS_UNCONNECTED;
  529. switch (sock->type) {
  530. case SOCK_STREAM:
  531. sock->ops = &iucv_sock_ops;
  532. break;
  533. case SOCK_SEQPACKET:
  534. /* currently, proto ops can handle both sk types */
  535. sock->ops = &iucv_sock_ops;
  536. break;
  537. default:
  538. return -ESOCKTNOSUPPORT;
  539. }
  540. sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL);
  541. if (!sk)
  542. return -ENOMEM;
  543. iucv_sock_init(sk, NULL);
  544. return 0;
  545. }
  546. void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk)
  547. {
  548. write_lock_bh(&l->lock);
  549. sk_add_node(sk, &l->head);
  550. write_unlock_bh(&l->lock);
  551. }
  552. void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk)
  553. {
  554. write_lock_bh(&l->lock);
  555. sk_del_node_init(sk);
  556. write_unlock_bh(&l->lock);
  557. }
  558. void iucv_accept_enqueue(struct sock *parent, struct sock *sk)
  559. {
  560. unsigned long flags;
  561. struct iucv_sock *par = iucv_sk(parent);
  562. sock_hold(sk);
  563. spin_lock_irqsave(&par->accept_q_lock, flags);
  564. list_add_tail(&iucv_sk(sk)->accept_q, &par->accept_q);
  565. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  566. iucv_sk(sk)->parent = parent;
  567. sk_acceptq_added(parent);
  568. }
  569. void iucv_accept_unlink(struct sock *sk)
  570. {
  571. unsigned long flags;
  572. struct iucv_sock *par = iucv_sk(iucv_sk(sk)->parent);
  573. spin_lock_irqsave(&par->accept_q_lock, flags);
  574. list_del_init(&iucv_sk(sk)->accept_q);
  575. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  576. sk_acceptq_removed(iucv_sk(sk)->parent);
  577. iucv_sk(sk)->parent = NULL;
  578. sock_put(sk);
  579. }
  580. struct sock *iucv_accept_dequeue(struct sock *parent, struct socket *newsock)
  581. {
  582. struct iucv_sock *isk, *n;
  583. struct sock *sk;
  584. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  585. sk = (struct sock *) isk;
  586. lock_sock(sk);
  587. if (sk->sk_state == IUCV_CLOSED) {
  588. iucv_accept_unlink(sk);
  589. release_sock(sk);
  590. continue;
  591. }
  592. if (sk->sk_state == IUCV_CONNECTED ||
  593. sk->sk_state == IUCV_SEVERED ||
  594. sk->sk_state == IUCV_DISCONN || /* due to PM restore */
  595. !newsock) {
  596. iucv_accept_unlink(sk);
  597. if (newsock)
  598. sock_graft(sk, newsock);
  599. if (sk->sk_state == IUCV_SEVERED)
  600. sk->sk_state = IUCV_DISCONN;
  601. release_sock(sk);
  602. return sk;
  603. }
  604. release_sock(sk);
  605. }
  606. return NULL;
  607. }
  608. /* Bind an unbound socket */
  609. static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr,
  610. int addr_len)
  611. {
  612. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  613. struct sock *sk = sock->sk;
  614. struct iucv_sock *iucv;
  615. int err = 0;
  616. struct net_device *dev;
  617. char uid[9];
  618. /* Verify the input sockaddr */
  619. if (!addr || addr->sa_family != AF_IUCV)
  620. return -EINVAL;
  621. lock_sock(sk);
  622. if (sk->sk_state != IUCV_OPEN) {
  623. err = -EBADFD;
  624. goto done;
  625. }
  626. write_lock_bh(&iucv_sk_list.lock);
  627. iucv = iucv_sk(sk);
  628. if (__iucv_get_sock_by_name(sa->siucv_name)) {
  629. err = -EADDRINUSE;
  630. goto done_unlock;
  631. }
  632. if (iucv->path)
  633. goto done_unlock;
  634. /* Bind the socket */
  635. if (pr_iucv)
  636. if (!memcmp(sa->siucv_user_id, iucv_userid, 8))
  637. goto vm_bind; /* VM IUCV transport */
  638. /* try hiper transport */
  639. memcpy(uid, sa->siucv_user_id, sizeof(uid));
  640. ASCEBC(uid, 8);
  641. rcu_read_lock();
  642. for_each_netdev_rcu(&init_net, dev) {
  643. if (!memcmp(dev->perm_addr, uid, 8)) {
  644. memcpy(iucv->src_name, sa->siucv_name, 8);
  645. memcpy(iucv->src_user_id, sa->siucv_user_id, 8);
  646. sk->sk_bound_dev_if = dev->ifindex;
  647. sk->sk_state = IUCV_BOUND;
  648. iucv->transport = AF_IUCV_TRANS_HIPER;
  649. if (!iucv->msglimit)
  650. iucv->msglimit = IUCV_HIPER_MSGLIM_DEFAULT;
  651. rcu_read_unlock();
  652. goto done_unlock;
  653. }
  654. }
  655. rcu_read_unlock();
  656. vm_bind:
  657. if (pr_iucv) {
  658. /* use local userid for backward compat */
  659. memcpy(iucv->src_name, sa->siucv_name, 8);
  660. memcpy(iucv->src_user_id, iucv_userid, 8);
  661. sk->sk_state = IUCV_BOUND;
  662. iucv->transport = AF_IUCV_TRANS_IUCV;
  663. if (!iucv->msglimit)
  664. iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
  665. goto done_unlock;
  666. }
  667. /* found no dev to bind */
  668. err = -ENODEV;
  669. done_unlock:
  670. /* Release the socket list lock */
  671. write_unlock_bh(&iucv_sk_list.lock);
  672. done:
  673. release_sock(sk);
  674. return err;
  675. }
  676. /* Automatically bind an unbound socket */
  677. static int iucv_sock_autobind(struct sock *sk)
  678. {
  679. struct iucv_sock *iucv = iucv_sk(sk);
  680. char query_buffer[80];
  681. char name[12];
  682. int err = 0;
  683. /* Set the userid and name */
  684. cpcmd("QUERY USERID", query_buffer, sizeof(query_buffer), &err);
  685. if (unlikely(err))
  686. return -EPROTO;
  687. memcpy(iucv->src_user_id, query_buffer, 8);
  688. write_lock_bh(&iucv_sk_list.lock);
  689. sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name));
  690. while (__iucv_get_sock_by_name(name)) {
  691. sprintf(name, "%08x",
  692. atomic_inc_return(&iucv_sk_list.autobind_name));
  693. }
  694. write_unlock_bh(&iucv_sk_list.lock);
  695. memcpy(&iucv->src_name, name, 8);
  696. if (!iucv->msglimit)
  697. iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
  698. return err;
  699. }
  700. static int afiucv_hs_connect(struct socket *sock)
  701. {
  702. struct sock *sk = sock->sk;
  703. struct sk_buff *skb;
  704. int blen = sizeof(struct af_iucv_trans_hdr) + ETH_HLEN;
  705. int err = 0;
  706. /* send syn */
  707. skb = sock_alloc_send_skb(sk, blen, 1, &err);
  708. if (!skb) {
  709. err = -ENOMEM;
  710. goto done;
  711. }
  712. skb->dev = NULL;
  713. skb_reserve(skb, blen);
  714. err = afiucv_hs_send(NULL, sk, skb, AF_IUCV_FLAG_SYN);
  715. done:
  716. return err;
  717. }
  718. static int afiucv_path_connect(struct socket *sock, struct sockaddr *addr)
  719. {
  720. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  721. struct sock *sk = sock->sk;
  722. struct iucv_sock *iucv = iucv_sk(sk);
  723. unsigned char user_data[16];
  724. int err;
  725. high_nmcpy(user_data, sa->siucv_name);
  726. low_nmcpy(user_data, iucv->src_name);
  727. ASCEBC(user_data, sizeof(user_data));
  728. /* Create path. */
  729. iucv->path = iucv_path_alloc(iucv->msglimit,
  730. IUCV_IPRMDATA, GFP_KERNEL);
  731. if (!iucv->path) {
  732. err = -ENOMEM;
  733. goto done;
  734. }
  735. err = pr_iucv->path_connect(iucv->path, &af_iucv_handler,
  736. sa->siucv_user_id, NULL, user_data,
  737. sk);
  738. if (err) {
  739. iucv_path_free(iucv->path);
  740. iucv->path = NULL;
  741. switch (err) {
  742. case 0x0b: /* Target communicator is not logged on */
  743. err = -ENETUNREACH;
  744. break;
  745. case 0x0d: /* Max connections for this guest exceeded */
  746. case 0x0e: /* Max connections for target guest exceeded */
  747. err = -EAGAIN;
  748. break;
  749. case 0x0f: /* Missing IUCV authorization */
  750. err = -EACCES;
  751. break;
  752. default:
  753. err = -ECONNREFUSED;
  754. break;
  755. }
  756. }
  757. done:
  758. return err;
  759. }
  760. /* Connect an unconnected socket */
  761. static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr,
  762. int alen, int flags)
  763. {
  764. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  765. struct sock *sk = sock->sk;
  766. struct iucv_sock *iucv = iucv_sk(sk);
  767. int err;
  768. if (addr->sa_family != AF_IUCV || alen < sizeof(struct sockaddr_iucv))
  769. return -EINVAL;
  770. if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND)
  771. return -EBADFD;
  772. if (sk->sk_state == IUCV_OPEN &&
  773. iucv->transport == AF_IUCV_TRANS_HIPER)
  774. return -EBADFD; /* explicit bind required */
  775. if (sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_SEQPACKET)
  776. return -EINVAL;
  777. if (sk->sk_state == IUCV_OPEN) {
  778. err = iucv_sock_autobind(sk);
  779. if (unlikely(err))
  780. return err;
  781. }
  782. lock_sock(sk);
  783. /* Set the destination information */
  784. memcpy(iucv->dst_user_id, sa->siucv_user_id, 8);
  785. memcpy(iucv->dst_name, sa->siucv_name, 8);
  786. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  787. err = afiucv_hs_connect(sock);
  788. else
  789. err = afiucv_path_connect(sock, addr);
  790. if (err)
  791. goto done;
  792. if (sk->sk_state != IUCV_CONNECTED)
  793. err = iucv_sock_wait(sk, iucv_sock_in_state(sk, IUCV_CONNECTED,
  794. IUCV_DISCONN),
  795. sock_sndtimeo(sk, flags & O_NONBLOCK));
  796. if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_CLOSED)
  797. err = -ECONNREFUSED;
  798. if (err && iucv->transport == AF_IUCV_TRANS_IUCV) {
  799. pr_iucv->path_sever(iucv->path, NULL);
  800. iucv_path_free(iucv->path);
  801. iucv->path = NULL;
  802. }
  803. done:
  804. release_sock(sk);
  805. return err;
  806. }
  807. /* Move a socket into listening state. */
  808. static int iucv_sock_listen(struct socket *sock, int backlog)
  809. {
  810. struct sock *sk = sock->sk;
  811. int err;
  812. lock_sock(sk);
  813. err = -EINVAL;
  814. if (sk->sk_state != IUCV_BOUND)
  815. goto done;
  816. if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
  817. goto done;
  818. sk->sk_max_ack_backlog = backlog;
  819. sk->sk_ack_backlog = 0;
  820. sk->sk_state = IUCV_LISTEN;
  821. err = 0;
  822. done:
  823. release_sock(sk);
  824. return err;
  825. }
  826. /* Accept a pending connection */
  827. static int iucv_sock_accept(struct socket *sock, struct socket *newsock,
  828. int flags)
  829. {
  830. DECLARE_WAITQUEUE(wait, current);
  831. struct sock *sk = sock->sk, *nsk;
  832. long timeo;
  833. int err = 0;
  834. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  835. if (sk->sk_state != IUCV_LISTEN) {
  836. err = -EBADFD;
  837. goto done;
  838. }
  839. timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
  840. /* Wait for an incoming connection */
  841. add_wait_queue_exclusive(sk_sleep(sk), &wait);
  842. while (!(nsk = iucv_accept_dequeue(sk, newsock))) {
  843. set_current_state(TASK_INTERRUPTIBLE);
  844. if (!timeo) {
  845. err = -EAGAIN;
  846. break;
  847. }
  848. release_sock(sk);
  849. timeo = schedule_timeout(timeo);
  850. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  851. if (sk->sk_state != IUCV_LISTEN) {
  852. err = -EBADFD;
  853. break;
  854. }
  855. if (signal_pending(current)) {
  856. err = sock_intr_errno(timeo);
  857. break;
  858. }
  859. }
  860. set_current_state(TASK_RUNNING);
  861. remove_wait_queue(sk_sleep(sk), &wait);
  862. if (err)
  863. goto done;
  864. newsock->state = SS_CONNECTED;
  865. done:
  866. release_sock(sk);
  867. return err;
  868. }
  869. static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr,
  870. int *len, int peer)
  871. {
  872. struct sockaddr_iucv *siucv = (struct sockaddr_iucv *) addr;
  873. struct sock *sk = sock->sk;
  874. struct iucv_sock *iucv = iucv_sk(sk);
  875. addr->sa_family = AF_IUCV;
  876. *len = sizeof(struct sockaddr_iucv);
  877. if (peer) {
  878. memcpy(siucv->siucv_user_id, iucv->dst_user_id, 8);
  879. memcpy(siucv->siucv_name, iucv->dst_name, 8);
  880. } else {
  881. memcpy(siucv->siucv_user_id, iucv->src_user_id, 8);
  882. memcpy(siucv->siucv_name, iucv->src_name, 8);
  883. }
  884. memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port));
  885. memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr));
  886. memset(&siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid));
  887. return 0;
  888. }
  889. /**
  890. * iucv_send_iprm() - Send socket data in parameter list of an iucv message.
  891. * @path: IUCV path
  892. * @msg: Pointer to a struct iucv_message
  893. * @skb: The socket data to send, skb->len MUST BE <= 7
  894. *
  895. * Send the socket data in the parameter list in the iucv message
  896. * (IUCV_IPRMDATA). The socket data is stored at index 0 to 6 in the parameter
  897. * list and the socket data len at index 7 (last byte).
  898. * See also iucv_msg_length().
  899. *
  900. * Returns the error code from the iucv_message_send() call.
  901. */
  902. static int iucv_send_iprm(struct iucv_path *path, struct iucv_message *msg,
  903. struct sk_buff *skb)
  904. {
  905. u8 prmdata[8];
  906. memcpy(prmdata, (void *) skb->data, skb->len);
  907. prmdata[7] = 0xff - (u8) skb->len;
  908. return pr_iucv->message_send(path, msg, IUCV_IPRMDATA, 0,
  909. (void *) prmdata, 8);
  910. }
  911. static int iucv_sock_sendmsg(struct kiocb *iocb, struct socket *sock,
  912. struct msghdr *msg, size_t len)
  913. {
  914. struct sock *sk = sock->sk;
  915. struct iucv_sock *iucv = iucv_sk(sk);
  916. struct sk_buff *skb;
  917. struct iucv_message txmsg;
  918. struct cmsghdr *cmsg;
  919. int cmsg_done;
  920. long timeo;
  921. char user_id[9];
  922. char appl_id[9];
  923. int err;
  924. int noblock = msg->msg_flags & MSG_DONTWAIT;
  925. err = sock_error(sk);
  926. if (err)
  927. return err;
  928. if (msg->msg_flags & MSG_OOB)
  929. return -EOPNOTSUPP;
  930. /* SOCK_SEQPACKET: we do not support segmented records */
  931. if (sk->sk_type == SOCK_SEQPACKET && !(msg->msg_flags & MSG_EOR))
  932. return -EOPNOTSUPP;
  933. lock_sock(sk);
  934. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  935. err = -EPIPE;
  936. goto out;
  937. }
  938. /* Return if the socket is not in connected state */
  939. if (sk->sk_state != IUCV_CONNECTED) {
  940. err = -ENOTCONN;
  941. goto out;
  942. }
  943. /* initialize defaults */
  944. cmsg_done = 0; /* check for duplicate headers */
  945. txmsg.class = 0;
  946. /* iterate over control messages */
  947. for (cmsg = CMSG_FIRSTHDR(msg); cmsg;
  948. cmsg = CMSG_NXTHDR(msg, cmsg)) {
  949. if (!CMSG_OK(msg, cmsg)) {
  950. err = -EINVAL;
  951. goto out;
  952. }
  953. if (cmsg->cmsg_level != SOL_IUCV)
  954. continue;
  955. if (cmsg->cmsg_type & cmsg_done) {
  956. err = -EINVAL;
  957. goto out;
  958. }
  959. cmsg_done |= cmsg->cmsg_type;
  960. switch (cmsg->cmsg_type) {
  961. case SCM_IUCV_TRGCLS:
  962. if (cmsg->cmsg_len != CMSG_LEN(TRGCLS_SIZE)) {
  963. err = -EINVAL;
  964. goto out;
  965. }
  966. /* set iucv message target class */
  967. memcpy(&txmsg.class,
  968. (void *) CMSG_DATA(cmsg), TRGCLS_SIZE);
  969. break;
  970. default:
  971. err = -EINVAL;
  972. goto out;
  973. break;
  974. }
  975. }
  976. /* allocate one skb for each iucv message:
  977. * this is fine for SOCK_SEQPACKET (unless we want to support
  978. * segmented records using the MSG_EOR flag), but
  979. * for SOCK_STREAM we might want to improve it in future */
  980. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  981. skb = sock_alloc_send_skb(sk,
  982. len + sizeof(struct af_iucv_trans_hdr) + ETH_HLEN,
  983. noblock, &err);
  984. else
  985. skb = sock_alloc_send_skb(sk, len, noblock, &err);
  986. if (!skb)
  987. goto out;
  988. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  989. skb_reserve(skb, sizeof(struct af_iucv_trans_hdr) + ETH_HLEN);
  990. if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
  991. err = -EFAULT;
  992. goto fail;
  993. }
  994. /* wait if outstanding messages for iucv path has reached */
  995. timeo = sock_sndtimeo(sk, noblock);
  996. err = iucv_sock_wait(sk, iucv_below_msglim(sk), timeo);
  997. if (err)
  998. goto fail;
  999. /* return -ECONNRESET if the socket is no longer connected */
  1000. if (sk->sk_state != IUCV_CONNECTED) {
  1001. err = -ECONNRESET;
  1002. goto fail;
  1003. }
  1004. /* increment and save iucv message tag for msg_completion cbk */
  1005. txmsg.tag = iucv->send_tag++;
  1006. memcpy(CB_TAG(skb), &txmsg.tag, CB_TAG_LEN);
  1007. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  1008. atomic_inc(&iucv->msg_sent);
  1009. err = afiucv_hs_send(&txmsg, sk, skb, 0);
  1010. if (err) {
  1011. atomic_dec(&iucv->msg_sent);
  1012. goto fail;
  1013. }
  1014. goto release;
  1015. }
  1016. skb_queue_tail(&iucv->send_skb_q, skb);
  1017. if (((iucv->path->flags & IUCV_IPRMDATA) & iucv->flags)
  1018. && skb->len <= 7) {
  1019. err = iucv_send_iprm(iucv->path, &txmsg, skb);
  1020. /* on success: there is no message_complete callback
  1021. * for an IPRMDATA msg; remove skb from send queue */
  1022. if (err == 0) {
  1023. skb_unlink(skb, &iucv->send_skb_q);
  1024. kfree_skb(skb);
  1025. }
  1026. /* this error should never happen since the
  1027. * IUCV_IPRMDATA path flag is set... sever path */
  1028. if (err == 0x15) {
  1029. pr_iucv->path_sever(iucv->path, NULL);
  1030. skb_unlink(skb, &iucv->send_skb_q);
  1031. err = -EPIPE;
  1032. goto fail;
  1033. }
  1034. } else
  1035. err = pr_iucv->message_send(iucv->path, &txmsg, 0, 0,
  1036. (void *) skb->data, skb->len);
  1037. if (err) {
  1038. if (err == 3) {
  1039. user_id[8] = 0;
  1040. memcpy(user_id, iucv->dst_user_id, 8);
  1041. appl_id[8] = 0;
  1042. memcpy(appl_id, iucv->dst_name, 8);
  1043. pr_err("Application %s on z/VM guest %s"
  1044. " exceeds message limit\n",
  1045. appl_id, user_id);
  1046. err = -EAGAIN;
  1047. } else
  1048. err = -EPIPE;
  1049. skb_unlink(skb, &iucv->send_skb_q);
  1050. goto fail;
  1051. }
  1052. release:
  1053. release_sock(sk);
  1054. return len;
  1055. fail:
  1056. if (skb->dev)
  1057. dev_put(skb->dev);
  1058. kfree_skb(skb);
  1059. out:
  1060. release_sock(sk);
  1061. return err;
  1062. }
  1063. /* iucv_fragment_skb() - Fragment a single IUCV message into multiple skb's
  1064. *
  1065. * Locking: must be called with message_q.lock held
  1066. */
  1067. static int iucv_fragment_skb(struct sock *sk, struct sk_buff *skb, int len)
  1068. {
  1069. int dataleft, size, copied = 0;
  1070. struct sk_buff *nskb;
  1071. dataleft = len;
  1072. while (dataleft) {
  1073. if (dataleft >= sk->sk_rcvbuf / 4)
  1074. size = sk->sk_rcvbuf / 4;
  1075. else
  1076. size = dataleft;
  1077. nskb = alloc_skb(size, GFP_ATOMIC | GFP_DMA);
  1078. if (!nskb)
  1079. return -ENOMEM;
  1080. /* copy target class to control buffer of new skb */
  1081. memcpy(CB_TRGCLS(nskb), CB_TRGCLS(skb), CB_TRGCLS_LEN);
  1082. /* copy data fragment */
  1083. memcpy(nskb->data, skb->data + copied, size);
  1084. copied += size;
  1085. dataleft -= size;
  1086. skb_reset_transport_header(nskb);
  1087. skb_reset_network_header(nskb);
  1088. nskb->len = size;
  1089. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, nskb);
  1090. }
  1091. return 0;
  1092. }
  1093. /* iucv_process_message() - Receive a single outstanding IUCV message
  1094. *
  1095. * Locking: must be called with message_q.lock held
  1096. */
  1097. static void iucv_process_message(struct sock *sk, struct sk_buff *skb,
  1098. struct iucv_path *path,
  1099. struct iucv_message *msg)
  1100. {
  1101. int rc;
  1102. unsigned int len;
  1103. len = iucv_msg_length(msg);
  1104. /* store msg target class in the second 4 bytes of skb ctrl buffer */
  1105. /* Note: the first 4 bytes are reserved for msg tag */
  1106. memcpy(CB_TRGCLS(skb), &msg->class, CB_TRGCLS_LEN);
  1107. /* check for special IPRM messages (e.g. iucv_sock_shutdown) */
  1108. if ((msg->flags & IUCV_IPRMDATA) && len > 7) {
  1109. if (memcmp(msg->rmmsg, iprm_shutdown, 8) == 0) {
  1110. skb->data = NULL;
  1111. skb->len = 0;
  1112. }
  1113. } else {
  1114. rc = pr_iucv->message_receive(path, msg,
  1115. msg->flags & IUCV_IPRMDATA,
  1116. skb->data, len, NULL);
  1117. if (rc) {
  1118. kfree_skb(skb);
  1119. return;
  1120. }
  1121. /* we need to fragment iucv messages for SOCK_STREAM only;
  1122. * for SOCK_SEQPACKET, it is only relevant if we support
  1123. * record segmentation using MSG_EOR (see also recvmsg()) */
  1124. if (sk->sk_type == SOCK_STREAM &&
  1125. skb->truesize >= sk->sk_rcvbuf / 4) {
  1126. rc = iucv_fragment_skb(sk, skb, len);
  1127. kfree_skb(skb);
  1128. skb = NULL;
  1129. if (rc) {
  1130. pr_iucv->path_sever(path, NULL);
  1131. return;
  1132. }
  1133. skb = skb_dequeue(&iucv_sk(sk)->backlog_skb_q);
  1134. } else {
  1135. skb_reset_transport_header(skb);
  1136. skb_reset_network_header(skb);
  1137. skb->len = len;
  1138. }
  1139. }
  1140. if (sock_queue_rcv_skb(sk, skb))
  1141. skb_queue_head(&iucv_sk(sk)->backlog_skb_q, skb);
  1142. }
  1143. /* iucv_process_message_q() - Process outstanding IUCV messages
  1144. *
  1145. * Locking: must be called with message_q.lock held
  1146. */
  1147. static void iucv_process_message_q(struct sock *sk)
  1148. {
  1149. struct iucv_sock *iucv = iucv_sk(sk);
  1150. struct sk_buff *skb;
  1151. struct sock_msg_q *p, *n;
  1152. list_for_each_entry_safe(p, n, &iucv->message_q.list, list) {
  1153. skb = alloc_skb(iucv_msg_length(&p->msg), GFP_ATOMIC | GFP_DMA);
  1154. if (!skb)
  1155. break;
  1156. iucv_process_message(sk, skb, p->path, &p->msg);
  1157. list_del(&p->list);
  1158. kfree(p);
  1159. if (!skb_queue_empty(&iucv->backlog_skb_q))
  1160. break;
  1161. }
  1162. }
  1163. static int iucv_sock_recvmsg(struct kiocb *iocb, struct socket *sock,
  1164. struct msghdr *msg, size_t len, int flags)
  1165. {
  1166. int noblock = flags & MSG_DONTWAIT;
  1167. struct sock *sk = sock->sk;
  1168. struct iucv_sock *iucv = iucv_sk(sk);
  1169. unsigned int copied, rlen;
  1170. struct sk_buff *skb, *rskb, *cskb, *sskb;
  1171. int blen;
  1172. int err = 0;
  1173. if ((sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_SEVERED) &&
  1174. skb_queue_empty(&iucv->backlog_skb_q) &&
  1175. skb_queue_empty(&sk->sk_receive_queue) &&
  1176. list_empty(&iucv->message_q.list))
  1177. return 0;
  1178. if (flags & (MSG_OOB))
  1179. return -EOPNOTSUPP;
  1180. /* receive/dequeue next skb:
  1181. * the function understands MSG_PEEK and, thus, does not dequeue skb */
  1182. skb = skb_recv_datagram(sk, flags, noblock, &err);
  1183. if (!skb) {
  1184. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1185. return 0;
  1186. return err;
  1187. }
  1188. rlen = skb->len; /* real length of skb */
  1189. copied = min_t(unsigned int, rlen, len);
  1190. cskb = skb;
  1191. if (skb_copy_datagram_iovec(cskb, 0, msg->msg_iov, copied)) {
  1192. if (!(flags & MSG_PEEK))
  1193. skb_queue_head(&sk->sk_receive_queue, skb);
  1194. return -EFAULT;
  1195. }
  1196. /* SOCK_SEQPACKET: set MSG_TRUNC if recv buf size is too small */
  1197. if (sk->sk_type == SOCK_SEQPACKET) {
  1198. if (copied < rlen)
  1199. msg->msg_flags |= MSG_TRUNC;
  1200. /* each iucv message contains a complete record */
  1201. msg->msg_flags |= MSG_EOR;
  1202. }
  1203. /* create control message to store iucv msg target class:
  1204. * get the trgcls from the control buffer of the skb due to
  1205. * fragmentation of original iucv message. */
  1206. err = put_cmsg(msg, SOL_IUCV, SCM_IUCV_TRGCLS,
  1207. CB_TRGCLS_LEN, CB_TRGCLS(skb));
  1208. if (err) {
  1209. if (!(flags & MSG_PEEK))
  1210. skb_queue_head(&sk->sk_receive_queue, skb);
  1211. return err;
  1212. }
  1213. /* Mark read part of skb as used */
  1214. if (!(flags & MSG_PEEK)) {
  1215. /* SOCK_STREAM: re-queue skb if it contains unreceived data */
  1216. if (sk->sk_type == SOCK_STREAM) {
  1217. skb_pull(skb, copied);
  1218. if (skb->len) {
  1219. skb_queue_head(&sk->sk_receive_queue, skb);
  1220. goto done;
  1221. }
  1222. }
  1223. kfree_skb(skb);
  1224. atomic_inc(&iucv->msg_recv);
  1225. /* Queue backlog skbs */
  1226. spin_lock_bh(&iucv->message_q.lock);
  1227. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1228. while (rskb) {
  1229. if (sock_queue_rcv_skb(sk, rskb)) {
  1230. skb_queue_head(&iucv->backlog_skb_q,
  1231. rskb);
  1232. break;
  1233. } else {
  1234. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1235. }
  1236. }
  1237. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1238. if (!list_empty(&iucv->message_q.list))
  1239. iucv_process_message_q(sk);
  1240. if (atomic_read(&iucv->msg_recv) >=
  1241. iucv->msglimit / 2) {
  1242. /* send WIN to peer */
  1243. blen = sizeof(struct af_iucv_trans_hdr) +
  1244. ETH_HLEN;
  1245. sskb = sock_alloc_send_skb(sk, blen, 1, &err);
  1246. if (sskb) {
  1247. skb_reserve(sskb, blen);
  1248. err = afiucv_hs_send(NULL, sk, sskb,
  1249. AF_IUCV_FLAG_WIN);
  1250. }
  1251. if (err) {
  1252. sk->sk_state = IUCV_DISCONN;
  1253. sk->sk_state_change(sk);
  1254. }
  1255. }
  1256. }
  1257. spin_unlock_bh(&iucv->message_q.lock);
  1258. }
  1259. done:
  1260. /* SOCK_SEQPACKET: return real length if MSG_TRUNC is set */
  1261. if (sk->sk_type == SOCK_SEQPACKET && (flags & MSG_TRUNC))
  1262. copied = rlen;
  1263. return copied;
  1264. }
  1265. static inline unsigned int iucv_accept_poll(struct sock *parent)
  1266. {
  1267. struct iucv_sock *isk, *n;
  1268. struct sock *sk;
  1269. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  1270. sk = (struct sock *) isk;
  1271. if (sk->sk_state == IUCV_CONNECTED)
  1272. return POLLIN | POLLRDNORM;
  1273. }
  1274. return 0;
  1275. }
  1276. unsigned int iucv_sock_poll(struct file *file, struct socket *sock,
  1277. poll_table *wait)
  1278. {
  1279. struct sock *sk = sock->sk;
  1280. unsigned int mask = 0;
  1281. sock_poll_wait(file, sk_sleep(sk), wait);
  1282. if (sk->sk_state == IUCV_LISTEN)
  1283. return iucv_accept_poll(sk);
  1284. if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
  1285. mask |= POLLERR;
  1286. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1287. mask |= POLLRDHUP;
  1288. if (sk->sk_shutdown == SHUTDOWN_MASK)
  1289. mask |= POLLHUP;
  1290. if (!skb_queue_empty(&sk->sk_receive_queue) ||
  1291. (sk->sk_shutdown & RCV_SHUTDOWN))
  1292. mask |= POLLIN | POLLRDNORM;
  1293. if (sk->sk_state == IUCV_CLOSED)
  1294. mask |= POLLHUP;
  1295. if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_SEVERED)
  1296. mask |= POLLIN;
  1297. if (sock_writeable(sk))
  1298. mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
  1299. else
  1300. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1301. return mask;
  1302. }
  1303. static int iucv_sock_shutdown(struct socket *sock, int how)
  1304. {
  1305. struct sock *sk = sock->sk;
  1306. struct iucv_sock *iucv = iucv_sk(sk);
  1307. struct iucv_message txmsg;
  1308. int err = 0;
  1309. how++;
  1310. if ((how & ~SHUTDOWN_MASK) || !how)
  1311. return -EINVAL;
  1312. lock_sock(sk);
  1313. switch (sk->sk_state) {
  1314. case IUCV_DISCONN:
  1315. case IUCV_CLOSING:
  1316. case IUCV_SEVERED:
  1317. case IUCV_CLOSED:
  1318. err = -ENOTCONN;
  1319. goto fail;
  1320. default:
  1321. sk->sk_shutdown |= how;
  1322. break;
  1323. }
  1324. if (how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) {
  1325. txmsg.class = 0;
  1326. txmsg.tag = 0;
  1327. err = pr_iucv->message_send(iucv->path, &txmsg, IUCV_IPRMDATA,
  1328. 0, (void *) iprm_shutdown, 8);
  1329. if (err) {
  1330. switch (err) {
  1331. case 1:
  1332. err = -ENOTCONN;
  1333. break;
  1334. case 2:
  1335. err = -ECONNRESET;
  1336. break;
  1337. default:
  1338. err = -ENOTCONN;
  1339. break;
  1340. }
  1341. }
  1342. }
  1343. if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) {
  1344. err = pr_iucv->path_quiesce(iucv->path, NULL);
  1345. if (err)
  1346. err = -ENOTCONN;
  1347. skb_queue_purge(&sk->sk_receive_queue);
  1348. }
  1349. /* Wake up anyone sleeping in poll */
  1350. sk->sk_state_change(sk);
  1351. fail:
  1352. release_sock(sk);
  1353. return err;
  1354. }
  1355. static int iucv_sock_release(struct socket *sock)
  1356. {
  1357. struct sock *sk = sock->sk;
  1358. int err = 0;
  1359. if (!sk)
  1360. return 0;
  1361. iucv_sock_close(sk);
  1362. /* Unregister with IUCV base support */
  1363. if (iucv_sk(sk)->path) {
  1364. pr_iucv->path_sever(iucv_sk(sk)->path, NULL);
  1365. iucv_path_free(iucv_sk(sk)->path);
  1366. iucv_sk(sk)->path = NULL;
  1367. }
  1368. sock_orphan(sk);
  1369. iucv_sock_kill(sk);
  1370. return err;
  1371. }
  1372. /* getsockopt and setsockopt */
  1373. static int iucv_sock_setsockopt(struct socket *sock, int level, int optname,
  1374. char __user *optval, unsigned int optlen)
  1375. {
  1376. struct sock *sk = sock->sk;
  1377. struct iucv_sock *iucv = iucv_sk(sk);
  1378. int val;
  1379. int rc;
  1380. if (level != SOL_IUCV)
  1381. return -ENOPROTOOPT;
  1382. if (optlen < sizeof(int))
  1383. return -EINVAL;
  1384. if (get_user(val, (int __user *) optval))
  1385. return -EFAULT;
  1386. rc = 0;
  1387. lock_sock(sk);
  1388. switch (optname) {
  1389. case SO_IPRMDATA_MSG:
  1390. if (val)
  1391. iucv->flags |= IUCV_IPRMDATA;
  1392. else
  1393. iucv->flags &= ~IUCV_IPRMDATA;
  1394. break;
  1395. case SO_MSGLIMIT:
  1396. switch (sk->sk_state) {
  1397. case IUCV_OPEN:
  1398. case IUCV_BOUND:
  1399. if (val < 1 || val > (u16)(~0))
  1400. rc = -EINVAL;
  1401. else
  1402. iucv->msglimit = val;
  1403. break;
  1404. default:
  1405. rc = -EINVAL;
  1406. break;
  1407. }
  1408. break;
  1409. default:
  1410. rc = -ENOPROTOOPT;
  1411. break;
  1412. }
  1413. release_sock(sk);
  1414. return rc;
  1415. }
  1416. static int iucv_sock_getsockopt(struct socket *sock, int level, int optname,
  1417. char __user *optval, int __user *optlen)
  1418. {
  1419. struct sock *sk = sock->sk;
  1420. struct iucv_sock *iucv = iucv_sk(sk);
  1421. int val, len;
  1422. if (level != SOL_IUCV)
  1423. return -ENOPROTOOPT;
  1424. if (get_user(len, optlen))
  1425. return -EFAULT;
  1426. if (len < 0)
  1427. return -EINVAL;
  1428. len = min_t(unsigned int, len, sizeof(int));
  1429. switch (optname) {
  1430. case SO_IPRMDATA_MSG:
  1431. val = (iucv->flags & IUCV_IPRMDATA) ? 1 : 0;
  1432. break;
  1433. case SO_MSGLIMIT:
  1434. lock_sock(sk);
  1435. val = (iucv->path != NULL) ? iucv->path->msglim /* connected */
  1436. : iucv->msglimit; /* default */
  1437. release_sock(sk);
  1438. break;
  1439. default:
  1440. return -ENOPROTOOPT;
  1441. }
  1442. if (put_user(len, optlen))
  1443. return -EFAULT;
  1444. if (copy_to_user(optval, &val, len))
  1445. return -EFAULT;
  1446. return 0;
  1447. }
  1448. /* Callback wrappers - called from iucv base support */
  1449. static int iucv_callback_connreq(struct iucv_path *path,
  1450. u8 ipvmid[8], u8 ipuser[16])
  1451. {
  1452. unsigned char user_data[16];
  1453. unsigned char nuser_data[16];
  1454. unsigned char src_name[8];
  1455. struct hlist_node *node;
  1456. struct sock *sk, *nsk;
  1457. struct iucv_sock *iucv, *niucv;
  1458. int err;
  1459. memcpy(src_name, ipuser, 8);
  1460. EBCASC(src_name, 8);
  1461. /* Find out if this path belongs to af_iucv. */
  1462. read_lock(&iucv_sk_list.lock);
  1463. iucv = NULL;
  1464. sk = NULL;
  1465. sk_for_each(sk, node, &iucv_sk_list.head)
  1466. if (sk->sk_state == IUCV_LISTEN &&
  1467. !memcmp(&iucv_sk(sk)->src_name, src_name, 8)) {
  1468. /*
  1469. * Found a listening socket with
  1470. * src_name == ipuser[0-7].
  1471. */
  1472. iucv = iucv_sk(sk);
  1473. break;
  1474. }
  1475. read_unlock(&iucv_sk_list.lock);
  1476. if (!iucv)
  1477. /* No socket found, not one of our paths. */
  1478. return -EINVAL;
  1479. bh_lock_sock(sk);
  1480. /* Check if parent socket is listening */
  1481. low_nmcpy(user_data, iucv->src_name);
  1482. high_nmcpy(user_data, iucv->dst_name);
  1483. ASCEBC(user_data, sizeof(user_data));
  1484. if (sk->sk_state != IUCV_LISTEN) {
  1485. err = pr_iucv->path_sever(path, user_data);
  1486. iucv_path_free(path);
  1487. goto fail;
  1488. }
  1489. /* Check for backlog size */
  1490. if (sk_acceptq_is_full(sk)) {
  1491. err = pr_iucv->path_sever(path, user_data);
  1492. iucv_path_free(path);
  1493. goto fail;
  1494. }
  1495. /* Create the new socket */
  1496. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC);
  1497. if (!nsk) {
  1498. err = pr_iucv->path_sever(path, user_data);
  1499. iucv_path_free(path);
  1500. goto fail;
  1501. }
  1502. niucv = iucv_sk(nsk);
  1503. iucv_sock_init(nsk, sk);
  1504. /* Set the new iucv_sock */
  1505. memcpy(niucv->dst_name, ipuser + 8, 8);
  1506. EBCASC(niucv->dst_name, 8);
  1507. memcpy(niucv->dst_user_id, ipvmid, 8);
  1508. memcpy(niucv->src_name, iucv->src_name, 8);
  1509. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1510. niucv->path = path;
  1511. /* Call iucv_accept */
  1512. high_nmcpy(nuser_data, ipuser + 8);
  1513. memcpy(nuser_data + 8, niucv->src_name, 8);
  1514. ASCEBC(nuser_data + 8, 8);
  1515. /* set message limit for path based on msglimit of accepting socket */
  1516. niucv->msglimit = iucv->msglimit;
  1517. path->msglim = iucv->msglimit;
  1518. err = pr_iucv->path_accept(path, &af_iucv_handler, nuser_data, nsk);
  1519. if (err) {
  1520. err = pr_iucv->path_sever(path, user_data);
  1521. iucv_path_free(path);
  1522. iucv_sock_kill(nsk);
  1523. goto fail;
  1524. }
  1525. iucv_accept_enqueue(sk, nsk);
  1526. /* Wake up accept */
  1527. nsk->sk_state = IUCV_CONNECTED;
  1528. sk->sk_data_ready(sk, 1);
  1529. err = 0;
  1530. fail:
  1531. bh_unlock_sock(sk);
  1532. return 0;
  1533. }
  1534. static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16])
  1535. {
  1536. struct sock *sk = path->private;
  1537. sk->sk_state = IUCV_CONNECTED;
  1538. sk->sk_state_change(sk);
  1539. }
  1540. static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg)
  1541. {
  1542. struct sock *sk = path->private;
  1543. struct iucv_sock *iucv = iucv_sk(sk);
  1544. struct sk_buff *skb;
  1545. struct sock_msg_q *save_msg;
  1546. int len;
  1547. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1548. pr_iucv->message_reject(path, msg);
  1549. return;
  1550. }
  1551. spin_lock(&iucv->message_q.lock);
  1552. if (!list_empty(&iucv->message_q.list) ||
  1553. !skb_queue_empty(&iucv->backlog_skb_q))
  1554. goto save_message;
  1555. len = atomic_read(&sk->sk_rmem_alloc);
  1556. len += SKB_TRUESIZE(iucv_msg_length(msg));
  1557. if (len > sk->sk_rcvbuf)
  1558. goto save_message;
  1559. skb = alloc_skb(iucv_msg_length(msg), GFP_ATOMIC | GFP_DMA);
  1560. if (!skb)
  1561. goto save_message;
  1562. iucv_process_message(sk, skb, path, msg);
  1563. goto out_unlock;
  1564. save_message:
  1565. save_msg = kzalloc(sizeof(struct sock_msg_q), GFP_ATOMIC | GFP_DMA);
  1566. if (!save_msg)
  1567. goto out_unlock;
  1568. save_msg->path = path;
  1569. save_msg->msg = *msg;
  1570. list_add_tail(&save_msg->list, &iucv->message_q.list);
  1571. out_unlock:
  1572. spin_unlock(&iucv->message_q.lock);
  1573. }
  1574. static void iucv_callback_txdone(struct iucv_path *path,
  1575. struct iucv_message *msg)
  1576. {
  1577. struct sock *sk = path->private;
  1578. struct sk_buff *this = NULL;
  1579. struct sk_buff_head *list = &iucv_sk(sk)->send_skb_q;
  1580. struct sk_buff *list_skb = list->next;
  1581. unsigned long flags;
  1582. if (!skb_queue_empty(list)) {
  1583. spin_lock_irqsave(&list->lock, flags);
  1584. while (list_skb != (struct sk_buff *)list) {
  1585. if (!memcmp(&msg->tag, CB_TAG(list_skb), CB_TAG_LEN)) {
  1586. this = list_skb;
  1587. break;
  1588. }
  1589. list_skb = list_skb->next;
  1590. }
  1591. if (this)
  1592. __skb_unlink(this, list);
  1593. spin_unlock_irqrestore(&list->lock, flags);
  1594. if (this) {
  1595. kfree_skb(this);
  1596. /* wake up any process waiting for sending */
  1597. iucv_sock_wake_msglim(sk);
  1598. }
  1599. }
  1600. BUG_ON(!this);
  1601. if (sk->sk_state == IUCV_CLOSING) {
  1602. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  1603. sk->sk_state = IUCV_CLOSED;
  1604. sk->sk_state_change(sk);
  1605. }
  1606. }
  1607. }
  1608. static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16])
  1609. {
  1610. struct sock *sk = path->private;
  1611. if (!list_empty(&iucv_sk(sk)->accept_q))
  1612. sk->sk_state = IUCV_SEVERED;
  1613. else
  1614. sk->sk_state = IUCV_DISCONN;
  1615. sk->sk_state_change(sk);
  1616. }
  1617. /* called if the other communication side shuts down its RECV direction;
  1618. * in turn, the callback sets SEND_SHUTDOWN to disable sending of data.
  1619. */
  1620. static void iucv_callback_shutdown(struct iucv_path *path, u8 ipuser[16])
  1621. {
  1622. struct sock *sk = path->private;
  1623. bh_lock_sock(sk);
  1624. if (sk->sk_state != IUCV_CLOSED) {
  1625. sk->sk_shutdown |= SEND_SHUTDOWN;
  1626. sk->sk_state_change(sk);
  1627. }
  1628. bh_unlock_sock(sk);
  1629. }
  1630. /***************** HiperSockets transport callbacks ********************/
  1631. static void afiucv_swap_src_dest(struct sk_buff *skb)
  1632. {
  1633. struct af_iucv_trans_hdr *trans_hdr =
  1634. (struct af_iucv_trans_hdr *)skb->data;
  1635. char tmpID[8];
  1636. char tmpName[8];
  1637. ASCEBC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
  1638. ASCEBC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
  1639. ASCEBC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
  1640. ASCEBC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
  1641. memcpy(tmpID, trans_hdr->srcUserID, 8);
  1642. memcpy(tmpName, trans_hdr->srcAppName, 8);
  1643. memcpy(trans_hdr->srcUserID, trans_hdr->destUserID, 8);
  1644. memcpy(trans_hdr->srcAppName, trans_hdr->destAppName, 8);
  1645. memcpy(trans_hdr->destUserID, tmpID, 8);
  1646. memcpy(trans_hdr->destAppName, tmpName, 8);
  1647. skb_push(skb, ETH_HLEN);
  1648. memset(skb->data, 0, ETH_HLEN);
  1649. }
  1650. /**
  1651. * afiucv_hs_callback_syn - react on received SYN
  1652. **/
  1653. static int afiucv_hs_callback_syn(struct sock *sk, struct sk_buff *skb)
  1654. {
  1655. struct sock *nsk;
  1656. struct iucv_sock *iucv, *niucv;
  1657. struct af_iucv_trans_hdr *trans_hdr;
  1658. int err;
  1659. iucv = iucv_sk(sk);
  1660. trans_hdr = (struct af_iucv_trans_hdr *)skb->data;
  1661. if (!iucv) {
  1662. /* no sock - connection refused */
  1663. afiucv_swap_src_dest(skb);
  1664. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
  1665. err = dev_queue_xmit(skb);
  1666. goto out;
  1667. }
  1668. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC);
  1669. bh_lock_sock(sk);
  1670. if ((sk->sk_state != IUCV_LISTEN) ||
  1671. sk_acceptq_is_full(sk) ||
  1672. !nsk) {
  1673. /* error on server socket - connection refused */
  1674. if (nsk)
  1675. sk_free(nsk);
  1676. afiucv_swap_src_dest(skb);
  1677. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
  1678. err = dev_queue_xmit(skb);
  1679. bh_unlock_sock(sk);
  1680. goto out;
  1681. }
  1682. niucv = iucv_sk(nsk);
  1683. iucv_sock_init(nsk, sk);
  1684. niucv->transport = AF_IUCV_TRANS_HIPER;
  1685. niucv->msglimit = iucv->msglimit;
  1686. if (!trans_hdr->window)
  1687. niucv->msglimit_peer = IUCV_HIPER_MSGLIM_DEFAULT;
  1688. else
  1689. niucv->msglimit_peer = trans_hdr->window;
  1690. memcpy(niucv->dst_name, trans_hdr->srcAppName, 8);
  1691. memcpy(niucv->dst_user_id, trans_hdr->srcUserID, 8);
  1692. memcpy(niucv->src_name, iucv->src_name, 8);
  1693. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1694. nsk->sk_bound_dev_if = sk->sk_bound_dev_if;
  1695. afiucv_swap_src_dest(skb);
  1696. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK;
  1697. trans_hdr->window = niucv->msglimit;
  1698. /* if receiver acks the xmit connection is established */
  1699. err = dev_queue_xmit(skb);
  1700. if (!err) {
  1701. iucv_accept_enqueue(sk, nsk);
  1702. nsk->sk_state = IUCV_CONNECTED;
  1703. sk->sk_data_ready(sk, 1);
  1704. } else
  1705. iucv_sock_kill(nsk);
  1706. bh_unlock_sock(sk);
  1707. out:
  1708. return NET_RX_SUCCESS;
  1709. }
  1710. /**
  1711. * afiucv_hs_callback_synack() - react on received SYN-ACK
  1712. **/
  1713. static int afiucv_hs_callback_synack(struct sock *sk, struct sk_buff *skb)
  1714. {
  1715. struct iucv_sock *iucv = iucv_sk(sk);
  1716. struct af_iucv_trans_hdr *trans_hdr =
  1717. (struct af_iucv_trans_hdr *)skb->data;
  1718. if (!iucv)
  1719. goto out;
  1720. if (sk->sk_state != IUCV_BOUND)
  1721. goto out;
  1722. bh_lock_sock(sk);
  1723. iucv->msglimit_peer = trans_hdr->window;
  1724. sk->sk_state = IUCV_CONNECTED;
  1725. sk->sk_state_change(sk);
  1726. bh_unlock_sock(sk);
  1727. out:
  1728. kfree_skb(skb);
  1729. return NET_RX_SUCCESS;
  1730. }
  1731. /**
  1732. * afiucv_hs_callback_synfin() - react on received SYN_FIN
  1733. **/
  1734. static int afiucv_hs_callback_synfin(struct sock *sk, struct sk_buff *skb)
  1735. {
  1736. struct iucv_sock *iucv = iucv_sk(sk);
  1737. if (!iucv)
  1738. goto out;
  1739. if (sk->sk_state != IUCV_BOUND)
  1740. goto out;
  1741. bh_lock_sock(sk);
  1742. sk->sk_state = IUCV_DISCONN;
  1743. sk->sk_state_change(sk);
  1744. bh_unlock_sock(sk);
  1745. out:
  1746. kfree_skb(skb);
  1747. return NET_RX_SUCCESS;
  1748. }
  1749. /**
  1750. * afiucv_hs_callback_fin() - react on received FIN
  1751. **/
  1752. static int afiucv_hs_callback_fin(struct sock *sk, struct sk_buff *skb)
  1753. {
  1754. struct iucv_sock *iucv = iucv_sk(sk);
  1755. /* other end of connection closed */
  1756. if (iucv) {
  1757. bh_lock_sock(sk);
  1758. if (!list_empty(&iucv->accept_q))
  1759. sk->sk_state = IUCV_SEVERED;
  1760. else
  1761. sk->sk_state = IUCV_DISCONN;
  1762. sk->sk_state_change(sk);
  1763. bh_unlock_sock(sk);
  1764. }
  1765. kfree_skb(skb);
  1766. return NET_RX_SUCCESS;
  1767. }
  1768. /**
  1769. * afiucv_hs_callback_win() - react on received WIN
  1770. **/
  1771. static int afiucv_hs_callback_win(struct sock *sk, struct sk_buff *skb)
  1772. {
  1773. struct iucv_sock *iucv = iucv_sk(sk);
  1774. struct af_iucv_trans_hdr *trans_hdr =
  1775. (struct af_iucv_trans_hdr *)skb->data;
  1776. if (!iucv)
  1777. return NET_RX_SUCCESS;
  1778. if (sk->sk_state != IUCV_CONNECTED)
  1779. return NET_RX_SUCCESS;
  1780. atomic_sub(trans_hdr->window, &iucv->msg_sent);
  1781. iucv_sock_wake_msglim(sk);
  1782. return NET_RX_SUCCESS;
  1783. }
  1784. /**
  1785. * afiucv_hs_callback_rx() - react on received data
  1786. **/
  1787. static int afiucv_hs_callback_rx(struct sock *sk, struct sk_buff *skb)
  1788. {
  1789. struct iucv_sock *iucv = iucv_sk(sk);
  1790. if (!iucv) {
  1791. kfree_skb(skb);
  1792. return NET_RX_SUCCESS;
  1793. }
  1794. if (sk->sk_state != IUCV_CONNECTED) {
  1795. kfree_skb(skb);
  1796. return NET_RX_SUCCESS;
  1797. }
  1798. /* write stuff from iucv_msg to skb cb */
  1799. if (skb->len <= sizeof(struct af_iucv_trans_hdr)) {
  1800. kfree_skb(skb);
  1801. return NET_RX_SUCCESS;
  1802. }
  1803. skb_pull(skb, sizeof(struct af_iucv_trans_hdr));
  1804. skb_reset_transport_header(skb);
  1805. skb_reset_network_header(skb);
  1806. spin_lock(&iucv->message_q.lock);
  1807. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1808. if (sock_queue_rcv_skb(sk, skb)) {
  1809. /* handle rcv queue full */
  1810. skb_queue_tail(&iucv->backlog_skb_q, skb);
  1811. }
  1812. } else
  1813. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb);
  1814. spin_unlock(&iucv->message_q.lock);
  1815. return NET_RX_SUCCESS;
  1816. }
  1817. /**
  1818. * afiucv_hs_rcv() - base function for arriving data through HiperSockets
  1819. * transport
  1820. * called from netif RX softirq
  1821. **/
  1822. static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
  1823. struct packet_type *pt, struct net_device *orig_dev)
  1824. {
  1825. struct hlist_node *node;
  1826. struct sock *sk;
  1827. struct iucv_sock *iucv;
  1828. struct af_iucv_trans_hdr *trans_hdr;
  1829. char nullstring[8];
  1830. int err = 0;
  1831. skb_pull(skb, ETH_HLEN);
  1832. trans_hdr = (struct af_iucv_trans_hdr *)skb->data;
  1833. EBCASC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
  1834. EBCASC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
  1835. EBCASC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
  1836. EBCASC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
  1837. memset(nullstring, 0, sizeof(nullstring));
  1838. iucv = NULL;
  1839. sk = NULL;
  1840. read_lock(&iucv_sk_list.lock);
  1841. sk_for_each(sk, node, &iucv_sk_list.head) {
  1842. if (trans_hdr->flags == AF_IUCV_FLAG_SYN) {
  1843. if ((!memcmp(&iucv_sk(sk)->src_name,
  1844. trans_hdr->destAppName, 8)) &&
  1845. (!memcmp(&iucv_sk(sk)->src_user_id,
  1846. trans_hdr->destUserID, 8)) &&
  1847. (!memcmp(&iucv_sk(sk)->dst_name, nullstring, 8)) &&
  1848. (!memcmp(&iucv_sk(sk)->dst_user_id,
  1849. nullstring, 8))) {
  1850. iucv = iucv_sk(sk);
  1851. break;
  1852. }
  1853. } else {
  1854. if ((!memcmp(&iucv_sk(sk)->src_name,
  1855. trans_hdr->destAppName, 8)) &&
  1856. (!memcmp(&iucv_sk(sk)->src_user_id,
  1857. trans_hdr->destUserID, 8)) &&
  1858. (!memcmp(&iucv_sk(sk)->dst_name,
  1859. trans_hdr->srcAppName, 8)) &&
  1860. (!memcmp(&iucv_sk(sk)->dst_user_id,
  1861. trans_hdr->srcUserID, 8))) {
  1862. iucv = iucv_sk(sk);
  1863. break;
  1864. }
  1865. }
  1866. }
  1867. read_unlock(&iucv_sk_list.lock);
  1868. if (!iucv)
  1869. sk = NULL;
  1870. /* no sock
  1871. how should we send with no sock
  1872. 1) send without sock no send rc checking?
  1873. 2) introduce default sock to handle this cases
  1874. SYN -> send SYN|ACK in good case, send SYN|FIN in bad case
  1875. data -> send FIN
  1876. SYN|ACK, SYN|FIN, FIN -> no action? */
  1877. switch (trans_hdr->flags) {
  1878. case AF_IUCV_FLAG_SYN:
  1879. /* connect request */
  1880. err = afiucv_hs_callback_syn(sk, skb);
  1881. break;
  1882. case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK):
  1883. /* connect request confirmed */
  1884. err = afiucv_hs_callback_synack(sk, skb);
  1885. break;
  1886. case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN):
  1887. /* connect request refused */
  1888. err = afiucv_hs_callback_synfin(sk, skb);
  1889. break;
  1890. case (AF_IUCV_FLAG_FIN):
  1891. /* close request */
  1892. err = afiucv_hs_callback_fin(sk, skb);
  1893. break;
  1894. case (AF_IUCV_FLAG_WIN):
  1895. err = afiucv_hs_callback_win(sk, skb);
  1896. if (skb->len > sizeof(struct af_iucv_trans_hdr))
  1897. err = afiucv_hs_callback_rx(sk, skb);
  1898. else
  1899. kfree(skb);
  1900. break;
  1901. case 0:
  1902. /* plain data frame */
  1903. memcpy(CB_TRGCLS(skb), &trans_hdr->iucv_hdr.class,
  1904. CB_TRGCLS_LEN);
  1905. err = afiucv_hs_callback_rx(sk, skb);
  1906. break;
  1907. default:
  1908. ;
  1909. }
  1910. return err;
  1911. }
  1912. /**
  1913. * afiucv_hs_callback_txnotify() - handle send notifcations from HiperSockets
  1914. * transport
  1915. **/
  1916. static void afiucv_hs_callback_txnotify(struct sk_buff *skb,
  1917. enum iucv_tx_notify n)
  1918. {
  1919. struct sock *isk = skb->sk;
  1920. struct sock *sk = NULL;
  1921. struct iucv_sock *iucv = NULL;
  1922. struct sk_buff_head *list;
  1923. struct sk_buff *list_skb;
  1924. struct sk_buff *this = NULL;
  1925. unsigned long flags;
  1926. struct hlist_node *node;
  1927. read_lock(&iucv_sk_list.lock);
  1928. sk_for_each(sk, node, &iucv_sk_list.head)
  1929. if (sk == isk) {
  1930. iucv = iucv_sk(sk);
  1931. break;
  1932. }
  1933. read_unlock(&iucv_sk_list.lock);
  1934. if (!iucv)
  1935. return;
  1936. bh_lock_sock(sk);
  1937. list = &iucv->send_skb_q;
  1938. list_skb = list->next;
  1939. if (skb_queue_empty(list))
  1940. goto out_unlock;
  1941. spin_lock_irqsave(&list->lock, flags);
  1942. while (list_skb != (struct sk_buff *)list) {
  1943. if (skb_shinfo(list_skb) == skb_shinfo(skb)) {
  1944. this = list_skb;
  1945. switch (n) {
  1946. case TX_NOTIFY_OK:
  1947. __skb_unlink(this, list);
  1948. iucv_sock_wake_msglim(sk);
  1949. dev_put(this->dev);
  1950. kfree_skb(this);
  1951. break;
  1952. case TX_NOTIFY_PENDING:
  1953. atomic_inc(&iucv->pendings);
  1954. break;
  1955. case TX_NOTIFY_DELAYED_OK:
  1956. __skb_unlink(this, list);
  1957. atomic_dec(&iucv->pendings);
  1958. if (atomic_read(&iucv->pendings) <= 0)
  1959. iucv_sock_wake_msglim(sk);
  1960. dev_put(this->dev);
  1961. kfree_skb(this);
  1962. break;
  1963. case TX_NOTIFY_UNREACHABLE:
  1964. case TX_NOTIFY_DELAYED_UNREACHABLE:
  1965. case TX_NOTIFY_TPQFULL: /* not yet used */
  1966. case TX_NOTIFY_GENERALERROR:
  1967. case TX_NOTIFY_DELAYED_GENERALERROR:
  1968. __skb_unlink(this, list);
  1969. dev_put(this->dev);
  1970. kfree_skb(this);
  1971. if (!list_empty(&iucv->accept_q))
  1972. sk->sk_state = IUCV_SEVERED;
  1973. else
  1974. sk->sk_state = IUCV_DISCONN;
  1975. sk->sk_state_change(sk);
  1976. break;
  1977. }
  1978. break;
  1979. }
  1980. list_skb = list_skb->next;
  1981. }
  1982. spin_unlock_irqrestore(&list->lock, flags);
  1983. if (sk->sk_state == IUCV_CLOSING) {
  1984. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  1985. sk->sk_state = IUCV_CLOSED;
  1986. sk->sk_state_change(sk);
  1987. }
  1988. }
  1989. out_unlock:
  1990. bh_unlock_sock(sk);
  1991. }
  1992. static const struct proto_ops iucv_sock_ops = {
  1993. .family = PF_IUCV,
  1994. .owner = THIS_MODULE,
  1995. .release = iucv_sock_release,
  1996. .bind = iucv_sock_bind,
  1997. .connect = iucv_sock_connect,
  1998. .listen = iucv_sock_listen,
  1999. .accept = iucv_sock_accept,
  2000. .getname = iucv_sock_getname,
  2001. .sendmsg = iucv_sock_sendmsg,
  2002. .recvmsg = iucv_sock_recvmsg,
  2003. .poll = iucv_sock_poll,
  2004. .ioctl = sock_no_ioctl,
  2005. .mmap = sock_no_mmap,
  2006. .socketpair = sock_no_socketpair,
  2007. .shutdown = iucv_sock_shutdown,
  2008. .setsockopt = iucv_sock_setsockopt,
  2009. .getsockopt = iucv_sock_getsockopt,
  2010. };
  2011. static const struct net_proto_family iucv_sock_family_ops = {
  2012. .family = AF_IUCV,
  2013. .owner = THIS_MODULE,
  2014. .create = iucv_sock_create,
  2015. };
  2016. static struct packet_type iucv_packet_type = {
  2017. .type = cpu_to_be16(ETH_P_AF_IUCV),
  2018. .func = afiucv_hs_rcv,
  2019. };
  2020. static int afiucv_iucv_init(void)
  2021. {
  2022. int err;
  2023. err = pr_iucv->iucv_register(&af_iucv_handler, 0);
  2024. if (err)
  2025. goto out;
  2026. /* establish dummy device */
  2027. af_iucv_driver.bus = pr_iucv->bus;
  2028. err = driver_register(&af_iucv_driver);
  2029. if (err)
  2030. goto out_iucv;
  2031. af_iucv_dev = kzalloc(sizeof(struct device), GFP_KERNEL);
  2032. if (!af_iucv_dev) {
  2033. err = -ENOMEM;
  2034. goto out_driver;
  2035. }
  2036. dev_set_name(af_iucv_dev, "af_iucv");
  2037. af_iucv_dev->bus = pr_iucv->bus;
  2038. af_iucv_dev->parent = pr_iucv->root;
  2039. af_iucv_dev->release = (void (*)(struct device *))kfree;
  2040. af_iucv_dev->driver = &af_iucv_driver;
  2041. err = device_register(af_iucv_dev);
  2042. if (err)
  2043. goto out_driver;
  2044. return 0;
  2045. out_driver:
  2046. driver_unregister(&af_iucv_driver);
  2047. out_iucv:
  2048. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  2049. out:
  2050. return err;
  2051. }
  2052. static int __init afiucv_init(void)
  2053. {
  2054. int err;
  2055. if (MACHINE_IS_VM) {
  2056. cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err);
  2057. if (unlikely(err)) {
  2058. WARN_ON(err);
  2059. err = -EPROTONOSUPPORT;
  2060. goto out;
  2061. }
  2062. pr_iucv = try_then_request_module(symbol_get(iucv_if), "iucv");
  2063. if (!pr_iucv) {
  2064. printk(KERN_WARNING "iucv_if lookup failed\n");
  2065. memset(&iucv_userid, 0, sizeof(iucv_userid));
  2066. }
  2067. } else {
  2068. memset(&iucv_userid, 0, sizeof(iucv_userid));
  2069. pr_iucv = NULL;
  2070. }
  2071. err = proto_register(&iucv_proto, 0);
  2072. if (err)
  2073. goto out;
  2074. err = sock_register(&iucv_sock_family_ops);
  2075. if (err)
  2076. goto out_proto;
  2077. if (pr_iucv) {
  2078. err = afiucv_iucv_init();
  2079. if (err)
  2080. goto out_sock;
  2081. }
  2082. dev_add_pack(&iucv_packet_type);
  2083. return 0;
  2084. out_sock:
  2085. sock_unregister(PF_IUCV);
  2086. out_proto:
  2087. proto_unregister(&iucv_proto);
  2088. out:
  2089. if (pr_iucv)
  2090. symbol_put(iucv_if);
  2091. return err;
  2092. }
  2093. static void __exit afiucv_exit(void)
  2094. {
  2095. if (pr_iucv) {
  2096. device_unregister(af_iucv_dev);
  2097. driver_unregister(&af_iucv_driver);
  2098. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  2099. symbol_put(iucv_if);
  2100. }
  2101. dev_remove_pack(&iucv_packet_type);
  2102. sock_unregister(PF_IUCV);
  2103. proto_unregister(&iucv_proto);
  2104. }
  2105. module_init(afiucv_init);
  2106. module_exit(afiucv_exit);
  2107. MODULE_AUTHOR("Jennifer Hunt <jenhunt@us.ibm.com>");
  2108. MODULE_DESCRIPTION("IUCV Sockets ver " VERSION);
  2109. MODULE_VERSION(VERSION);
  2110. MODULE_LICENSE("GPL");
  2111. MODULE_ALIAS_NETPROTO(PF_IUCV);