process.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494
  1. /*
  2. * linux/arch/arm/kernel/process.c
  3. *
  4. * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  5. * Original Copyright (C) 1995 Linus Torvalds
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <stdarg.h>
  12. #include <linux/config.h>
  13. #include <linux/module.h>
  14. #include <linux/sched.h>
  15. #include <linux/kernel.h>
  16. #include <linux/mm.h>
  17. #include <linux/stddef.h>
  18. #include <linux/unistd.h>
  19. #include <linux/ptrace.h>
  20. #include <linux/slab.h>
  21. #include <linux/user.h>
  22. #include <linux/a.out.h>
  23. #include <linux/delay.h>
  24. #include <linux/reboot.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/kallsyms.h>
  27. #include <linux/init.h>
  28. #include <linux/cpu.h>
  29. #include <linux/elfcore.h>
  30. #include <linux/pm.h>
  31. #include <asm/leds.h>
  32. #include <asm/processor.h>
  33. #include <asm/system.h>
  34. #include <asm/thread_notify.h>
  35. #include <asm/uaccess.h>
  36. #include <asm/mach/time.h>
  37. extern const char *processor_modes[];
  38. extern void setup_mm_for_reboot(char mode);
  39. static volatile int hlt_counter;
  40. #include <asm/arch/system.h>
  41. void disable_hlt(void)
  42. {
  43. hlt_counter++;
  44. }
  45. EXPORT_SYMBOL(disable_hlt);
  46. void enable_hlt(void)
  47. {
  48. hlt_counter--;
  49. }
  50. EXPORT_SYMBOL(enable_hlt);
  51. static int __init nohlt_setup(char *__unused)
  52. {
  53. hlt_counter = 1;
  54. return 1;
  55. }
  56. static int __init hlt_setup(char *__unused)
  57. {
  58. hlt_counter = 0;
  59. return 1;
  60. }
  61. __setup("nohlt", nohlt_setup);
  62. __setup("hlt", hlt_setup);
  63. void arm_machine_restart(char mode)
  64. {
  65. /*
  66. * Clean and disable cache, and turn off interrupts
  67. */
  68. cpu_proc_fin();
  69. /*
  70. * Tell the mm system that we are going to reboot -
  71. * we may need it to insert some 1:1 mappings so that
  72. * soft boot works.
  73. */
  74. setup_mm_for_reboot(mode);
  75. /*
  76. * Now call the architecture specific reboot code.
  77. */
  78. arch_reset(mode);
  79. /*
  80. * Whoops - the architecture was unable to reboot.
  81. * Tell the user!
  82. */
  83. mdelay(1000);
  84. printk("Reboot failed -- System halted\n");
  85. while (1);
  86. }
  87. /*
  88. * Function pointers to optional machine specific functions
  89. */
  90. void (*pm_idle)(void);
  91. EXPORT_SYMBOL(pm_idle);
  92. void (*pm_power_off)(void);
  93. EXPORT_SYMBOL(pm_power_off);
  94. void (*arm_pm_restart)(char str) = arm_machine_restart;
  95. EXPORT_SYMBOL_GPL(arm_pm_restart);
  96. /*
  97. * This is our default idle handler. We need to disable
  98. * interrupts here to ensure we don't miss a wakeup call.
  99. */
  100. static void default_idle(void)
  101. {
  102. if (hlt_counter)
  103. cpu_relax();
  104. else {
  105. local_irq_disable();
  106. if (!need_resched()) {
  107. timer_dyn_reprogram();
  108. arch_idle();
  109. }
  110. local_irq_enable();
  111. }
  112. }
  113. /*
  114. * The idle thread. We try to conserve power, while trying to keep
  115. * overall latency low. The architecture specific idle is passed
  116. * a value to indicate the level of "idleness" of the system.
  117. */
  118. void cpu_idle(void)
  119. {
  120. local_fiq_enable();
  121. /* endless idle loop with no priority at all */
  122. while (1) {
  123. void (*idle)(void) = pm_idle;
  124. #ifdef CONFIG_HOTPLUG_CPU
  125. if (cpu_is_offline(smp_processor_id())) {
  126. leds_event(led_idle_start);
  127. cpu_die();
  128. }
  129. #endif
  130. if (!idle)
  131. idle = default_idle;
  132. leds_event(led_idle_start);
  133. while (!need_resched())
  134. idle();
  135. leds_event(led_idle_end);
  136. preempt_enable_no_resched();
  137. schedule();
  138. preempt_disable();
  139. }
  140. }
  141. static char reboot_mode = 'h';
  142. int __init reboot_setup(char *str)
  143. {
  144. reboot_mode = str[0];
  145. return 1;
  146. }
  147. __setup("reboot=", reboot_setup);
  148. void machine_halt(void)
  149. {
  150. }
  151. void machine_power_off(void)
  152. {
  153. if (pm_power_off)
  154. pm_power_off();
  155. }
  156. void machine_restart(char * __unused)
  157. {
  158. arm_pm_restart(reboot_mode);
  159. }
  160. void __show_regs(struct pt_regs *regs)
  161. {
  162. unsigned long flags = condition_codes(regs);
  163. printk("CPU: %d\n", smp_processor_id());
  164. print_symbol("PC is at %s\n", instruction_pointer(regs));
  165. print_symbol("LR is at %s\n", regs->ARM_lr);
  166. printk("pc : [<%08lx>] lr : [<%08lx>] %s\n"
  167. "sp : %08lx ip : %08lx fp : %08lx\n",
  168. instruction_pointer(regs),
  169. regs->ARM_lr, print_tainted(), regs->ARM_sp,
  170. regs->ARM_ip, regs->ARM_fp);
  171. printk("r10: %08lx r9 : %08lx r8 : %08lx\n",
  172. regs->ARM_r10, regs->ARM_r9,
  173. regs->ARM_r8);
  174. printk("r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
  175. regs->ARM_r7, regs->ARM_r6,
  176. regs->ARM_r5, regs->ARM_r4);
  177. printk("r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
  178. regs->ARM_r3, regs->ARM_r2,
  179. regs->ARM_r1, regs->ARM_r0);
  180. printk("Flags: %c%c%c%c",
  181. flags & PSR_N_BIT ? 'N' : 'n',
  182. flags & PSR_Z_BIT ? 'Z' : 'z',
  183. flags & PSR_C_BIT ? 'C' : 'c',
  184. flags & PSR_V_BIT ? 'V' : 'v');
  185. printk(" IRQs o%s FIQs o%s Mode %s%s Segment %s\n",
  186. interrupts_enabled(regs) ? "n" : "ff",
  187. fast_interrupts_enabled(regs) ? "n" : "ff",
  188. processor_modes[processor_mode(regs)],
  189. thumb_mode(regs) ? " (T)" : "",
  190. get_fs() == get_ds() ? "kernel" : "user");
  191. {
  192. unsigned int ctrl, transbase, dac;
  193. __asm__ (
  194. " mrc p15, 0, %0, c1, c0\n"
  195. " mrc p15, 0, %1, c2, c0\n"
  196. " mrc p15, 0, %2, c3, c0\n"
  197. : "=r" (ctrl), "=r" (transbase), "=r" (dac));
  198. printk("Control: %04X Table: %08X DAC: %08X\n",
  199. ctrl, transbase, dac);
  200. }
  201. }
  202. void show_regs(struct pt_regs * regs)
  203. {
  204. printk("\n");
  205. printk("Pid: %d, comm: %20s\n", current->pid, current->comm);
  206. __show_regs(regs);
  207. __backtrace();
  208. }
  209. void show_fpregs(struct user_fp *regs)
  210. {
  211. int i;
  212. for (i = 0; i < 8; i++) {
  213. unsigned long *p;
  214. char type;
  215. p = (unsigned long *)(regs->fpregs + i);
  216. switch (regs->ftype[i]) {
  217. case 1: type = 'f'; break;
  218. case 2: type = 'd'; break;
  219. case 3: type = 'e'; break;
  220. default: type = '?'; break;
  221. }
  222. if (regs->init_flag)
  223. type = '?';
  224. printk(" f%d(%c): %08lx %08lx %08lx%c",
  225. i, type, p[0], p[1], p[2], i & 1 ? '\n' : ' ');
  226. }
  227. printk("FPSR: %08lx FPCR: %08lx\n",
  228. (unsigned long)regs->fpsr,
  229. (unsigned long)regs->fpcr);
  230. }
  231. /*
  232. * Task structure and kernel stack allocation.
  233. */
  234. struct thread_info_list {
  235. unsigned long *head;
  236. unsigned int nr;
  237. };
  238. static DEFINE_PER_CPU(struct thread_info_list, thread_info_list) = { NULL, 0 };
  239. #define EXTRA_TASK_STRUCT 4
  240. struct thread_info *alloc_thread_info(struct task_struct *task)
  241. {
  242. struct thread_info *thread = NULL;
  243. if (EXTRA_TASK_STRUCT) {
  244. struct thread_info_list *th = &get_cpu_var(thread_info_list);
  245. unsigned long *p = th->head;
  246. if (p) {
  247. th->head = (unsigned long *)p[0];
  248. th->nr -= 1;
  249. }
  250. put_cpu_var(thread_info_list);
  251. thread = (struct thread_info *)p;
  252. }
  253. if (!thread)
  254. thread = (struct thread_info *)
  255. __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
  256. #ifdef CONFIG_DEBUG_STACK_USAGE
  257. /*
  258. * The stack must be cleared if you want SYSRQ-T to
  259. * give sensible stack usage information
  260. */
  261. if (thread)
  262. memzero(thread, THREAD_SIZE);
  263. #endif
  264. return thread;
  265. }
  266. void free_thread_info(struct thread_info *thread)
  267. {
  268. if (EXTRA_TASK_STRUCT) {
  269. struct thread_info_list *th = &get_cpu_var(thread_info_list);
  270. if (th->nr < EXTRA_TASK_STRUCT) {
  271. unsigned long *p = (unsigned long *)thread;
  272. p[0] = (unsigned long)th->head;
  273. th->head = p;
  274. th->nr += 1;
  275. put_cpu_var(thread_info_list);
  276. return;
  277. }
  278. put_cpu_var(thread_info_list);
  279. }
  280. free_pages((unsigned long)thread, THREAD_SIZE_ORDER);
  281. }
  282. /*
  283. * Free current thread data structures etc..
  284. */
  285. void exit_thread(void)
  286. {
  287. }
  288. ATOMIC_NOTIFIER_HEAD(thread_notify_head);
  289. EXPORT_SYMBOL_GPL(thread_notify_head);
  290. void flush_thread(void)
  291. {
  292. struct thread_info *thread = current_thread_info();
  293. struct task_struct *tsk = current;
  294. memset(thread->used_cp, 0, sizeof(thread->used_cp));
  295. memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
  296. memset(&thread->fpstate, 0, sizeof(union fp_state));
  297. thread_notify(THREAD_NOTIFY_FLUSH, thread);
  298. #if defined(CONFIG_IWMMXT)
  299. iwmmxt_task_release(thread);
  300. #endif
  301. }
  302. void release_thread(struct task_struct *dead_task)
  303. {
  304. struct thread_info *thread = task_thread_info(dead_task);
  305. thread_notify(THREAD_NOTIFY_RELEASE, thread);
  306. #if defined(CONFIG_IWMMXT)
  307. iwmmxt_task_release(thread);
  308. #endif
  309. }
  310. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  311. int
  312. copy_thread(int nr, unsigned long clone_flags, unsigned long stack_start,
  313. unsigned long stk_sz, struct task_struct *p, struct pt_regs *regs)
  314. {
  315. struct thread_info *thread = task_thread_info(p);
  316. struct pt_regs *childregs = task_pt_regs(p);
  317. *childregs = *regs;
  318. childregs->ARM_r0 = 0;
  319. childregs->ARM_sp = stack_start;
  320. memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
  321. thread->cpu_context.sp = (unsigned long)childregs;
  322. thread->cpu_context.pc = (unsigned long)ret_from_fork;
  323. if (clone_flags & CLONE_SETTLS)
  324. thread->tp_value = regs->ARM_r3;
  325. return 0;
  326. }
  327. /*
  328. * fill in the fpe structure for a core dump...
  329. */
  330. int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
  331. {
  332. struct thread_info *thread = current_thread_info();
  333. int used_math = thread->used_cp[1] | thread->used_cp[2];
  334. if (used_math)
  335. memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
  336. return used_math != 0;
  337. }
  338. EXPORT_SYMBOL(dump_fpu);
  339. /*
  340. * fill in the user structure for a core dump..
  341. */
  342. void dump_thread(struct pt_regs * regs, struct user * dump)
  343. {
  344. struct task_struct *tsk = current;
  345. dump->magic = CMAGIC;
  346. dump->start_code = tsk->mm->start_code;
  347. dump->start_stack = regs->ARM_sp & ~(PAGE_SIZE - 1);
  348. dump->u_tsize = (tsk->mm->end_code - tsk->mm->start_code) >> PAGE_SHIFT;
  349. dump->u_dsize = (tsk->mm->brk - tsk->mm->start_data + PAGE_SIZE - 1) >> PAGE_SHIFT;
  350. dump->u_ssize = 0;
  351. dump->u_debugreg[0] = tsk->thread.debug.bp[0].address;
  352. dump->u_debugreg[1] = tsk->thread.debug.bp[1].address;
  353. dump->u_debugreg[2] = tsk->thread.debug.bp[0].insn.arm;
  354. dump->u_debugreg[3] = tsk->thread.debug.bp[1].insn.arm;
  355. dump->u_debugreg[4] = tsk->thread.debug.nsaved;
  356. if (dump->start_stack < 0x04000000)
  357. dump->u_ssize = (0x04000000 - dump->start_stack) >> PAGE_SHIFT;
  358. dump->regs = *regs;
  359. dump->u_fpvalid = dump_fpu (regs, &dump->u_fp);
  360. }
  361. EXPORT_SYMBOL(dump_thread);
  362. /*
  363. * Shuffle the argument into the correct register before calling the
  364. * thread function. r1 is the thread argument, r2 is the pointer to
  365. * the thread function, and r3 points to the exit function.
  366. */
  367. extern void kernel_thread_helper(void);
  368. asm( ".section .text\n"
  369. " .align\n"
  370. " .type kernel_thread_helper, #function\n"
  371. "kernel_thread_helper:\n"
  372. " mov r0, r1\n"
  373. " mov lr, r3\n"
  374. " mov pc, r2\n"
  375. " .size kernel_thread_helper, . - kernel_thread_helper\n"
  376. " .previous");
  377. /*
  378. * Create a kernel thread.
  379. */
  380. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  381. {
  382. struct pt_regs regs;
  383. memset(&regs, 0, sizeof(regs));
  384. regs.ARM_r1 = (unsigned long)arg;
  385. regs.ARM_r2 = (unsigned long)fn;
  386. regs.ARM_r3 = (unsigned long)do_exit;
  387. regs.ARM_pc = (unsigned long)kernel_thread_helper;
  388. regs.ARM_cpsr = SVC_MODE;
  389. return do_fork(flags|CLONE_VM|CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  390. }
  391. EXPORT_SYMBOL(kernel_thread);
  392. unsigned long get_wchan(struct task_struct *p)
  393. {
  394. unsigned long fp, lr;
  395. unsigned long stack_start, stack_end;
  396. int count = 0;
  397. if (!p || p == current || p->state == TASK_RUNNING)
  398. return 0;
  399. stack_start = (unsigned long)end_of_stack(p);
  400. stack_end = (unsigned long)task_stack_page(p) + THREAD_SIZE;
  401. fp = thread_saved_fp(p);
  402. do {
  403. if (fp < stack_start || fp > stack_end)
  404. return 0;
  405. lr = pc_pointer (((unsigned long *)fp)[-1]);
  406. if (!in_sched_functions(lr))
  407. return lr;
  408. fp = *(unsigned long *) (fp - 12);
  409. } while (count ++ < 16);
  410. return 0;
  411. }