uengine.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511
  1. /*
  2. * Generic library functions for the microengines found on the Intel
  3. * IXP2000 series of network processors.
  4. *
  5. * Copyright (C) 2004, 2005 Lennert Buytenhek <buytenh@wantstofly.org>
  6. * Dedicated to Marija Kulikova.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU Lesser General Public License as
  10. * published by the Free Software Foundation; either version 2.1 of the
  11. * License, or (at your option) any later version.
  12. */
  13. #include <linux/config.h>
  14. #include <linux/kernel.h>
  15. #include <linux/init.h>
  16. #include <linux/slab.h>
  17. #include <linux/module.h>
  18. #include <linux/string.h>
  19. #include <asm/hardware.h>
  20. #include <asm/arch/hardware.h>
  21. #include <asm/hardware/uengine.h>
  22. #include <asm/io.h>
  23. #if defined(CONFIG_ARCH_IXP2000)
  24. #define IXP_UENGINE_CSR_VIRT_BASE IXP2000_UENGINE_CSR_VIRT_BASE
  25. #define IXP_PRODUCT_ID IXP2000_PRODUCT_ID
  26. #define IXP_MISC_CONTROL IXP2000_MISC_CONTROL
  27. #define IXP_RESET1 IXP2000_RESET1
  28. #else
  29. #if defined(CONFIG_ARCH_IXP23XX)
  30. #define IXP_UENGINE_CSR_VIRT_BASE IXP23XX_UENGINE_CSR_VIRT_BASE
  31. #define IXP_PRODUCT_ID IXP23XX_PRODUCT_ID
  32. #define IXP_MISC_CONTROL IXP23XX_MISC_CONTROL
  33. #define IXP_RESET1 IXP23XX_RESET1
  34. #else
  35. #error unknown platform
  36. #endif
  37. #endif
  38. #define USTORE_ADDRESS 0x000
  39. #define USTORE_DATA_LOWER 0x004
  40. #define USTORE_DATA_UPPER 0x008
  41. #define CTX_ENABLES 0x018
  42. #define CC_ENABLE 0x01c
  43. #define CSR_CTX_POINTER 0x020
  44. #define INDIRECT_CTX_STS 0x040
  45. #define ACTIVE_CTX_STS 0x044
  46. #define INDIRECT_CTX_SIG_EVENTS 0x048
  47. #define INDIRECT_CTX_WAKEUP_EVENTS 0x050
  48. #define NN_PUT 0x080
  49. #define NN_GET 0x084
  50. #define TIMESTAMP_LOW 0x0c0
  51. #define TIMESTAMP_HIGH 0x0c4
  52. #define T_INDEX_BYTE_INDEX 0x0f4
  53. #define LOCAL_CSR_STATUS 0x180
  54. u32 ixp2000_uengine_mask;
  55. static void *ixp2000_uengine_csr_area(int uengine)
  56. {
  57. return ((void *)IXP_UENGINE_CSR_VIRT_BASE) + (uengine << 10);
  58. }
  59. /*
  60. * LOCAL_CSR_STATUS=1 after a read or write to a microengine's CSR
  61. * space means that the microengine we tried to access was also trying
  62. * to access its own CSR space on the same clock cycle as we did. When
  63. * this happens, we lose the arbitration process by default, and the
  64. * read or write we tried to do was not actually performed, so we try
  65. * again until it succeeds.
  66. */
  67. u32 ixp2000_uengine_csr_read(int uengine, int offset)
  68. {
  69. void *uebase;
  70. u32 *local_csr_status;
  71. u32 *reg;
  72. u32 value;
  73. uebase = ixp2000_uengine_csr_area(uengine);
  74. local_csr_status = (u32 *)(uebase + LOCAL_CSR_STATUS);
  75. reg = (u32 *)(uebase + offset);
  76. do {
  77. value = ixp2000_reg_read(reg);
  78. } while (ixp2000_reg_read(local_csr_status) & 1);
  79. return value;
  80. }
  81. EXPORT_SYMBOL(ixp2000_uengine_csr_read);
  82. void ixp2000_uengine_csr_write(int uengine, int offset, u32 value)
  83. {
  84. void *uebase;
  85. u32 *local_csr_status;
  86. u32 *reg;
  87. uebase = ixp2000_uengine_csr_area(uengine);
  88. local_csr_status = (u32 *)(uebase + LOCAL_CSR_STATUS);
  89. reg = (u32 *)(uebase + offset);
  90. do {
  91. ixp2000_reg_write(reg, value);
  92. } while (ixp2000_reg_read(local_csr_status) & 1);
  93. }
  94. EXPORT_SYMBOL(ixp2000_uengine_csr_write);
  95. void ixp2000_uengine_reset(u32 uengine_mask)
  96. {
  97. u32 value;
  98. value = ixp2000_reg_read(IXP_RESET1) & ~ixp2000_uengine_mask;
  99. uengine_mask &= ixp2000_uengine_mask;
  100. ixp2000_reg_wrb(IXP_RESET1, value | uengine_mask);
  101. ixp2000_reg_wrb(IXP_RESET1, value);
  102. }
  103. EXPORT_SYMBOL(ixp2000_uengine_reset);
  104. void ixp2000_uengine_set_mode(int uengine, u32 mode)
  105. {
  106. /*
  107. * CTL_STR_PAR_EN: unconditionally enable parity checking on
  108. * control store.
  109. */
  110. mode |= 0x10000000;
  111. ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mode);
  112. /*
  113. * Enable updating of condition codes.
  114. */
  115. ixp2000_uengine_csr_write(uengine, CC_ENABLE, 0x00002000);
  116. /*
  117. * Initialise other per-microengine registers.
  118. */
  119. ixp2000_uengine_csr_write(uengine, NN_PUT, 0x00);
  120. ixp2000_uengine_csr_write(uengine, NN_GET, 0x00);
  121. ixp2000_uengine_csr_write(uengine, T_INDEX_BYTE_INDEX, 0);
  122. }
  123. EXPORT_SYMBOL(ixp2000_uengine_set_mode);
  124. static int make_even_parity(u32 x)
  125. {
  126. return hweight32(x) & 1;
  127. }
  128. static void ustore_write(int uengine, u64 insn)
  129. {
  130. /*
  131. * Generate even parity for top and bottom 20 bits.
  132. */
  133. insn |= (u64)make_even_parity((insn >> 20) & 0x000fffff) << 41;
  134. insn |= (u64)make_even_parity(insn & 0x000fffff) << 40;
  135. /*
  136. * Write to microstore. The second write auto-increments
  137. * the USTORE_ADDRESS index register.
  138. */
  139. ixp2000_uengine_csr_write(uengine, USTORE_DATA_LOWER, (u32)insn);
  140. ixp2000_uengine_csr_write(uengine, USTORE_DATA_UPPER, (u32)(insn >> 32));
  141. }
  142. void ixp2000_uengine_load_microcode(int uengine, u8 *ucode, int insns)
  143. {
  144. int i;
  145. /*
  146. * Start writing to microstore at address 0.
  147. */
  148. ixp2000_uengine_csr_write(uengine, USTORE_ADDRESS, 0x80000000);
  149. for (i = 0; i < insns; i++) {
  150. u64 insn;
  151. insn = (((u64)ucode[0]) << 32) |
  152. (((u64)ucode[1]) << 24) |
  153. (((u64)ucode[2]) << 16) |
  154. (((u64)ucode[3]) << 8) |
  155. ((u64)ucode[4]);
  156. ucode += 5;
  157. ustore_write(uengine, insn);
  158. }
  159. /*
  160. * Pad with a few NOPs at the end (to avoid the microengine
  161. * aborting as it prefetches beyond the last instruction), unless
  162. * we run off the end of the instruction store first, at which
  163. * point the address register will wrap back to zero.
  164. */
  165. for (i = 0; i < 4; i++) {
  166. u32 addr;
  167. addr = ixp2000_uengine_csr_read(uengine, USTORE_ADDRESS);
  168. if (addr == 0x80000000)
  169. break;
  170. ustore_write(uengine, 0xf0000c0300ULL);
  171. }
  172. /*
  173. * End programming.
  174. */
  175. ixp2000_uengine_csr_write(uengine, USTORE_ADDRESS, 0x00000000);
  176. }
  177. EXPORT_SYMBOL(ixp2000_uengine_load_microcode);
  178. void ixp2000_uengine_init_context(int uengine, int context, int pc)
  179. {
  180. /*
  181. * Select the right context for indirect access.
  182. */
  183. ixp2000_uengine_csr_write(uengine, CSR_CTX_POINTER, context);
  184. /*
  185. * Initialise signal masks to immediately go to Ready state.
  186. */
  187. ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_SIG_EVENTS, 1);
  188. ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_WAKEUP_EVENTS, 1);
  189. /*
  190. * Set program counter.
  191. */
  192. ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_STS, pc);
  193. }
  194. EXPORT_SYMBOL(ixp2000_uengine_init_context);
  195. void ixp2000_uengine_start_contexts(int uengine, u8 ctx_mask)
  196. {
  197. u32 mask;
  198. /*
  199. * Enable the specified context to go to Executing state.
  200. */
  201. mask = ixp2000_uengine_csr_read(uengine, CTX_ENABLES);
  202. mask |= ctx_mask << 8;
  203. ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mask);
  204. }
  205. EXPORT_SYMBOL(ixp2000_uengine_start_contexts);
  206. void ixp2000_uengine_stop_contexts(int uengine, u8 ctx_mask)
  207. {
  208. u32 mask;
  209. /*
  210. * Disable the Ready->Executing transition. Note that this
  211. * does not stop the context until it voluntarily yields.
  212. */
  213. mask = ixp2000_uengine_csr_read(uengine, CTX_ENABLES);
  214. mask &= ~(ctx_mask << 8);
  215. ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mask);
  216. }
  217. EXPORT_SYMBOL(ixp2000_uengine_stop_contexts);
  218. static int check_ixp_type(struct ixp2000_uengine_code *c)
  219. {
  220. u32 product_id;
  221. u32 rev;
  222. product_id = ixp2000_reg_read(IXP_PRODUCT_ID);
  223. if (((product_id >> 16) & 0x1f) != 0)
  224. return 0;
  225. switch ((product_id >> 8) & 0xff) {
  226. #ifdef CONFIG_ARCH_IXP2000
  227. case 0: /* IXP2800 */
  228. if (!(c->cpu_model_bitmask & 4))
  229. return 0;
  230. break;
  231. case 1: /* IXP2850 */
  232. if (!(c->cpu_model_bitmask & 8))
  233. return 0;
  234. break;
  235. case 2: /* IXP2400 */
  236. if (!(c->cpu_model_bitmask & 2))
  237. return 0;
  238. break;
  239. #endif
  240. #ifdef CONFIG_ARCH_IXP23XX
  241. case 4: /* IXP23xx */
  242. if (!(c->cpu_model_bitmask & 0x3f0))
  243. return 0;
  244. break;
  245. #endif
  246. default:
  247. return 0;
  248. }
  249. rev = product_id & 0xff;
  250. if (rev < c->cpu_min_revision || rev > c->cpu_max_revision)
  251. return 0;
  252. return 1;
  253. }
  254. static void generate_ucode(u8 *ucode, u32 *gpr_a, u32 *gpr_b)
  255. {
  256. int offset;
  257. int i;
  258. offset = 0;
  259. for (i = 0; i < 128; i++) {
  260. u8 b3;
  261. u8 b2;
  262. u8 b1;
  263. u8 b0;
  264. b3 = (gpr_a[i] >> 24) & 0xff;
  265. b2 = (gpr_a[i] >> 16) & 0xff;
  266. b1 = (gpr_a[i] >> 8) & 0xff;
  267. b0 = gpr_a[i] & 0xff;
  268. // immed[@ai, (b1 << 8) | b0]
  269. // 11110000 0000VVVV VVVV11VV VVVVVV00 1IIIIIII
  270. ucode[offset++] = 0xf0;
  271. ucode[offset++] = (b1 >> 4);
  272. ucode[offset++] = (b1 << 4) | 0x0c | (b0 >> 6);
  273. ucode[offset++] = (b0 << 2);
  274. ucode[offset++] = 0x80 | i;
  275. // immed_w1[@ai, (b3 << 8) | b2]
  276. // 11110100 0100VVVV VVVV11VV VVVVVV00 1IIIIIII
  277. ucode[offset++] = 0xf4;
  278. ucode[offset++] = 0x40 | (b3 >> 4);
  279. ucode[offset++] = (b3 << 4) | 0x0c | (b2 >> 6);
  280. ucode[offset++] = (b2 << 2);
  281. ucode[offset++] = 0x80 | i;
  282. }
  283. for (i = 0; i < 128; i++) {
  284. u8 b3;
  285. u8 b2;
  286. u8 b1;
  287. u8 b0;
  288. b3 = (gpr_b[i] >> 24) & 0xff;
  289. b2 = (gpr_b[i] >> 16) & 0xff;
  290. b1 = (gpr_b[i] >> 8) & 0xff;
  291. b0 = gpr_b[i] & 0xff;
  292. // immed[@bi, (b1 << 8) | b0]
  293. // 11110000 0000VVVV VVVV001I IIIIII11 VVVVVVVV
  294. ucode[offset++] = 0xf0;
  295. ucode[offset++] = (b1 >> 4);
  296. ucode[offset++] = (b1 << 4) | 0x02 | (i >> 6);
  297. ucode[offset++] = (i << 2) | 0x03;
  298. ucode[offset++] = b0;
  299. // immed_w1[@bi, (b3 << 8) | b2]
  300. // 11110100 0100VVVV VVVV001I IIIIII11 VVVVVVVV
  301. ucode[offset++] = 0xf4;
  302. ucode[offset++] = 0x40 | (b3 >> 4);
  303. ucode[offset++] = (b3 << 4) | 0x02 | (i >> 6);
  304. ucode[offset++] = (i << 2) | 0x03;
  305. ucode[offset++] = b2;
  306. }
  307. // ctx_arb[kill]
  308. ucode[offset++] = 0xe0;
  309. ucode[offset++] = 0x00;
  310. ucode[offset++] = 0x01;
  311. ucode[offset++] = 0x00;
  312. ucode[offset++] = 0x00;
  313. }
  314. static int set_initial_registers(int uengine, struct ixp2000_uengine_code *c)
  315. {
  316. int per_ctx_regs;
  317. u32 *gpr_a;
  318. u32 *gpr_b;
  319. u8 *ucode;
  320. int i;
  321. gpr_a = kmalloc(128 * sizeof(u32), GFP_KERNEL);
  322. gpr_b = kmalloc(128 * sizeof(u32), GFP_KERNEL);
  323. ucode = kmalloc(513 * 5, GFP_KERNEL);
  324. if (gpr_a == NULL || gpr_b == NULL || ucode == NULL) {
  325. kfree(ucode);
  326. kfree(gpr_b);
  327. kfree(gpr_a);
  328. return 1;
  329. }
  330. per_ctx_regs = 16;
  331. if (c->uengine_parameters & IXP2000_UENGINE_4_CONTEXTS)
  332. per_ctx_regs = 32;
  333. memset(gpr_a, 0, sizeof(gpr_a));
  334. memset(gpr_b, 0, sizeof(gpr_b));
  335. for (i = 0; i < 256; i++) {
  336. struct ixp2000_reg_value *r = c->initial_reg_values + i;
  337. u32 *bank;
  338. int inc;
  339. int j;
  340. if (r->reg == -1)
  341. break;
  342. bank = (r->reg & 0x400) ? gpr_b : gpr_a;
  343. inc = (r->reg & 0x80) ? 128 : per_ctx_regs;
  344. j = r->reg & 0x7f;
  345. while (j < 128) {
  346. bank[j] = r->value;
  347. j += inc;
  348. }
  349. }
  350. generate_ucode(ucode, gpr_a, gpr_b);
  351. ixp2000_uengine_load_microcode(uengine, ucode, 513);
  352. ixp2000_uengine_init_context(uengine, 0, 0);
  353. ixp2000_uengine_start_contexts(uengine, 0x01);
  354. for (i = 0; i < 100; i++) {
  355. u32 status;
  356. status = ixp2000_uengine_csr_read(uengine, ACTIVE_CTX_STS);
  357. if (!(status & 0x80000000))
  358. break;
  359. }
  360. ixp2000_uengine_stop_contexts(uengine, 0x01);
  361. kfree(ucode);
  362. kfree(gpr_b);
  363. kfree(gpr_a);
  364. return !!(i == 100);
  365. }
  366. int ixp2000_uengine_load(int uengine, struct ixp2000_uengine_code *c)
  367. {
  368. int ctx;
  369. if (!check_ixp_type(c))
  370. return 1;
  371. if (!(ixp2000_uengine_mask & (1 << uengine)))
  372. return 1;
  373. ixp2000_uengine_reset(1 << uengine);
  374. ixp2000_uengine_set_mode(uengine, c->uengine_parameters);
  375. if (set_initial_registers(uengine, c))
  376. return 1;
  377. ixp2000_uengine_load_microcode(uengine, c->insns, c->num_insns);
  378. for (ctx = 0; ctx < 8; ctx++)
  379. ixp2000_uengine_init_context(uengine, ctx, 0);
  380. return 0;
  381. }
  382. EXPORT_SYMBOL(ixp2000_uengine_load);
  383. static int __init ixp2000_uengine_init(void)
  384. {
  385. int uengine;
  386. u32 value;
  387. /*
  388. * Determine number of microengines present.
  389. */
  390. switch ((ixp2000_reg_read(IXP_PRODUCT_ID) >> 8) & 0x1fff) {
  391. #ifdef CONFIG_ARCH_IXP2000
  392. case 0: /* IXP2800 */
  393. case 1: /* IXP2850 */
  394. ixp2000_uengine_mask = 0x00ff00ff;
  395. break;
  396. case 2: /* IXP2400 */
  397. ixp2000_uengine_mask = 0x000f000f;
  398. break;
  399. #endif
  400. #ifdef CONFIG_ARCH_IXP23XX
  401. case 4: /* IXP23xx */
  402. ixp2000_uengine_mask = (*IXP23XX_EXP_CFG_FUSE >> 8) & 0xf;
  403. break;
  404. #endif
  405. default:
  406. printk(KERN_INFO "Detected unknown IXP2000 model (%.8x)\n",
  407. (unsigned int)ixp2000_reg_read(IXP_PRODUCT_ID));
  408. ixp2000_uengine_mask = 0x00000000;
  409. break;
  410. }
  411. /*
  412. * Reset microengines.
  413. */
  414. ixp2000_uengine_reset(ixp2000_uengine_mask);
  415. /*
  416. * Synchronise timestamp counters across all microengines.
  417. */
  418. value = ixp2000_reg_read(IXP_MISC_CONTROL);
  419. ixp2000_reg_wrb(IXP_MISC_CONTROL, value & ~0x80);
  420. for (uengine = 0; uengine < 32; uengine++) {
  421. if (ixp2000_uengine_mask & (1 << uengine)) {
  422. ixp2000_uengine_csr_write(uengine, TIMESTAMP_LOW, 0);
  423. ixp2000_uengine_csr_write(uengine, TIMESTAMP_HIGH, 0);
  424. }
  425. }
  426. ixp2000_reg_wrb(IXP_MISC_CONTROL, value | 0x80);
  427. return 0;
  428. }
  429. subsys_initcall(ixp2000_uengine_init);