memory.c 109 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/export.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <linux/gfp.h>
  55. #include <asm/io.h>
  56. #include <asm/pgalloc.h>
  57. #include <asm/uaccess.h>
  58. #include <asm/tlb.h>
  59. #include <asm/tlbflush.h>
  60. #include <asm/pgtable.h>
  61. #include "internal.h"
  62. #ifndef CONFIG_NEED_MULTIPLE_NODES
  63. /* use the per-pgdat data instead for discontigmem - mbligh */
  64. unsigned long max_mapnr;
  65. struct page *mem_map;
  66. EXPORT_SYMBOL(max_mapnr);
  67. EXPORT_SYMBOL(mem_map);
  68. #endif
  69. unsigned long num_physpages;
  70. /*
  71. * A number of key systems in x86 including ioremap() rely on the assumption
  72. * that high_memory defines the upper bound on direct map memory, then end
  73. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  74. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  75. * and ZONE_HIGHMEM.
  76. */
  77. void * high_memory;
  78. EXPORT_SYMBOL(num_physpages);
  79. EXPORT_SYMBOL(high_memory);
  80. /*
  81. * Randomize the address space (stacks, mmaps, brk, etc.).
  82. *
  83. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  84. * as ancient (libc5 based) binaries can segfault. )
  85. */
  86. int randomize_va_space __read_mostly =
  87. #ifdef CONFIG_COMPAT_BRK
  88. 1;
  89. #else
  90. 2;
  91. #endif
  92. static int __init disable_randmaps(char *s)
  93. {
  94. randomize_va_space = 0;
  95. return 1;
  96. }
  97. __setup("norandmaps", disable_randmaps);
  98. unsigned long zero_pfn __read_mostly;
  99. unsigned long highest_memmap_pfn __read_mostly;
  100. /*
  101. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  102. */
  103. static int __init init_zero_pfn(void)
  104. {
  105. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  106. return 0;
  107. }
  108. core_initcall(init_zero_pfn);
  109. #if defined(SPLIT_RSS_COUNTING)
  110. void sync_mm_rss(struct mm_struct *mm)
  111. {
  112. int i;
  113. for (i = 0; i < NR_MM_COUNTERS; i++) {
  114. if (current->rss_stat.count[i]) {
  115. add_mm_counter(mm, i, current->rss_stat.count[i]);
  116. current->rss_stat.count[i] = 0;
  117. }
  118. }
  119. current->rss_stat.events = 0;
  120. }
  121. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  122. {
  123. struct task_struct *task = current;
  124. if (likely(task->mm == mm))
  125. task->rss_stat.count[member] += val;
  126. else
  127. add_mm_counter(mm, member, val);
  128. }
  129. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  130. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  131. /* sync counter once per 64 page faults */
  132. #define TASK_RSS_EVENTS_THRESH (64)
  133. static void check_sync_rss_stat(struct task_struct *task)
  134. {
  135. if (unlikely(task != current))
  136. return;
  137. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  138. sync_mm_rss(task->mm);
  139. }
  140. #else /* SPLIT_RSS_COUNTING */
  141. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  142. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  143. static void check_sync_rss_stat(struct task_struct *task)
  144. {
  145. }
  146. #endif /* SPLIT_RSS_COUNTING */
  147. #ifdef HAVE_GENERIC_MMU_GATHER
  148. static int tlb_next_batch(struct mmu_gather *tlb)
  149. {
  150. struct mmu_gather_batch *batch;
  151. batch = tlb->active;
  152. if (batch->next) {
  153. tlb->active = batch->next;
  154. return 1;
  155. }
  156. batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
  157. if (!batch)
  158. return 0;
  159. batch->next = NULL;
  160. batch->nr = 0;
  161. batch->max = MAX_GATHER_BATCH;
  162. tlb->active->next = batch;
  163. tlb->active = batch;
  164. return 1;
  165. }
  166. /* tlb_gather_mmu
  167. * Called to initialize an (on-stack) mmu_gather structure for page-table
  168. * tear-down from @mm. The @fullmm argument is used when @mm is without
  169. * users and we're going to destroy the full address space (exit/execve).
  170. */
  171. void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
  172. {
  173. tlb->mm = mm;
  174. tlb->fullmm = fullmm;
  175. tlb->start = -1UL;
  176. tlb->end = 0;
  177. tlb->need_flush = 0;
  178. tlb->fast_mode = (num_possible_cpus() == 1);
  179. tlb->local.next = NULL;
  180. tlb->local.nr = 0;
  181. tlb->local.max = ARRAY_SIZE(tlb->__pages);
  182. tlb->active = &tlb->local;
  183. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  184. tlb->batch = NULL;
  185. #endif
  186. }
  187. void tlb_flush_mmu(struct mmu_gather *tlb)
  188. {
  189. struct mmu_gather_batch *batch;
  190. if (!tlb->need_flush)
  191. return;
  192. tlb->need_flush = 0;
  193. tlb_flush(tlb);
  194. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  195. tlb_table_flush(tlb);
  196. #endif
  197. if (tlb_fast_mode(tlb))
  198. return;
  199. for (batch = &tlb->local; batch; batch = batch->next) {
  200. free_pages_and_swap_cache(batch->pages, batch->nr);
  201. batch->nr = 0;
  202. }
  203. tlb->active = &tlb->local;
  204. }
  205. /* tlb_finish_mmu
  206. * Called at the end of the shootdown operation to free up any resources
  207. * that were required.
  208. */
  209. void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
  210. {
  211. struct mmu_gather_batch *batch, *next;
  212. tlb->start = start;
  213. tlb->end = end;
  214. tlb_flush_mmu(tlb);
  215. /* keep the page table cache within bounds */
  216. check_pgt_cache();
  217. for (batch = tlb->local.next; batch; batch = next) {
  218. next = batch->next;
  219. free_pages((unsigned long)batch, 0);
  220. }
  221. tlb->local.next = NULL;
  222. }
  223. /* __tlb_remove_page
  224. * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
  225. * handling the additional races in SMP caused by other CPUs caching valid
  226. * mappings in their TLBs. Returns the number of free page slots left.
  227. * When out of page slots we must call tlb_flush_mmu().
  228. */
  229. int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
  230. {
  231. struct mmu_gather_batch *batch;
  232. VM_BUG_ON(!tlb->need_flush);
  233. if (tlb_fast_mode(tlb)) {
  234. free_page_and_swap_cache(page);
  235. return 1; /* avoid calling tlb_flush_mmu() */
  236. }
  237. batch = tlb->active;
  238. batch->pages[batch->nr++] = page;
  239. if (batch->nr == batch->max) {
  240. if (!tlb_next_batch(tlb))
  241. return 0;
  242. batch = tlb->active;
  243. }
  244. VM_BUG_ON(batch->nr > batch->max);
  245. return batch->max - batch->nr;
  246. }
  247. #endif /* HAVE_GENERIC_MMU_GATHER */
  248. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  249. /*
  250. * See the comment near struct mmu_table_batch.
  251. */
  252. static void tlb_remove_table_smp_sync(void *arg)
  253. {
  254. /* Simply deliver the interrupt */
  255. }
  256. static void tlb_remove_table_one(void *table)
  257. {
  258. /*
  259. * This isn't an RCU grace period and hence the page-tables cannot be
  260. * assumed to be actually RCU-freed.
  261. *
  262. * It is however sufficient for software page-table walkers that rely on
  263. * IRQ disabling. See the comment near struct mmu_table_batch.
  264. */
  265. smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
  266. __tlb_remove_table(table);
  267. }
  268. static void tlb_remove_table_rcu(struct rcu_head *head)
  269. {
  270. struct mmu_table_batch *batch;
  271. int i;
  272. batch = container_of(head, struct mmu_table_batch, rcu);
  273. for (i = 0; i < batch->nr; i++)
  274. __tlb_remove_table(batch->tables[i]);
  275. free_page((unsigned long)batch);
  276. }
  277. void tlb_table_flush(struct mmu_gather *tlb)
  278. {
  279. struct mmu_table_batch **batch = &tlb->batch;
  280. if (*batch) {
  281. call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
  282. *batch = NULL;
  283. }
  284. }
  285. void tlb_remove_table(struct mmu_gather *tlb, void *table)
  286. {
  287. struct mmu_table_batch **batch = &tlb->batch;
  288. tlb->need_flush = 1;
  289. /*
  290. * When there's less then two users of this mm there cannot be a
  291. * concurrent page-table walk.
  292. */
  293. if (atomic_read(&tlb->mm->mm_users) < 2) {
  294. __tlb_remove_table(table);
  295. return;
  296. }
  297. if (*batch == NULL) {
  298. *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
  299. if (*batch == NULL) {
  300. tlb_remove_table_one(table);
  301. return;
  302. }
  303. (*batch)->nr = 0;
  304. }
  305. (*batch)->tables[(*batch)->nr++] = table;
  306. if ((*batch)->nr == MAX_TABLE_BATCH)
  307. tlb_table_flush(tlb);
  308. }
  309. #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
  310. /*
  311. * If a p?d_bad entry is found while walking page tables, report
  312. * the error, before resetting entry to p?d_none. Usually (but
  313. * very seldom) called out from the p?d_none_or_clear_bad macros.
  314. */
  315. void pgd_clear_bad(pgd_t *pgd)
  316. {
  317. pgd_ERROR(*pgd);
  318. pgd_clear(pgd);
  319. }
  320. void pud_clear_bad(pud_t *pud)
  321. {
  322. pud_ERROR(*pud);
  323. pud_clear(pud);
  324. }
  325. void pmd_clear_bad(pmd_t *pmd)
  326. {
  327. pmd_ERROR(*pmd);
  328. pmd_clear(pmd);
  329. }
  330. /*
  331. * Note: this doesn't free the actual pages themselves. That
  332. * has been handled earlier when unmapping all the memory regions.
  333. */
  334. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  335. unsigned long addr)
  336. {
  337. pgtable_t token = pmd_pgtable(*pmd);
  338. pmd_clear(pmd);
  339. pte_free_tlb(tlb, token, addr);
  340. tlb->mm->nr_ptes--;
  341. }
  342. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  343. unsigned long addr, unsigned long end,
  344. unsigned long floor, unsigned long ceiling)
  345. {
  346. pmd_t *pmd;
  347. unsigned long next;
  348. unsigned long start;
  349. start = addr;
  350. pmd = pmd_offset(pud, addr);
  351. do {
  352. next = pmd_addr_end(addr, end);
  353. if (pmd_none_or_clear_bad(pmd))
  354. continue;
  355. free_pte_range(tlb, pmd, addr);
  356. } while (pmd++, addr = next, addr != end);
  357. start &= PUD_MASK;
  358. if (start < floor)
  359. return;
  360. if (ceiling) {
  361. ceiling &= PUD_MASK;
  362. if (!ceiling)
  363. return;
  364. }
  365. if (end - 1 > ceiling - 1)
  366. return;
  367. pmd = pmd_offset(pud, start);
  368. pud_clear(pud);
  369. pmd_free_tlb(tlb, pmd, start);
  370. }
  371. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  372. unsigned long addr, unsigned long end,
  373. unsigned long floor, unsigned long ceiling)
  374. {
  375. pud_t *pud;
  376. unsigned long next;
  377. unsigned long start;
  378. start = addr;
  379. pud = pud_offset(pgd, addr);
  380. do {
  381. next = pud_addr_end(addr, end);
  382. if (pud_none_or_clear_bad(pud))
  383. continue;
  384. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  385. } while (pud++, addr = next, addr != end);
  386. start &= PGDIR_MASK;
  387. if (start < floor)
  388. return;
  389. if (ceiling) {
  390. ceiling &= PGDIR_MASK;
  391. if (!ceiling)
  392. return;
  393. }
  394. if (end - 1 > ceiling - 1)
  395. return;
  396. pud = pud_offset(pgd, start);
  397. pgd_clear(pgd);
  398. pud_free_tlb(tlb, pud, start);
  399. }
  400. /*
  401. * This function frees user-level page tables of a process.
  402. *
  403. * Must be called with pagetable lock held.
  404. */
  405. void free_pgd_range(struct mmu_gather *tlb,
  406. unsigned long addr, unsigned long end,
  407. unsigned long floor, unsigned long ceiling)
  408. {
  409. pgd_t *pgd;
  410. unsigned long next;
  411. /*
  412. * The next few lines have given us lots of grief...
  413. *
  414. * Why are we testing PMD* at this top level? Because often
  415. * there will be no work to do at all, and we'd prefer not to
  416. * go all the way down to the bottom just to discover that.
  417. *
  418. * Why all these "- 1"s? Because 0 represents both the bottom
  419. * of the address space and the top of it (using -1 for the
  420. * top wouldn't help much: the masks would do the wrong thing).
  421. * The rule is that addr 0 and floor 0 refer to the bottom of
  422. * the address space, but end 0 and ceiling 0 refer to the top
  423. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  424. * that end 0 case should be mythical).
  425. *
  426. * Wherever addr is brought up or ceiling brought down, we must
  427. * be careful to reject "the opposite 0" before it confuses the
  428. * subsequent tests. But what about where end is brought down
  429. * by PMD_SIZE below? no, end can't go down to 0 there.
  430. *
  431. * Whereas we round start (addr) and ceiling down, by different
  432. * masks at different levels, in order to test whether a table
  433. * now has no other vmas using it, so can be freed, we don't
  434. * bother to round floor or end up - the tests don't need that.
  435. */
  436. addr &= PMD_MASK;
  437. if (addr < floor) {
  438. addr += PMD_SIZE;
  439. if (!addr)
  440. return;
  441. }
  442. if (ceiling) {
  443. ceiling &= PMD_MASK;
  444. if (!ceiling)
  445. return;
  446. }
  447. if (end - 1 > ceiling - 1)
  448. end -= PMD_SIZE;
  449. if (addr > end - 1)
  450. return;
  451. pgd = pgd_offset(tlb->mm, addr);
  452. do {
  453. next = pgd_addr_end(addr, end);
  454. if (pgd_none_or_clear_bad(pgd))
  455. continue;
  456. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  457. } while (pgd++, addr = next, addr != end);
  458. }
  459. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  460. unsigned long floor, unsigned long ceiling)
  461. {
  462. while (vma) {
  463. struct vm_area_struct *next = vma->vm_next;
  464. unsigned long addr = vma->vm_start;
  465. /*
  466. * Hide vma from rmap and truncate_pagecache before freeing
  467. * pgtables
  468. */
  469. unlink_anon_vmas(vma);
  470. unlink_file_vma(vma);
  471. if (is_vm_hugetlb_page(vma)) {
  472. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  473. floor, next? next->vm_start: ceiling);
  474. } else {
  475. /*
  476. * Optimization: gather nearby vmas into one call down
  477. */
  478. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  479. && !is_vm_hugetlb_page(next)) {
  480. vma = next;
  481. next = vma->vm_next;
  482. unlink_anon_vmas(vma);
  483. unlink_file_vma(vma);
  484. }
  485. free_pgd_range(tlb, addr, vma->vm_end,
  486. floor, next? next->vm_start: ceiling);
  487. }
  488. vma = next;
  489. }
  490. }
  491. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  492. pmd_t *pmd, unsigned long address)
  493. {
  494. pgtable_t new = pte_alloc_one(mm, address);
  495. int wait_split_huge_page;
  496. if (!new)
  497. return -ENOMEM;
  498. /*
  499. * Ensure all pte setup (eg. pte page lock and page clearing) are
  500. * visible before the pte is made visible to other CPUs by being
  501. * put into page tables.
  502. *
  503. * The other side of the story is the pointer chasing in the page
  504. * table walking code (when walking the page table without locking;
  505. * ie. most of the time). Fortunately, these data accesses consist
  506. * of a chain of data-dependent loads, meaning most CPUs (alpha
  507. * being the notable exception) will already guarantee loads are
  508. * seen in-order. See the alpha page table accessors for the
  509. * smp_read_barrier_depends() barriers in page table walking code.
  510. */
  511. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  512. spin_lock(&mm->page_table_lock);
  513. wait_split_huge_page = 0;
  514. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  515. mm->nr_ptes++;
  516. pmd_populate(mm, pmd, new);
  517. new = NULL;
  518. } else if (unlikely(pmd_trans_splitting(*pmd)))
  519. wait_split_huge_page = 1;
  520. spin_unlock(&mm->page_table_lock);
  521. if (new)
  522. pte_free(mm, new);
  523. if (wait_split_huge_page)
  524. wait_split_huge_page(vma->anon_vma, pmd);
  525. return 0;
  526. }
  527. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  528. {
  529. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  530. if (!new)
  531. return -ENOMEM;
  532. smp_wmb(); /* See comment in __pte_alloc */
  533. spin_lock(&init_mm.page_table_lock);
  534. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  535. pmd_populate_kernel(&init_mm, pmd, new);
  536. new = NULL;
  537. } else
  538. VM_BUG_ON(pmd_trans_splitting(*pmd));
  539. spin_unlock(&init_mm.page_table_lock);
  540. if (new)
  541. pte_free_kernel(&init_mm, new);
  542. return 0;
  543. }
  544. static inline void init_rss_vec(int *rss)
  545. {
  546. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  547. }
  548. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  549. {
  550. int i;
  551. if (current->mm == mm)
  552. sync_mm_rss(mm);
  553. for (i = 0; i < NR_MM_COUNTERS; i++)
  554. if (rss[i])
  555. add_mm_counter(mm, i, rss[i]);
  556. }
  557. /*
  558. * This function is called to print an error when a bad pte
  559. * is found. For example, we might have a PFN-mapped pte in
  560. * a region that doesn't allow it.
  561. *
  562. * The calling function must still handle the error.
  563. */
  564. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  565. pte_t pte, struct page *page)
  566. {
  567. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  568. pud_t *pud = pud_offset(pgd, addr);
  569. pmd_t *pmd = pmd_offset(pud, addr);
  570. struct address_space *mapping;
  571. pgoff_t index;
  572. static unsigned long resume;
  573. static unsigned long nr_shown;
  574. static unsigned long nr_unshown;
  575. /*
  576. * Allow a burst of 60 reports, then keep quiet for that minute;
  577. * or allow a steady drip of one report per second.
  578. */
  579. if (nr_shown == 60) {
  580. if (time_before(jiffies, resume)) {
  581. nr_unshown++;
  582. return;
  583. }
  584. if (nr_unshown) {
  585. printk(KERN_ALERT
  586. "BUG: Bad page map: %lu messages suppressed\n",
  587. nr_unshown);
  588. nr_unshown = 0;
  589. }
  590. nr_shown = 0;
  591. }
  592. if (nr_shown++ == 0)
  593. resume = jiffies + 60 * HZ;
  594. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  595. index = linear_page_index(vma, addr);
  596. printk(KERN_ALERT
  597. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  598. current->comm,
  599. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  600. if (page)
  601. dump_page(page);
  602. printk(KERN_ALERT
  603. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  604. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  605. /*
  606. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  607. */
  608. if (vma->vm_ops)
  609. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  610. (unsigned long)vma->vm_ops->fault);
  611. if (vma->vm_file && vma->vm_file->f_op)
  612. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  613. (unsigned long)vma->vm_file->f_op->mmap);
  614. dump_stack();
  615. add_taint(TAINT_BAD_PAGE);
  616. }
  617. static inline bool is_cow_mapping(vm_flags_t flags)
  618. {
  619. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  620. }
  621. /*
  622. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  623. *
  624. * "Special" mappings do not wish to be associated with a "struct page" (either
  625. * it doesn't exist, or it exists but they don't want to touch it). In this
  626. * case, NULL is returned here. "Normal" mappings do have a struct page.
  627. *
  628. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  629. * pte bit, in which case this function is trivial. Secondly, an architecture
  630. * may not have a spare pte bit, which requires a more complicated scheme,
  631. * described below.
  632. *
  633. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  634. * special mapping (even if there are underlying and valid "struct pages").
  635. * COWed pages of a VM_PFNMAP are always normal.
  636. *
  637. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  638. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  639. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  640. * mapping will always honor the rule
  641. *
  642. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  643. *
  644. * And for normal mappings this is false.
  645. *
  646. * This restricts such mappings to be a linear translation from virtual address
  647. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  648. * as the vma is not a COW mapping; in that case, we know that all ptes are
  649. * special (because none can have been COWed).
  650. *
  651. *
  652. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  653. *
  654. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  655. * page" backing, however the difference is that _all_ pages with a struct
  656. * page (that is, those where pfn_valid is true) are refcounted and considered
  657. * normal pages by the VM. The disadvantage is that pages are refcounted
  658. * (which can be slower and simply not an option for some PFNMAP users). The
  659. * advantage is that we don't have to follow the strict linearity rule of
  660. * PFNMAP mappings in order to support COWable mappings.
  661. *
  662. */
  663. #ifdef __HAVE_ARCH_PTE_SPECIAL
  664. # define HAVE_PTE_SPECIAL 1
  665. #else
  666. # define HAVE_PTE_SPECIAL 0
  667. #endif
  668. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  669. pte_t pte)
  670. {
  671. unsigned long pfn = pte_pfn(pte);
  672. if (HAVE_PTE_SPECIAL) {
  673. if (likely(!pte_special(pte)))
  674. goto check_pfn;
  675. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  676. return NULL;
  677. if (!is_zero_pfn(pfn))
  678. print_bad_pte(vma, addr, pte, NULL);
  679. return NULL;
  680. }
  681. /* !HAVE_PTE_SPECIAL case follows: */
  682. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  683. if (vma->vm_flags & VM_MIXEDMAP) {
  684. if (!pfn_valid(pfn))
  685. return NULL;
  686. goto out;
  687. } else {
  688. unsigned long off;
  689. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  690. if (pfn == vma->vm_pgoff + off)
  691. return NULL;
  692. if (!is_cow_mapping(vma->vm_flags))
  693. return NULL;
  694. }
  695. }
  696. if (is_zero_pfn(pfn))
  697. return NULL;
  698. check_pfn:
  699. if (unlikely(pfn > highest_memmap_pfn)) {
  700. print_bad_pte(vma, addr, pte, NULL);
  701. return NULL;
  702. }
  703. /*
  704. * NOTE! We still have PageReserved() pages in the page tables.
  705. * eg. VDSO mappings can cause them to exist.
  706. */
  707. out:
  708. return pfn_to_page(pfn);
  709. }
  710. /*
  711. * copy one vm_area from one task to the other. Assumes the page tables
  712. * already present in the new task to be cleared in the whole range
  713. * covered by this vma.
  714. */
  715. static inline unsigned long
  716. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  717. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  718. unsigned long addr, int *rss)
  719. {
  720. unsigned long vm_flags = vma->vm_flags;
  721. pte_t pte = *src_pte;
  722. struct page *page;
  723. /* pte contains position in swap or file, so copy. */
  724. if (unlikely(!pte_present(pte))) {
  725. if (!pte_file(pte)) {
  726. swp_entry_t entry = pte_to_swp_entry(pte);
  727. if (swap_duplicate(entry) < 0)
  728. return entry.val;
  729. /* make sure dst_mm is on swapoff's mmlist. */
  730. if (unlikely(list_empty(&dst_mm->mmlist))) {
  731. spin_lock(&mmlist_lock);
  732. if (list_empty(&dst_mm->mmlist))
  733. list_add(&dst_mm->mmlist,
  734. &src_mm->mmlist);
  735. spin_unlock(&mmlist_lock);
  736. }
  737. if (likely(!non_swap_entry(entry)))
  738. rss[MM_SWAPENTS]++;
  739. else if (is_migration_entry(entry)) {
  740. page = migration_entry_to_page(entry);
  741. if (PageAnon(page))
  742. rss[MM_ANONPAGES]++;
  743. else
  744. rss[MM_FILEPAGES]++;
  745. if (is_write_migration_entry(entry) &&
  746. is_cow_mapping(vm_flags)) {
  747. /*
  748. * COW mappings require pages in both
  749. * parent and child to be set to read.
  750. */
  751. make_migration_entry_read(&entry);
  752. pte = swp_entry_to_pte(entry);
  753. set_pte_at(src_mm, addr, src_pte, pte);
  754. }
  755. }
  756. }
  757. goto out_set_pte;
  758. }
  759. /*
  760. * If it's a COW mapping, write protect it both
  761. * in the parent and the child
  762. */
  763. if (is_cow_mapping(vm_flags)) {
  764. ptep_set_wrprotect(src_mm, addr, src_pte);
  765. pte = pte_wrprotect(pte);
  766. }
  767. /*
  768. * If it's a shared mapping, mark it clean in
  769. * the child
  770. */
  771. if (vm_flags & VM_SHARED)
  772. pte = pte_mkclean(pte);
  773. pte = pte_mkold(pte);
  774. page = vm_normal_page(vma, addr, pte);
  775. if (page) {
  776. get_page(page);
  777. page_dup_rmap(page);
  778. if (PageAnon(page))
  779. rss[MM_ANONPAGES]++;
  780. else
  781. rss[MM_FILEPAGES]++;
  782. }
  783. out_set_pte:
  784. set_pte_at(dst_mm, addr, dst_pte, pte);
  785. return 0;
  786. }
  787. int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  788. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  789. unsigned long addr, unsigned long end)
  790. {
  791. pte_t *orig_src_pte, *orig_dst_pte;
  792. pte_t *src_pte, *dst_pte;
  793. spinlock_t *src_ptl, *dst_ptl;
  794. int progress = 0;
  795. int rss[NR_MM_COUNTERS];
  796. swp_entry_t entry = (swp_entry_t){0};
  797. again:
  798. init_rss_vec(rss);
  799. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  800. if (!dst_pte)
  801. return -ENOMEM;
  802. src_pte = pte_offset_map(src_pmd, addr);
  803. src_ptl = pte_lockptr(src_mm, src_pmd);
  804. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  805. orig_src_pte = src_pte;
  806. orig_dst_pte = dst_pte;
  807. arch_enter_lazy_mmu_mode();
  808. do {
  809. /*
  810. * We are holding two locks at this point - either of them
  811. * could generate latencies in another task on another CPU.
  812. */
  813. if (progress >= 32) {
  814. progress = 0;
  815. if (need_resched() ||
  816. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  817. break;
  818. }
  819. if (pte_none(*src_pte)) {
  820. progress++;
  821. continue;
  822. }
  823. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  824. vma, addr, rss);
  825. if (entry.val)
  826. break;
  827. progress += 8;
  828. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  829. arch_leave_lazy_mmu_mode();
  830. spin_unlock(src_ptl);
  831. pte_unmap(orig_src_pte);
  832. add_mm_rss_vec(dst_mm, rss);
  833. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  834. cond_resched();
  835. if (entry.val) {
  836. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  837. return -ENOMEM;
  838. progress = 0;
  839. }
  840. if (addr != end)
  841. goto again;
  842. return 0;
  843. }
  844. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  845. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  846. unsigned long addr, unsigned long end)
  847. {
  848. pmd_t *src_pmd, *dst_pmd;
  849. unsigned long next;
  850. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  851. if (!dst_pmd)
  852. return -ENOMEM;
  853. src_pmd = pmd_offset(src_pud, addr);
  854. do {
  855. next = pmd_addr_end(addr, end);
  856. if (pmd_trans_huge(*src_pmd)) {
  857. int err;
  858. VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  859. err = copy_huge_pmd(dst_mm, src_mm,
  860. dst_pmd, src_pmd, addr, vma);
  861. if (err == -ENOMEM)
  862. return -ENOMEM;
  863. if (!err)
  864. continue;
  865. /* fall through */
  866. }
  867. if (pmd_none_or_clear_bad(src_pmd))
  868. continue;
  869. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  870. vma, addr, next))
  871. return -ENOMEM;
  872. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  873. return 0;
  874. }
  875. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  876. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  877. unsigned long addr, unsigned long end)
  878. {
  879. pud_t *src_pud, *dst_pud;
  880. unsigned long next;
  881. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  882. if (!dst_pud)
  883. return -ENOMEM;
  884. src_pud = pud_offset(src_pgd, addr);
  885. do {
  886. next = pud_addr_end(addr, end);
  887. if (pud_none_or_clear_bad(src_pud))
  888. continue;
  889. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  890. vma, addr, next))
  891. return -ENOMEM;
  892. } while (dst_pud++, src_pud++, addr = next, addr != end);
  893. return 0;
  894. }
  895. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  896. struct vm_area_struct *vma)
  897. {
  898. pgd_t *src_pgd, *dst_pgd;
  899. unsigned long next;
  900. unsigned long addr = vma->vm_start;
  901. unsigned long end = vma->vm_end;
  902. unsigned long mmun_start; /* For mmu_notifiers */
  903. unsigned long mmun_end; /* For mmu_notifiers */
  904. bool is_cow;
  905. int ret;
  906. /*
  907. * Don't copy ptes where a page fault will fill them correctly.
  908. * Fork becomes much lighter when there are big shared or private
  909. * readonly mappings. The tradeoff is that copy_page_range is more
  910. * efficient than faulting.
  911. */
  912. if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
  913. VM_PFNMAP | VM_MIXEDMAP))) {
  914. if (!vma->anon_vma)
  915. return 0;
  916. }
  917. if (is_vm_hugetlb_page(vma))
  918. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  919. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  920. /*
  921. * We do not free on error cases below as remove_vma
  922. * gets called on error from higher level routine
  923. */
  924. ret = track_pfn_copy(vma);
  925. if (ret)
  926. return ret;
  927. }
  928. /*
  929. * We need to invalidate the secondary MMU mappings only when
  930. * there could be a permission downgrade on the ptes of the
  931. * parent mm. And a permission downgrade will only happen if
  932. * is_cow_mapping() returns true.
  933. */
  934. is_cow = is_cow_mapping(vma->vm_flags);
  935. mmun_start = addr;
  936. mmun_end = end;
  937. if (is_cow)
  938. mmu_notifier_invalidate_range_start(src_mm, mmun_start,
  939. mmun_end);
  940. ret = 0;
  941. dst_pgd = pgd_offset(dst_mm, addr);
  942. src_pgd = pgd_offset(src_mm, addr);
  943. do {
  944. next = pgd_addr_end(addr, end);
  945. if (pgd_none_or_clear_bad(src_pgd))
  946. continue;
  947. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  948. vma, addr, next))) {
  949. ret = -ENOMEM;
  950. break;
  951. }
  952. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  953. if (is_cow)
  954. mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
  955. return ret;
  956. }
  957. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  958. struct vm_area_struct *vma, pmd_t *pmd,
  959. unsigned long addr, unsigned long end,
  960. struct zap_details *details)
  961. {
  962. struct mm_struct *mm = tlb->mm;
  963. int force_flush = 0;
  964. int rss[NR_MM_COUNTERS];
  965. spinlock_t *ptl;
  966. pte_t *start_pte;
  967. pte_t *pte;
  968. again:
  969. init_rss_vec(rss);
  970. start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  971. pte = start_pte;
  972. arch_enter_lazy_mmu_mode();
  973. do {
  974. pte_t ptent = *pte;
  975. if (pte_none(ptent)) {
  976. continue;
  977. }
  978. if (pte_present(ptent)) {
  979. struct page *page;
  980. page = vm_normal_page(vma, addr, ptent);
  981. if (unlikely(details) && page) {
  982. /*
  983. * unmap_shared_mapping_pages() wants to
  984. * invalidate cache without truncating:
  985. * unmap shared but keep private pages.
  986. */
  987. if (details->check_mapping &&
  988. details->check_mapping != page->mapping)
  989. continue;
  990. /*
  991. * Each page->index must be checked when
  992. * invalidating or truncating nonlinear.
  993. */
  994. if (details->nonlinear_vma &&
  995. (page->index < details->first_index ||
  996. page->index > details->last_index))
  997. continue;
  998. }
  999. ptent = ptep_get_and_clear_full(mm, addr, pte,
  1000. tlb->fullmm);
  1001. tlb_remove_tlb_entry(tlb, pte, addr);
  1002. if (unlikely(!page))
  1003. continue;
  1004. if (unlikely(details) && details->nonlinear_vma
  1005. && linear_page_index(details->nonlinear_vma,
  1006. addr) != page->index)
  1007. set_pte_at(mm, addr, pte,
  1008. pgoff_to_pte(page->index));
  1009. if (PageAnon(page))
  1010. rss[MM_ANONPAGES]--;
  1011. else {
  1012. if (pte_dirty(ptent))
  1013. set_page_dirty(page);
  1014. if (pte_young(ptent) &&
  1015. likely(!VM_SequentialReadHint(vma)))
  1016. mark_page_accessed(page);
  1017. rss[MM_FILEPAGES]--;
  1018. }
  1019. page_remove_rmap(page);
  1020. if (unlikely(page_mapcount(page) < 0))
  1021. print_bad_pte(vma, addr, ptent, page);
  1022. force_flush = !__tlb_remove_page(tlb, page);
  1023. if (force_flush)
  1024. break;
  1025. continue;
  1026. }
  1027. /*
  1028. * If details->check_mapping, we leave swap entries;
  1029. * if details->nonlinear_vma, we leave file entries.
  1030. */
  1031. if (unlikely(details))
  1032. continue;
  1033. if (pte_file(ptent)) {
  1034. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  1035. print_bad_pte(vma, addr, ptent, NULL);
  1036. } else {
  1037. swp_entry_t entry = pte_to_swp_entry(ptent);
  1038. if (!non_swap_entry(entry))
  1039. rss[MM_SWAPENTS]--;
  1040. else if (is_migration_entry(entry)) {
  1041. struct page *page;
  1042. page = migration_entry_to_page(entry);
  1043. if (PageAnon(page))
  1044. rss[MM_ANONPAGES]--;
  1045. else
  1046. rss[MM_FILEPAGES]--;
  1047. }
  1048. if (unlikely(!free_swap_and_cache(entry)))
  1049. print_bad_pte(vma, addr, ptent, NULL);
  1050. }
  1051. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  1052. } while (pte++, addr += PAGE_SIZE, addr != end);
  1053. add_mm_rss_vec(mm, rss);
  1054. arch_leave_lazy_mmu_mode();
  1055. pte_unmap_unlock(start_pte, ptl);
  1056. /*
  1057. * mmu_gather ran out of room to batch pages, we break out of
  1058. * the PTE lock to avoid doing the potential expensive TLB invalidate
  1059. * and page-free while holding it.
  1060. */
  1061. if (force_flush) {
  1062. force_flush = 0;
  1063. #ifdef HAVE_GENERIC_MMU_GATHER
  1064. tlb->start = addr;
  1065. tlb->end = end;
  1066. #endif
  1067. tlb_flush_mmu(tlb);
  1068. if (addr != end)
  1069. goto again;
  1070. }
  1071. return addr;
  1072. }
  1073. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  1074. struct vm_area_struct *vma, pud_t *pud,
  1075. unsigned long addr, unsigned long end,
  1076. struct zap_details *details)
  1077. {
  1078. pmd_t *pmd;
  1079. unsigned long next;
  1080. pmd = pmd_offset(pud, addr);
  1081. do {
  1082. next = pmd_addr_end(addr, end);
  1083. if (pmd_trans_huge(*pmd)) {
  1084. if (next - addr != HPAGE_PMD_SIZE) {
  1085. #ifdef CONFIG_DEBUG_VM
  1086. if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
  1087. pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
  1088. __func__, addr, end,
  1089. vma->vm_start,
  1090. vma->vm_end);
  1091. BUG();
  1092. }
  1093. #endif
  1094. split_huge_page_pmd(vma, addr, pmd);
  1095. } else if (zap_huge_pmd(tlb, vma, pmd, addr))
  1096. goto next;
  1097. /* fall through */
  1098. }
  1099. /*
  1100. * Here there can be other concurrent MADV_DONTNEED or
  1101. * trans huge page faults running, and if the pmd is
  1102. * none or trans huge it can change under us. This is
  1103. * because MADV_DONTNEED holds the mmap_sem in read
  1104. * mode.
  1105. */
  1106. if (pmd_none_or_trans_huge_or_clear_bad(pmd))
  1107. goto next;
  1108. next = zap_pte_range(tlb, vma, pmd, addr, next, details);
  1109. next:
  1110. cond_resched();
  1111. } while (pmd++, addr = next, addr != end);
  1112. return addr;
  1113. }
  1114. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  1115. struct vm_area_struct *vma, pgd_t *pgd,
  1116. unsigned long addr, unsigned long end,
  1117. struct zap_details *details)
  1118. {
  1119. pud_t *pud;
  1120. unsigned long next;
  1121. pud = pud_offset(pgd, addr);
  1122. do {
  1123. next = pud_addr_end(addr, end);
  1124. if (pud_none_or_clear_bad(pud))
  1125. continue;
  1126. next = zap_pmd_range(tlb, vma, pud, addr, next, details);
  1127. } while (pud++, addr = next, addr != end);
  1128. return addr;
  1129. }
  1130. static void unmap_page_range(struct mmu_gather *tlb,
  1131. struct vm_area_struct *vma,
  1132. unsigned long addr, unsigned long end,
  1133. struct zap_details *details)
  1134. {
  1135. pgd_t *pgd;
  1136. unsigned long next;
  1137. if (details && !details->check_mapping && !details->nonlinear_vma)
  1138. details = NULL;
  1139. BUG_ON(addr >= end);
  1140. mem_cgroup_uncharge_start();
  1141. tlb_start_vma(tlb, vma);
  1142. pgd = pgd_offset(vma->vm_mm, addr);
  1143. do {
  1144. next = pgd_addr_end(addr, end);
  1145. if (pgd_none_or_clear_bad(pgd))
  1146. continue;
  1147. next = zap_pud_range(tlb, vma, pgd, addr, next, details);
  1148. } while (pgd++, addr = next, addr != end);
  1149. tlb_end_vma(tlb, vma);
  1150. mem_cgroup_uncharge_end();
  1151. }
  1152. static void unmap_single_vma(struct mmu_gather *tlb,
  1153. struct vm_area_struct *vma, unsigned long start_addr,
  1154. unsigned long end_addr,
  1155. struct zap_details *details)
  1156. {
  1157. unsigned long start = max(vma->vm_start, start_addr);
  1158. unsigned long end;
  1159. if (start >= vma->vm_end)
  1160. return;
  1161. end = min(vma->vm_end, end_addr);
  1162. if (end <= vma->vm_start)
  1163. return;
  1164. if (vma->vm_file)
  1165. uprobe_munmap(vma, start, end);
  1166. if (unlikely(vma->vm_flags & VM_PFNMAP))
  1167. untrack_pfn(vma, 0, 0);
  1168. if (start != end) {
  1169. if (unlikely(is_vm_hugetlb_page(vma))) {
  1170. /*
  1171. * It is undesirable to test vma->vm_file as it
  1172. * should be non-null for valid hugetlb area.
  1173. * However, vm_file will be NULL in the error
  1174. * cleanup path of do_mmap_pgoff. When
  1175. * hugetlbfs ->mmap method fails,
  1176. * do_mmap_pgoff() nullifies vma->vm_file
  1177. * before calling this function to clean up.
  1178. * Since no pte has actually been setup, it is
  1179. * safe to do nothing in this case.
  1180. */
  1181. if (vma->vm_file) {
  1182. mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1183. __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
  1184. mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1185. }
  1186. } else
  1187. unmap_page_range(tlb, vma, start, end, details);
  1188. }
  1189. }
  1190. /**
  1191. * unmap_vmas - unmap a range of memory covered by a list of vma's
  1192. * @tlb: address of the caller's struct mmu_gather
  1193. * @vma: the starting vma
  1194. * @start_addr: virtual address at which to start unmapping
  1195. * @end_addr: virtual address at which to end unmapping
  1196. *
  1197. * Unmap all pages in the vma list.
  1198. *
  1199. * Only addresses between `start' and `end' will be unmapped.
  1200. *
  1201. * The VMA list must be sorted in ascending virtual address order.
  1202. *
  1203. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  1204. * range after unmap_vmas() returns. So the only responsibility here is to
  1205. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  1206. * drops the lock and schedules.
  1207. */
  1208. void unmap_vmas(struct mmu_gather *tlb,
  1209. struct vm_area_struct *vma, unsigned long start_addr,
  1210. unsigned long end_addr)
  1211. {
  1212. struct mm_struct *mm = vma->vm_mm;
  1213. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  1214. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
  1215. unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
  1216. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1217. }
  1218. /**
  1219. * zap_page_range - remove user pages in a given range
  1220. * @vma: vm_area_struct holding the applicable pages
  1221. * @start: starting address of pages to zap
  1222. * @size: number of bytes to zap
  1223. * @details: details of nonlinear truncation or shared cache invalidation
  1224. *
  1225. * Caller must protect the VMA list
  1226. */
  1227. void zap_page_range(struct vm_area_struct *vma, unsigned long start,
  1228. unsigned long size, struct zap_details *details)
  1229. {
  1230. struct mm_struct *mm = vma->vm_mm;
  1231. struct mmu_gather tlb;
  1232. unsigned long end = start + size;
  1233. lru_add_drain();
  1234. tlb_gather_mmu(&tlb, mm, 0);
  1235. update_hiwater_rss(mm);
  1236. mmu_notifier_invalidate_range_start(mm, start, end);
  1237. for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
  1238. unmap_single_vma(&tlb, vma, start, end, details);
  1239. mmu_notifier_invalidate_range_end(mm, start, end);
  1240. tlb_finish_mmu(&tlb, start, end);
  1241. }
  1242. /**
  1243. * zap_page_range_single - remove user pages in a given range
  1244. * @vma: vm_area_struct holding the applicable pages
  1245. * @address: starting address of pages to zap
  1246. * @size: number of bytes to zap
  1247. * @details: details of nonlinear truncation or shared cache invalidation
  1248. *
  1249. * The range must fit into one VMA.
  1250. */
  1251. static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
  1252. unsigned long size, struct zap_details *details)
  1253. {
  1254. struct mm_struct *mm = vma->vm_mm;
  1255. struct mmu_gather tlb;
  1256. unsigned long end = address + size;
  1257. lru_add_drain();
  1258. tlb_gather_mmu(&tlb, mm, 0);
  1259. update_hiwater_rss(mm);
  1260. mmu_notifier_invalidate_range_start(mm, address, end);
  1261. unmap_single_vma(&tlb, vma, address, end, details);
  1262. mmu_notifier_invalidate_range_end(mm, address, end);
  1263. tlb_finish_mmu(&tlb, address, end);
  1264. }
  1265. /**
  1266. * zap_vma_ptes - remove ptes mapping the vma
  1267. * @vma: vm_area_struct holding ptes to be zapped
  1268. * @address: starting address of pages to zap
  1269. * @size: number of bytes to zap
  1270. *
  1271. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1272. *
  1273. * The entire address range must be fully contained within the vma.
  1274. *
  1275. * Returns 0 if successful.
  1276. */
  1277. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1278. unsigned long size)
  1279. {
  1280. if (address < vma->vm_start || address + size > vma->vm_end ||
  1281. !(vma->vm_flags & VM_PFNMAP))
  1282. return -1;
  1283. zap_page_range_single(vma, address, size, NULL);
  1284. return 0;
  1285. }
  1286. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1287. /**
  1288. * follow_page - look up a page descriptor from a user-virtual address
  1289. * @vma: vm_area_struct mapping @address
  1290. * @address: virtual address to look up
  1291. * @flags: flags modifying lookup behaviour
  1292. *
  1293. * @flags can have FOLL_ flags set, defined in <linux/mm.h>
  1294. *
  1295. * Returns the mapped (struct page *), %NULL if no mapping exists, or
  1296. * an error pointer if there is a mapping to something not represented
  1297. * by a page descriptor (see also vm_normal_page()).
  1298. */
  1299. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  1300. unsigned int flags)
  1301. {
  1302. pgd_t *pgd;
  1303. pud_t *pud;
  1304. pmd_t *pmd;
  1305. pte_t *ptep, pte;
  1306. spinlock_t *ptl;
  1307. struct page *page;
  1308. struct mm_struct *mm = vma->vm_mm;
  1309. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  1310. if (!IS_ERR(page)) {
  1311. BUG_ON(flags & FOLL_GET);
  1312. goto out;
  1313. }
  1314. page = NULL;
  1315. pgd = pgd_offset(mm, address);
  1316. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1317. goto no_page_table;
  1318. pud = pud_offset(pgd, address);
  1319. if (pud_none(*pud))
  1320. goto no_page_table;
  1321. if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
  1322. BUG_ON(flags & FOLL_GET);
  1323. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1324. goto out;
  1325. }
  1326. if (unlikely(pud_bad(*pud)))
  1327. goto no_page_table;
  1328. pmd = pmd_offset(pud, address);
  1329. if (pmd_none(*pmd))
  1330. goto no_page_table;
  1331. if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
  1332. BUG_ON(flags & FOLL_GET);
  1333. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1334. goto out;
  1335. }
  1336. if (pmd_trans_huge(*pmd)) {
  1337. if (flags & FOLL_SPLIT) {
  1338. split_huge_page_pmd(vma, address, pmd);
  1339. goto split_fallthrough;
  1340. }
  1341. spin_lock(&mm->page_table_lock);
  1342. if (likely(pmd_trans_huge(*pmd))) {
  1343. if (unlikely(pmd_trans_splitting(*pmd))) {
  1344. spin_unlock(&mm->page_table_lock);
  1345. wait_split_huge_page(vma->anon_vma, pmd);
  1346. } else {
  1347. page = follow_trans_huge_pmd(vma, address,
  1348. pmd, flags);
  1349. spin_unlock(&mm->page_table_lock);
  1350. goto out;
  1351. }
  1352. } else
  1353. spin_unlock(&mm->page_table_lock);
  1354. /* fall through */
  1355. }
  1356. split_fallthrough:
  1357. if (unlikely(pmd_bad(*pmd)))
  1358. goto no_page_table;
  1359. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1360. pte = *ptep;
  1361. if (!pte_present(pte))
  1362. goto no_page;
  1363. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1364. goto unlock;
  1365. page = vm_normal_page(vma, address, pte);
  1366. if (unlikely(!page)) {
  1367. if ((flags & FOLL_DUMP) ||
  1368. !is_zero_pfn(pte_pfn(pte)))
  1369. goto bad_page;
  1370. page = pte_page(pte);
  1371. }
  1372. if (flags & FOLL_GET)
  1373. get_page_foll(page);
  1374. if (flags & FOLL_TOUCH) {
  1375. if ((flags & FOLL_WRITE) &&
  1376. !pte_dirty(pte) && !PageDirty(page))
  1377. set_page_dirty(page);
  1378. /*
  1379. * pte_mkyoung() would be more correct here, but atomic care
  1380. * is needed to avoid losing the dirty bit: it is easier to use
  1381. * mark_page_accessed().
  1382. */
  1383. mark_page_accessed(page);
  1384. }
  1385. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1386. /*
  1387. * The preliminary mapping check is mainly to avoid the
  1388. * pointless overhead of lock_page on the ZERO_PAGE
  1389. * which might bounce very badly if there is contention.
  1390. *
  1391. * If the page is already locked, we don't need to
  1392. * handle it now - vmscan will handle it later if and
  1393. * when it attempts to reclaim the page.
  1394. */
  1395. if (page->mapping && trylock_page(page)) {
  1396. lru_add_drain(); /* push cached pages to LRU */
  1397. /*
  1398. * Because we lock page here, and migration is
  1399. * blocked by the pte's page reference, and we
  1400. * know the page is still mapped, we don't even
  1401. * need to check for file-cache page truncation.
  1402. */
  1403. mlock_vma_page(page);
  1404. unlock_page(page);
  1405. }
  1406. }
  1407. unlock:
  1408. pte_unmap_unlock(ptep, ptl);
  1409. out:
  1410. return page;
  1411. bad_page:
  1412. pte_unmap_unlock(ptep, ptl);
  1413. return ERR_PTR(-EFAULT);
  1414. no_page:
  1415. pte_unmap_unlock(ptep, ptl);
  1416. if (!pte_none(pte))
  1417. return page;
  1418. no_page_table:
  1419. /*
  1420. * When core dumping an enormous anonymous area that nobody
  1421. * has touched so far, we don't want to allocate unnecessary pages or
  1422. * page tables. Return error instead of NULL to skip handle_mm_fault,
  1423. * then get_dump_page() will return NULL to leave a hole in the dump.
  1424. * But we can only make this optimization where a hole would surely
  1425. * be zero-filled if handle_mm_fault() actually did handle it.
  1426. */
  1427. if ((flags & FOLL_DUMP) &&
  1428. (!vma->vm_ops || !vma->vm_ops->fault))
  1429. return ERR_PTR(-EFAULT);
  1430. return page;
  1431. }
  1432. static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
  1433. {
  1434. return stack_guard_page_start(vma, addr) ||
  1435. stack_guard_page_end(vma, addr+PAGE_SIZE);
  1436. }
  1437. /**
  1438. * __get_user_pages() - pin user pages in memory
  1439. * @tsk: task_struct of target task
  1440. * @mm: mm_struct of target mm
  1441. * @start: starting user address
  1442. * @nr_pages: number of pages from start to pin
  1443. * @gup_flags: flags modifying pin behaviour
  1444. * @pages: array that receives pointers to the pages pinned.
  1445. * Should be at least nr_pages long. Or NULL, if caller
  1446. * only intends to ensure the pages are faulted in.
  1447. * @vmas: array of pointers to vmas corresponding to each page.
  1448. * Or NULL if the caller does not require them.
  1449. * @nonblocking: whether waiting for disk IO or mmap_sem contention
  1450. *
  1451. * Returns number of pages pinned. This may be fewer than the number
  1452. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1453. * were pinned, returns -errno. Each page returned must be released
  1454. * with a put_page() call when it is finished with. vmas will only
  1455. * remain valid while mmap_sem is held.
  1456. *
  1457. * Must be called with mmap_sem held for read or write.
  1458. *
  1459. * __get_user_pages walks a process's page tables and takes a reference to
  1460. * each struct page that each user address corresponds to at a given
  1461. * instant. That is, it takes the page that would be accessed if a user
  1462. * thread accesses the given user virtual address at that instant.
  1463. *
  1464. * This does not guarantee that the page exists in the user mappings when
  1465. * __get_user_pages returns, and there may even be a completely different
  1466. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1467. * and subsequently re faulted). However it does guarantee that the page
  1468. * won't be freed completely. And mostly callers simply care that the page
  1469. * contains data that was valid *at some point in time*. Typically, an IO
  1470. * or similar operation cannot guarantee anything stronger anyway because
  1471. * locks can't be held over the syscall boundary.
  1472. *
  1473. * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
  1474. * the page is written to, set_page_dirty (or set_page_dirty_lock, as
  1475. * appropriate) must be called after the page is finished with, and
  1476. * before put_page is called.
  1477. *
  1478. * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
  1479. * or mmap_sem contention, and if waiting is needed to pin all pages,
  1480. * *@nonblocking will be set to 0.
  1481. *
  1482. * In most cases, get_user_pages or get_user_pages_fast should be used
  1483. * instead of __get_user_pages. __get_user_pages should be used only if
  1484. * you need some special @gup_flags.
  1485. */
  1486. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1487. unsigned long start, int nr_pages, unsigned int gup_flags,
  1488. struct page **pages, struct vm_area_struct **vmas,
  1489. int *nonblocking)
  1490. {
  1491. int i;
  1492. unsigned long vm_flags;
  1493. if (nr_pages <= 0)
  1494. return 0;
  1495. VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
  1496. /*
  1497. * Require read or write permissions.
  1498. * If FOLL_FORCE is set, we only require the "MAY" flags.
  1499. */
  1500. vm_flags = (gup_flags & FOLL_WRITE) ?
  1501. (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1502. vm_flags &= (gup_flags & FOLL_FORCE) ?
  1503. (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1504. i = 0;
  1505. do {
  1506. struct vm_area_struct *vma;
  1507. vma = find_extend_vma(mm, start);
  1508. if (!vma && in_gate_area(mm, start)) {
  1509. unsigned long pg = start & PAGE_MASK;
  1510. pgd_t *pgd;
  1511. pud_t *pud;
  1512. pmd_t *pmd;
  1513. pte_t *pte;
  1514. /* user gate pages are read-only */
  1515. if (gup_flags & FOLL_WRITE)
  1516. return i ? : -EFAULT;
  1517. if (pg > TASK_SIZE)
  1518. pgd = pgd_offset_k(pg);
  1519. else
  1520. pgd = pgd_offset_gate(mm, pg);
  1521. BUG_ON(pgd_none(*pgd));
  1522. pud = pud_offset(pgd, pg);
  1523. BUG_ON(pud_none(*pud));
  1524. pmd = pmd_offset(pud, pg);
  1525. if (pmd_none(*pmd))
  1526. return i ? : -EFAULT;
  1527. VM_BUG_ON(pmd_trans_huge(*pmd));
  1528. pte = pte_offset_map(pmd, pg);
  1529. if (pte_none(*pte)) {
  1530. pte_unmap(pte);
  1531. return i ? : -EFAULT;
  1532. }
  1533. vma = get_gate_vma(mm);
  1534. if (pages) {
  1535. struct page *page;
  1536. page = vm_normal_page(vma, start, *pte);
  1537. if (!page) {
  1538. if (!(gup_flags & FOLL_DUMP) &&
  1539. is_zero_pfn(pte_pfn(*pte)))
  1540. page = pte_page(*pte);
  1541. else {
  1542. pte_unmap(pte);
  1543. return i ? : -EFAULT;
  1544. }
  1545. }
  1546. pages[i] = page;
  1547. get_page(page);
  1548. }
  1549. pte_unmap(pte);
  1550. goto next_page;
  1551. }
  1552. if (!vma ||
  1553. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1554. !(vm_flags & vma->vm_flags))
  1555. return i ? : -EFAULT;
  1556. if (is_vm_hugetlb_page(vma)) {
  1557. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1558. &start, &nr_pages, i, gup_flags);
  1559. continue;
  1560. }
  1561. do {
  1562. struct page *page;
  1563. unsigned int foll_flags = gup_flags;
  1564. /*
  1565. * If we have a pending SIGKILL, don't keep faulting
  1566. * pages and potentially allocating memory.
  1567. */
  1568. if (unlikely(fatal_signal_pending(current)))
  1569. return i ? i : -ERESTARTSYS;
  1570. cond_resched();
  1571. while (!(page = follow_page(vma, start, foll_flags))) {
  1572. int ret;
  1573. unsigned int fault_flags = 0;
  1574. /* For mlock, just skip the stack guard page. */
  1575. if (foll_flags & FOLL_MLOCK) {
  1576. if (stack_guard_page(vma, start))
  1577. goto next_page;
  1578. }
  1579. if (foll_flags & FOLL_WRITE)
  1580. fault_flags |= FAULT_FLAG_WRITE;
  1581. if (nonblocking)
  1582. fault_flags |= FAULT_FLAG_ALLOW_RETRY;
  1583. if (foll_flags & FOLL_NOWAIT)
  1584. fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
  1585. ret = handle_mm_fault(mm, vma, start,
  1586. fault_flags);
  1587. if (ret & VM_FAULT_ERROR) {
  1588. if (ret & VM_FAULT_OOM)
  1589. return i ? i : -ENOMEM;
  1590. if (ret & (VM_FAULT_HWPOISON |
  1591. VM_FAULT_HWPOISON_LARGE)) {
  1592. if (i)
  1593. return i;
  1594. else if (gup_flags & FOLL_HWPOISON)
  1595. return -EHWPOISON;
  1596. else
  1597. return -EFAULT;
  1598. }
  1599. if (ret & VM_FAULT_SIGBUS)
  1600. return i ? i : -EFAULT;
  1601. BUG();
  1602. }
  1603. if (tsk) {
  1604. if (ret & VM_FAULT_MAJOR)
  1605. tsk->maj_flt++;
  1606. else
  1607. tsk->min_flt++;
  1608. }
  1609. if (ret & VM_FAULT_RETRY) {
  1610. if (nonblocking)
  1611. *nonblocking = 0;
  1612. return i;
  1613. }
  1614. /*
  1615. * The VM_FAULT_WRITE bit tells us that
  1616. * do_wp_page has broken COW when necessary,
  1617. * even if maybe_mkwrite decided not to set
  1618. * pte_write. We can thus safely do subsequent
  1619. * page lookups as if they were reads. But only
  1620. * do so when looping for pte_write is futile:
  1621. * in some cases userspace may also be wanting
  1622. * to write to the gotten user page, which a
  1623. * read fault here might prevent (a readonly
  1624. * page might get reCOWed by userspace write).
  1625. */
  1626. if ((ret & VM_FAULT_WRITE) &&
  1627. !(vma->vm_flags & VM_WRITE))
  1628. foll_flags &= ~FOLL_WRITE;
  1629. cond_resched();
  1630. }
  1631. if (IS_ERR(page))
  1632. return i ? i : PTR_ERR(page);
  1633. if (pages) {
  1634. pages[i] = page;
  1635. flush_anon_page(vma, page, start);
  1636. flush_dcache_page(page);
  1637. }
  1638. next_page:
  1639. if (vmas)
  1640. vmas[i] = vma;
  1641. i++;
  1642. start += PAGE_SIZE;
  1643. nr_pages--;
  1644. } while (nr_pages && start < vma->vm_end);
  1645. } while (nr_pages);
  1646. return i;
  1647. }
  1648. EXPORT_SYMBOL(__get_user_pages);
  1649. /*
  1650. * fixup_user_fault() - manually resolve a user page fault
  1651. * @tsk: the task_struct to use for page fault accounting, or
  1652. * NULL if faults are not to be recorded.
  1653. * @mm: mm_struct of target mm
  1654. * @address: user address
  1655. * @fault_flags:flags to pass down to handle_mm_fault()
  1656. *
  1657. * This is meant to be called in the specific scenario where for locking reasons
  1658. * we try to access user memory in atomic context (within a pagefault_disable()
  1659. * section), this returns -EFAULT, and we want to resolve the user fault before
  1660. * trying again.
  1661. *
  1662. * Typically this is meant to be used by the futex code.
  1663. *
  1664. * The main difference with get_user_pages() is that this function will
  1665. * unconditionally call handle_mm_fault() which will in turn perform all the
  1666. * necessary SW fixup of the dirty and young bits in the PTE, while
  1667. * handle_mm_fault() only guarantees to update these in the struct page.
  1668. *
  1669. * This is important for some architectures where those bits also gate the
  1670. * access permission to the page because they are maintained in software. On
  1671. * such architectures, gup() will not be enough to make a subsequent access
  1672. * succeed.
  1673. *
  1674. * This should be called with the mm_sem held for read.
  1675. */
  1676. int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1677. unsigned long address, unsigned int fault_flags)
  1678. {
  1679. struct vm_area_struct *vma;
  1680. int ret;
  1681. vma = find_extend_vma(mm, address);
  1682. if (!vma || address < vma->vm_start)
  1683. return -EFAULT;
  1684. ret = handle_mm_fault(mm, vma, address, fault_flags);
  1685. if (ret & VM_FAULT_ERROR) {
  1686. if (ret & VM_FAULT_OOM)
  1687. return -ENOMEM;
  1688. if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
  1689. return -EHWPOISON;
  1690. if (ret & VM_FAULT_SIGBUS)
  1691. return -EFAULT;
  1692. BUG();
  1693. }
  1694. if (tsk) {
  1695. if (ret & VM_FAULT_MAJOR)
  1696. tsk->maj_flt++;
  1697. else
  1698. tsk->min_flt++;
  1699. }
  1700. return 0;
  1701. }
  1702. /*
  1703. * get_user_pages() - pin user pages in memory
  1704. * @tsk: the task_struct to use for page fault accounting, or
  1705. * NULL if faults are not to be recorded.
  1706. * @mm: mm_struct of target mm
  1707. * @start: starting user address
  1708. * @nr_pages: number of pages from start to pin
  1709. * @write: whether pages will be written to by the caller
  1710. * @force: whether to force write access even if user mapping is
  1711. * readonly. This will result in the page being COWed even
  1712. * in MAP_SHARED mappings. You do not want this.
  1713. * @pages: array that receives pointers to the pages pinned.
  1714. * Should be at least nr_pages long. Or NULL, if caller
  1715. * only intends to ensure the pages are faulted in.
  1716. * @vmas: array of pointers to vmas corresponding to each page.
  1717. * Or NULL if the caller does not require them.
  1718. *
  1719. * Returns number of pages pinned. This may be fewer than the number
  1720. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1721. * were pinned, returns -errno. Each page returned must be released
  1722. * with a put_page() call when it is finished with. vmas will only
  1723. * remain valid while mmap_sem is held.
  1724. *
  1725. * Must be called with mmap_sem held for read or write.
  1726. *
  1727. * get_user_pages walks a process's page tables and takes a reference to
  1728. * each struct page that each user address corresponds to at a given
  1729. * instant. That is, it takes the page that would be accessed if a user
  1730. * thread accesses the given user virtual address at that instant.
  1731. *
  1732. * This does not guarantee that the page exists in the user mappings when
  1733. * get_user_pages returns, and there may even be a completely different
  1734. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1735. * and subsequently re faulted). However it does guarantee that the page
  1736. * won't be freed completely. And mostly callers simply care that the page
  1737. * contains data that was valid *at some point in time*. Typically, an IO
  1738. * or similar operation cannot guarantee anything stronger anyway because
  1739. * locks can't be held over the syscall boundary.
  1740. *
  1741. * If write=0, the page must not be written to. If the page is written to,
  1742. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1743. * after the page is finished with, and before put_page is called.
  1744. *
  1745. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1746. * handle on the memory by some means other than accesses via the user virtual
  1747. * addresses. The pages may be submitted for DMA to devices or accessed via
  1748. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1749. * use the correct cache flushing APIs.
  1750. *
  1751. * See also get_user_pages_fast, for performance critical applications.
  1752. */
  1753. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1754. unsigned long start, int nr_pages, int write, int force,
  1755. struct page **pages, struct vm_area_struct **vmas)
  1756. {
  1757. int flags = FOLL_TOUCH;
  1758. if (pages)
  1759. flags |= FOLL_GET;
  1760. if (write)
  1761. flags |= FOLL_WRITE;
  1762. if (force)
  1763. flags |= FOLL_FORCE;
  1764. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
  1765. NULL);
  1766. }
  1767. EXPORT_SYMBOL(get_user_pages);
  1768. /**
  1769. * get_dump_page() - pin user page in memory while writing it to core dump
  1770. * @addr: user address
  1771. *
  1772. * Returns struct page pointer of user page pinned for dump,
  1773. * to be freed afterwards by page_cache_release() or put_page().
  1774. *
  1775. * Returns NULL on any kind of failure - a hole must then be inserted into
  1776. * the corefile, to preserve alignment with its headers; and also returns
  1777. * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
  1778. * allowing a hole to be left in the corefile to save diskspace.
  1779. *
  1780. * Called without mmap_sem, but after all other threads have been killed.
  1781. */
  1782. #ifdef CONFIG_ELF_CORE
  1783. struct page *get_dump_page(unsigned long addr)
  1784. {
  1785. struct vm_area_struct *vma;
  1786. struct page *page;
  1787. if (__get_user_pages(current, current->mm, addr, 1,
  1788. FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
  1789. NULL) < 1)
  1790. return NULL;
  1791. flush_cache_page(vma, addr, page_to_pfn(page));
  1792. return page;
  1793. }
  1794. #endif /* CONFIG_ELF_CORE */
  1795. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1796. spinlock_t **ptl)
  1797. {
  1798. pgd_t * pgd = pgd_offset(mm, addr);
  1799. pud_t * pud = pud_alloc(mm, pgd, addr);
  1800. if (pud) {
  1801. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1802. if (pmd) {
  1803. VM_BUG_ON(pmd_trans_huge(*pmd));
  1804. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1805. }
  1806. }
  1807. return NULL;
  1808. }
  1809. /*
  1810. * This is the old fallback for page remapping.
  1811. *
  1812. * For historical reasons, it only allows reserved pages. Only
  1813. * old drivers should use this, and they needed to mark their
  1814. * pages reserved for the old functions anyway.
  1815. */
  1816. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1817. struct page *page, pgprot_t prot)
  1818. {
  1819. struct mm_struct *mm = vma->vm_mm;
  1820. int retval;
  1821. pte_t *pte;
  1822. spinlock_t *ptl;
  1823. retval = -EINVAL;
  1824. if (PageAnon(page))
  1825. goto out;
  1826. retval = -ENOMEM;
  1827. flush_dcache_page(page);
  1828. pte = get_locked_pte(mm, addr, &ptl);
  1829. if (!pte)
  1830. goto out;
  1831. retval = -EBUSY;
  1832. if (!pte_none(*pte))
  1833. goto out_unlock;
  1834. /* Ok, finally just insert the thing.. */
  1835. get_page(page);
  1836. inc_mm_counter_fast(mm, MM_FILEPAGES);
  1837. page_add_file_rmap(page);
  1838. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1839. retval = 0;
  1840. pte_unmap_unlock(pte, ptl);
  1841. return retval;
  1842. out_unlock:
  1843. pte_unmap_unlock(pte, ptl);
  1844. out:
  1845. return retval;
  1846. }
  1847. /**
  1848. * vm_insert_page - insert single page into user vma
  1849. * @vma: user vma to map to
  1850. * @addr: target user address of this page
  1851. * @page: source kernel page
  1852. *
  1853. * This allows drivers to insert individual pages they've allocated
  1854. * into a user vma.
  1855. *
  1856. * The page has to be a nice clean _individual_ kernel allocation.
  1857. * If you allocate a compound page, you need to have marked it as
  1858. * such (__GFP_COMP), or manually just split the page up yourself
  1859. * (see split_page()).
  1860. *
  1861. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1862. * took an arbitrary page protection parameter. This doesn't allow
  1863. * that. Your vma protection will have to be set up correctly, which
  1864. * means that if you want a shared writable mapping, you'd better
  1865. * ask for a shared writable mapping!
  1866. *
  1867. * The page does not need to be reserved.
  1868. *
  1869. * Usually this function is called from f_op->mmap() handler
  1870. * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
  1871. * Caller must set VM_MIXEDMAP on vma if it wants to call this
  1872. * function from other places, for example from page-fault handler.
  1873. */
  1874. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1875. struct page *page)
  1876. {
  1877. if (addr < vma->vm_start || addr >= vma->vm_end)
  1878. return -EFAULT;
  1879. if (!page_count(page))
  1880. return -EINVAL;
  1881. if (!(vma->vm_flags & VM_MIXEDMAP)) {
  1882. BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
  1883. BUG_ON(vma->vm_flags & VM_PFNMAP);
  1884. vma->vm_flags |= VM_MIXEDMAP;
  1885. }
  1886. return insert_page(vma, addr, page, vma->vm_page_prot);
  1887. }
  1888. EXPORT_SYMBOL(vm_insert_page);
  1889. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1890. unsigned long pfn, pgprot_t prot)
  1891. {
  1892. struct mm_struct *mm = vma->vm_mm;
  1893. int retval;
  1894. pte_t *pte, entry;
  1895. spinlock_t *ptl;
  1896. retval = -ENOMEM;
  1897. pte = get_locked_pte(mm, addr, &ptl);
  1898. if (!pte)
  1899. goto out;
  1900. retval = -EBUSY;
  1901. if (!pte_none(*pte))
  1902. goto out_unlock;
  1903. /* Ok, finally just insert the thing.. */
  1904. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1905. set_pte_at(mm, addr, pte, entry);
  1906. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1907. retval = 0;
  1908. out_unlock:
  1909. pte_unmap_unlock(pte, ptl);
  1910. out:
  1911. return retval;
  1912. }
  1913. /**
  1914. * vm_insert_pfn - insert single pfn into user vma
  1915. * @vma: user vma to map to
  1916. * @addr: target user address of this page
  1917. * @pfn: source kernel pfn
  1918. *
  1919. * Similar to vm_insert_page, this allows drivers to insert individual pages
  1920. * they've allocated into a user vma. Same comments apply.
  1921. *
  1922. * This function should only be called from a vm_ops->fault handler, and
  1923. * in that case the handler should return NULL.
  1924. *
  1925. * vma cannot be a COW mapping.
  1926. *
  1927. * As this is called only for pages that do not currently exist, we
  1928. * do not need to flush old virtual caches or the TLB.
  1929. */
  1930. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1931. unsigned long pfn)
  1932. {
  1933. int ret;
  1934. pgprot_t pgprot = vma->vm_page_prot;
  1935. /*
  1936. * Technically, architectures with pte_special can avoid all these
  1937. * restrictions (same for remap_pfn_range). However we would like
  1938. * consistency in testing and feature parity among all, so we should
  1939. * try to keep these invariants in place for everybody.
  1940. */
  1941. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1942. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1943. (VM_PFNMAP|VM_MIXEDMAP));
  1944. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1945. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1946. if (addr < vma->vm_start || addr >= vma->vm_end)
  1947. return -EFAULT;
  1948. if (track_pfn_insert(vma, &pgprot, pfn))
  1949. return -EINVAL;
  1950. ret = insert_pfn(vma, addr, pfn, pgprot);
  1951. return ret;
  1952. }
  1953. EXPORT_SYMBOL(vm_insert_pfn);
  1954. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1955. unsigned long pfn)
  1956. {
  1957. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1958. if (addr < vma->vm_start || addr >= vma->vm_end)
  1959. return -EFAULT;
  1960. /*
  1961. * If we don't have pte special, then we have to use the pfn_valid()
  1962. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1963. * refcount the page if pfn_valid is true (hence insert_page rather
  1964. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1965. * without pte special, it would there be refcounted as a normal page.
  1966. */
  1967. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1968. struct page *page;
  1969. page = pfn_to_page(pfn);
  1970. return insert_page(vma, addr, page, vma->vm_page_prot);
  1971. }
  1972. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1973. }
  1974. EXPORT_SYMBOL(vm_insert_mixed);
  1975. /*
  1976. * maps a range of physical memory into the requested pages. the old
  1977. * mappings are removed. any references to nonexistent pages results
  1978. * in null mappings (currently treated as "copy-on-access")
  1979. */
  1980. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1981. unsigned long addr, unsigned long end,
  1982. unsigned long pfn, pgprot_t prot)
  1983. {
  1984. pte_t *pte;
  1985. spinlock_t *ptl;
  1986. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1987. if (!pte)
  1988. return -ENOMEM;
  1989. arch_enter_lazy_mmu_mode();
  1990. do {
  1991. BUG_ON(!pte_none(*pte));
  1992. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1993. pfn++;
  1994. } while (pte++, addr += PAGE_SIZE, addr != end);
  1995. arch_leave_lazy_mmu_mode();
  1996. pte_unmap_unlock(pte - 1, ptl);
  1997. return 0;
  1998. }
  1999. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  2000. unsigned long addr, unsigned long end,
  2001. unsigned long pfn, pgprot_t prot)
  2002. {
  2003. pmd_t *pmd;
  2004. unsigned long next;
  2005. pfn -= addr >> PAGE_SHIFT;
  2006. pmd = pmd_alloc(mm, pud, addr);
  2007. if (!pmd)
  2008. return -ENOMEM;
  2009. VM_BUG_ON(pmd_trans_huge(*pmd));
  2010. do {
  2011. next = pmd_addr_end(addr, end);
  2012. if (remap_pte_range(mm, pmd, addr, next,
  2013. pfn + (addr >> PAGE_SHIFT), prot))
  2014. return -ENOMEM;
  2015. } while (pmd++, addr = next, addr != end);
  2016. return 0;
  2017. }
  2018. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  2019. unsigned long addr, unsigned long end,
  2020. unsigned long pfn, pgprot_t prot)
  2021. {
  2022. pud_t *pud;
  2023. unsigned long next;
  2024. pfn -= addr >> PAGE_SHIFT;
  2025. pud = pud_alloc(mm, pgd, addr);
  2026. if (!pud)
  2027. return -ENOMEM;
  2028. do {
  2029. next = pud_addr_end(addr, end);
  2030. if (remap_pmd_range(mm, pud, addr, next,
  2031. pfn + (addr >> PAGE_SHIFT), prot))
  2032. return -ENOMEM;
  2033. } while (pud++, addr = next, addr != end);
  2034. return 0;
  2035. }
  2036. /**
  2037. * remap_pfn_range - remap kernel memory to userspace
  2038. * @vma: user vma to map to
  2039. * @addr: target user address to start at
  2040. * @pfn: physical address of kernel memory
  2041. * @size: size of map area
  2042. * @prot: page protection flags for this mapping
  2043. *
  2044. * Note: this is only safe if the mm semaphore is held when called.
  2045. */
  2046. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  2047. unsigned long pfn, unsigned long size, pgprot_t prot)
  2048. {
  2049. pgd_t *pgd;
  2050. unsigned long next;
  2051. unsigned long end = addr + PAGE_ALIGN(size);
  2052. struct mm_struct *mm = vma->vm_mm;
  2053. int err;
  2054. /*
  2055. * Physically remapped pages are special. Tell the
  2056. * rest of the world about it:
  2057. * VM_IO tells people not to look at these pages
  2058. * (accesses can have side effects).
  2059. * VM_PFNMAP tells the core MM that the base pages are just
  2060. * raw PFN mappings, and do not have a "struct page" associated
  2061. * with them.
  2062. * VM_DONTEXPAND
  2063. * Disable vma merging and expanding with mremap().
  2064. * VM_DONTDUMP
  2065. * Omit vma from core dump, even when VM_IO turned off.
  2066. *
  2067. * There's a horrible special case to handle copy-on-write
  2068. * behaviour that some programs depend on. We mark the "original"
  2069. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  2070. * See vm_normal_page() for details.
  2071. */
  2072. if (is_cow_mapping(vma->vm_flags)) {
  2073. if (addr != vma->vm_start || end != vma->vm_end)
  2074. return -EINVAL;
  2075. vma->vm_pgoff = pfn;
  2076. }
  2077. err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
  2078. if (err)
  2079. return -EINVAL;
  2080. vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
  2081. BUG_ON(addr >= end);
  2082. pfn -= addr >> PAGE_SHIFT;
  2083. pgd = pgd_offset(mm, addr);
  2084. flush_cache_range(vma, addr, end);
  2085. do {
  2086. next = pgd_addr_end(addr, end);
  2087. err = remap_pud_range(mm, pgd, addr, next,
  2088. pfn + (addr >> PAGE_SHIFT), prot);
  2089. if (err)
  2090. break;
  2091. } while (pgd++, addr = next, addr != end);
  2092. if (err)
  2093. untrack_pfn(vma, pfn, PAGE_ALIGN(size));
  2094. return err;
  2095. }
  2096. EXPORT_SYMBOL(remap_pfn_range);
  2097. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  2098. unsigned long addr, unsigned long end,
  2099. pte_fn_t fn, void *data)
  2100. {
  2101. pte_t *pte;
  2102. int err;
  2103. pgtable_t token;
  2104. spinlock_t *uninitialized_var(ptl);
  2105. pte = (mm == &init_mm) ?
  2106. pte_alloc_kernel(pmd, addr) :
  2107. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  2108. if (!pte)
  2109. return -ENOMEM;
  2110. BUG_ON(pmd_huge(*pmd));
  2111. arch_enter_lazy_mmu_mode();
  2112. token = pmd_pgtable(*pmd);
  2113. do {
  2114. err = fn(pte++, token, addr, data);
  2115. if (err)
  2116. break;
  2117. } while (addr += PAGE_SIZE, addr != end);
  2118. arch_leave_lazy_mmu_mode();
  2119. if (mm != &init_mm)
  2120. pte_unmap_unlock(pte-1, ptl);
  2121. return err;
  2122. }
  2123. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  2124. unsigned long addr, unsigned long end,
  2125. pte_fn_t fn, void *data)
  2126. {
  2127. pmd_t *pmd;
  2128. unsigned long next;
  2129. int err;
  2130. BUG_ON(pud_huge(*pud));
  2131. pmd = pmd_alloc(mm, pud, addr);
  2132. if (!pmd)
  2133. return -ENOMEM;
  2134. do {
  2135. next = pmd_addr_end(addr, end);
  2136. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  2137. if (err)
  2138. break;
  2139. } while (pmd++, addr = next, addr != end);
  2140. return err;
  2141. }
  2142. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  2143. unsigned long addr, unsigned long end,
  2144. pte_fn_t fn, void *data)
  2145. {
  2146. pud_t *pud;
  2147. unsigned long next;
  2148. int err;
  2149. pud = pud_alloc(mm, pgd, addr);
  2150. if (!pud)
  2151. return -ENOMEM;
  2152. do {
  2153. next = pud_addr_end(addr, end);
  2154. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  2155. if (err)
  2156. break;
  2157. } while (pud++, addr = next, addr != end);
  2158. return err;
  2159. }
  2160. /*
  2161. * Scan a region of virtual memory, filling in page tables as necessary
  2162. * and calling a provided function on each leaf page table.
  2163. */
  2164. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  2165. unsigned long size, pte_fn_t fn, void *data)
  2166. {
  2167. pgd_t *pgd;
  2168. unsigned long next;
  2169. unsigned long end = addr + size;
  2170. int err;
  2171. BUG_ON(addr >= end);
  2172. pgd = pgd_offset(mm, addr);
  2173. do {
  2174. next = pgd_addr_end(addr, end);
  2175. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  2176. if (err)
  2177. break;
  2178. } while (pgd++, addr = next, addr != end);
  2179. return err;
  2180. }
  2181. EXPORT_SYMBOL_GPL(apply_to_page_range);
  2182. /*
  2183. * handle_pte_fault chooses page fault handler according to an entry
  2184. * which was read non-atomically. Before making any commitment, on
  2185. * those architectures or configurations (e.g. i386 with PAE) which
  2186. * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
  2187. * must check under lock before unmapping the pte and proceeding
  2188. * (but do_wp_page is only called after already making such a check;
  2189. * and do_anonymous_page can safely check later on).
  2190. */
  2191. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  2192. pte_t *page_table, pte_t orig_pte)
  2193. {
  2194. int same = 1;
  2195. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  2196. if (sizeof(pte_t) > sizeof(unsigned long)) {
  2197. spinlock_t *ptl = pte_lockptr(mm, pmd);
  2198. spin_lock(ptl);
  2199. same = pte_same(*page_table, orig_pte);
  2200. spin_unlock(ptl);
  2201. }
  2202. #endif
  2203. pte_unmap(page_table);
  2204. return same;
  2205. }
  2206. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  2207. {
  2208. /*
  2209. * If the source page was a PFN mapping, we don't have
  2210. * a "struct page" for it. We do a best-effort copy by
  2211. * just copying from the original user address. If that
  2212. * fails, we just zero-fill it. Live with it.
  2213. */
  2214. if (unlikely(!src)) {
  2215. void *kaddr = kmap_atomic(dst);
  2216. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  2217. /*
  2218. * This really shouldn't fail, because the page is there
  2219. * in the page tables. But it might just be unreadable,
  2220. * in which case we just give up and fill the result with
  2221. * zeroes.
  2222. */
  2223. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  2224. clear_page(kaddr);
  2225. kunmap_atomic(kaddr);
  2226. flush_dcache_page(dst);
  2227. } else
  2228. copy_user_highpage(dst, src, va, vma);
  2229. }
  2230. /*
  2231. * This routine handles present pages, when users try to write
  2232. * to a shared page. It is done by copying the page to a new address
  2233. * and decrementing the shared-page counter for the old page.
  2234. *
  2235. * Note that this routine assumes that the protection checks have been
  2236. * done by the caller (the low-level page fault routine in most cases).
  2237. * Thus we can safely just mark it writable once we've done any necessary
  2238. * COW.
  2239. *
  2240. * We also mark the page dirty at this point even though the page will
  2241. * change only once the write actually happens. This avoids a few races,
  2242. * and potentially makes it more efficient.
  2243. *
  2244. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2245. * but allow concurrent faults), with pte both mapped and locked.
  2246. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2247. */
  2248. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2249. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2250. spinlock_t *ptl, pte_t orig_pte)
  2251. __releases(ptl)
  2252. {
  2253. struct page *old_page, *new_page = NULL;
  2254. pte_t entry;
  2255. int ret = 0;
  2256. int page_mkwrite = 0;
  2257. struct page *dirty_page = NULL;
  2258. unsigned long mmun_start = 0; /* For mmu_notifiers */
  2259. unsigned long mmun_end = 0; /* For mmu_notifiers */
  2260. old_page = vm_normal_page(vma, address, orig_pte);
  2261. if (!old_page) {
  2262. /*
  2263. * VM_MIXEDMAP !pfn_valid() case
  2264. *
  2265. * We should not cow pages in a shared writeable mapping.
  2266. * Just mark the pages writable as we can't do any dirty
  2267. * accounting on raw pfn maps.
  2268. */
  2269. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2270. (VM_WRITE|VM_SHARED))
  2271. goto reuse;
  2272. goto gotten;
  2273. }
  2274. /*
  2275. * Take out anonymous pages first, anonymous shared vmas are
  2276. * not dirty accountable.
  2277. */
  2278. if (PageAnon(old_page) && !PageKsm(old_page)) {
  2279. if (!trylock_page(old_page)) {
  2280. page_cache_get(old_page);
  2281. pte_unmap_unlock(page_table, ptl);
  2282. lock_page(old_page);
  2283. page_table = pte_offset_map_lock(mm, pmd, address,
  2284. &ptl);
  2285. if (!pte_same(*page_table, orig_pte)) {
  2286. unlock_page(old_page);
  2287. goto unlock;
  2288. }
  2289. page_cache_release(old_page);
  2290. }
  2291. if (reuse_swap_page(old_page)) {
  2292. /*
  2293. * The page is all ours. Move it to our anon_vma so
  2294. * the rmap code will not search our parent or siblings.
  2295. * Protected against the rmap code by the page lock.
  2296. */
  2297. page_move_anon_rmap(old_page, vma, address);
  2298. unlock_page(old_page);
  2299. goto reuse;
  2300. }
  2301. unlock_page(old_page);
  2302. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2303. (VM_WRITE|VM_SHARED))) {
  2304. /*
  2305. * Only catch write-faults on shared writable pages,
  2306. * read-only shared pages can get COWed by
  2307. * get_user_pages(.write=1, .force=1).
  2308. */
  2309. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  2310. struct vm_fault vmf;
  2311. int tmp;
  2312. vmf.virtual_address = (void __user *)(address &
  2313. PAGE_MASK);
  2314. vmf.pgoff = old_page->index;
  2315. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2316. vmf.page = old_page;
  2317. /*
  2318. * Notify the address space that the page is about to
  2319. * become writable so that it can prohibit this or wait
  2320. * for the page to get into an appropriate state.
  2321. *
  2322. * We do this without the lock held, so that it can
  2323. * sleep if it needs to.
  2324. */
  2325. page_cache_get(old_page);
  2326. pte_unmap_unlock(page_table, ptl);
  2327. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2328. if (unlikely(tmp &
  2329. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2330. ret = tmp;
  2331. goto unwritable_page;
  2332. }
  2333. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2334. lock_page(old_page);
  2335. if (!old_page->mapping) {
  2336. ret = 0; /* retry the fault */
  2337. unlock_page(old_page);
  2338. goto unwritable_page;
  2339. }
  2340. } else
  2341. VM_BUG_ON(!PageLocked(old_page));
  2342. /*
  2343. * Since we dropped the lock we need to revalidate
  2344. * the PTE as someone else may have changed it. If
  2345. * they did, we just return, as we can count on the
  2346. * MMU to tell us if they didn't also make it writable.
  2347. */
  2348. page_table = pte_offset_map_lock(mm, pmd, address,
  2349. &ptl);
  2350. if (!pte_same(*page_table, orig_pte)) {
  2351. unlock_page(old_page);
  2352. goto unlock;
  2353. }
  2354. page_mkwrite = 1;
  2355. }
  2356. dirty_page = old_page;
  2357. get_page(dirty_page);
  2358. reuse:
  2359. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2360. entry = pte_mkyoung(orig_pte);
  2361. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2362. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  2363. update_mmu_cache(vma, address, page_table);
  2364. pte_unmap_unlock(page_table, ptl);
  2365. ret |= VM_FAULT_WRITE;
  2366. if (!dirty_page)
  2367. return ret;
  2368. /*
  2369. * Yes, Virginia, this is actually required to prevent a race
  2370. * with clear_page_dirty_for_io() from clearing the page dirty
  2371. * bit after it clear all dirty ptes, but before a racing
  2372. * do_wp_page installs a dirty pte.
  2373. *
  2374. * __do_fault is protected similarly.
  2375. */
  2376. if (!page_mkwrite) {
  2377. wait_on_page_locked(dirty_page);
  2378. set_page_dirty_balance(dirty_page, page_mkwrite);
  2379. /* file_update_time outside page_lock */
  2380. if (vma->vm_file)
  2381. file_update_time(vma->vm_file);
  2382. }
  2383. put_page(dirty_page);
  2384. if (page_mkwrite) {
  2385. struct address_space *mapping = dirty_page->mapping;
  2386. set_page_dirty(dirty_page);
  2387. unlock_page(dirty_page);
  2388. page_cache_release(dirty_page);
  2389. if (mapping) {
  2390. /*
  2391. * Some device drivers do not set page.mapping
  2392. * but still dirty their pages
  2393. */
  2394. balance_dirty_pages_ratelimited(mapping);
  2395. }
  2396. }
  2397. return ret;
  2398. }
  2399. /*
  2400. * Ok, we need to copy. Oh, well..
  2401. */
  2402. page_cache_get(old_page);
  2403. gotten:
  2404. pte_unmap_unlock(page_table, ptl);
  2405. if (unlikely(anon_vma_prepare(vma)))
  2406. goto oom;
  2407. if (is_zero_pfn(pte_pfn(orig_pte))) {
  2408. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  2409. if (!new_page)
  2410. goto oom;
  2411. } else {
  2412. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2413. if (!new_page)
  2414. goto oom;
  2415. cow_user_page(new_page, old_page, address, vma);
  2416. }
  2417. __SetPageUptodate(new_page);
  2418. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  2419. goto oom_free_new;
  2420. mmun_start = address & PAGE_MASK;
  2421. mmun_end = mmun_start + PAGE_SIZE;
  2422. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2423. /*
  2424. * Re-check the pte - we dropped the lock
  2425. */
  2426. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2427. if (likely(pte_same(*page_table, orig_pte))) {
  2428. if (old_page) {
  2429. if (!PageAnon(old_page)) {
  2430. dec_mm_counter_fast(mm, MM_FILEPAGES);
  2431. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2432. }
  2433. } else
  2434. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2435. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2436. entry = mk_pte(new_page, vma->vm_page_prot);
  2437. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2438. /*
  2439. * Clear the pte entry and flush it first, before updating the
  2440. * pte with the new entry. This will avoid a race condition
  2441. * seen in the presence of one thread doing SMC and another
  2442. * thread doing COW.
  2443. */
  2444. ptep_clear_flush(vma, address, page_table);
  2445. page_add_new_anon_rmap(new_page, vma, address);
  2446. /*
  2447. * We call the notify macro here because, when using secondary
  2448. * mmu page tables (such as kvm shadow page tables), we want the
  2449. * new page to be mapped directly into the secondary page table.
  2450. */
  2451. set_pte_at_notify(mm, address, page_table, entry);
  2452. update_mmu_cache(vma, address, page_table);
  2453. if (old_page) {
  2454. /*
  2455. * Only after switching the pte to the new page may
  2456. * we remove the mapcount here. Otherwise another
  2457. * process may come and find the rmap count decremented
  2458. * before the pte is switched to the new page, and
  2459. * "reuse" the old page writing into it while our pte
  2460. * here still points into it and can be read by other
  2461. * threads.
  2462. *
  2463. * The critical issue is to order this
  2464. * page_remove_rmap with the ptp_clear_flush above.
  2465. * Those stores are ordered by (if nothing else,)
  2466. * the barrier present in the atomic_add_negative
  2467. * in page_remove_rmap.
  2468. *
  2469. * Then the TLB flush in ptep_clear_flush ensures that
  2470. * no process can access the old page before the
  2471. * decremented mapcount is visible. And the old page
  2472. * cannot be reused until after the decremented
  2473. * mapcount is visible. So transitively, TLBs to
  2474. * old page will be flushed before it can be reused.
  2475. */
  2476. page_remove_rmap(old_page);
  2477. }
  2478. /* Free the old page.. */
  2479. new_page = old_page;
  2480. ret |= VM_FAULT_WRITE;
  2481. } else
  2482. mem_cgroup_uncharge_page(new_page);
  2483. if (new_page)
  2484. page_cache_release(new_page);
  2485. unlock:
  2486. pte_unmap_unlock(page_table, ptl);
  2487. if (mmun_end > mmun_start)
  2488. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2489. if (old_page) {
  2490. /*
  2491. * Don't let another task, with possibly unlocked vma,
  2492. * keep the mlocked page.
  2493. */
  2494. if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
  2495. lock_page(old_page); /* LRU manipulation */
  2496. munlock_vma_page(old_page);
  2497. unlock_page(old_page);
  2498. }
  2499. page_cache_release(old_page);
  2500. }
  2501. return ret;
  2502. oom_free_new:
  2503. page_cache_release(new_page);
  2504. oom:
  2505. if (old_page) {
  2506. if (page_mkwrite) {
  2507. unlock_page(old_page);
  2508. page_cache_release(old_page);
  2509. }
  2510. page_cache_release(old_page);
  2511. }
  2512. return VM_FAULT_OOM;
  2513. unwritable_page:
  2514. page_cache_release(old_page);
  2515. return ret;
  2516. }
  2517. static void unmap_mapping_range_vma(struct vm_area_struct *vma,
  2518. unsigned long start_addr, unsigned long end_addr,
  2519. struct zap_details *details)
  2520. {
  2521. zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
  2522. }
  2523. static inline void unmap_mapping_range_tree(struct rb_root *root,
  2524. struct zap_details *details)
  2525. {
  2526. struct vm_area_struct *vma;
  2527. pgoff_t vba, vea, zba, zea;
  2528. vma_interval_tree_foreach(vma, root,
  2529. details->first_index, details->last_index) {
  2530. vba = vma->vm_pgoff;
  2531. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  2532. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2533. zba = details->first_index;
  2534. if (zba < vba)
  2535. zba = vba;
  2536. zea = details->last_index;
  2537. if (zea > vea)
  2538. zea = vea;
  2539. unmap_mapping_range_vma(vma,
  2540. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2541. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2542. details);
  2543. }
  2544. }
  2545. static inline void unmap_mapping_range_list(struct list_head *head,
  2546. struct zap_details *details)
  2547. {
  2548. struct vm_area_struct *vma;
  2549. /*
  2550. * In nonlinear VMAs there is no correspondence between virtual address
  2551. * offset and file offset. So we must perform an exhaustive search
  2552. * across *all* the pages in each nonlinear VMA, not just the pages
  2553. * whose virtual address lies outside the file truncation point.
  2554. */
  2555. list_for_each_entry(vma, head, shared.nonlinear) {
  2556. details->nonlinear_vma = vma;
  2557. unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
  2558. }
  2559. }
  2560. /**
  2561. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2562. * @mapping: the address space containing mmaps to be unmapped.
  2563. * @holebegin: byte in first page to unmap, relative to the start of
  2564. * the underlying file. This will be rounded down to a PAGE_SIZE
  2565. * boundary. Note that this is different from truncate_pagecache(), which
  2566. * must keep the partial page. In contrast, we must get rid of
  2567. * partial pages.
  2568. * @holelen: size of prospective hole in bytes. This will be rounded
  2569. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2570. * end of the file.
  2571. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2572. * but 0 when invalidating pagecache, don't throw away private data.
  2573. */
  2574. void unmap_mapping_range(struct address_space *mapping,
  2575. loff_t const holebegin, loff_t const holelen, int even_cows)
  2576. {
  2577. struct zap_details details;
  2578. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2579. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2580. /* Check for overflow. */
  2581. if (sizeof(holelen) > sizeof(hlen)) {
  2582. long long holeend =
  2583. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2584. if (holeend & ~(long long)ULONG_MAX)
  2585. hlen = ULONG_MAX - hba + 1;
  2586. }
  2587. details.check_mapping = even_cows? NULL: mapping;
  2588. details.nonlinear_vma = NULL;
  2589. details.first_index = hba;
  2590. details.last_index = hba + hlen - 1;
  2591. if (details.last_index < details.first_index)
  2592. details.last_index = ULONG_MAX;
  2593. mutex_lock(&mapping->i_mmap_mutex);
  2594. if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
  2595. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2596. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2597. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2598. mutex_unlock(&mapping->i_mmap_mutex);
  2599. }
  2600. EXPORT_SYMBOL(unmap_mapping_range);
  2601. /*
  2602. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2603. * but allow concurrent faults), and pte mapped but not yet locked.
  2604. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2605. */
  2606. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2607. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2608. unsigned int flags, pte_t orig_pte)
  2609. {
  2610. spinlock_t *ptl;
  2611. struct page *page, *swapcache = NULL;
  2612. swp_entry_t entry;
  2613. pte_t pte;
  2614. int locked;
  2615. struct mem_cgroup *ptr;
  2616. int exclusive = 0;
  2617. int ret = 0;
  2618. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2619. goto out;
  2620. entry = pte_to_swp_entry(orig_pte);
  2621. if (unlikely(non_swap_entry(entry))) {
  2622. if (is_migration_entry(entry)) {
  2623. migration_entry_wait(mm, pmd, address);
  2624. } else if (is_hwpoison_entry(entry)) {
  2625. ret = VM_FAULT_HWPOISON;
  2626. } else {
  2627. print_bad_pte(vma, address, orig_pte, NULL);
  2628. ret = VM_FAULT_SIGBUS;
  2629. }
  2630. goto out;
  2631. }
  2632. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2633. page = lookup_swap_cache(entry);
  2634. if (!page) {
  2635. page = swapin_readahead(entry,
  2636. GFP_HIGHUSER_MOVABLE, vma, address);
  2637. if (!page) {
  2638. /*
  2639. * Back out if somebody else faulted in this pte
  2640. * while we released the pte lock.
  2641. */
  2642. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2643. if (likely(pte_same(*page_table, orig_pte)))
  2644. ret = VM_FAULT_OOM;
  2645. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2646. goto unlock;
  2647. }
  2648. /* Had to read the page from swap area: Major fault */
  2649. ret = VM_FAULT_MAJOR;
  2650. count_vm_event(PGMAJFAULT);
  2651. mem_cgroup_count_vm_event(mm, PGMAJFAULT);
  2652. } else if (PageHWPoison(page)) {
  2653. /*
  2654. * hwpoisoned dirty swapcache pages are kept for killing
  2655. * owner processes (which may be unknown at hwpoison time)
  2656. */
  2657. ret = VM_FAULT_HWPOISON;
  2658. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2659. goto out_release;
  2660. }
  2661. locked = lock_page_or_retry(page, mm, flags);
  2662. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2663. if (!locked) {
  2664. ret |= VM_FAULT_RETRY;
  2665. goto out_release;
  2666. }
  2667. /*
  2668. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2669. * release the swapcache from under us. The page pin, and pte_same
  2670. * test below, are not enough to exclude that. Even if it is still
  2671. * swapcache, we need to check that the page's swap has not changed.
  2672. */
  2673. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2674. goto out_page;
  2675. if (ksm_might_need_to_copy(page, vma, address)) {
  2676. swapcache = page;
  2677. page = ksm_does_need_to_copy(page, vma, address);
  2678. if (unlikely(!page)) {
  2679. ret = VM_FAULT_OOM;
  2680. page = swapcache;
  2681. swapcache = NULL;
  2682. goto out_page;
  2683. }
  2684. }
  2685. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2686. ret = VM_FAULT_OOM;
  2687. goto out_page;
  2688. }
  2689. /*
  2690. * Back out if somebody else already faulted in this pte.
  2691. */
  2692. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2693. if (unlikely(!pte_same(*page_table, orig_pte)))
  2694. goto out_nomap;
  2695. if (unlikely(!PageUptodate(page))) {
  2696. ret = VM_FAULT_SIGBUS;
  2697. goto out_nomap;
  2698. }
  2699. /*
  2700. * The page isn't present yet, go ahead with the fault.
  2701. *
  2702. * Be careful about the sequence of operations here.
  2703. * To get its accounting right, reuse_swap_page() must be called
  2704. * while the page is counted on swap but not yet in mapcount i.e.
  2705. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2706. * must be called after the swap_free(), or it will never succeed.
  2707. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2708. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2709. * in page->private. In this case, a record in swap_cgroup is silently
  2710. * discarded at swap_free().
  2711. */
  2712. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2713. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2714. pte = mk_pte(page, vma->vm_page_prot);
  2715. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2716. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2717. flags &= ~FAULT_FLAG_WRITE;
  2718. ret |= VM_FAULT_WRITE;
  2719. exclusive = 1;
  2720. }
  2721. flush_icache_page(vma, page);
  2722. set_pte_at(mm, address, page_table, pte);
  2723. do_page_add_anon_rmap(page, vma, address, exclusive);
  2724. /* It's better to call commit-charge after rmap is established */
  2725. mem_cgroup_commit_charge_swapin(page, ptr);
  2726. swap_free(entry);
  2727. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2728. try_to_free_swap(page);
  2729. unlock_page(page);
  2730. if (swapcache) {
  2731. /*
  2732. * Hold the lock to avoid the swap entry to be reused
  2733. * until we take the PT lock for the pte_same() check
  2734. * (to avoid false positives from pte_same). For
  2735. * further safety release the lock after the swap_free
  2736. * so that the swap count won't change under a
  2737. * parallel locked swapcache.
  2738. */
  2739. unlock_page(swapcache);
  2740. page_cache_release(swapcache);
  2741. }
  2742. if (flags & FAULT_FLAG_WRITE) {
  2743. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2744. if (ret & VM_FAULT_ERROR)
  2745. ret &= VM_FAULT_ERROR;
  2746. goto out;
  2747. }
  2748. /* No need to invalidate - it was non-present before */
  2749. update_mmu_cache(vma, address, page_table);
  2750. unlock:
  2751. pte_unmap_unlock(page_table, ptl);
  2752. out:
  2753. return ret;
  2754. out_nomap:
  2755. mem_cgroup_cancel_charge_swapin(ptr);
  2756. pte_unmap_unlock(page_table, ptl);
  2757. out_page:
  2758. unlock_page(page);
  2759. out_release:
  2760. page_cache_release(page);
  2761. if (swapcache) {
  2762. unlock_page(swapcache);
  2763. page_cache_release(swapcache);
  2764. }
  2765. return ret;
  2766. }
  2767. /*
  2768. * This is like a special single-page "expand_{down|up}wards()",
  2769. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2770. * doesn't hit another vma.
  2771. */
  2772. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2773. {
  2774. address &= PAGE_MASK;
  2775. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2776. struct vm_area_struct *prev = vma->vm_prev;
  2777. /*
  2778. * Is there a mapping abutting this one below?
  2779. *
  2780. * That's only ok if it's the same stack mapping
  2781. * that has gotten split..
  2782. */
  2783. if (prev && prev->vm_end == address)
  2784. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2785. expand_downwards(vma, address - PAGE_SIZE);
  2786. }
  2787. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2788. struct vm_area_struct *next = vma->vm_next;
  2789. /* As VM_GROWSDOWN but s/below/above/ */
  2790. if (next && next->vm_start == address + PAGE_SIZE)
  2791. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2792. expand_upwards(vma, address + PAGE_SIZE);
  2793. }
  2794. return 0;
  2795. }
  2796. /*
  2797. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2798. * but allow concurrent faults), and pte mapped but not yet locked.
  2799. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2800. */
  2801. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2802. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2803. unsigned int flags)
  2804. {
  2805. struct page *page;
  2806. spinlock_t *ptl;
  2807. pte_t entry;
  2808. pte_unmap(page_table);
  2809. /* Check if we need to add a guard page to the stack */
  2810. if (check_stack_guard_page(vma, address) < 0)
  2811. return VM_FAULT_SIGBUS;
  2812. /* Use the zero-page for reads */
  2813. if (!(flags & FAULT_FLAG_WRITE)) {
  2814. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2815. vma->vm_page_prot));
  2816. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2817. if (!pte_none(*page_table))
  2818. goto unlock;
  2819. goto setpte;
  2820. }
  2821. /* Allocate our own private page. */
  2822. if (unlikely(anon_vma_prepare(vma)))
  2823. goto oom;
  2824. page = alloc_zeroed_user_highpage_movable(vma, address);
  2825. if (!page)
  2826. goto oom;
  2827. __SetPageUptodate(page);
  2828. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2829. goto oom_free_page;
  2830. entry = mk_pte(page, vma->vm_page_prot);
  2831. if (vma->vm_flags & VM_WRITE)
  2832. entry = pte_mkwrite(pte_mkdirty(entry));
  2833. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2834. if (!pte_none(*page_table))
  2835. goto release;
  2836. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2837. page_add_new_anon_rmap(page, vma, address);
  2838. setpte:
  2839. set_pte_at(mm, address, page_table, entry);
  2840. /* No need to invalidate - it was non-present before */
  2841. update_mmu_cache(vma, address, page_table);
  2842. unlock:
  2843. pte_unmap_unlock(page_table, ptl);
  2844. return 0;
  2845. release:
  2846. mem_cgroup_uncharge_page(page);
  2847. page_cache_release(page);
  2848. goto unlock;
  2849. oom_free_page:
  2850. page_cache_release(page);
  2851. oom:
  2852. return VM_FAULT_OOM;
  2853. }
  2854. /*
  2855. * __do_fault() tries to create a new page mapping. It aggressively
  2856. * tries to share with existing pages, but makes a separate copy if
  2857. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2858. * the next page fault.
  2859. *
  2860. * As this is called only for pages that do not currently exist, we
  2861. * do not need to flush old virtual caches or the TLB.
  2862. *
  2863. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2864. * but allow concurrent faults), and pte neither mapped nor locked.
  2865. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2866. */
  2867. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2868. unsigned long address, pmd_t *pmd,
  2869. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2870. {
  2871. pte_t *page_table;
  2872. spinlock_t *ptl;
  2873. struct page *page;
  2874. struct page *cow_page;
  2875. pte_t entry;
  2876. int anon = 0;
  2877. struct page *dirty_page = NULL;
  2878. struct vm_fault vmf;
  2879. int ret;
  2880. int page_mkwrite = 0;
  2881. /*
  2882. * If we do COW later, allocate page befor taking lock_page()
  2883. * on the file cache page. This will reduce lock holding time.
  2884. */
  2885. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
  2886. if (unlikely(anon_vma_prepare(vma)))
  2887. return VM_FAULT_OOM;
  2888. cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2889. if (!cow_page)
  2890. return VM_FAULT_OOM;
  2891. if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
  2892. page_cache_release(cow_page);
  2893. return VM_FAULT_OOM;
  2894. }
  2895. } else
  2896. cow_page = NULL;
  2897. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2898. vmf.pgoff = pgoff;
  2899. vmf.flags = flags;
  2900. vmf.page = NULL;
  2901. ret = vma->vm_ops->fault(vma, &vmf);
  2902. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
  2903. VM_FAULT_RETRY)))
  2904. goto uncharge_out;
  2905. if (unlikely(PageHWPoison(vmf.page))) {
  2906. if (ret & VM_FAULT_LOCKED)
  2907. unlock_page(vmf.page);
  2908. ret = VM_FAULT_HWPOISON;
  2909. goto uncharge_out;
  2910. }
  2911. /*
  2912. * For consistency in subsequent calls, make the faulted page always
  2913. * locked.
  2914. */
  2915. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2916. lock_page(vmf.page);
  2917. else
  2918. VM_BUG_ON(!PageLocked(vmf.page));
  2919. /*
  2920. * Should we do an early C-O-W break?
  2921. */
  2922. page = vmf.page;
  2923. if (flags & FAULT_FLAG_WRITE) {
  2924. if (!(vma->vm_flags & VM_SHARED)) {
  2925. page = cow_page;
  2926. anon = 1;
  2927. copy_user_highpage(page, vmf.page, address, vma);
  2928. __SetPageUptodate(page);
  2929. } else {
  2930. /*
  2931. * If the page will be shareable, see if the backing
  2932. * address space wants to know that the page is about
  2933. * to become writable
  2934. */
  2935. if (vma->vm_ops->page_mkwrite) {
  2936. int tmp;
  2937. unlock_page(page);
  2938. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2939. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2940. if (unlikely(tmp &
  2941. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2942. ret = tmp;
  2943. goto unwritable_page;
  2944. }
  2945. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2946. lock_page(page);
  2947. if (!page->mapping) {
  2948. ret = 0; /* retry the fault */
  2949. unlock_page(page);
  2950. goto unwritable_page;
  2951. }
  2952. } else
  2953. VM_BUG_ON(!PageLocked(page));
  2954. page_mkwrite = 1;
  2955. }
  2956. }
  2957. }
  2958. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2959. /*
  2960. * This silly early PAGE_DIRTY setting removes a race
  2961. * due to the bad i386 page protection. But it's valid
  2962. * for other architectures too.
  2963. *
  2964. * Note that if FAULT_FLAG_WRITE is set, we either now have
  2965. * an exclusive copy of the page, or this is a shared mapping,
  2966. * so we can make it writable and dirty to avoid having to
  2967. * handle that later.
  2968. */
  2969. /* Only go through if we didn't race with anybody else... */
  2970. if (likely(pte_same(*page_table, orig_pte))) {
  2971. flush_icache_page(vma, page);
  2972. entry = mk_pte(page, vma->vm_page_prot);
  2973. if (flags & FAULT_FLAG_WRITE)
  2974. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2975. if (anon) {
  2976. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2977. page_add_new_anon_rmap(page, vma, address);
  2978. } else {
  2979. inc_mm_counter_fast(mm, MM_FILEPAGES);
  2980. page_add_file_rmap(page);
  2981. if (flags & FAULT_FLAG_WRITE) {
  2982. dirty_page = page;
  2983. get_page(dirty_page);
  2984. }
  2985. }
  2986. set_pte_at(mm, address, page_table, entry);
  2987. /* no need to invalidate: a not-present page won't be cached */
  2988. update_mmu_cache(vma, address, page_table);
  2989. } else {
  2990. if (cow_page)
  2991. mem_cgroup_uncharge_page(cow_page);
  2992. if (anon)
  2993. page_cache_release(page);
  2994. else
  2995. anon = 1; /* no anon but release faulted_page */
  2996. }
  2997. pte_unmap_unlock(page_table, ptl);
  2998. if (dirty_page) {
  2999. struct address_space *mapping = page->mapping;
  3000. int dirtied = 0;
  3001. if (set_page_dirty(dirty_page))
  3002. dirtied = 1;
  3003. unlock_page(dirty_page);
  3004. put_page(dirty_page);
  3005. if ((dirtied || page_mkwrite) && mapping) {
  3006. /*
  3007. * Some device drivers do not set page.mapping but still
  3008. * dirty their pages
  3009. */
  3010. balance_dirty_pages_ratelimited(mapping);
  3011. }
  3012. /* file_update_time outside page_lock */
  3013. if (vma->vm_file && !page_mkwrite)
  3014. file_update_time(vma->vm_file);
  3015. } else {
  3016. unlock_page(vmf.page);
  3017. if (anon)
  3018. page_cache_release(vmf.page);
  3019. }
  3020. return ret;
  3021. unwritable_page:
  3022. page_cache_release(page);
  3023. return ret;
  3024. uncharge_out:
  3025. /* fs's fault handler get error */
  3026. if (cow_page) {
  3027. mem_cgroup_uncharge_page(cow_page);
  3028. page_cache_release(cow_page);
  3029. }
  3030. return ret;
  3031. }
  3032. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3033. unsigned long address, pte_t *page_table, pmd_t *pmd,
  3034. unsigned int flags, pte_t orig_pte)
  3035. {
  3036. pgoff_t pgoff = (((address & PAGE_MASK)
  3037. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  3038. pte_unmap(page_table);
  3039. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  3040. }
  3041. /*
  3042. * Fault of a previously existing named mapping. Repopulate the pte
  3043. * from the encoded file_pte if possible. This enables swappable
  3044. * nonlinear vmas.
  3045. *
  3046. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  3047. * but allow concurrent faults), and pte mapped but not yet locked.
  3048. * We return with mmap_sem still held, but pte unmapped and unlocked.
  3049. */
  3050. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3051. unsigned long address, pte_t *page_table, pmd_t *pmd,
  3052. unsigned int flags, pte_t orig_pte)
  3053. {
  3054. pgoff_t pgoff;
  3055. flags |= FAULT_FLAG_NONLINEAR;
  3056. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  3057. return 0;
  3058. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  3059. /*
  3060. * Page table corrupted: show pte and kill process.
  3061. */
  3062. print_bad_pte(vma, address, orig_pte, NULL);
  3063. return VM_FAULT_SIGBUS;
  3064. }
  3065. pgoff = pte_to_pgoff(orig_pte);
  3066. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  3067. }
  3068. /*
  3069. * These routines also need to handle stuff like marking pages dirty
  3070. * and/or accessed for architectures that don't do it in hardware (most
  3071. * RISC architectures). The early dirtying is also good on the i386.
  3072. *
  3073. * There is also a hook called "update_mmu_cache()" that architectures
  3074. * with external mmu caches can use to update those (ie the Sparc or
  3075. * PowerPC hashed page tables that act as extended TLBs).
  3076. *
  3077. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  3078. * but allow concurrent faults), and pte mapped but not yet locked.
  3079. * We return with mmap_sem still held, but pte unmapped and unlocked.
  3080. */
  3081. int handle_pte_fault(struct mm_struct *mm,
  3082. struct vm_area_struct *vma, unsigned long address,
  3083. pte_t *pte, pmd_t *pmd, unsigned int flags)
  3084. {
  3085. pte_t entry;
  3086. spinlock_t *ptl;
  3087. entry = *pte;
  3088. if (!pte_present(entry)) {
  3089. if (pte_none(entry)) {
  3090. if (vma->vm_ops) {
  3091. if (likely(vma->vm_ops->fault))
  3092. return do_linear_fault(mm, vma, address,
  3093. pte, pmd, flags, entry);
  3094. }
  3095. return do_anonymous_page(mm, vma, address,
  3096. pte, pmd, flags);
  3097. }
  3098. if (pte_file(entry))
  3099. return do_nonlinear_fault(mm, vma, address,
  3100. pte, pmd, flags, entry);
  3101. return do_swap_page(mm, vma, address,
  3102. pte, pmd, flags, entry);
  3103. }
  3104. ptl = pte_lockptr(mm, pmd);
  3105. spin_lock(ptl);
  3106. if (unlikely(!pte_same(*pte, entry)))
  3107. goto unlock;
  3108. if (flags & FAULT_FLAG_WRITE) {
  3109. if (!pte_write(entry))
  3110. return do_wp_page(mm, vma, address,
  3111. pte, pmd, ptl, entry);
  3112. entry = pte_mkdirty(entry);
  3113. }
  3114. entry = pte_mkyoung(entry);
  3115. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  3116. update_mmu_cache(vma, address, pte);
  3117. } else {
  3118. /*
  3119. * This is needed only for protection faults but the arch code
  3120. * is not yet telling us if this is a protection fault or not.
  3121. * This still avoids useless tlb flushes for .text page faults
  3122. * with threads.
  3123. */
  3124. if (flags & FAULT_FLAG_WRITE)
  3125. flush_tlb_fix_spurious_fault(vma, address);
  3126. }
  3127. unlock:
  3128. pte_unmap_unlock(pte, ptl);
  3129. return 0;
  3130. }
  3131. /*
  3132. * By the time we get here, we already hold the mm semaphore
  3133. */
  3134. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3135. unsigned long address, unsigned int flags)
  3136. {
  3137. pgd_t *pgd;
  3138. pud_t *pud;
  3139. pmd_t *pmd;
  3140. pte_t *pte;
  3141. __set_current_state(TASK_RUNNING);
  3142. count_vm_event(PGFAULT);
  3143. mem_cgroup_count_vm_event(mm, PGFAULT);
  3144. /* do counter updates before entering really critical section. */
  3145. check_sync_rss_stat(current);
  3146. if (unlikely(is_vm_hugetlb_page(vma)))
  3147. return hugetlb_fault(mm, vma, address, flags);
  3148. retry:
  3149. pgd = pgd_offset(mm, address);
  3150. pud = pud_alloc(mm, pgd, address);
  3151. if (!pud)
  3152. return VM_FAULT_OOM;
  3153. pmd = pmd_alloc(mm, pud, address);
  3154. if (!pmd)
  3155. return VM_FAULT_OOM;
  3156. if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
  3157. if (!vma->vm_ops)
  3158. return do_huge_pmd_anonymous_page(mm, vma, address,
  3159. pmd, flags);
  3160. } else {
  3161. pmd_t orig_pmd = *pmd;
  3162. int ret;
  3163. barrier();
  3164. if (pmd_trans_huge(orig_pmd)) {
  3165. unsigned int dirty = flags & FAULT_FLAG_WRITE;
  3166. if (dirty && !pmd_write(orig_pmd) &&
  3167. !pmd_trans_splitting(orig_pmd)) {
  3168. ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
  3169. orig_pmd);
  3170. /*
  3171. * If COW results in an oom, the huge pmd will
  3172. * have been split, so retry the fault on the
  3173. * pte for a smaller charge.
  3174. */
  3175. if (unlikely(ret & VM_FAULT_OOM))
  3176. goto retry;
  3177. return ret;
  3178. } else {
  3179. huge_pmd_set_accessed(mm, vma, address, pmd,
  3180. orig_pmd, dirty);
  3181. }
  3182. return 0;
  3183. }
  3184. }
  3185. /*
  3186. * Use __pte_alloc instead of pte_alloc_map, because we can't
  3187. * run pte_offset_map on the pmd, if an huge pmd could
  3188. * materialize from under us from a different thread.
  3189. */
  3190. if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
  3191. return VM_FAULT_OOM;
  3192. /* if an huge pmd materialized from under us just retry later */
  3193. if (unlikely(pmd_trans_huge(*pmd)))
  3194. return 0;
  3195. /*
  3196. * A regular pmd is established and it can't morph into a huge pmd
  3197. * from under us anymore at this point because we hold the mmap_sem
  3198. * read mode and khugepaged takes it in write mode. So now it's
  3199. * safe to run pte_offset_map().
  3200. */
  3201. pte = pte_offset_map(pmd, address);
  3202. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  3203. }
  3204. #ifndef __PAGETABLE_PUD_FOLDED
  3205. /*
  3206. * Allocate page upper directory.
  3207. * We've already handled the fast-path in-line.
  3208. */
  3209. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  3210. {
  3211. pud_t *new = pud_alloc_one(mm, address);
  3212. if (!new)
  3213. return -ENOMEM;
  3214. smp_wmb(); /* See comment in __pte_alloc */
  3215. spin_lock(&mm->page_table_lock);
  3216. if (pgd_present(*pgd)) /* Another has populated it */
  3217. pud_free(mm, new);
  3218. else
  3219. pgd_populate(mm, pgd, new);
  3220. spin_unlock(&mm->page_table_lock);
  3221. return 0;
  3222. }
  3223. #endif /* __PAGETABLE_PUD_FOLDED */
  3224. #ifndef __PAGETABLE_PMD_FOLDED
  3225. /*
  3226. * Allocate page middle directory.
  3227. * We've already handled the fast-path in-line.
  3228. */
  3229. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  3230. {
  3231. pmd_t *new = pmd_alloc_one(mm, address);
  3232. if (!new)
  3233. return -ENOMEM;
  3234. smp_wmb(); /* See comment in __pte_alloc */
  3235. spin_lock(&mm->page_table_lock);
  3236. #ifndef __ARCH_HAS_4LEVEL_HACK
  3237. if (pud_present(*pud)) /* Another has populated it */
  3238. pmd_free(mm, new);
  3239. else
  3240. pud_populate(mm, pud, new);
  3241. #else
  3242. if (pgd_present(*pud)) /* Another has populated it */
  3243. pmd_free(mm, new);
  3244. else
  3245. pgd_populate(mm, pud, new);
  3246. #endif /* __ARCH_HAS_4LEVEL_HACK */
  3247. spin_unlock(&mm->page_table_lock);
  3248. return 0;
  3249. }
  3250. #endif /* __PAGETABLE_PMD_FOLDED */
  3251. int make_pages_present(unsigned long addr, unsigned long end)
  3252. {
  3253. int ret, len, write;
  3254. struct vm_area_struct * vma;
  3255. vma = find_vma(current->mm, addr);
  3256. if (!vma)
  3257. return -ENOMEM;
  3258. /*
  3259. * We want to touch writable mappings with a write fault in order
  3260. * to break COW, except for shared mappings because these don't COW
  3261. * and we would not want to dirty them for nothing.
  3262. */
  3263. write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
  3264. BUG_ON(addr >= end);
  3265. BUG_ON(end > vma->vm_end);
  3266. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  3267. ret = get_user_pages(current, current->mm, addr,
  3268. len, write, 0, NULL, NULL);
  3269. if (ret < 0)
  3270. return ret;
  3271. return ret == len ? 0 : -EFAULT;
  3272. }
  3273. #if !defined(__HAVE_ARCH_GATE_AREA)
  3274. #if defined(AT_SYSINFO_EHDR)
  3275. static struct vm_area_struct gate_vma;
  3276. static int __init gate_vma_init(void)
  3277. {
  3278. gate_vma.vm_mm = NULL;
  3279. gate_vma.vm_start = FIXADDR_USER_START;
  3280. gate_vma.vm_end = FIXADDR_USER_END;
  3281. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  3282. gate_vma.vm_page_prot = __P101;
  3283. return 0;
  3284. }
  3285. __initcall(gate_vma_init);
  3286. #endif
  3287. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  3288. {
  3289. #ifdef AT_SYSINFO_EHDR
  3290. return &gate_vma;
  3291. #else
  3292. return NULL;
  3293. #endif
  3294. }
  3295. int in_gate_area_no_mm(unsigned long addr)
  3296. {
  3297. #ifdef AT_SYSINFO_EHDR
  3298. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  3299. return 1;
  3300. #endif
  3301. return 0;
  3302. }
  3303. #endif /* __HAVE_ARCH_GATE_AREA */
  3304. static int __follow_pte(struct mm_struct *mm, unsigned long address,
  3305. pte_t **ptepp, spinlock_t **ptlp)
  3306. {
  3307. pgd_t *pgd;
  3308. pud_t *pud;
  3309. pmd_t *pmd;
  3310. pte_t *ptep;
  3311. pgd = pgd_offset(mm, address);
  3312. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3313. goto out;
  3314. pud = pud_offset(pgd, address);
  3315. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3316. goto out;
  3317. pmd = pmd_offset(pud, address);
  3318. VM_BUG_ON(pmd_trans_huge(*pmd));
  3319. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3320. goto out;
  3321. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3322. if (pmd_huge(*pmd))
  3323. goto out;
  3324. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3325. if (!ptep)
  3326. goto out;
  3327. if (!pte_present(*ptep))
  3328. goto unlock;
  3329. *ptepp = ptep;
  3330. return 0;
  3331. unlock:
  3332. pte_unmap_unlock(ptep, *ptlp);
  3333. out:
  3334. return -EINVAL;
  3335. }
  3336. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3337. pte_t **ptepp, spinlock_t **ptlp)
  3338. {
  3339. int res;
  3340. /* (void) is needed to make gcc happy */
  3341. (void) __cond_lock(*ptlp,
  3342. !(res = __follow_pte(mm, address, ptepp, ptlp)));
  3343. return res;
  3344. }
  3345. /**
  3346. * follow_pfn - look up PFN at a user virtual address
  3347. * @vma: memory mapping
  3348. * @address: user virtual address
  3349. * @pfn: location to store found PFN
  3350. *
  3351. * Only IO mappings and raw PFN mappings are allowed.
  3352. *
  3353. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3354. */
  3355. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3356. unsigned long *pfn)
  3357. {
  3358. int ret = -EINVAL;
  3359. spinlock_t *ptl;
  3360. pte_t *ptep;
  3361. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3362. return ret;
  3363. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3364. if (ret)
  3365. return ret;
  3366. *pfn = pte_pfn(*ptep);
  3367. pte_unmap_unlock(ptep, ptl);
  3368. return 0;
  3369. }
  3370. EXPORT_SYMBOL(follow_pfn);
  3371. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3372. int follow_phys(struct vm_area_struct *vma,
  3373. unsigned long address, unsigned int flags,
  3374. unsigned long *prot, resource_size_t *phys)
  3375. {
  3376. int ret = -EINVAL;
  3377. pte_t *ptep, pte;
  3378. spinlock_t *ptl;
  3379. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3380. goto out;
  3381. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3382. goto out;
  3383. pte = *ptep;
  3384. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3385. goto unlock;
  3386. *prot = pgprot_val(pte_pgprot(pte));
  3387. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3388. ret = 0;
  3389. unlock:
  3390. pte_unmap_unlock(ptep, ptl);
  3391. out:
  3392. return ret;
  3393. }
  3394. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3395. void *buf, int len, int write)
  3396. {
  3397. resource_size_t phys_addr;
  3398. unsigned long prot = 0;
  3399. void __iomem *maddr;
  3400. int offset = addr & (PAGE_SIZE-1);
  3401. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3402. return -EINVAL;
  3403. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  3404. if (write)
  3405. memcpy_toio(maddr + offset, buf, len);
  3406. else
  3407. memcpy_fromio(buf, maddr + offset, len);
  3408. iounmap(maddr);
  3409. return len;
  3410. }
  3411. #endif
  3412. /*
  3413. * Access another process' address space as given in mm. If non-NULL, use the
  3414. * given task for page fault accounting.
  3415. */
  3416. static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  3417. unsigned long addr, void *buf, int len, int write)
  3418. {
  3419. struct vm_area_struct *vma;
  3420. void *old_buf = buf;
  3421. down_read(&mm->mmap_sem);
  3422. /* ignore errors, just check how much was successfully transferred */
  3423. while (len) {
  3424. int bytes, ret, offset;
  3425. void *maddr;
  3426. struct page *page = NULL;
  3427. ret = get_user_pages(tsk, mm, addr, 1,
  3428. write, 1, &page, &vma);
  3429. if (ret <= 0) {
  3430. /*
  3431. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3432. * we can access using slightly different code.
  3433. */
  3434. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3435. vma = find_vma(mm, addr);
  3436. if (!vma || vma->vm_start > addr)
  3437. break;
  3438. if (vma->vm_ops && vma->vm_ops->access)
  3439. ret = vma->vm_ops->access(vma, addr, buf,
  3440. len, write);
  3441. if (ret <= 0)
  3442. #endif
  3443. break;
  3444. bytes = ret;
  3445. } else {
  3446. bytes = len;
  3447. offset = addr & (PAGE_SIZE-1);
  3448. if (bytes > PAGE_SIZE-offset)
  3449. bytes = PAGE_SIZE-offset;
  3450. maddr = kmap(page);
  3451. if (write) {
  3452. copy_to_user_page(vma, page, addr,
  3453. maddr + offset, buf, bytes);
  3454. set_page_dirty_lock(page);
  3455. } else {
  3456. copy_from_user_page(vma, page, addr,
  3457. buf, maddr + offset, bytes);
  3458. }
  3459. kunmap(page);
  3460. page_cache_release(page);
  3461. }
  3462. len -= bytes;
  3463. buf += bytes;
  3464. addr += bytes;
  3465. }
  3466. up_read(&mm->mmap_sem);
  3467. return buf - old_buf;
  3468. }
  3469. /**
  3470. * access_remote_vm - access another process' address space
  3471. * @mm: the mm_struct of the target address space
  3472. * @addr: start address to access
  3473. * @buf: source or destination buffer
  3474. * @len: number of bytes to transfer
  3475. * @write: whether the access is a write
  3476. *
  3477. * The caller must hold a reference on @mm.
  3478. */
  3479. int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  3480. void *buf, int len, int write)
  3481. {
  3482. return __access_remote_vm(NULL, mm, addr, buf, len, write);
  3483. }
  3484. /*
  3485. * Access another process' address space.
  3486. * Source/target buffer must be kernel space,
  3487. * Do not walk the page table directly, use get_user_pages
  3488. */
  3489. int access_process_vm(struct task_struct *tsk, unsigned long addr,
  3490. void *buf, int len, int write)
  3491. {
  3492. struct mm_struct *mm;
  3493. int ret;
  3494. mm = get_task_mm(tsk);
  3495. if (!mm)
  3496. return 0;
  3497. ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
  3498. mmput(mm);
  3499. return ret;
  3500. }
  3501. /*
  3502. * Print the name of a VMA.
  3503. */
  3504. void print_vma_addr(char *prefix, unsigned long ip)
  3505. {
  3506. struct mm_struct *mm = current->mm;
  3507. struct vm_area_struct *vma;
  3508. /*
  3509. * Do not print if we are in atomic
  3510. * contexts (in exception stacks, etc.):
  3511. */
  3512. if (preempt_count())
  3513. return;
  3514. down_read(&mm->mmap_sem);
  3515. vma = find_vma(mm, ip);
  3516. if (vma && vma->vm_file) {
  3517. struct file *f = vma->vm_file;
  3518. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3519. if (buf) {
  3520. char *p, *s;
  3521. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3522. if (IS_ERR(p))
  3523. p = "?";
  3524. s = strrchr(p, '/');
  3525. if (s)
  3526. p = s+1;
  3527. printk("%s%s[%lx+%lx]", prefix, p,
  3528. vma->vm_start,
  3529. vma->vm_end - vma->vm_start);
  3530. free_page((unsigned long)buf);
  3531. }
  3532. }
  3533. up_read(&mm->mmap_sem);
  3534. }
  3535. #ifdef CONFIG_PROVE_LOCKING
  3536. void might_fault(void)
  3537. {
  3538. /*
  3539. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3540. * holding the mmap_sem, this is safe because kernel memory doesn't
  3541. * get paged out, therefore we'll never actually fault, and the
  3542. * below annotations will generate false positives.
  3543. */
  3544. if (segment_eq(get_fs(), KERNEL_DS))
  3545. return;
  3546. might_sleep();
  3547. /*
  3548. * it would be nicer only to annotate paths which are not under
  3549. * pagefault_disable, however that requires a larger audit and
  3550. * providing helpers like get_user_atomic.
  3551. */
  3552. if (!in_atomic() && current->mm)
  3553. might_lock_read(&current->mm->mmap_sem);
  3554. }
  3555. EXPORT_SYMBOL(might_fault);
  3556. #endif
  3557. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  3558. static void clear_gigantic_page(struct page *page,
  3559. unsigned long addr,
  3560. unsigned int pages_per_huge_page)
  3561. {
  3562. int i;
  3563. struct page *p = page;
  3564. might_sleep();
  3565. for (i = 0; i < pages_per_huge_page;
  3566. i++, p = mem_map_next(p, page, i)) {
  3567. cond_resched();
  3568. clear_user_highpage(p, addr + i * PAGE_SIZE);
  3569. }
  3570. }
  3571. void clear_huge_page(struct page *page,
  3572. unsigned long addr, unsigned int pages_per_huge_page)
  3573. {
  3574. int i;
  3575. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3576. clear_gigantic_page(page, addr, pages_per_huge_page);
  3577. return;
  3578. }
  3579. might_sleep();
  3580. for (i = 0; i < pages_per_huge_page; i++) {
  3581. cond_resched();
  3582. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  3583. }
  3584. }
  3585. static void copy_user_gigantic_page(struct page *dst, struct page *src,
  3586. unsigned long addr,
  3587. struct vm_area_struct *vma,
  3588. unsigned int pages_per_huge_page)
  3589. {
  3590. int i;
  3591. struct page *dst_base = dst;
  3592. struct page *src_base = src;
  3593. for (i = 0; i < pages_per_huge_page; ) {
  3594. cond_resched();
  3595. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  3596. i++;
  3597. dst = mem_map_next(dst, dst_base, i);
  3598. src = mem_map_next(src, src_base, i);
  3599. }
  3600. }
  3601. void copy_user_huge_page(struct page *dst, struct page *src,
  3602. unsigned long addr, struct vm_area_struct *vma,
  3603. unsigned int pages_per_huge_page)
  3604. {
  3605. int i;
  3606. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3607. copy_user_gigantic_page(dst, src, addr, vma,
  3608. pages_per_huge_page);
  3609. return;
  3610. }
  3611. might_sleep();
  3612. for (i = 0; i < pages_per_huge_page; i++) {
  3613. cond_resched();
  3614. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  3615. }
  3616. }
  3617. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */