sched.c 165 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/smp.h>
  47. #include <linux/threads.h>
  48. #include <linux/timer.h>
  49. #include <linux/rcupdate.h>
  50. #include <linux/cpu.h>
  51. #include <linux/cpuset.h>
  52. #include <linux/percpu.h>
  53. #include <linux/kthread.h>
  54. #include <linux/seq_file.h>
  55. #include <linux/sysctl.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/times.h>
  58. #include <linux/tsacct_kern.h>
  59. #include <linux/kprobes.h>
  60. #include <linux/delayacct.h>
  61. #include <linux/reciprocal_div.h>
  62. #include <linux/unistd.h>
  63. #include <asm/tlb.h>
  64. /*
  65. * Scheduler clock - returns current time in nanosec units.
  66. * This is default implementation.
  67. * Architectures and sub-architectures can override this.
  68. */
  69. unsigned long long __attribute__((weak)) sched_clock(void)
  70. {
  71. return (unsigned long long)jiffies * (1000000000 / HZ);
  72. }
  73. /*
  74. * Convert user-nice values [ -20 ... 0 ... 19 ]
  75. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  76. * and back.
  77. */
  78. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  79. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  80. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  81. /*
  82. * 'User priority' is the nice value converted to something we
  83. * can work with better when scaling various scheduler parameters,
  84. * it's a [ 0 ... 39 ] range.
  85. */
  86. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  87. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  88. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  89. /*
  90. * Some helpers for converting nanosecond timing to jiffy resolution
  91. */
  92. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  93. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  94. #define NICE_0_LOAD SCHED_LOAD_SCALE
  95. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  96. /*
  97. * These are the 'tuning knobs' of the scheduler:
  98. *
  99. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  100. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  101. * Timeslices get refilled after they expire.
  102. */
  103. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  104. #define DEF_TIMESLICE (100 * HZ / 1000)
  105. #ifdef CONFIG_SMP
  106. /*
  107. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  108. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  109. */
  110. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  111. {
  112. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  113. }
  114. /*
  115. * Each time a sched group cpu_power is changed,
  116. * we must compute its reciprocal value
  117. */
  118. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  119. {
  120. sg->__cpu_power += val;
  121. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  122. }
  123. #endif
  124. #define SCALE_PRIO(x, prio) \
  125. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  126. /*
  127. * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  128. * to time slice values: [800ms ... 100ms ... 5ms]
  129. */
  130. static unsigned int static_prio_timeslice(int static_prio)
  131. {
  132. if (static_prio == NICE_TO_PRIO(19))
  133. return 1;
  134. if (static_prio < NICE_TO_PRIO(0))
  135. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  136. else
  137. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  138. }
  139. static inline int rt_policy(int policy)
  140. {
  141. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  142. return 1;
  143. return 0;
  144. }
  145. static inline int task_has_rt_policy(struct task_struct *p)
  146. {
  147. return rt_policy(p->policy);
  148. }
  149. /*
  150. * This is the priority-queue data structure of the RT scheduling class:
  151. */
  152. struct rt_prio_array {
  153. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  154. struct list_head queue[MAX_RT_PRIO];
  155. };
  156. struct load_stat {
  157. struct load_weight load;
  158. u64 load_update_start, load_update_last;
  159. unsigned long delta_fair, delta_exec, delta_stat;
  160. };
  161. /* CFS-related fields in a runqueue */
  162. struct cfs_rq {
  163. struct load_weight load;
  164. unsigned long nr_running;
  165. s64 fair_clock;
  166. u64 exec_clock;
  167. s64 wait_runtime;
  168. u64 sleeper_bonus;
  169. unsigned long wait_runtime_overruns, wait_runtime_underruns;
  170. struct rb_root tasks_timeline;
  171. struct rb_node *rb_leftmost;
  172. struct rb_node *rb_load_balance_curr;
  173. #ifdef CONFIG_FAIR_GROUP_SCHED
  174. /* 'curr' points to currently running entity on this cfs_rq.
  175. * It is set to NULL otherwise (i.e when none are currently running).
  176. */
  177. struct sched_entity *curr;
  178. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  179. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  180. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  181. * (like users, containers etc.)
  182. *
  183. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  184. * list is used during load balance.
  185. */
  186. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  187. #endif
  188. };
  189. /* Real-Time classes' related field in a runqueue: */
  190. struct rt_rq {
  191. struct rt_prio_array active;
  192. int rt_load_balance_idx;
  193. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  194. };
  195. /*
  196. * This is the main, per-CPU runqueue data structure.
  197. *
  198. * Locking rule: those places that want to lock multiple runqueues
  199. * (such as the load balancing or the thread migration code), lock
  200. * acquire operations must be ordered by ascending &runqueue.
  201. */
  202. struct rq {
  203. spinlock_t lock; /* runqueue lock */
  204. /*
  205. * nr_running and cpu_load should be in the same cacheline because
  206. * remote CPUs use both these fields when doing load calculation.
  207. */
  208. unsigned long nr_running;
  209. #define CPU_LOAD_IDX_MAX 5
  210. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  211. unsigned char idle_at_tick;
  212. #ifdef CONFIG_NO_HZ
  213. unsigned char in_nohz_recently;
  214. #endif
  215. struct load_stat ls; /* capture load from *all* tasks on this cpu */
  216. unsigned long nr_load_updates;
  217. u64 nr_switches;
  218. struct cfs_rq cfs;
  219. #ifdef CONFIG_FAIR_GROUP_SCHED
  220. struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
  221. #endif
  222. struct rt_rq rt;
  223. /*
  224. * This is part of a global counter where only the total sum
  225. * over all CPUs matters. A task can increase this counter on
  226. * one CPU and if it got migrated afterwards it may decrease
  227. * it on another CPU. Always updated under the runqueue lock:
  228. */
  229. unsigned long nr_uninterruptible;
  230. struct task_struct *curr, *idle;
  231. unsigned long next_balance;
  232. struct mm_struct *prev_mm;
  233. u64 clock, prev_clock_raw;
  234. s64 clock_max_delta;
  235. unsigned int clock_warps, clock_overflows;
  236. unsigned int clock_unstable_events;
  237. atomic_t nr_iowait;
  238. #ifdef CONFIG_SMP
  239. struct sched_domain *sd;
  240. /* For active balancing */
  241. int active_balance;
  242. int push_cpu;
  243. int cpu; /* cpu of this runqueue */
  244. struct task_struct *migration_thread;
  245. struct list_head migration_queue;
  246. #endif
  247. #ifdef CONFIG_SCHEDSTATS
  248. /* latency stats */
  249. struct sched_info rq_sched_info;
  250. /* sys_sched_yield() stats */
  251. unsigned long yld_exp_empty;
  252. unsigned long yld_act_empty;
  253. unsigned long yld_both_empty;
  254. unsigned long yld_cnt;
  255. /* schedule() stats */
  256. unsigned long sched_switch;
  257. unsigned long sched_cnt;
  258. unsigned long sched_goidle;
  259. /* try_to_wake_up() stats */
  260. unsigned long ttwu_cnt;
  261. unsigned long ttwu_local;
  262. #endif
  263. struct lock_class_key rq_lock_key;
  264. };
  265. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  266. static DEFINE_MUTEX(sched_hotcpu_mutex);
  267. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  268. {
  269. rq->curr->sched_class->check_preempt_curr(rq, p);
  270. }
  271. static inline int cpu_of(struct rq *rq)
  272. {
  273. #ifdef CONFIG_SMP
  274. return rq->cpu;
  275. #else
  276. return 0;
  277. #endif
  278. }
  279. /*
  280. * Update the per-runqueue clock, as finegrained as the platform can give
  281. * us, but without assuming monotonicity, etc.:
  282. */
  283. static void __update_rq_clock(struct rq *rq)
  284. {
  285. u64 prev_raw = rq->prev_clock_raw;
  286. u64 now = sched_clock();
  287. s64 delta = now - prev_raw;
  288. u64 clock = rq->clock;
  289. #ifdef CONFIG_SCHED_DEBUG
  290. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  291. #endif
  292. /*
  293. * Protect against sched_clock() occasionally going backwards:
  294. */
  295. if (unlikely(delta < 0)) {
  296. clock++;
  297. rq->clock_warps++;
  298. } else {
  299. /*
  300. * Catch too large forward jumps too:
  301. */
  302. if (unlikely(delta > 2*TICK_NSEC)) {
  303. clock++;
  304. rq->clock_overflows++;
  305. } else {
  306. if (unlikely(delta > rq->clock_max_delta))
  307. rq->clock_max_delta = delta;
  308. clock += delta;
  309. }
  310. }
  311. rq->prev_clock_raw = now;
  312. rq->clock = clock;
  313. }
  314. static void update_rq_clock(struct rq *rq)
  315. {
  316. if (likely(smp_processor_id() == cpu_of(rq)))
  317. __update_rq_clock(rq);
  318. }
  319. /*
  320. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  321. * See detach_destroy_domains: synchronize_sched for details.
  322. *
  323. * The domain tree of any CPU may only be accessed from within
  324. * preempt-disabled sections.
  325. */
  326. #define for_each_domain(cpu, __sd) \
  327. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  328. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  329. #define this_rq() (&__get_cpu_var(runqueues))
  330. #define task_rq(p) cpu_rq(task_cpu(p))
  331. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  332. /*
  333. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  334. * clock constructed from sched_clock():
  335. */
  336. unsigned long long cpu_clock(int cpu)
  337. {
  338. unsigned long long now;
  339. unsigned long flags;
  340. struct rq *rq;
  341. local_irq_save(flags);
  342. rq = cpu_rq(cpu);
  343. update_rq_clock(rq);
  344. now = rq->clock;
  345. local_irq_restore(flags);
  346. return now;
  347. }
  348. #ifdef CONFIG_FAIR_GROUP_SCHED
  349. /* Change a task's ->cfs_rq if it moves across CPUs */
  350. static inline void set_task_cfs_rq(struct task_struct *p)
  351. {
  352. p->se.cfs_rq = &task_rq(p)->cfs;
  353. }
  354. #else
  355. static inline void set_task_cfs_rq(struct task_struct *p)
  356. {
  357. }
  358. #endif
  359. #ifndef prepare_arch_switch
  360. # define prepare_arch_switch(next) do { } while (0)
  361. #endif
  362. #ifndef finish_arch_switch
  363. # define finish_arch_switch(prev) do { } while (0)
  364. #endif
  365. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  366. static inline int task_running(struct rq *rq, struct task_struct *p)
  367. {
  368. return rq->curr == p;
  369. }
  370. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  371. {
  372. }
  373. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  374. {
  375. #ifdef CONFIG_DEBUG_SPINLOCK
  376. /* this is a valid case when another task releases the spinlock */
  377. rq->lock.owner = current;
  378. #endif
  379. /*
  380. * If we are tracking spinlock dependencies then we have to
  381. * fix up the runqueue lock - which gets 'carried over' from
  382. * prev into current:
  383. */
  384. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  385. spin_unlock_irq(&rq->lock);
  386. }
  387. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  388. static inline int task_running(struct rq *rq, struct task_struct *p)
  389. {
  390. #ifdef CONFIG_SMP
  391. return p->oncpu;
  392. #else
  393. return rq->curr == p;
  394. #endif
  395. }
  396. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  397. {
  398. #ifdef CONFIG_SMP
  399. /*
  400. * We can optimise this out completely for !SMP, because the
  401. * SMP rebalancing from interrupt is the only thing that cares
  402. * here.
  403. */
  404. next->oncpu = 1;
  405. #endif
  406. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  407. spin_unlock_irq(&rq->lock);
  408. #else
  409. spin_unlock(&rq->lock);
  410. #endif
  411. }
  412. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  413. {
  414. #ifdef CONFIG_SMP
  415. /*
  416. * After ->oncpu is cleared, the task can be moved to a different CPU.
  417. * We must ensure this doesn't happen until the switch is completely
  418. * finished.
  419. */
  420. smp_wmb();
  421. prev->oncpu = 0;
  422. #endif
  423. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  424. local_irq_enable();
  425. #endif
  426. }
  427. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  428. /*
  429. * __task_rq_lock - lock the runqueue a given task resides on.
  430. * Must be called interrupts disabled.
  431. */
  432. static inline struct rq *__task_rq_lock(struct task_struct *p)
  433. __acquires(rq->lock)
  434. {
  435. struct rq *rq;
  436. repeat_lock_task:
  437. rq = task_rq(p);
  438. spin_lock(&rq->lock);
  439. if (unlikely(rq != task_rq(p))) {
  440. spin_unlock(&rq->lock);
  441. goto repeat_lock_task;
  442. }
  443. return rq;
  444. }
  445. /*
  446. * task_rq_lock - lock the runqueue a given task resides on and disable
  447. * interrupts. Note the ordering: we can safely lookup the task_rq without
  448. * explicitly disabling preemption.
  449. */
  450. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  451. __acquires(rq->lock)
  452. {
  453. struct rq *rq;
  454. repeat_lock_task:
  455. local_irq_save(*flags);
  456. rq = task_rq(p);
  457. spin_lock(&rq->lock);
  458. if (unlikely(rq != task_rq(p))) {
  459. spin_unlock_irqrestore(&rq->lock, *flags);
  460. goto repeat_lock_task;
  461. }
  462. return rq;
  463. }
  464. static inline void __task_rq_unlock(struct rq *rq)
  465. __releases(rq->lock)
  466. {
  467. spin_unlock(&rq->lock);
  468. }
  469. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  470. __releases(rq->lock)
  471. {
  472. spin_unlock_irqrestore(&rq->lock, *flags);
  473. }
  474. /*
  475. * this_rq_lock - lock this runqueue and disable interrupts.
  476. */
  477. static inline struct rq *this_rq_lock(void)
  478. __acquires(rq->lock)
  479. {
  480. struct rq *rq;
  481. local_irq_disable();
  482. rq = this_rq();
  483. spin_lock(&rq->lock);
  484. return rq;
  485. }
  486. /*
  487. * CPU frequency is/was unstable - start new by setting prev_clock_raw:
  488. */
  489. void sched_clock_unstable_event(void)
  490. {
  491. unsigned long flags;
  492. struct rq *rq;
  493. rq = task_rq_lock(current, &flags);
  494. rq->prev_clock_raw = sched_clock();
  495. rq->clock_unstable_events++;
  496. task_rq_unlock(rq, &flags);
  497. }
  498. /*
  499. * resched_task - mark a task 'to be rescheduled now'.
  500. *
  501. * On UP this means the setting of the need_resched flag, on SMP it
  502. * might also involve a cross-CPU call to trigger the scheduler on
  503. * the target CPU.
  504. */
  505. #ifdef CONFIG_SMP
  506. #ifndef tsk_is_polling
  507. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  508. #endif
  509. static void resched_task(struct task_struct *p)
  510. {
  511. int cpu;
  512. assert_spin_locked(&task_rq(p)->lock);
  513. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  514. return;
  515. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  516. cpu = task_cpu(p);
  517. if (cpu == smp_processor_id())
  518. return;
  519. /* NEED_RESCHED must be visible before we test polling */
  520. smp_mb();
  521. if (!tsk_is_polling(p))
  522. smp_send_reschedule(cpu);
  523. }
  524. static void resched_cpu(int cpu)
  525. {
  526. struct rq *rq = cpu_rq(cpu);
  527. unsigned long flags;
  528. if (!spin_trylock_irqsave(&rq->lock, flags))
  529. return;
  530. resched_task(cpu_curr(cpu));
  531. spin_unlock_irqrestore(&rq->lock, flags);
  532. }
  533. #else
  534. static inline void resched_task(struct task_struct *p)
  535. {
  536. assert_spin_locked(&task_rq(p)->lock);
  537. set_tsk_need_resched(p);
  538. }
  539. #endif
  540. static u64 div64_likely32(u64 divident, unsigned long divisor)
  541. {
  542. #if BITS_PER_LONG == 32
  543. if (likely(divident <= 0xffffffffULL))
  544. return (u32)divident / divisor;
  545. do_div(divident, divisor);
  546. return divident;
  547. #else
  548. return divident / divisor;
  549. #endif
  550. }
  551. #if BITS_PER_LONG == 32
  552. # define WMULT_CONST (~0UL)
  553. #else
  554. # define WMULT_CONST (1UL << 32)
  555. #endif
  556. #define WMULT_SHIFT 32
  557. static unsigned long
  558. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  559. struct load_weight *lw)
  560. {
  561. u64 tmp;
  562. if (unlikely(!lw->inv_weight))
  563. lw->inv_weight = WMULT_CONST / lw->weight;
  564. tmp = (u64)delta_exec * weight;
  565. /*
  566. * Check whether we'd overflow the 64-bit multiplication:
  567. */
  568. if (unlikely(tmp > WMULT_CONST)) {
  569. tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
  570. >> (WMULT_SHIFT/2);
  571. } else {
  572. tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
  573. }
  574. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  575. }
  576. static inline unsigned long
  577. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  578. {
  579. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  580. }
  581. static void update_load_add(struct load_weight *lw, unsigned long inc)
  582. {
  583. lw->weight += inc;
  584. lw->inv_weight = 0;
  585. }
  586. static void update_load_sub(struct load_weight *lw, unsigned long dec)
  587. {
  588. lw->weight -= dec;
  589. lw->inv_weight = 0;
  590. }
  591. /*
  592. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  593. * of tasks with abnormal "nice" values across CPUs the contribution that
  594. * each task makes to its run queue's load is weighted according to its
  595. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  596. * scaled version of the new time slice allocation that they receive on time
  597. * slice expiry etc.
  598. */
  599. #define WEIGHT_IDLEPRIO 2
  600. #define WMULT_IDLEPRIO (1 << 31)
  601. /*
  602. * Nice levels are multiplicative, with a gentle 10% change for every
  603. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  604. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  605. * that remained on nice 0.
  606. *
  607. * The "10% effect" is relative and cumulative: from _any_ nice level,
  608. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  609. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  610. * If a task goes up by ~10% and another task goes down by ~10% then
  611. * the relative distance between them is ~25%.)
  612. */
  613. static const int prio_to_weight[40] = {
  614. /* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
  615. /* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
  616. /* 0 */ NICE_0_LOAD /* 1024 */,
  617. /* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
  618. /* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
  619. };
  620. /*
  621. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  622. *
  623. * In cases where the weight does not change often, we can use the
  624. * precalculated inverse to speed up arithmetics by turning divisions
  625. * into multiplications:
  626. */
  627. static const u32 prio_to_wmult[40] = {
  628. /* -20 */ 48356, 60446, 75558, 94446, 118058,
  629. /* -15 */ 147573, 184467, 230589, 288233, 360285,
  630. /* -10 */ 450347, 562979, 703746, 879575, 1099582,
  631. /* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
  632. /* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
  633. /* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
  634. /* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
  635. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  636. };
  637. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  638. /*
  639. * runqueue iterator, to support SMP load-balancing between different
  640. * scheduling classes, without having to expose their internal data
  641. * structures to the load-balancing proper:
  642. */
  643. struct rq_iterator {
  644. void *arg;
  645. struct task_struct *(*start)(void *);
  646. struct task_struct *(*next)(void *);
  647. };
  648. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  649. unsigned long max_nr_move, unsigned long max_load_move,
  650. struct sched_domain *sd, enum cpu_idle_type idle,
  651. int *all_pinned, unsigned long *load_moved,
  652. int *this_best_prio, struct rq_iterator *iterator);
  653. #include "sched_stats.h"
  654. #include "sched_rt.c"
  655. #include "sched_fair.c"
  656. #include "sched_idletask.c"
  657. #ifdef CONFIG_SCHED_DEBUG
  658. # include "sched_debug.c"
  659. #endif
  660. #define sched_class_highest (&rt_sched_class)
  661. static void __update_curr_load(struct rq *rq, struct load_stat *ls)
  662. {
  663. if (rq->curr != rq->idle && ls->load.weight) {
  664. ls->delta_exec += ls->delta_stat;
  665. ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
  666. ls->delta_stat = 0;
  667. }
  668. }
  669. /*
  670. * Update delta_exec, delta_fair fields for rq.
  671. *
  672. * delta_fair clock advances at a rate inversely proportional to
  673. * total load (rq->ls.load.weight) on the runqueue, while
  674. * delta_exec advances at the same rate as wall-clock (provided
  675. * cpu is not idle).
  676. *
  677. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  678. * runqueue over any given interval. This (smoothened) load is used
  679. * during load balance.
  680. *
  681. * This function is called /before/ updating rq->ls.load
  682. * and when switching tasks.
  683. */
  684. static void update_curr_load(struct rq *rq)
  685. {
  686. struct load_stat *ls = &rq->ls;
  687. u64 start;
  688. start = ls->load_update_start;
  689. ls->load_update_start = rq->clock;
  690. ls->delta_stat += rq->clock - start;
  691. /*
  692. * Stagger updates to ls->delta_fair. Very frequent updates
  693. * can be expensive.
  694. */
  695. if (ls->delta_stat >= sysctl_sched_stat_granularity)
  696. __update_curr_load(rq, ls);
  697. }
  698. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  699. {
  700. update_curr_load(rq);
  701. update_load_add(&rq->ls.load, p->se.load.weight);
  702. }
  703. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  704. {
  705. update_curr_load(rq);
  706. update_load_sub(&rq->ls.load, p->se.load.weight);
  707. }
  708. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  709. {
  710. rq->nr_running++;
  711. inc_load(rq, p);
  712. }
  713. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  714. {
  715. rq->nr_running--;
  716. dec_load(rq, p);
  717. }
  718. static void set_load_weight(struct task_struct *p)
  719. {
  720. task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
  721. p->se.wait_runtime = 0;
  722. if (task_has_rt_policy(p)) {
  723. p->se.load.weight = prio_to_weight[0] * 2;
  724. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  725. return;
  726. }
  727. /*
  728. * SCHED_IDLE tasks get minimal weight:
  729. */
  730. if (p->policy == SCHED_IDLE) {
  731. p->se.load.weight = WEIGHT_IDLEPRIO;
  732. p->se.load.inv_weight = WMULT_IDLEPRIO;
  733. return;
  734. }
  735. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  736. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  737. }
  738. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  739. {
  740. sched_info_queued(p);
  741. p->sched_class->enqueue_task(rq, p, wakeup);
  742. p->se.on_rq = 1;
  743. }
  744. static void
  745. dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
  746. {
  747. p->sched_class->dequeue_task(rq, p, sleep);
  748. p->se.on_rq = 0;
  749. }
  750. /*
  751. * __normal_prio - return the priority that is based on the static prio
  752. */
  753. static inline int __normal_prio(struct task_struct *p)
  754. {
  755. return p->static_prio;
  756. }
  757. /*
  758. * Calculate the expected normal priority: i.e. priority
  759. * without taking RT-inheritance into account. Might be
  760. * boosted by interactivity modifiers. Changes upon fork,
  761. * setprio syscalls, and whenever the interactivity
  762. * estimator recalculates.
  763. */
  764. static inline int normal_prio(struct task_struct *p)
  765. {
  766. int prio;
  767. if (task_has_rt_policy(p))
  768. prio = MAX_RT_PRIO-1 - p->rt_priority;
  769. else
  770. prio = __normal_prio(p);
  771. return prio;
  772. }
  773. /*
  774. * Calculate the current priority, i.e. the priority
  775. * taken into account by the scheduler. This value might
  776. * be boosted by RT tasks, or might be boosted by
  777. * interactivity modifiers. Will be RT if the task got
  778. * RT-boosted. If not then it returns p->normal_prio.
  779. */
  780. static int effective_prio(struct task_struct *p)
  781. {
  782. p->normal_prio = normal_prio(p);
  783. /*
  784. * If we are RT tasks or we were boosted to RT priority,
  785. * keep the priority unchanged. Otherwise, update priority
  786. * to the normal priority:
  787. */
  788. if (!rt_prio(p->prio))
  789. return p->normal_prio;
  790. return p->prio;
  791. }
  792. /*
  793. * activate_task - move a task to the runqueue.
  794. */
  795. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  796. {
  797. u64 now;
  798. update_rq_clock(rq);
  799. now = rq->clock;
  800. if (p->state == TASK_UNINTERRUPTIBLE)
  801. rq->nr_uninterruptible--;
  802. enqueue_task(rq, p, wakeup);
  803. inc_nr_running(p, rq);
  804. }
  805. /*
  806. * activate_idle_task - move idle task to the _front_ of runqueue.
  807. */
  808. static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
  809. {
  810. u64 now;
  811. update_rq_clock(rq);
  812. now = rq->clock;
  813. if (p->state == TASK_UNINTERRUPTIBLE)
  814. rq->nr_uninterruptible--;
  815. enqueue_task(rq, p, 0);
  816. inc_nr_running(p, rq);
  817. }
  818. /*
  819. * deactivate_task - remove a task from the runqueue.
  820. */
  821. static void
  822. deactivate_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
  823. {
  824. if (p->state == TASK_UNINTERRUPTIBLE)
  825. rq->nr_uninterruptible++;
  826. dequeue_task(rq, p, sleep, now);
  827. dec_nr_running(p, rq);
  828. }
  829. /**
  830. * task_curr - is this task currently executing on a CPU?
  831. * @p: the task in question.
  832. */
  833. inline int task_curr(const struct task_struct *p)
  834. {
  835. return cpu_curr(task_cpu(p)) == p;
  836. }
  837. /* Used instead of source_load when we know the type == 0 */
  838. unsigned long weighted_cpuload(const int cpu)
  839. {
  840. return cpu_rq(cpu)->ls.load.weight;
  841. }
  842. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  843. {
  844. #ifdef CONFIG_SMP
  845. task_thread_info(p)->cpu = cpu;
  846. set_task_cfs_rq(p);
  847. #endif
  848. }
  849. #ifdef CONFIG_SMP
  850. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  851. {
  852. int old_cpu = task_cpu(p);
  853. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  854. u64 clock_offset, fair_clock_offset;
  855. clock_offset = old_rq->clock - new_rq->clock;
  856. fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
  857. if (p->se.wait_start_fair)
  858. p->se.wait_start_fair -= fair_clock_offset;
  859. if (p->se.sleep_start_fair)
  860. p->se.sleep_start_fair -= fair_clock_offset;
  861. #ifdef CONFIG_SCHEDSTATS
  862. if (p->se.wait_start)
  863. p->se.wait_start -= clock_offset;
  864. if (p->se.sleep_start)
  865. p->se.sleep_start -= clock_offset;
  866. if (p->se.block_start)
  867. p->se.block_start -= clock_offset;
  868. #endif
  869. __set_task_cpu(p, new_cpu);
  870. }
  871. struct migration_req {
  872. struct list_head list;
  873. struct task_struct *task;
  874. int dest_cpu;
  875. struct completion done;
  876. };
  877. /*
  878. * The task's runqueue lock must be held.
  879. * Returns true if you have to wait for migration thread.
  880. */
  881. static int
  882. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  883. {
  884. struct rq *rq = task_rq(p);
  885. /*
  886. * If the task is not on a runqueue (and not running), then
  887. * it is sufficient to simply update the task's cpu field.
  888. */
  889. if (!p->se.on_rq && !task_running(rq, p)) {
  890. set_task_cpu(p, dest_cpu);
  891. return 0;
  892. }
  893. init_completion(&req->done);
  894. req->task = p;
  895. req->dest_cpu = dest_cpu;
  896. list_add(&req->list, &rq->migration_queue);
  897. return 1;
  898. }
  899. /*
  900. * wait_task_inactive - wait for a thread to unschedule.
  901. *
  902. * The caller must ensure that the task *will* unschedule sometime soon,
  903. * else this function might spin for a *long* time. This function can't
  904. * be called with interrupts off, or it may introduce deadlock with
  905. * smp_call_function() if an IPI is sent by the same process we are
  906. * waiting to become inactive.
  907. */
  908. void wait_task_inactive(struct task_struct *p)
  909. {
  910. unsigned long flags;
  911. int running, on_rq;
  912. struct rq *rq;
  913. repeat:
  914. /*
  915. * We do the initial early heuristics without holding
  916. * any task-queue locks at all. We'll only try to get
  917. * the runqueue lock when things look like they will
  918. * work out!
  919. */
  920. rq = task_rq(p);
  921. /*
  922. * If the task is actively running on another CPU
  923. * still, just relax and busy-wait without holding
  924. * any locks.
  925. *
  926. * NOTE! Since we don't hold any locks, it's not
  927. * even sure that "rq" stays as the right runqueue!
  928. * But we don't care, since "task_running()" will
  929. * return false if the runqueue has changed and p
  930. * is actually now running somewhere else!
  931. */
  932. while (task_running(rq, p))
  933. cpu_relax();
  934. /*
  935. * Ok, time to look more closely! We need the rq
  936. * lock now, to be *sure*. If we're wrong, we'll
  937. * just go back and repeat.
  938. */
  939. rq = task_rq_lock(p, &flags);
  940. running = task_running(rq, p);
  941. on_rq = p->se.on_rq;
  942. task_rq_unlock(rq, &flags);
  943. /*
  944. * Was it really running after all now that we
  945. * checked with the proper locks actually held?
  946. *
  947. * Oops. Go back and try again..
  948. */
  949. if (unlikely(running)) {
  950. cpu_relax();
  951. goto repeat;
  952. }
  953. /*
  954. * It's not enough that it's not actively running,
  955. * it must be off the runqueue _entirely_, and not
  956. * preempted!
  957. *
  958. * So if it wa still runnable (but just not actively
  959. * running right now), it's preempted, and we should
  960. * yield - it could be a while.
  961. */
  962. if (unlikely(on_rq)) {
  963. yield();
  964. goto repeat;
  965. }
  966. /*
  967. * Ahh, all good. It wasn't running, and it wasn't
  968. * runnable, which means that it will never become
  969. * running in the future either. We're all done!
  970. */
  971. }
  972. /***
  973. * kick_process - kick a running thread to enter/exit the kernel
  974. * @p: the to-be-kicked thread
  975. *
  976. * Cause a process which is running on another CPU to enter
  977. * kernel-mode, without any delay. (to get signals handled.)
  978. *
  979. * NOTE: this function doesnt have to take the runqueue lock,
  980. * because all it wants to ensure is that the remote task enters
  981. * the kernel. If the IPI races and the task has been migrated
  982. * to another CPU then no harm is done and the purpose has been
  983. * achieved as well.
  984. */
  985. void kick_process(struct task_struct *p)
  986. {
  987. int cpu;
  988. preempt_disable();
  989. cpu = task_cpu(p);
  990. if ((cpu != smp_processor_id()) && task_curr(p))
  991. smp_send_reschedule(cpu);
  992. preempt_enable();
  993. }
  994. /*
  995. * Return a low guess at the load of a migration-source cpu weighted
  996. * according to the scheduling class and "nice" value.
  997. *
  998. * We want to under-estimate the load of migration sources, to
  999. * balance conservatively.
  1000. */
  1001. static inline unsigned long source_load(int cpu, int type)
  1002. {
  1003. struct rq *rq = cpu_rq(cpu);
  1004. unsigned long total = weighted_cpuload(cpu);
  1005. if (type == 0)
  1006. return total;
  1007. return min(rq->cpu_load[type-1], total);
  1008. }
  1009. /*
  1010. * Return a high guess at the load of a migration-target cpu weighted
  1011. * according to the scheduling class and "nice" value.
  1012. */
  1013. static inline unsigned long target_load(int cpu, int type)
  1014. {
  1015. struct rq *rq = cpu_rq(cpu);
  1016. unsigned long total = weighted_cpuload(cpu);
  1017. if (type == 0)
  1018. return total;
  1019. return max(rq->cpu_load[type-1], total);
  1020. }
  1021. /*
  1022. * Return the average load per task on the cpu's run queue
  1023. */
  1024. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1025. {
  1026. struct rq *rq = cpu_rq(cpu);
  1027. unsigned long total = weighted_cpuload(cpu);
  1028. unsigned long n = rq->nr_running;
  1029. return n ? total / n : SCHED_LOAD_SCALE;
  1030. }
  1031. /*
  1032. * find_idlest_group finds and returns the least busy CPU group within the
  1033. * domain.
  1034. */
  1035. static struct sched_group *
  1036. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1037. {
  1038. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1039. unsigned long min_load = ULONG_MAX, this_load = 0;
  1040. int load_idx = sd->forkexec_idx;
  1041. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1042. do {
  1043. unsigned long load, avg_load;
  1044. int local_group;
  1045. int i;
  1046. /* Skip over this group if it has no CPUs allowed */
  1047. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1048. goto nextgroup;
  1049. local_group = cpu_isset(this_cpu, group->cpumask);
  1050. /* Tally up the load of all CPUs in the group */
  1051. avg_load = 0;
  1052. for_each_cpu_mask(i, group->cpumask) {
  1053. /* Bias balancing toward cpus of our domain */
  1054. if (local_group)
  1055. load = source_load(i, load_idx);
  1056. else
  1057. load = target_load(i, load_idx);
  1058. avg_load += load;
  1059. }
  1060. /* Adjust by relative CPU power of the group */
  1061. avg_load = sg_div_cpu_power(group,
  1062. avg_load * SCHED_LOAD_SCALE);
  1063. if (local_group) {
  1064. this_load = avg_load;
  1065. this = group;
  1066. } else if (avg_load < min_load) {
  1067. min_load = avg_load;
  1068. idlest = group;
  1069. }
  1070. nextgroup:
  1071. group = group->next;
  1072. } while (group != sd->groups);
  1073. if (!idlest || 100*this_load < imbalance*min_load)
  1074. return NULL;
  1075. return idlest;
  1076. }
  1077. /*
  1078. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1079. */
  1080. static int
  1081. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1082. {
  1083. cpumask_t tmp;
  1084. unsigned long load, min_load = ULONG_MAX;
  1085. int idlest = -1;
  1086. int i;
  1087. /* Traverse only the allowed CPUs */
  1088. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1089. for_each_cpu_mask(i, tmp) {
  1090. load = weighted_cpuload(i);
  1091. if (load < min_load || (load == min_load && i == this_cpu)) {
  1092. min_load = load;
  1093. idlest = i;
  1094. }
  1095. }
  1096. return idlest;
  1097. }
  1098. /*
  1099. * sched_balance_self: balance the current task (running on cpu) in domains
  1100. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1101. * SD_BALANCE_EXEC.
  1102. *
  1103. * Balance, ie. select the least loaded group.
  1104. *
  1105. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1106. *
  1107. * preempt must be disabled.
  1108. */
  1109. static int sched_balance_self(int cpu, int flag)
  1110. {
  1111. struct task_struct *t = current;
  1112. struct sched_domain *tmp, *sd = NULL;
  1113. for_each_domain(cpu, tmp) {
  1114. /*
  1115. * If power savings logic is enabled for a domain, stop there.
  1116. */
  1117. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1118. break;
  1119. if (tmp->flags & flag)
  1120. sd = tmp;
  1121. }
  1122. while (sd) {
  1123. cpumask_t span;
  1124. struct sched_group *group;
  1125. int new_cpu, weight;
  1126. if (!(sd->flags & flag)) {
  1127. sd = sd->child;
  1128. continue;
  1129. }
  1130. span = sd->span;
  1131. group = find_idlest_group(sd, t, cpu);
  1132. if (!group) {
  1133. sd = sd->child;
  1134. continue;
  1135. }
  1136. new_cpu = find_idlest_cpu(group, t, cpu);
  1137. if (new_cpu == -1 || new_cpu == cpu) {
  1138. /* Now try balancing at a lower domain level of cpu */
  1139. sd = sd->child;
  1140. continue;
  1141. }
  1142. /* Now try balancing at a lower domain level of new_cpu */
  1143. cpu = new_cpu;
  1144. sd = NULL;
  1145. weight = cpus_weight(span);
  1146. for_each_domain(cpu, tmp) {
  1147. if (weight <= cpus_weight(tmp->span))
  1148. break;
  1149. if (tmp->flags & flag)
  1150. sd = tmp;
  1151. }
  1152. /* while loop will break here if sd == NULL */
  1153. }
  1154. return cpu;
  1155. }
  1156. #endif /* CONFIG_SMP */
  1157. /*
  1158. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1159. * not idle and an idle cpu is available. The span of cpus to
  1160. * search starts with cpus closest then further out as needed,
  1161. * so we always favor a closer, idle cpu.
  1162. *
  1163. * Returns the CPU we should wake onto.
  1164. */
  1165. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1166. static int wake_idle(int cpu, struct task_struct *p)
  1167. {
  1168. cpumask_t tmp;
  1169. struct sched_domain *sd;
  1170. int i;
  1171. /*
  1172. * If it is idle, then it is the best cpu to run this task.
  1173. *
  1174. * This cpu is also the best, if it has more than one task already.
  1175. * Siblings must be also busy(in most cases) as they didn't already
  1176. * pickup the extra load from this cpu and hence we need not check
  1177. * sibling runqueue info. This will avoid the checks and cache miss
  1178. * penalities associated with that.
  1179. */
  1180. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1181. return cpu;
  1182. for_each_domain(cpu, sd) {
  1183. if (sd->flags & SD_WAKE_IDLE) {
  1184. cpus_and(tmp, sd->span, p->cpus_allowed);
  1185. for_each_cpu_mask(i, tmp) {
  1186. if (idle_cpu(i))
  1187. return i;
  1188. }
  1189. } else {
  1190. break;
  1191. }
  1192. }
  1193. return cpu;
  1194. }
  1195. #else
  1196. static inline int wake_idle(int cpu, struct task_struct *p)
  1197. {
  1198. return cpu;
  1199. }
  1200. #endif
  1201. /***
  1202. * try_to_wake_up - wake up a thread
  1203. * @p: the to-be-woken-up thread
  1204. * @state: the mask of task states that can be woken
  1205. * @sync: do a synchronous wakeup?
  1206. *
  1207. * Put it on the run-queue if it's not already there. The "current"
  1208. * thread is always on the run-queue (except when the actual
  1209. * re-schedule is in progress), and as such you're allowed to do
  1210. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1211. * runnable without the overhead of this.
  1212. *
  1213. * returns failure only if the task is already active.
  1214. */
  1215. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1216. {
  1217. int cpu, this_cpu, success = 0;
  1218. unsigned long flags;
  1219. long old_state;
  1220. struct rq *rq;
  1221. #ifdef CONFIG_SMP
  1222. struct sched_domain *sd, *this_sd = NULL;
  1223. unsigned long load, this_load;
  1224. int new_cpu;
  1225. #endif
  1226. rq = task_rq_lock(p, &flags);
  1227. old_state = p->state;
  1228. if (!(old_state & state))
  1229. goto out;
  1230. if (p->se.on_rq)
  1231. goto out_running;
  1232. cpu = task_cpu(p);
  1233. this_cpu = smp_processor_id();
  1234. #ifdef CONFIG_SMP
  1235. if (unlikely(task_running(rq, p)))
  1236. goto out_activate;
  1237. new_cpu = cpu;
  1238. schedstat_inc(rq, ttwu_cnt);
  1239. if (cpu == this_cpu) {
  1240. schedstat_inc(rq, ttwu_local);
  1241. goto out_set_cpu;
  1242. }
  1243. for_each_domain(this_cpu, sd) {
  1244. if (cpu_isset(cpu, sd->span)) {
  1245. schedstat_inc(sd, ttwu_wake_remote);
  1246. this_sd = sd;
  1247. break;
  1248. }
  1249. }
  1250. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1251. goto out_set_cpu;
  1252. /*
  1253. * Check for affine wakeup and passive balancing possibilities.
  1254. */
  1255. if (this_sd) {
  1256. int idx = this_sd->wake_idx;
  1257. unsigned int imbalance;
  1258. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1259. load = source_load(cpu, idx);
  1260. this_load = target_load(this_cpu, idx);
  1261. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1262. if (this_sd->flags & SD_WAKE_AFFINE) {
  1263. unsigned long tl = this_load;
  1264. unsigned long tl_per_task;
  1265. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1266. /*
  1267. * If sync wakeup then subtract the (maximum possible)
  1268. * effect of the currently running task from the load
  1269. * of the current CPU:
  1270. */
  1271. if (sync)
  1272. tl -= current->se.load.weight;
  1273. if ((tl <= load &&
  1274. tl + target_load(cpu, idx) <= tl_per_task) ||
  1275. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1276. /*
  1277. * This domain has SD_WAKE_AFFINE and
  1278. * p is cache cold in this domain, and
  1279. * there is no bad imbalance.
  1280. */
  1281. schedstat_inc(this_sd, ttwu_move_affine);
  1282. goto out_set_cpu;
  1283. }
  1284. }
  1285. /*
  1286. * Start passive balancing when half the imbalance_pct
  1287. * limit is reached.
  1288. */
  1289. if (this_sd->flags & SD_WAKE_BALANCE) {
  1290. if (imbalance*this_load <= 100*load) {
  1291. schedstat_inc(this_sd, ttwu_move_balance);
  1292. goto out_set_cpu;
  1293. }
  1294. }
  1295. }
  1296. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1297. out_set_cpu:
  1298. new_cpu = wake_idle(new_cpu, p);
  1299. if (new_cpu != cpu) {
  1300. set_task_cpu(p, new_cpu);
  1301. task_rq_unlock(rq, &flags);
  1302. /* might preempt at this point */
  1303. rq = task_rq_lock(p, &flags);
  1304. old_state = p->state;
  1305. if (!(old_state & state))
  1306. goto out;
  1307. if (p->se.on_rq)
  1308. goto out_running;
  1309. this_cpu = smp_processor_id();
  1310. cpu = task_cpu(p);
  1311. }
  1312. out_activate:
  1313. #endif /* CONFIG_SMP */
  1314. activate_task(rq, p, 1);
  1315. /*
  1316. * Sync wakeups (i.e. those types of wakeups where the waker
  1317. * has indicated that it will leave the CPU in short order)
  1318. * don't trigger a preemption, if the woken up task will run on
  1319. * this cpu. (in this case the 'I will reschedule' promise of
  1320. * the waker guarantees that the freshly woken up task is going
  1321. * to be considered on this CPU.)
  1322. */
  1323. if (!sync || cpu != this_cpu)
  1324. check_preempt_curr(rq, p);
  1325. success = 1;
  1326. out_running:
  1327. p->state = TASK_RUNNING;
  1328. out:
  1329. task_rq_unlock(rq, &flags);
  1330. return success;
  1331. }
  1332. int fastcall wake_up_process(struct task_struct *p)
  1333. {
  1334. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1335. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1336. }
  1337. EXPORT_SYMBOL(wake_up_process);
  1338. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1339. {
  1340. return try_to_wake_up(p, state, 0);
  1341. }
  1342. /*
  1343. * Perform scheduler related setup for a newly forked process p.
  1344. * p is forked by current.
  1345. *
  1346. * __sched_fork() is basic setup used by init_idle() too:
  1347. */
  1348. static void __sched_fork(struct task_struct *p)
  1349. {
  1350. p->se.wait_start_fair = 0;
  1351. p->se.exec_start = 0;
  1352. p->se.sum_exec_runtime = 0;
  1353. p->se.delta_exec = 0;
  1354. p->se.delta_fair_run = 0;
  1355. p->se.delta_fair_sleep = 0;
  1356. p->se.wait_runtime = 0;
  1357. p->se.sleep_start_fair = 0;
  1358. #ifdef CONFIG_SCHEDSTATS
  1359. p->se.wait_start = 0;
  1360. p->se.sum_wait_runtime = 0;
  1361. p->se.sum_sleep_runtime = 0;
  1362. p->se.sleep_start = 0;
  1363. p->se.block_start = 0;
  1364. p->se.sleep_max = 0;
  1365. p->se.block_max = 0;
  1366. p->se.exec_max = 0;
  1367. p->se.wait_max = 0;
  1368. p->se.wait_runtime_overruns = 0;
  1369. p->se.wait_runtime_underruns = 0;
  1370. #endif
  1371. INIT_LIST_HEAD(&p->run_list);
  1372. p->se.on_rq = 0;
  1373. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1374. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1375. #endif
  1376. /*
  1377. * We mark the process as running here, but have not actually
  1378. * inserted it onto the runqueue yet. This guarantees that
  1379. * nobody will actually run it, and a signal or other external
  1380. * event cannot wake it up and insert it on the runqueue either.
  1381. */
  1382. p->state = TASK_RUNNING;
  1383. }
  1384. /*
  1385. * fork()/clone()-time setup:
  1386. */
  1387. void sched_fork(struct task_struct *p, int clone_flags)
  1388. {
  1389. int cpu = get_cpu();
  1390. __sched_fork(p);
  1391. #ifdef CONFIG_SMP
  1392. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1393. #endif
  1394. __set_task_cpu(p, cpu);
  1395. /*
  1396. * Make sure we do not leak PI boosting priority to the child:
  1397. */
  1398. p->prio = current->normal_prio;
  1399. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1400. if (likely(sched_info_on()))
  1401. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1402. #endif
  1403. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1404. p->oncpu = 0;
  1405. #endif
  1406. #ifdef CONFIG_PREEMPT
  1407. /* Want to start with kernel preemption disabled. */
  1408. task_thread_info(p)->preempt_count = 1;
  1409. #endif
  1410. put_cpu();
  1411. }
  1412. /*
  1413. * After fork, child runs first. (default) If set to 0 then
  1414. * parent will (try to) run first.
  1415. */
  1416. unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
  1417. /*
  1418. * wake_up_new_task - wake up a newly created task for the first time.
  1419. *
  1420. * This function will do some initial scheduler statistics housekeeping
  1421. * that must be done for every newly created context, then puts the task
  1422. * on the runqueue and wakes it.
  1423. */
  1424. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1425. {
  1426. unsigned long flags;
  1427. struct rq *rq;
  1428. int this_cpu;
  1429. u64 now;
  1430. rq = task_rq_lock(p, &flags);
  1431. BUG_ON(p->state != TASK_RUNNING);
  1432. this_cpu = smp_processor_id(); /* parent's CPU */
  1433. update_rq_clock(rq);
  1434. now = rq->clock;
  1435. p->prio = effective_prio(p);
  1436. if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
  1437. (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
  1438. !current->se.on_rq) {
  1439. activate_task(rq, p, 0);
  1440. } else {
  1441. /*
  1442. * Let the scheduling class do new task startup
  1443. * management (if any):
  1444. */
  1445. p->sched_class->task_new(rq, p);
  1446. inc_nr_running(p, rq);
  1447. }
  1448. check_preempt_curr(rq, p);
  1449. task_rq_unlock(rq, &flags);
  1450. }
  1451. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1452. /**
  1453. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1454. * @notifier: notifier struct to register
  1455. */
  1456. void preempt_notifier_register(struct preempt_notifier *notifier)
  1457. {
  1458. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1459. }
  1460. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1461. /**
  1462. * preempt_notifier_unregister - no longer interested in preemption notifications
  1463. * @notifier: notifier struct to unregister
  1464. *
  1465. * This is safe to call from within a preemption notifier.
  1466. */
  1467. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1468. {
  1469. hlist_del(&notifier->link);
  1470. }
  1471. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1472. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1473. {
  1474. struct preempt_notifier *notifier;
  1475. struct hlist_node *node;
  1476. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1477. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1478. }
  1479. static void
  1480. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1481. struct task_struct *next)
  1482. {
  1483. struct preempt_notifier *notifier;
  1484. struct hlist_node *node;
  1485. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1486. notifier->ops->sched_out(notifier, next);
  1487. }
  1488. #else
  1489. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1490. {
  1491. }
  1492. static void
  1493. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1494. struct task_struct *next)
  1495. {
  1496. }
  1497. #endif
  1498. /**
  1499. * prepare_task_switch - prepare to switch tasks
  1500. * @rq: the runqueue preparing to switch
  1501. * @prev: the current task that is being switched out
  1502. * @next: the task we are going to switch to.
  1503. *
  1504. * This is called with the rq lock held and interrupts off. It must
  1505. * be paired with a subsequent finish_task_switch after the context
  1506. * switch.
  1507. *
  1508. * prepare_task_switch sets up locking and calls architecture specific
  1509. * hooks.
  1510. */
  1511. static inline void
  1512. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1513. struct task_struct *next)
  1514. {
  1515. fire_sched_out_preempt_notifiers(prev, next);
  1516. prepare_lock_switch(rq, next);
  1517. prepare_arch_switch(next);
  1518. }
  1519. /**
  1520. * finish_task_switch - clean up after a task-switch
  1521. * @rq: runqueue associated with task-switch
  1522. * @prev: the thread we just switched away from.
  1523. *
  1524. * finish_task_switch must be called after the context switch, paired
  1525. * with a prepare_task_switch call before the context switch.
  1526. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1527. * and do any other architecture-specific cleanup actions.
  1528. *
  1529. * Note that we may have delayed dropping an mm in context_switch(). If
  1530. * so, we finish that here outside of the runqueue lock. (Doing it
  1531. * with the lock held can cause deadlocks; see schedule() for
  1532. * details.)
  1533. */
  1534. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1535. __releases(rq->lock)
  1536. {
  1537. struct mm_struct *mm = rq->prev_mm;
  1538. long prev_state;
  1539. rq->prev_mm = NULL;
  1540. /*
  1541. * A task struct has one reference for the use as "current".
  1542. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1543. * schedule one last time. The schedule call will never return, and
  1544. * the scheduled task must drop that reference.
  1545. * The test for TASK_DEAD must occur while the runqueue locks are
  1546. * still held, otherwise prev could be scheduled on another cpu, die
  1547. * there before we look at prev->state, and then the reference would
  1548. * be dropped twice.
  1549. * Manfred Spraul <manfred@colorfullife.com>
  1550. */
  1551. prev_state = prev->state;
  1552. finish_arch_switch(prev);
  1553. finish_lock_switch(rq, prev);
  1554. fire_sched_in_preempt_notifiers(current);
  1555. if (mm)
  1556. mmdrop(mm);
  1557. if (unlikely(prev_state == TASK_DEAD)) {
  1558. /*
  1559. * Remove function-return probe instances associated with this
  1560. * task and put them back on the free list.
  1561. */
  1562. kprobe_flush_task(prev);
  1563. put_task_struct(prev);
  1564. }
  1565. }
  1566. /**
  1567. * schedule_tail - first thing a freshly forked thread must call.
  1568. * @prev: the thread we just switched away from.
  1569. */
  1570. asmlinkage void schedule_tail(struct task_struct *prev)
  1571. __releases(rq->lock)
  1572. {
  1573. struct rq *rq = this_rq();
  1574. finish_task_switch(rq, prev);
  1575. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1576. /* In this case, finish_task_switch does not reenable preemption */
  1577. preempt_enable();
  1578. #endif
  1579. if (current->set_child_tid)
  1580. put_user(current->pid, current->set_child_tid);
  1581. }
  1582. /*
  1583. * context_switch - switch to the new MM and the new
  1584. * thread's register state.
  1585. */
  1586. static inline void
  1587. context_switch(struct rq *rq, struct task_struct *prev,
  1588. struct task_struct *next)
  1589. {
  1590. struct mm_struct *mm, *oldmm;
  1591. prepare_task_switch(rq, prev, next);
  1592. mm = next->mm;
  1593. oldmm = prev->active_mm;
  1594. /*
  1595. * For paravirt, this is coupled with an exit in switch_to to
  1596. * combine the page table reload and the switch backend into
  1597. * one hypercall.
  1598. */
  1599. arch_enter_lazy_cpu_mode();
  1600. if (unlikely(!mm)) {
  1601. next->active_mm = oldmm;
  1602. atomic_inc(&oldmm->mm_count);
  1603. enter_lazy_tlb(oldmm, next);
  1604. } else
  1605. switch_mm(oldmm, mm, next);
  1606. if (unlikely(!prev->mm)) {
  1607. prev->active_mm = NULL;
  1608. rq->prev_mm = oldmm;
  1609. }
  1610. /*
  1611. * Since the runqueue lock will be released by the next
  1612. * task (which is an invalid locking op but in the case
  1613. * of the scheduler it's an obvious special-case), so we
  1614. * do an early lockdep release here:
  1615. */
  1616. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1617. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1618. #endif
  1619. /* Here we just switch the register state and the stack. */
  1620. switch_to(prev, next, prev);
  1621. barrier();
  1622. /*
  1623. * this_rq must be evaluated again because prev may have moved
  1624. * CPUs since it called schedule(), thus the 'rq' on its stack
  1625. * frame will be invalid.
  1626. */
  1627. finish_task_switch(this_rq(), prev);
  1628. }
  1629. /*
  1630. * nr_running, nr_uninterruptible and nr_context_switches:
  1631. *
  1632. * externally visible scheduler statistics: current number of runnable
  1633. * threads, current number of uninterruptible-sleeping threads, total
  1634. * number of context switches performed since bootup.
  1635. */
  1636. unsigned long nr_running(void)
  1637. {
  1638. unsigned long i, sum = 0;
  1639. for_each_online_cpu(i)
  1640. sum += cpu_rq(i)->nr_running;
  1641. return sum;
  1642. }
  1643. unsigned long nr_uninterruptible(void)
  1644. {
  1645. unsigned long i, sum = 0;
  1646. for_each_possible_cpu(i)
  1647. sum += cpu_rq(i)->nr_uninterruptible;
  1648. /*
  1649. * Since we read the counters lockless, it might be slightly
  1650. * inaccurate. Do not allow it to go below zero though:
  1651. */
  1652. if (unlikely((long)sum < 0))
  1653. sum = 0;
  1654. return sum;
  1655. }
  1656. unsigned long long nr_context_switches(void)
  1657. {
  1658. int i;
  1659. unsigned long long sum = 0;
  1660. for_each_possible_cpu(i)
  1661. sum += cpu_rq(i)->nr_switches;
  1662. return sum;
  1663. }
  1664. unsigned long nr_iowait(void)
  1665. {
  1666. unsigned long i, sum = 0;
  1667. for_each_possible_cpu(i)
  1668. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1669. return sum;
  1670. }
  1671. unsigned long nr_active(void)
  1672. {
  1673. unsigned long i, running = 0, uninterruptible = 0;
  1674. for_each_online_cpu(i) {
  1675. running += cpu_rq(i)->nr_running;
  1676. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1677. }
  1678. if (unlikely((long)uninterruptible < 0))
  1679. uninterruptible = 0;
  1680. return running + uninterruptible;
  1681. }
  1682. /*
  1683. * Update rq->cpu_load[] statistics. This function is usually called every
  1684. * scheduler tick (TICK_NSEC).
  1685. */
  1686. static void update_cpu_load(struct rq *this_rq)
  1687. {
  1688. u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
  1689. unsigned long total_load = this_rq->ls.load.weight;
  1690. unsigned long this_load = total_load;
  1691. struct load_stat *ls = &this_rq->ls;
  1692. u64 now;
  1693. int i, scale;
  1694. __update_rq_clock(this_rq);
  1695. now = this_rq->clock;
  1696. this_rq->nr_load_updates++;
  1697. if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
  1698. goto do_avg;
  1699. /* Update delta_fair/delta_exec fields first */
  1700. update_curr_load(this_rq);
  1701. fair_delta64 = ls->delta_fair + 1;
  1702. ls->delta_fair = 0;
  1703. exec_delta64 = ls->delta_exec + 1;
  1704. ls->delta_exec = 0;
  1705. sample_interval64 = this_rq->clock - ls->load_update_last;
  1706. ls->load_update_last = this_rq->clock;
  1707. if ((s64)sample_interval64 < (s64)TICK_NSEC)
  1708. sample_interval64 = TICK_NSEC;
  1709. if (exec_delta64 > sample_interval64)
  1710. exec_delta64 = sample_interval64;
  1711. idle_delta64 = sample_interval64 - exec_delta64;
  1712. tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
  1713. tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
  1714. this_load = (unsigned long)tmp64;
  1715. do_avg:
  1716. /* Update our load: */
  1717. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1718. unsigned long old_load, new_load;
  1719. /* scale is effectively 1 << i now, and >> i divides by scale */
  1720. old_load = this_rq->cpu_load[i];
  1721. new_load = this_load;
  1722. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1723. }
  1724. }
  1725. #ifdef CONFIG_SMP
  1726. /*
  1727. * double_rq_lock - safely lock two runqueues
  1728. *
  1729. * Note this does not disable interrupts like task_rq_lock,
  1730. * you need to do so manually before calling.
  1731. */
  1732. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1733. __acquires(rq1->lock)
  1734. __acquires(rq2->lock)
  1735. {
  1736. BUG_ON(!irqs_disabled());
  1737. if (rq1 == rq2) {
  1738. spin_lock(&rq1->lock);
  1739. __acquire(rq2->lock); /* Fake it out ;) */
  1740. } else {
  1741. if (rq1 < rq2) {
  1742. spin_lock(&rq1->lock);
  1743. spin_lock(&rq2->lock);
  1744. } else {
  1745. spin_lock(&rq2->lock);
  1746. spin_lock(&rq1->lock);
  1747. }
  1748. }
  1749. }
  1750. /*
  1751. * double_rq_unlock - safely unlock two runqueues
  1752. *
  1753. * Note this does not restore interrupts like task_rq_unlock,
  1754. * you need to do so manually after calling.
  1755. */
  1756. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1757. __releases(rq1->lock)
  1758. __releases(rq2->lock)
  1759. {
  1760. spin_unlock(&rq1->lock);
  1761. if (rq1 != rq2)
  1762. spin_unlock(&rq2->lock);
  1763. else
  1764. __release(rq2->lock);
  1765. }
  1766. /*
  1767. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1768. */
  1769. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1770. __releases(this_rq->lock)
  1771. __acquires(busiest->lock)
  1772. __acquires(this_rq->lock)
  1773. {
  1774. if (unlikely(!irqs_disabled())) {
  1775. /* printk() doesn't work good under rq->lock */
  1776. spin_unlock(&this_rq->lock);
  1777. BUG_ON(1);
  1778. }
  1779. if (unlikely(!spin_trylock(&busiest->lock))) {
  1780. if (busiest < this_rq) {
  1781. spin_unlock(&this_rq->lock);
  1782. spin_lock(&busiest->lock);
  1783. spin_lock(&this_rq->lock);
  1784. } else
  1785. spin_lock(&busiest->lock);
  1786. }
  1787. }
  1788. /*
  1789. * If dest_cpu is allowed for this process, migrate the task to it.
  1790. * This is accomplished by forcing the cpu_allowed mask to only
  1791. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1792. * the cpu_allowed mask is restored.
  1793. */
  1794. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1795. {
  1796. struct migration_req req;
  1797. unsigned long flags;
  1798. struct rq *rq;
  1799. rq = task_rq_lock(p, &flags);
  1800. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1801. || unlikely(cpu_is_offline(dest_cpu)))
  1802. goto out;
  1803. /* force the process onto the specified CPU */
  1804. if (migrate_task(p, dest_cpu, &req)) {
  1805. /* Need to wait for migration thread (might exit: take ref). */
  1806. struct task_struct *mt = rq->migration_thread;
  1807. get_task_struct(mt);
  1808. task_rq_unlock(rq, &flags);
  1809. wake_up_process(mt);
  1810. put_task_struct(mt);
  1811. wait_for_completion(&req.done);
  1812. return;
  1813. }
  1814. out:
  1815. task_rq_unlock(rq, &flags);
  1816. }
  1817. /*
  1818. * sched_exec - execve() is a valuable balancing opportunity, because at
  1819. * this point the task has the smallest effective memory and cache footprint.
  1820. */
  1821. void sched_exec(void)
  1822. {
  1823. int new_cpu, this_cpu = get_cpu();
  1824. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1825. put_cpu();
  1826. if (new_cpu != this_cpu)
  1827. sched_migrate_task(current, new_cpu);
  1828. }
  1829. /*
  1830. * pull_task - move a task from a remote runqueue to the local runqueue.
  1831. * Both runqueues must be locked.
  1832. */
  1833. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1834. struct rq *this_rq, int this_cpu)
  1835. {
  1836. update_rq_clock(src_rq);
  1837. deactivate_task(src_rq, p, 0, src_rq->clock);
  1838. set_task_cpu(p, this_cpu);
  1839. activate_task(this_rq, p, 0);
  1840. /*
  1841. * Note that idle threads have a prio of MAX_PRIO, for this test
  1842. * to be always true for them.
  1843. */
  1844. check_preempt_curr(this_rq, p);
  1845. }
  1846. /*
  1847. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1848. */
  1849. static
  1850. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1851. struct sched_domain *sd, enum cpu_idle_type idle,
  1852. int *all_pinned)
  1853. {
  1854. /*
  1855. * We do not migrate tasks that are:
  1856. * 1) running (obviously), or
  1857. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1858. * 3) are cache-hot on their current CPU.
  1859. */
  1860. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1861. return 0;
  1862. *all_pinned = 0;
  1863. if (task_running(rq, p))
  1864. return 0;
  1865. /*
  1866. * Aggressive migration if too many balance attempts have failed:
  1867. */
  1868. if (sd->nr_balance_failed > sd->cache_nice_tries)
  1869. return 1;
  1870. return 1;
  1871. }
  1872. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1873. unsigned long max_nr_move, unsigned long max_load_move,
  1874. struct sched_domain *sd, enum cpu_idle_type idle,
  1875. int *all_pinned, unsigned long *load_moved,
  1876. int *this_best_prio, struct rq_iterator *iterator)
  1877. {
  1878. int pulled = 0, pinned = 0, skip_for_load;
  1879. struct task_struct *p;
  1880. long rem_load_move = max_load_move;
  1881. if (max_nr_move == 0 || max_load_move == 0)
  1882. goto out;
  1883. pinned = 1;
  1884. /*
  1885. * Start the load-balancing iterator:
  1886. */
  1887. p = iterator->start(iterator->arg);
  1888. next:
  1889. if (!p)
  1890. goto out;
  1891. /*
  1892. * To help distribute high priority tasks accross CPUs we don't
  1893. * skip a task if it will be the highest priority task (i.e. smallest
  1894. * prio value) on its new queue regardless of its load weight
  1895. */
  1896. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1897. SCHED_LOAD_SCALE_FUZZ;
  1898. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1899. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1900. p = iterator->next(iterator->arg);
  1901. goto next;
  1902. }
  1903. pull_task(busiest, p, this_rq, this_cpu);
  1904. pulled++;
  1905. rem_load_move -= p->se.load.weight;
  1906. /*
  1907. * We only want to steal up to the prescribed number of tasks
  1908. * and the prescribed amount of weighted load.
  1909. */
  1910. if (pulled < max_nr_move && rem_load_move > 0) {
  1911. if (p->prio < *this_best_prio)
  1912. *this_best_prio = p->prio;
  1913. p = iterator->next(iterator->arg);
  1914. goto next;
  1915. }
  1916. out:
  1917. /*
  1918. * Right now, this is the only place pull_task() is called,
  1919. * so we can safely collect pull_task() stats here rather than
  1920. * inside pull_task().
  1921. */
  1922. schedstat_add(sd, lb_gained[idle], pulled);
  1923. if (all_pinned)
  1924. *all_pinned = pinned;
  1925. *load_moved = max_load_move - rem_load_move;
  1926. return pulled;
  1927. }
  1928. /*
  1929. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1930. * this_rq, as part of a balancing operation within domain "sd".
  1931. * Returns 1 if successful and 0 otherwise.
  1932. *
  1933. * Called with both runqueues locked.
  1934. */
  1935. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1936. unsigned long max_load_move,
  1937. struct sched_domain *sd, enum cpu_idle_type idle,
  1938. int *all_pinned)
  1939. {
  1940. struct sched_class *class = sched_class_highest;
  1941. unsigned long total_load_moved = 0;
  1942. int this_best_prio = this_rq->curr->prio;
  1943. do {
  1944. total_load_moved +=
  1945. class->load_balance(this_rq, this_cpu, busiest,
  1946. ULONG_MAX, max_load_move - total_load_moved,
  1947. sd, idle, all_pinned, &this_best_prio);
  1948. class = class->next;
  1949. } while (class && max_load_move > total_load_moved);
  1950. return total_load_moved > 0;
  1951. }
  1952. /*
  1953. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1954. * part of active balancing operations within "domain".
  1955. * Returns 1 if successful and 0 otherwise.
  1956. *
  1957. * Called with both runqueues locked.
  1958. */
  1959. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1960. struct sched_domain *sd, enum cpu_idle_type idle)
  1961. {
  1962. struct sched_class *class;
  1963. int this_best_prio = MAX_PRIO;
  1964. for (class = sched_class_highest; class; class = class->next)
  1965. if (class->load_balance(this_rq, this_cpu, busiest,
  1966. 1, ULONG_MAX, sd, idle, NULL,
  1967. &this_best_prio))
  1968. return 1;
  1969. return 0;
  1970. }
  1971. /*
  1972. * find_busiest_group finds and returns the busiest CPU group within the
  1973. * domain. It calculates and returns the amount of weighted load which
  1974. * should be moved to restore balance via the imbalance parameter.
  1975. */
  1976. static struct sched_group *
  1977. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1978. unsigned long *imbalance, enum cpu_idle_type idle,
  1979. int *sd_idle, cpumask_t *cpus, int *balance)
  1980. {
  1981. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1982. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1983. unsigned long max_pull;
  1984. unsigned long busiest_load_per_task, busiest_nr_running;
  1985. unsigned long this_load_per_task, this_nr_running;
  1986. int load_idx;
  1987. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1988. int power_savings_balance = 1;
  1989. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  1990. unsigned long min_nr_running = ULONG_MAX;
  1991. struct sched_group *group_min = NULL, *group_leader = NULL;
  1992. #endif
  1993. max_load = this_load = total_load = total_pwr = 0;
  1994. busiest_load_per_task = busiest_nr_running = 0;
  1995. this_load_per_task = this_nr_running = 0;
  1996. if (idle == CPU_NOT_IDLE)
  1997. load_idx = sd->busy_idx;
  1998. else if (idle == CPU_NEWLY_IDLE)
  1999. load_idx = sd->newidle_idx;
  2000. else
  2001. load_idx = sd->idle_idx;
  2002. do {
  2003. unsigned long load, group_capacity;
  2004. int local_group;
  2005. int i;
  2006. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2007. unsigned long sum_nr_running, sum_weighted_load;
  2008. local_group = cpu_isset(this_cpu, group->cpumask);
  2009. if (local_group)
  2010. balance_cpu = first_cpu(group->cpumask);
  2011. /* Tally up the load of all CPUs in the group */
  2012. sum_weighted_load = sum_nr_running = avg_load = 0;
  2013. for_each_cpu_mask(i, group->cpumask) {
  2014. struct rq *rq;
  2015. if (!cpu_isset(i, *cpus))
  2016. continue;
  2017. rq = cpu_rq(i);
  2018. if (*sd_idle && rq->nr_running)
  2019. *sd_idle = 0;
  2020. /* Bias balancing toward cpus of our domain */
  2021. if (local_group) {
  2022. if (idle_cpu(i) && !first_idle_cpu) {
  2023. first_idle_cpu = 1;
  2024. balance_cpu = i;
  2025. }
  2026. load = target_load(i, load_idx);
  2027. } else
  2028. load = source_load(i, load_idx);
  2029. avg_load += load;
  2030. sum_nr_running += rq->nr_running;
  2031. sum_weighted_load += weighted_cpuload(i);
  2032. }
  2033. /*
  2034. * First idle cpu or the first cpu(busiest) in this sched group
  2035. * is eligible for doing load balancing at this and above
  2036. * domains. In the newly idle case, we will allow all the cpu's
  2037. * to do the newly idle load balance.
  2038. */
  2039. if (idle != CPU_NEWLY_IDLE && local_group &&
  2040. balance_cpu != this_cpu && balance) {
  2041. *balance = 0;
  2042. goto ret;
  2043. }
  2044. total_load += avg_load;
  2045. total_pwr += group->__cpu_power;
  2046. /* Adjust by relative CPU power of the group */
  2047. avg_load = sg_div_cpu_power(group,
  2048. avg_load * SCHED_LOAD_SCALE);
  2049. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2050. if (local_group) {
  2051. this_load = avg_load;
  2052. this = group;
  2053. this_nr_running = sum_nr_running;
  2054. this_load_per_task = sum_weighted_load;
  2055. } else if (avg_load > max_load &&
  2056. sum_nr_running > group_capacity) {
  2057. max_load = avg_load;
  2058. busiest = group;
  2059. busiest_nr_running = sum_nr_running;
  2060. busiest_load_per_task = sum_weighted_load;
  2061. }
  2062. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2063. /*
  2064. * Busy processors will not participate in power savings
  2065. * balance.
  2066. */
  2067. if (idle == CPU_NOT_IDLE ||
  2068. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2069. goto group_next;
  2070. /*
  2071. * If the local group is idle or completely loaded
  2072. * no need to do power savings balance at this domain
  2073. */
  2074. if (local_group && (this_nr_running >= group_capacity ||
  2075. !this_nr_running))
  2076. power_savings_balance = 0;
  2077. /*
  2078. * If a group is already running at full capacity or idle,
  2079. * don't include that group in power savings calculations
  2080. */
  2081. if (!power_savings_balance || sum_nr_running >= group_capacity
  2082. || !sum_nr_running)
  2083. goto group_next;
  2084. /*
  2085. * Calculate the group which has the least non-idle load.
  2086. * This is the group from where we need to pick up the load
  2087. * for saving power
  2088. */
  2089. if ((sum_nr_running < min_nr_running) ||
  2090. (sum_nr_running == min_nr_running &&
  2091. first_cpu(group->cpumask) <
  2092. first_cpu(group_min->cpumask))) {
  2093. group_min = group;
  2094. min_nr_running = sum_nr_running;
  2095. min_load_per_task = sum_weighted_load /
  2096. sum_nr_running;
  2097. }
  2098. /*
  2099. * Calculate the group which is almost near its
  2100. * capacity but still has some space to pick up some load
  2101. * from other group and save more power
  2102. */
  2103. if (sum_nr_running <= group_capacity - 1) {
  2104. if (sum_nr_running > leader_nr_running ||
  2105. (sum_nr_running == leader_nr_running &&
  2106. first_cpu(group->cpumask) >
  2107. first_cpu(group_leader->cpumask))) {
  2108. group_leader = group;
  2109. leader_nr_running = sum_nr_running;
  2110. }
  2111. }
  2112. group_next:
  2113. #endif
  2114. group = group->next;
  2115. } while (group != sd->groups);
  2116. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2117. goto out_balanced;
  2118. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2119. if (this_load >= avg_load ||
  2120. 100*max_load <= sd->imbalance_pct*this_load)
  2121. goto out_balanced;
  2122. busiest_load_per_task /= busiest_nr_running;
  2123. /*
  2124. * We're trying to get all the cpus to the average_load, so we don't
  2125. * want to push ourselves above the average load, nor do we wish to
  2126. * reduce the max loaded cpu below the average load, as either of these
  2127. * actions would just result in more rebalancing later, and ping-pong
  2128. * tasks around. Thus we look for the minimum possible imbalance.
  2129. * Negative imbalances (*we* are more loaded than anyone else) will
  2130. * be counted as no imbalance for these purposes -- we can't fix that
  2131. * by pulling tasks to us. Be careful of negative numbers as they'll
  2132. * appear as very large values with unsigned longs.
  2133. */
  2134. if (max_load <= busiest_load_per_task)
  2135. goto out_balanced;
  2136. /*
  2137. * In the presence of smp nice balancing, certain scenarios can have
  2138. * max load less than avg load(as we skip the groups at or below
  2139. * its cpu_power, while calculating max_load..)
  2140. */
  2141. if (max_load < avg_load) {
  2142. *imbalance = 0;
  2143. goto small_imbalance;
  2144. }
  2145. /* Don't want to pull so many tasks that a group would go idle */
  2146. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2147. /* How much load to actually move to equalise the imbalance */
  2148. *imbalance = min(max_pull * busiest->__cpu_power,
  2149. (avg_load - this_load) * this->__cpu_power)
  2150. / SCHED_LOAD_SCALE;
  2151. /*
  2152. * if *imbalance is less than the average load per runnable task
  2153. * there is no gaurantee that any tasks will be moved so we'll have
  2154. * a think about bumping its value to force at least one task to be
  2155. * moved
  2156. */
  2157. if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
  2158. unsigned long tmp, pwr_now, pwr_move;
  2159. unsigned int imbn;
  2160. small_imbalance:
  2161. pwr_move = pwr_now = 0;
  2162. imbn = 2;
  2163. if (this_nr_running) {
  2164. this_load_per_task /= this_nr_running;
  2165. if (busiest_load_per_task > this_load_per_task)
  2166. imbn = 1;
  2167. } else
  2168. this_load_per_task = SCHED_LOAD_SCALE;
  2169. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2170. busiest_load_per_task * imbn) {
  2171. *imbalance = busiest_load_per_task;
  2172. return busiest;
  2173. }
  2174. /*
  2175. * OK, we don't have enough imbalance to justify moving tasks,
  2176. * however we may be able to increase total CPU power used by
  2177. * moving them.
  2178. */
  2179. pwr_now += busiest->__cpu_power *
  2180. min(busiest_load_per_task, max_load);
  2181. pwr_now += this->__cpu_power *
  2182. min(this_load_per_task, this_load);
  2183. pwr_now /= SCHED_LOAD_SCALE;
  2184. /* Amount of load we'd subtract */
  2185. tmp = sg_div_cpu_power(busiest,
  2186. busiest_load_per_task * SCHED_LOAD_SCALE);
  2187. if (max_load > tmp)
  2188. pwr_move += busiest->__cpu_power *
  2189. min(busiest_load_per_task, max_load - tmp);
  2190. /* Amount of load we'd add */
  2191. if (max_load * busiest->__cpu_power <
  2192. busiest_load_per_task * SCHED_LOAD_SCALE)
  2193. tmp = sg_div_cpu_power(this,
  2194. max_load * busiest->__cpu_power);
  2195. else
  2196. tmp = sg_div_cpu_power(this,
  2197. busiest_load_per_task * SCHED_LOAD_SCALE);
  2198. pwr_move += this->__cpu_power *
  2199. min(this_load_per_task, this_load + tmp);
  2200. pwr_move /= SCHED_LOAD_SCALE;
  2201. /* Move if we gain throughput */
  2202. if (pwr_move <= pwr_now)
  2203. goto out_balanced;
  2204. *imbalance = busiest_load_per_task;
  2205. }
  2206. return busiest;
  2207. out_balanced:
  2208. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2209. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2210. goto ret;
  2211. if (this == group_leader && group_leader != group_min) {
  2212. *imbalance = min_load_per_task;
  2213. return group_min;
  2214. }
  2215. #endif
  2216. ret:
  2217. *imbalance = 0;
  2218. return NULL;
  2219. }
  2220. /*
  2221. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2222. */
  2223. static struct rq *
  2224. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2225. unsigned long imbalance, cpumask_t *cpus)
  2226. {
  2227. struct rq *busiest = NULL, *rq;
  2228. unsigned long max_load = 0;
  2229. int i;
  2230. for_each_cpu_mask(i, group->cpumask) {
  2231. unsigned long wl;
  2232. if (!cpu_isset(i, *cpus))
  2233. continue;
  2234. rq = cpu_rq(i);
  2235. wl = weighted_cpuload(i);
  2236. if (rq->nr_running == 1 && wl > imbalance)
  2237. continue;
  2238. if (wl > max_load) {
  2239. max_load = wl;
  2240. busiest = rq;
  2241. }
  2242. }
  2243. return busiest;
  2244. }
  2245. /*
  2246. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2247. * so long as it is large enough.
  2248. */
  2249. #define MAX_PINNED_INTERVAL 512
  2250. /*
  2251. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2252. * tasks if there is an imbalance.
  2253. */
  2254. static int load_balance(int this_cpu, struct rq *this_rq,
  2255. struct sched_domain *sd, enum cpu_idle_type idle,
  2256. int *balance)
  2257. {
  2258. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2259. struct sched_group *group;
  2260. unsigned long imbalance;
  2261. struct rq *busiest;
  2262. cpumask_t cpus = CPU_MASK_ALL;
  2263. unsigned long flags;
  2264. /*
  2265. * When power savings policy is enabled for the parent domain, idle
  2266. * sibling can pick up load irrespective of busy siblings. In this case,
  2267. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2268. * portraying it as CPU_NOT_IDLE.
  2269. */
  2270. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2271. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2272. sd_idle = 1;
  2273. schedstat_inc(sd, lb_cnt[idle]);
  2274. redo:
  2275. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2276. &cpus, balance);
  2277. if (*balance == 0)
  2278. goto out_balanced;
  2279. if (!group) {
  2280. schedstat_inc(sd, lb_nobusyg[idle]);
  2281. goto out_balanced;
  2282. }
  2283. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2284. if (!busiest) {
  2285. schedstat_inc(sd, lb_nobusyq[idle]);
  2286. goto out_balanced;
  2287. }
  2288. BUG_ON(busiest == this_rq);
  2289. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2290. ld_moved = 0;
  2291. if (busiest->nr_running > 1) {
  2292. /*
  2293. * Attempt to move tasks. If find_busiest_group has found
  2294. * an imbalance but busiest->nr_running <= 1, the group is
  2295. * still unbalanced. ld_moved simply stays zero, so it is
  2296. * correctly treated as an imbalance.
  2297. */
  2298. local_irq_save(flags);
  2299. double_rq_lock(this_rq, busiest);
  2300. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2301. imbalance, sd, idle, &all_pinned);
  2302. double_rq_unlock(this_rq, busiest);
  2303. local_irq_restore(flags);
  2304. /*
  2305. * some other cpu did the load balance for us.
  2306. */
  2307. if (ld_moved && this_cpu != smp_processor_id())
  2308. resched_cpu(this_cpu);
  2309. /* All tasks on this runqueue were pinned by CPU affinity */
  2310. if (unlikely(all_pinned)) {
  2311. cpu_clear(cpu_of(busiest), cpus);
  2312. if (!cpus_empty(cpus))
  2313. goto redo;
  2314. goto out_balanced;
  2315. }
  2316. }
  2317. if (!ld_moved) {
  2318. schedstat_inc(sd, lb_failed[idle]);
  2319. sd->nr_balance_failed++;
  2320. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2321. spin_lock_irqsave(&busiest->lock, flags);
  2322. /* don't kick the migration_thread, if the curr
  2323. * task on busiest cpu can't be moved to this_cpu
  2324. */
  2325. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2326. spin_unlock_irqrestore(&busiest->lock, flags);
  2327. all_pinned = 1;
  2328. goto out_one_pinned;
  2329. }
  2330. if (!busiest->active_balance) {
  2331. busiest->active_balance = 1;
  2332. busiest->push_cpu = this_cpu;
  2333. active_balance = 1;
  2334. }
  2335. spin_unlock_irqrestore(&busiest->lock, flags);
  2336. if (active_balance)
  2337. wake_up_process(busiest->migration_thread);
  2338. /*
  2339. * We've kicked active balancing, reset the failure
  2340. * counter.
  2341. */
  2342. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2343. }
  2344. } else
  2345. sd->nr_balance_failed = 0;
  2346. if (likely(!active_balance)) {
  2347. /* We were unbalanced, so reset the balancing interval */
  2348. sd->balance_interval = sd->min_interval;
  2349. } else {
  2350. /*
  2351. * If we've begun active balancing, start to back off. This
  2352. * case may not be covered by the all_pinned logic if there
  2353. * is only 1 task on the busy runqueue (because we don't call
  2354. * move_tasks).
  2355. */
  2356. if (sd->balance_interval < sd->max_interval)
  2357. sd->balance_interval *= 2;
  2358. }
  2359. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2360. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2361. return -1;
  2362. return ld_moved;
  2363. out_balanced:
  2364. schedstat_inc(sd, lb_balanced[idle]);
  2365. sd->nr_balance_failed = 0;
  2366. out_one_pinned:
  2367. /* tune up the balancing interval */
  2368. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2369. (sd->balance_interval < sd->max_interval))
  2370. sd->balance_interval *= 2;
  2371. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2372. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2373. return -1;
  2374. return 0;
  2375. }
  2376. /*
  2377. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2378. * tasks if there is an imbalance.
  2379. *
  2380. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2381. * this_rq is locked.
  2382. */
  2383. static int
  2384. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2385. {
  2386. struct sched_group *group;
  2387. struct rq *busiest = NULL;
  2388. unsigned long imbalance;
  2389. int ld_moved = 0;
  2390. int sd_idle = 0;
  2391. int all_pinned = 0;
  2392. cpumask_t cpus = CPU_MASK_ALL;
  2393. /*
  2394. * When power savings policy is enabled for the parent domain, idle
  2395. * sibling can pick up load irrespective of busy siblings. In this case,
  2396. * let the state of idle sibling percolate up as IDLE, instead of
  2397. * portraying it as CPU_NOT_IDLE.
  2398. */
  2399. if (sd->flags & SD_SHARE_CPUPOWER &&
  2400. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2401. sd_idle = 1;
  2402. schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
  2403. redo:
  2404. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2405. &sd_idle, &cpus, NULL);
  2406. if (!group) {
  2407. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2408. goto out_balanced;
  2409. }
  2410. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2411. &cpus);
  2412. if (!busiest) {
  2413. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2414. goto out_balanced;
  2415. }
  2416. BUG_ON(busiest == this_rq);
  2417. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2418. ld_moved = 0;
  2419. if (busiest->nr_running > 1) {
  2420. /* Attempt to move tasks */
  2421. double_lock_balance(this_rq, busiest);
  2422. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2423. imbalance, sd, CPU_NEWLY_IDLE,
  2424. &all_pinned);
  2425. spin_unlock(&busiest->lock);
  2426. if (unlikely(all_pinned)) {
  2427. cpu_clear(cpu_of(busiest), cpus);
  2428. if (!cpus_empty(cpus))
  2429. goto redo;
  2430. }
  2431. }
  2432. if (!ld_moved) {
  2433. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2434. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2435. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2436. return -1;
  2437. } else
  2438. sd->nr_balance_failed = 0;
  2439. return ld_moved;
  2440. out_balanced:
  2441. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2442. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2443. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2444. return -1;
  2445. sd->nr_balance_failed = 0;
  2446. return 0;
  2447. }
  2448. /*
  2449. * idle_balance is called by schedule() if this_cpu is about to become
  2450. * idle. Attempts to pull tasks from other CPUs.
  2451. */
  2452. static void idle_balance(int this_cpu, struct rq *this_rq)
  2453. {
  2454. struct sched_domain *sd;
  2455. int pulled_task = -1;
  2456. unsigned long next_balance = jiffies + HZ;
  2457. for_each_domain(this_cpu, sd) {
  2458. unsigned long interval;
  2459. if (!(sd->flags & SD_LOAD_BALANCE))
  2460. continue;
  2461. if (sd->flags & SD_BALANCE_NEWIDLE)
  2462. /* If we've pulled tasks over stop searching: */
  2463. pulled_task = load_balance_newidle(this_cpu,
  2464. this_rq, sd);
  2465. interval = msecs_to_jiffies(sd->balance_interval);
  2466. if (time_after(next_balance, sd->last_balance + interval))
  2467. next_balance = sd->last_balance + interval;
  2468. if (pulled_task)
  2469. break;
  2470. }
  2471. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2472. /*
  2473. * We are going idle. next_balance may be set based on
  2474. * a busy processor. So reset next_balance.
  2475. */
  2476. this_rq->next_balance = next_balance;
  2477. }
  2478. }
  2479. /*
  2480. * active_load_balance is run by migration threads. It pushes running tasks
  2481. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2482. * running on each physical CPU where possible, and avoids physical /
  2483. * logical imbalances.
  2484. *
  2485. * Called with busiest_rq locked.
  2486. */
  2487. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2488. {
  2489. int target_cpu = busiest_rq->push_cpu;
  2490. struct sched_domain *sd;
  2491. struct rq *target_rq;
  2492. /* Is there any task to move? */
  2493. if (busiest_rq->nr_running <= 1)
  2494. return;
  2495. target_rq = cpu_rq(target_cpu);
  2496. /*
  2497. * This condition is "impossible", if it occurs
  2498. * we need to fix it. Originally reported by
  2499. * Bjorn Helgaas on a 128-cpu setup.
  2500. */
  2501. BUG_ON(busiest_rq == target_rq);
  2502. /* move a task from busiest_rq to target_rq */
  2503. double_lock_balance(busiest_rq, target_rq);
  2504. /* Search for an sd spanning us and the target CPU. */
  2505. for_each_domain(target_cpu, sd) {
  2506. if ((sd->flags & SD_LOAD_BALANCE) &&
  2507. cpu_isset(busiest_cpu, sd->span))
  2508. break;
  2509. }
  2510. if (likely(sd)) {
  2511. schedstat_inc(sd, alb_cnt);
  2512. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2513. sd, CPU_IDLE))
  2514. schedstat_inc(sd, alb_pushed);
  2515. else
  2516. schedstat_inc(sd, alb_failed);
  2517. }
  2518. spin_unlock(&target_rq->lock);
  2519. }
  2520. #ifdef CONFIG_NO_HZ
  2521. static struct {
  2522. atomic_t load_balancer;
  2523. cpumask_t cpu_mask;
  2524. } nohz ____cacheline_aligned = {
  2525. .load_balancer = ATOMIC_INIT(-1),
  2526. .cpu_mask = CPU_MASK_NONE,
  2527. };
  2528. /*
  2529. * This routine will try to nominate the ilb (idle load balancing)
  2530. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2531. * load balancing on behalf of all those cpus. If all the cpus in the system
  2532. * go into this tickless mode, then there will be no ilb owner (as there is
  2533. * no need for one) and all the cpus will sleep till the next wakeup event
  2534. * arrives...
  2535. *
  2536. * For the ilb owner, tick is not stopped. And this tick will be used
  2537. * for idle load balancing. ilb owner will still be part of
  2538. * nohz.cpu_mask..
  2539. *
  2540. * While stopping the tick, this cpu will become the ilb owner if there
  2541. * is no other owner. And will be the owner till that cpu becomes busy
  2542. * or if all cpus in the system stop their ticks at which point
  2543. * there is no need for ilb owner.
  2544. *
  2545. * When the ilb owner becomes busy, it nominates another owner, during the
  2546. * next busy scheduler_tick()
  2547. */
  2548. int select_nohz_load_balancer(int stop_tick)
  2549. {
  2550. int cpu = smp_processor_id();
  2551. if (stop_tick) {
  2552. cpu_set(cpu, nohz.cpu_mask);
  2553. cpu_rq(cpu)->in_nohz_recently = 1;
  2554. /*
  2555. * If we are going offline and still the leader, give up!
  2556. */
  2557. if (cpu_is_offline(cpu) &&
  2558. atomic_read(&nohz.load_balancer) == cpu) {
  2559. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2560. BUG();
  2561. return 0;
  2562. }
  2563. /* time for ilb owner also to sleep */
  2564. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2565. if (atomic_read(&nohz.load_balancer) == cpu)
  2566. atomic_set(&nohz.load_balancer, -1);
  2567. return 0;
  2568. }
  2569. if (atomic_read(&nohz.load_balancer) == -1) {
  2570. /* make me the ilb owner */
  2571. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2572. return 1;
  2573. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2574. return 1;
  2575. } else {
  2576. if (!cpu_isset(cpu, nohz.cpu_mask))
  2577. return 0;
  2578. cpu_clear(cpu, nohz.cpu_mask);
  2579. if (atomic_read(&nohz.load_balancer) == cpu)
  2580. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2581. BUG();
  2582. }
  2583. return 0;
  2584. }
  2585. #endif
  2586. static DEFINE_SPINLOCK(balancing);
  2587. /*
  2588. * It checks each scheduling domain to see if it is due to be balanced,
  2589. * and initiates a balancing operation if so.
  2590. *
  2591. * Balancing parameters are set up in arch_init_sched_domains.
  2592. */
  2593. static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2594. {
  2595. int balance = 1;
  2596. struct rq *rq = cpu_rq(cpu);
  2597. unsigned long interval;
  2598. struct sched_domain *sd;
  2599. /* Earliest time when we have to do rebalance again */
  2600. unsigned long next_balance = jiffies + 60*HZ;
  2601. for_each_domain(cpu, sd) {
  2602. if (!(sd->flags & SD_LOAD_BALANCE))
  2603. continue;
  2604. interval = sd->balance_interval;
  2605. if (idle != CPU_IDLE)
  2606. interval *= sd->busy_factor;
  2607. /* scale ms to jiffies */
  2608. interval = msecs_to_jiffies(interval);
  2609. if (unlikely(!interval))
  2610. interval = 1;
  2611. if (interval > HZ*NR_CPUS/10)
  2612. interval = HZ*NR_CPUS/10;
  2613. if (sd->flags & SD_SERIALIZE) {
  2614. if (!spin_trylock(&balancing))
  2615. goto out;
  2616. }
  2617. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2618. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2619. /*
  2620. * We've pulled tasks over so either we're no
  2621. * longer idle, or one of our SMT siblings is
  2622. * not idle.
  2623. */
  2624. idle = CPU_NOT_IDLE;
  2625. }
  2626. sd->last_balance = jiffies;
  2627. }
  2628. if (sd->flags & SD_SERIALIZE)
  2629. spin_unlock(&balancing);
  2630. out:
  2631. if (time_after(next_balance, sd->last_balance + interval))
  2632. next_balance = sd->last_balance + interval;
  2633. /*
  2634. * Stop the load balance at this level. There is another
  2635. * CPU in our sched group which is doing load balancing more
  2636. * actively.
  2637. */
  2638. if (!balance)
  2639. break;
  2640. }
  2641. rq->next_balance = next_balance;
  2642. }
  2643. /*
  2644. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2645. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2646. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2647. */
  2648. static void run_rebalance_domains(struct softirq_action *h)
  2649. {
  2650. int this_cpu = smp_processor_id();
  2651. struct rq *this_rq = cpu_rq(this_cpu);
  2652. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2653. CPU_IDLE : CPU_NOT_IDLE;
  2654. rebalance_domains(this_cpu, idle);
  2655. #ifdef CONFIG_NO_HZ
  2656. /*
  2657. * If this cpu is the owner for idle load balancing, then do the
  2658. * balancing on behalf of the other idle cpus whose ticks are
  2659. * stopped.
  2660. */
  2661. if (this_rq->idle_at_tick &&
  2662. atomic_read(&nohz.load_balancer) == this_cpu) {
  2663. cpumask_t cpus = nohz.cpu_mask;
  2664. struct rq *rq;
  2665. int balance_cpu;
  2666. cpu_clear(this_cpu, cpus);
  2667. for_each_cpu_mask(balance_cpu, cpus) {
  2668. /*
  2669. * If this cpu gets work to do, stop the load balancing
  2670. * work being done for other cpus. Next load
  2671. * balancing owner will pick it up.
  2672. */
  2673. if (need_resched())
  2674. break;
  2675. rebalance_domains(balance_cpu, SCHED_IDLE);
  2676. rq = cpu_rq(balance_cpu);
  2677. if (time_after(this_rq->next_balance, rq->next_balance))
  2678. this_rq->next_balance = rq->next_balance;
  2679. }
  2680. }
  2681. #endif
  2682. }
  2683. /*
  2684. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2685. *
  2686. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2687. * idle load balancing owner or decide to stop the periodic load balancing,
  2688. * if the whole system is idle.
  2689. */
  2690. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2691. {
  2692. #ifdef CONFIG_NO_HZ
  2693. /*
  2694. * If we were in the nohz mode recently and busy at the current
  2695. * scheduler tick, then check if we need to nominate new idle
  2696. * load balancer.
  2697. */
  2698. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2699. rq->in_nohz_recently = 0;
  2700. if (atomic_read(&nohz.load_balancer) == cpu) {
  2701. cpu_clear(cpu, nohz.cpu_mask);
  2702. atomic_set(&nohz.load_balancer, -1);
  2703. }
  2704. if (atomic_read(&nohz.load_balancer) == -1) {
  2705. /*
  2706. * simple selection for now: Nominate the
  2707. * first cpu in the nohz list to be the next
  2708. * ilb owner.
  2709. *
  2710. * TBD: Traverse the sched domains and nominate
  2711. * the nearest cpu in the nohz.cpu_mask.
  2712. */
  2713. int ilb = first_cpu(nohz.cpu_mask);
  2714. if (ilb != NR_CPUS)
  2715. resched_cpu(ilb);
  2716. }
  2717. }
  2718. /*
  2719. * If this cpu is idle and doing idle load balancing for all the
  2720. * cpus with ticks stopped, is it time for that to stop?
  2721. */
  2722. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2723. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2724. resched_cpu(cpu);
  2725. return;
  2726. }
  2727. /*
  2728. * If this cpu is idle and the idle load balancing is done by
  2729. * someone else, then no need raise the SCHED_SOFTIRQ
  2730. */
  2731. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2732. cpu_isset(cpu, nohz.cpu_mask))
  2733. return;
  2734. #endif
  2735. if (time_after_eq(jiffies, rq->next_balance))
  2736. raise_softirq(SCHED_SOFTIRQ);
  2737. }
  2738. #else /* CONFIG_SMP */
  2739. /*
  2740. * on UP we do not need to balance between CPUs:
  2741. */
  2742. static inline void idle_balance(int cpu, struct rq *rq)
  2743. {
  2744. }
  2745. /* Avoid "used but not defined" warning on UP */
  2746. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2747. unsigned long max_nr_move, unsigned long max_load_move,
  2748. struct sched_domain *sd, enum cpu_idle_type idle,
  2749. int *all_pinned, unsigned long *load_moved,
  2750. int *this_best_prio, struct rq_iterator *iterator)
  2751. {
  2752. *load_moved = 0;
  2753. return 0;
  2754. }
  2755. #endif
  2756. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2757. EXPORT_PER_CPU_SYMBOL(kstat);
  2758. /*
  2759. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2760. * that have not yet been banked in case the task is currently running.
  2761. */
  2762. unsigned long long task_sched_runtime(struct task_struct *p)
  2763. {
  2764. unsigned long flags;
  2765. u64 ns, delta_exec;
  2766. struct rq *rq;
  2767. rq = task_rq_lock(p, &flags);
  2768. ns = p->se.sum_exec_runtime;
  2769. if (rq->curr == p) {
  2770. update_rq_clock(rq);
  2771. delta_exec = rq->clock - p->se.exec_start;
  2772. if ((s64)delta_exec > 0)
  2773. ns += delta_exec;
  2774. }
  2775. task_rq_unlock(rq, &flags);
  2776. return ns;
  2777. }
  2778. /*
  2779. * Account user cpu time to a process.
  2780. * @p: the process that the cpu time gets accounted to
  2781. * @hardirq_offset: the offset to subtract from hardirq_count()
  2782. * @cputime: the cpu time spent in user space since the last update
  2783. */
  2784. void account_user_time(struct task_struct *p, cputime_t cputime)
  2785. {
  2786. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2787. cputime64_t tmp;
  2788. p->utime = cputime_add(p->utime, cputime);
  2789. /* Add user time to cpustat. */
  2790. tmp = cputime_to_cputime64(cputime);
  2791. if (TASK_NICE(p) > 0)
  2792. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2793. else
  2794. cpustat->user = cputime64_add(cpustat->user, tmp);
  2795. }
  2796. /*
  2797. * Account system cpu time to a process.
  2798. * @p: the process that the cpu time gets accounted to
  2799. * @hardirq_offset: the offset to subtract from hardirq_count()
  2800. * @cputime: the cpu time spent in kernel space since the last update
  2801. */
  2802. void account_system_time(struct task_struct *p, int hardirq_offset,
  2803. cputime_t cputime)
  2804. {
  2805. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2806. struct rq *rq = this_rq();
  2807. cputime64_t tmp;
  2808. p->stime = cputime_add(p->stime, cputime);
  2809. /* Add system time to cpustat. */
  2810. tmp = cputime_to_cputime64(cputime);
  2811. if (hardirq_count() - hardirq_offset)
  2812. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2813. else if (softirq_count())
  2814. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2815. else if (p != rq->idle)
  2816. cpustat->system = cputime64_add(cpustat->system, tmp);
  2817. else if (atomic_read(&rq->nr_iowait) > 0)
  2818. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2819. else
  2820. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2821. /* Account for system time used */
  2822. acct_update_integrals(p);
  2823. }
  2824. /*
  2825. * Account for involuntary wait time.
  2826. * @p: the process from which the cpu time has been stolen
  2827. * @steal: the cpu time spent in involuntary wait
  2828. */
  2829. void account_steal_time(struct task_struct *p, cputime_t steal)
  2830. {
  2831. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2832. cputime64_t tmp = cputime_to_cputime64(steal);
  2833. struct rq *rq = this_rq();
  2834. if (p == rq->idle) {
  2835. p->stime = cputime_add(p->stime, steal);
  2836. if (atomic_read(&rq->nr_iowait) > 0)
  2837. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2838. else
  2839. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2840. } else
  2841. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2842. }
  2843. /*
  2844. * This function gets called by the timer code, with HZ frequency.
  2845. * We call it with interrupts disabled.
  2846. *
  2847. * It also gets called by the fork code, when changing the parent's
  2848. * timeslices.
  2849. */
  2850. void scheduler_tick(void)
  2851. {
  2852. int cpu = smp_processor_id();
  2853. struct rq *rq = cpu_rq(cpu);
  2854. struct task_struct *curr = rq->curr;
  2855. spin_lock(&rq->lock);
  2856. update_cpu_load(rq);
  2857. if (curr != rq->idle) /* FIXME: needed? */
  2858. curr->sched_class->task_tick(rq, curr);
  2859. spin_unlock(&rq->lock);
  2860. #ifdef CONFIG_SMP
  2861. rq->idle_at_tick = idle_cpu(cpu);
  2862. trigger_load_balance(rq, cpu);
  2863. #endif
  2864. }
  2865. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2866. void fastcall add_preempt_count(int val)
  2867. {
  2868. /*
  2869. * Underflow?
  2870. */
  2871. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2872. return;
  2873. preempt_count() += val;
  2874. /*
  2875. * Spinlock count overflowing soon?
  2876. */
  2877. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2878. PREEMPT_MASK - 10);
  2879. }
  2880. EXPORT_SYMBOL(add_preempt_count);
  2881. void fastcall sub_preempt_count(int val)
  2882. {
  2883. /*
  2884. * Underflow?
  2885. */
  2886. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2887. return;
  2888. /*
  2889. * Is the spinlock portion underflowing?
  2890. */
  2891. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2892. !(preempt_count() & PREEMPT_MASK)))
  2893. return;
  2894. preempt_count() -= val;
  2895. }
  2896. EXPORT_SYMBOL(sub_preempt_count);
  2897. #endif
  2898. /*
  2899. * Print scheduling while atomic bug:
  2900. */
  2901. static noinline void __schedule_bug(struct task_struct *prev)
  2902. {
  2903. printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
  2904. prev->comm, preempt_count(), prev->pid);
  2905. debug_show_held_locks(prev);
  2906. if (irqs_disabled())
  2907. print_irqtrace_events(prev);
  2908. dump_stack();
  2909. }
  2910. /*
  2911. * Various schedule()-time debugging checks and statistics:
  2912. */
  2913. static inline void schedule_debug(struct task_struct *prev)
  2914. {
  2915. /*
  2916. * Test if we are atomic. Since do_exit() needs to call into
  2917. * schedule() atomically, we ignore that path for now.
  2918. * Otherwise, whine if we are scheduling when we should not be.
  2919. */
  2920. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  2921. __schedule_bug(prev);
  2922. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2923. schedstat_inc(this_rq(), sched_cnt);
  2924. }
  2925. /*
  2926. * Pick up the highest-prio task:
  2927. */
  2928. static inline struct task_struct *
  2929. pick_next_task(struct rq *rq, struct task_struct *prev)
  2930. {
  2931. struct sched_class *class;
  2932. struct task_struct *p;
  2933. /*
  2934. * Optimization: we know that if all tasks are in
  2935. * the fair class we can call that function directly:
  2936. */
  2937. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  2938. p = fair_sched_class.pick_next_task(rq);
  2939. if (likely(p))
  2940. return p;
  2941. }
  2942. class = sched_class_highest;
  2943. for ( ; ; ) {
  2944. p = class->pick_next_task(rq);
  2945. if (p)
  2946. return p;
  2947. /*
  2948. * Will never be NULL as the idle class always
  2949. * returns a non-NULL p:
  2950. */
  2951. class = class->next;
  2952. }
  2953. }
  2954. /*
  2955. * schedule() is the main scheduler function.
  2956. */
  2957. asmlinkage void __sched schedule(void)
  2958. {
  2959. struct task_struct *prev, *next;
  2960. long *switch_count;
  2961. struct rq *rq;
  2962. u64 now;
  2963. int cpu;
  2964. need_resched:
  2965. preempt_disable();
  2966. cpu = smp_processor_id();
  2967. rq = cpu_rq(cpu);
  2968. rcu_qsctr_inc(cpu);
  2969. prev = rq->curr;
  2970. switch_count = &prev->nivcsw;
  2971. release_kernel_lock(prev);
  2972. need_resched_nonpreemptible:
  2973. schedule_debug(prev);
  2974. spin_lock_irq(&rq->lock);
  2975. clear_tsk_need_resched(prev);
  2976. __update_rq_clock(rq);
  2977. now = rq->clock;
  2978. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2979. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  2980. unlikely(signal_pending(prev)))) {
  2981. prev->state = TASK_RUNNING;
  2982. } else {
  2983. deactivate_task(rq, prev, 1, now);
  2984. }
  2985. switch_count = &prev->nvcsw;
  2986. }
  2987. if (unlikely(!rq->nr_running))
  2988. idle_balance(cpu, rq);
  2989. prev->sched_class->put_prev_task(rq, prev);
  2990. next = pick_next_task(rq, prev);
  2991. sched_info_switch(prev, next);
  2992. if (likely(prev != next)) {
  2993. rq->nr_switches++;
  2994. rq->curr = next;
  2995. ++*switch_count;
  2996. context_switch(rq, prev, next); /* unlocks the rq */
  2997. } else
  2998. spin_unlock_irq(&rq->lock);
  2999. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3000. cpu = smp_processor_id();
  3001. rq = cpu_rq(cpu);
  3002. goto need_resched_nonpreemptible;
  3003. }
  3004. preempt_enable_no_resched();
  3005. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3006. goto need_resched;
  3007. }
  3008. EXPORT_SYMBOL(schedule);
  3009. #ifdef CONFIG_PREEMPT
  3010. /*
  3011. * this is the entry point to schedule() from in-kernel preemption
  3012. * off of preempt_enable. Kernel preemptions off return from interrupt
  3013. * occur there and call schedule directly.
  3014. */
  3015. asmlinkage void __sched preempt_schedule(void)
  3016. {
  3017. struct thread_info *ti = current_thread_info();
  3018. #ifdef CONFIG_PREEMPT_BKL
  3019. struct task_struct *task = current;
  3020. int saved_lock_depth;
  3021. #endif
  3022. /*
  3023. * If there is a non-zero preempt_count or interrupts are disabled,
  3024. * we do not want to preempt the current task. Just return..
  3025. */
  3026. if (likely(ti->preempt_count || irqs_disabled()))
  3027. return;
  3028. need_resched:
  3029. add_preempt_count(PREEMPT_ACTIVE);
  3030. /*
  3031. * We keep the big kernel semaphore locked, but we
  3032. * clear ->lock_depth so that schedule() doesnt
  3033. * auto-release the semaphore:
  3034. */
  3035. #ifdef CONFIG_PREEMPT_BKL
  3036. saved_lock_depth = task->lock_depth;
  3037. task->lock_depth = -1;
  3038. #endif
  3039. schedule();
  3040. #ifdef CONFIG_PREEMPT_BKL
  3041. task->lock_depth = saved_lock_depth;
  3042. #endif
  3043. sub_preempt_count(PREEMPT_ACTIVE);
  3044. /* we could miss a preemption opportunity between schedule and now */
  3045. barrier();
  3046. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3047. goto need_resched;
  3048. }
  3049. EXPORT_SYMBOL(preempt_schedule);
  3050. /*
  3051. * this is the entry point to schedule() from kernel preemption
  3052. * off of irq context.
  3053. * Note, that this is called and return with irqs disabled. This will
  3054. * protect us against recursive calling from irq.
  3055. */
  3056. asmlinkage void __sched preempt_schedule_irq(void)
  3057. {
  3058. struct thread_info *ti = current_thread_info();
  3059. #ifdef CONFIG_PREEMPT_BKL
  3060. struct task_struct *task = current;
  3061. int saved_lock_depth;
  3062. #endif
  3063. /* Catch callers which need to be fixed */
  3064. BUG_ON(ti->preempt_count || !irqs_disabled());
  3065. need_resched:
  3066. add_preempt_count(PREEMPT_ACTIVE);
  3067. /*
  3068. * We keep the big kernel semaphore locked, but we
  3069. * clear ->lock_depth so that schedule() doesnt
  3070. * auto-release the semaphore:
  3071. */
  3072. #ifdef CONFIG_PREEMPT_BKL
  3073. saved_lock_depth = task->lock_depth;
  3074. task->lock_depth = -1;
  3075. #endif
  3076. local_irq_enable();
  3077. schedule();
  3078. local_irq_disable();
  3079. #ifdef CONFIG_PREEMPT_BKL
  3080. task->lock_depth = saved_lock_depth;
  3081. #endif
  3082. sub_preempt_count(PREEMPT_ACTIVE);
  3083. /* we could miss a preemption opportunity between schedule and now */
  3084. barrier();
  3085. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3086. goto need_resched;
  3087. }
  3088. #endif /* CONFIG_PREEMPT */
  3089. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3090. void *key)
  3091. {
  3092. return try_to_wake_up(curr->private, mode, sync);
  3093. }
  3094. EXPORT_SYMBOL(default_wake_function);
  3095. /*
  3096. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3097. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3098. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3099. *
  3100. * There are circumstances in which we can try to wake a task which has already
  3101. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3102. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3103. */
  3104. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3105. int nr_exclusive, int sync, void *key)
  3106. {
  3107. struct list_head *tmp, *next;
  3108. list_for_each_safe(tmp, next, &q->task_list) {
  3109. wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
  3110. unsigned flags = curr->flags;
  3111. if (curr->func(curr, mode, sync, key) &&
  3112. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3113. break;
  3114. }
  3115. }
  3116. /**
  3117. * __wake_up - wake up threads blocked on a waitqueue.
  3118. * @q: the waitqueue
  3119. * @mode: which threads
  3120. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3121. * @key: is directly passed to the wakeup function
  3122. */
  3123. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3124. int nr_exclusive, void *key)
  3125. {
  3126. unsigned long flags;
  3127. spin_lock_irqsave(&q->lock, flags);
  3128. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3129. spin_unlock_irqrestore(&q->lock, flags);
  3130. }
  3131. EXPORT_SYMBOL(__wake_up);
  3132. /*
  3133. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3134. */
  3135. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3136. {
  3137. __wake_up_common(q, mode, 1, 0, NULL);
  3138. }
  3139. /**
  3140. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3141. * @q: the waitqueue
  3142. * @mode: which threads
  3143. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3144. *
  3145. * The sync wakeup differs that the waker knows that it will schedule
  3146. * away soon, so while the target thread will be woken up, it will not
  3147. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3148. * with each other. This can prevent needless bouncing between CPUs.
  3149. *
  3150. * On UP it can prevent extra preemption.
  3151. */
  3152. void fastcall
  3153. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3154. {
  3155. unsigned long flags;
  3156. int sync = 1;
  3157. if (unlikely(!q))
  3158. return;
  3159. if (unlikely(!nr_exclusive))
  3160. sync = 0;
  3161. spin_lock_irqsave(&q->lock, flags);
  3162. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3163. spin_unlock_irqrestore(&q->lock, flags);
  3164. }
  3165. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3166. void fastcall complete(struct completion *x)
  3167. {
  3168. unsigned long flags;
  3169. spin_lock_irqsave(&x->wait.lock, flags);
  3170. x->done++;
  3171. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3172. 1, 0, NULL);
  3173. spin_unlock_irqrestore(&x->wait.lock, flags);
  3174. }
  3175. EXPORT_SYMBOL(complete);
  3176. void fastcall complete_all(struct completion *x)
  3177. {
  3178. unsigned long flags;
  3179. spin_lock_irqsave(&x->wait.lock, flags);
  3180. x->done += UINT_MAX/2;
  3181. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3182. 0, 0, NULL);
  3183. spin_unlock_irqrestore(&x->wait.lock, flags);
  3184. }
  3185. EXPORT_SYMBOL(complete_all);
  3186. void fastcall __sched wait_for_completion(struct completion *x)
  3187. {
  3188. might_sleep();
  3189. spin_lock_irq(&x->wait.lock);
  3190. if (!x->done) {
  3191. DECLARE_WAITQUEUE(wait, current);
  3192. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3193. __add_wait_queue_tail(&x->wait, &wait);
  3194. do {
  3195. __set_current_state(TASK_UNINTERRUPTIBLE);
  3196. spin_unlock_irq(&x->wait.lock);
  3197. schedule();
  3198. spin_lock_irq(&x->wait.lock);
  3199. } while (!x->done);
  3200. __remove_wait_queue(&x->wait, &wait);
  3201. }
  3202. x->done--;
  3203. spin_unlock_irq(&x->wait.lock);
  3204. }
  3205. EXPORT_SYMBOL(wait_for_completion);
  3206. unsigned long fastcall __sched
  3207. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3208. {
  3209. might_sleep();
  3210. spin_lock_irq(&x->wait.lock);
  3211. if (!x->done) {
  3212. DECLARE_WAITQUEUE(wait, current);
  3213. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3214. __add_wait_queue_tail(&x->wait, &wait);
  3215. do {
  3216. __set_current_state(TASK_UNINTERRUPTIBLE);
  3217. spin_unlock_irq(&x->wait.lock);
  3218. timeout = schedule_timeout(timeout);
  3219. spin_lock_irq(&x->wait.lock);
  3220. if (!timeout) {
  3221. __remove_wait_queue(&x->wait, &wait);
  3222. goto out;
  3223. }
  3224. } while (!x->done);
  3225. __remove_wait_queue(&x->wait, &wait);
  3226. }
  3227. x->done--;
  3228. out:
  3229. spin_unlock_irq(&x->wait.lock);
  3230. return timeout;
  3231. }
  3232. EXPORT_SYMBOL(wait_for_completion_timeout);
  3233. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3234. {
  3235. int ret = 0;
  3236. might_sleep();
  3237. spin_lock_irq(&x->wait.lock);
  3238. if (!x->done) {
  3239. DECLARE_WAITQUEUE(wait, current);
  3240. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3241. __add_wait_queue_tail(&x->wait, &wait);
  3242. do {
  3243. if (signal_pending(current)) {
  3244. ret = -ERESTARTSYS;
  3245. __remove_wait_queue(&x->wait, &wait);
  3246. goto out;
  3247. }
  3248. __set_current_state(TASK_INTERRUPTIBLE);
  3249. spin_unlock_irq(&x->wait.lock);
  3250. schedule();
  3251. spin_lock_irq(&x->wait.lock);
  3252. } while (!x->done);
  3253. __remove_wait_queue(&x->wait, &wait);
  3254. }
  3255. x->done--;
  3256. out:
  3257. spin_unlock_irq(&x->wait.lock);
  3258. return ret;
  3259. }
  3260. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3261. unsigned long fastcall __sched
  3262. wait_for_completion_interruptible_timeout(struct completion *x,
  3263. unsigned long timeout)
  3264. {
  3265. might_sleep();
  3266. spin_lock_irq(&x->wait.lock);
  3267. if (!x->done) {
  3268. DECLARE_WAITQUEUE(wait, current);
  3269. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3270. __add_wait_queue_tail(&x->wait, &wait);
  3271. do {
  3272. if (signal_pending(current)) {
  3273. timeout = -ERESTARTSYS;
  3274. __remove_wait_queue(&x->wait, &wait);
  3275. goto out;
  3276. }
  3277. __set_current_state(TASK_INTERRUPTIBLE);
  3278. spin_unlock_irq(&x->wait.lock);
  3279. timeout = schedule_timeout(timeout);
  3280. spin_lock_irq(&x->wait.lock);
  3281. if (!timeout) {
  3282. __remove_wait_queue(&x->wait, &wait);
  3283. goto out;
  3284. }
  3285. } while (!x->done);
  3286. __remove_wait_queue(&x->wait, &wait);
  3287. }
  3288. x->done--;
  3289. out:
  3290. spin_unlock_irq(&x->wait.lock);
  3291. return timeout;
  3292. }
  3293. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3294. static inline void
  3295. sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3296. {
  3297. spin_lock_irqsave(&q->lock, *flags);
  3298. __add_wait_queue(q, wait);
  3299. spin_unlock(&q->lock);
  3300. }
  3301. static inline void
  3302. sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3303. {
  3304. spin_lock_irq(&q->lock);
  3305. __remove_wait_queue(q, wait);
  3306. spin_unlock_irqrestore(&q->lock, *flags);
  3307. }
  3308. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3309. {
  3310. unsigned long flags;
  3311. wait_queue_t wait;
  3312. init_waitqueue_entry(&wait, current);
  3313. current->state = TASK_INTERRUPTIBLE;
  3314. sleep_on_head(q, &wait, &flags);
  3315. schedule();
  3316. sleep_on_tail(q, &wait, &flags);
  3317. }
  3318. EXPORT_SYMBOL(interruptible_sleep_on);
  3319. long __sched
  3320. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3321. {
  3322. unsigned long flags;
  3323. wait_queue_t wait;
  3324. init_waitqueue_entry(&wait, current);
  3325. current->state = TASK_INTERRUPTIBLE;
  3326. sleep_on_head(q, &wait, &flags);
  3327. timeout = schedule_timeout(timeout);
  3328. sleep_on_tail(q, &wait, &flags);
  3329. return timeout;
  3330. }
  3331. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3332. void __sched sleep_on(wait_queue_head_t *q)
  3333. {
  3334. unsigned long flags;
  3335. wait_queue_t wait;
  3336. init_waitqueue_entry(&wait, current);
  3337. current->state = TASK_UNINTERRUPTIBLE;
  3338. sleep_on_head(q, &wait, &flags);
  3339. schedule();
  3340. sleep_on_tail(q, &wait, &flags);
  3341. }
  3342. EXPORT_SYMBOL(sleep_on);
  3343. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3344. {
  3345. unsigned long flags;
  3346. wait_queue_t wait;
  3347. init_waitqueue_entry(&wait, current);
  3348. current->state = TASK_UNINTERRUPTIBLE;
  3349. sleep_on_head(q, &wait, &flags);
  3350. timeout = schedule_timeout(timeout);
  3351. sleep_on_tail(q, &wait, &flags);
  3352. return timeout;
  3353. }
  3354. EXPORT_SYMBOL(sleep_on_timeout);
  3355. #ifdef CONFIG_RT_MUTEXES
  3356. /*
  3357. * rt_mutex_setprio - set the current priority of a task
  3358. * @p: task
  3359. * @prio: prio value (kernel-internal form)
  3360. *
  3361. * This function changes the 'effective' priority of a task. It does
  3362. * not touch ->normal_prio like __setscheduler().
  3363. *
  3364. * Used by the rt_mutex code to implement priority inheritance logic.
  3365. */
  3366. void rt_mutex_setprio(struct task_struct *p, int prio)
  3367. {
  3368. unsigned long flags;
  3369. int oldprio, on_rq;
  3370. struct rq *rq;
  3371. u64 now;
  3372. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3373. rq = task_rq_lock(p, &flags);
  3374. update_rq_clock(rq);
  3375. now = rq->clock;
  3376. oldprio = p->prio;
  3377. on_rq = p->se.on_rq;
  3378. if (on_rq)
  3379. dequeue_task(rq, p, 0, now);
  3380. if (rt_prio(prio))
  3381. p->sched_class = &rt_sched_class;
  3382. else
  3383. p->sched_class = &fair_sched_class;
  3384. p->prio = prio;
  3385. if (on_rq) {
  3386. enqueue_task(rq, p, 0);
  3387. /*
  3388. * Reschedule if we are currently running on this runqueue and
  3389. * our priority decreased, or if we are not currently running on
  3390. * this runqueue and our priority is higher than the current's
  3391. */
  3392. if (task_running(rq, p)) {
  3393. if (p->prio > oldprio)
  3394. resched_task(rq->curr);
  3395. } else {
  3396. check_preempt_curr(rq, p);
  3397. }
  3398. }
  3399. task_rq_unlock(rq, &flags);
  3400. }
  3401. #endif
  3402. void set_user_nice(struct task_struct *p, long nice)
  3403. {
  3404. int old_prio, delta, on_rq;
  3405. unsigned long flags;
  3406. struct rq *rq;
  3407. u64 now;
  3408. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3409. return;
  3410. /*
  3411. * We have to be careful, if called from sys_setpriority(),
  3412. * the task might be in the middle of scheduling on another CPU.
  3413. */
  3414. rq = task_rq_lock(p, &flags);
  3415. update_rq_clock(rq);
  3416. now = rq->clock;
  3417. /*
  3418. * The RT priorities are set via sched_setscheduler(), but we still
  3419. * allow the 'normal' nice value to be set - but as expected
  3420. * it wont have any effect on scheduling until the task is
  3421. * SCHED_FIFO/SCHED_RR:
  3422. */
  3423. if (task_has_rt_policy(p)) {
  3424. p->static_prio = NICE_TO_PRIO(nice);
  3425. goto out_unlock;
  3426. }
  3427. on_rq = p->se.on_rq;
  3428. if (on_rq) {
  3429. dequeue_task(rq, p, 0, now);
  3430. dec_load(rq, p);
  3431. }
  3432. p->static_prio = NICE_TO_PRIO(nice);
  3433. set_load_weight(p);
  3434. old_prio = p->prio;
  3435. p->prio = effective_prio(p);
  3436. delta = p->prio - old_prio;
  3437. if (on_rq) {
  3438. enqueue_task(rq, p, 0);
  3439. inc_load(rq, p);
  3440. /*
  3441. * If the task increased its priority or is running and
  3442. * lowered its priority, then reschedule its CPU:
  3443. */
  3444. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3445. resched_task(rq->curr);
  3446. }
  3447. out_unlock:
  3448. task_rq_unlock(rq, &flags);
  3449. }
  3450. EXPORT_SYMBOL(set_user_nice);
  3451. /*
  3452. * can_nice - check if a task can reduce its nice value
  3453. * @p: task
  3454. * @nice: nice value
  3455. */
  3456. int can_nice(const struct task_struct *p, const int nice)
  3457. {
  3458. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3459. int nice_rlim = 20 - nice;
  3460. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3461. capable(CAP_SYS_NICE));
  3462. }
  3463. #ifdef __ARCH_WANT_SYS_NICE
  3464. /*
  3465. * sys_nice - change the priority of the current process.
  3466. * @increment: priority increment
  3467. *
  3468. * sys_setpriority is a more generic, but much slower function that
  3469. * does similar things.
  3470. */
  3471. asmlinkage long sys_nice(int increment)
  3472. {
  3473. long nice, retval;
  3474. /*
  3475. * Setpriority might change our priority at the same moment.
  3476. * We don't have to worry. Conceptually one call occurs first
  3477. * and we have a single winner.
  3478. */
  3479. if (increment < -40)
  3480. increment = -40;
  3481. if (increment > 40)
  3482. increment = 40;
  3483. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3484. if (nice < -20)
  3485. nice = -20;
  3486. if (nice > 19)
  3487. nice = 19;
  3488. if (increment < 0 && !can_nice(current, nice))
  3489. return -EPERM;
  3490. retval = security_task_setnice(current, nice);
  3491. if (retval)
  3492. return retval;
  3493. set_user_nice(current, nice);
  3494. return 0;
  3495. }
  3496. #endif
  3497. /**
  3498. * task_prio - return the priority value of a given task.
  3499. * @p: the task in question.
  3500. *
  3501. * This is the priority value as seen by users in /proc.
  3502. * RT tasks are offset by -200. Normal tasks are centered
  3503. * around 0, value goes from -16 to +15.
  3504. */
  3505. int task_prio(const struct task_struct *p)
  3506. {
  3507. return p->prio - MAX_RT_PRIO;
  3508. }
  3509. /**
  3510. * task_nice - return the nice value of a given task.
  3511. * @p: the task in question.
  3512. */
  3513. int task_nice(const struct task_struct *p)
  3514. {
  3515. return TASK_NICE(p);
  3516. }
  3517. EXPORT_SYMBOL_GPL(task_nice);
  3518. /**
  3519. * idle_cpu - is a given cpu idle currently?
  3520. * @cpu: the processor in question.
  3521. */
  3522. int idle_cpu(int cpu)
  3523. {
  3524. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3525. }
  3526. /**
  3527. * idle_task - return the idle task for a given cpu.
  3528. * @cpu: the processor in question.
  3529. */
  3530. struct task_struct *idle_task(int cpu)
  3531. {
  3532. return cpu_rq(cpu)->idle;
  3533. }
  3534. /**
  3535. * find_process_by_pid - find a process with a matching PID value.
  3536. * @pid: the pid in question.
  3537. */
  3538. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3539. {
  3540. return pid ? find_task_by_pid(pid) : current;
  3541. }
  3542. /* Actually do priority change: must hold rq lock. */
  3543. static void
  3544. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3545. {
  3546. BUG_ON(p->se.on_rq);
  3547. p->policy = policy;
  3548. switch (p->policy) {
  3549. case SCHED_NORMAL:
  3550. case SCHED_BATCH:
  3551. case SCHED_IDLE:
  3552. p->sched_class = &fair_sched_class;
  3553. break;
  3554. case SCHED_FIFO:
  3555. case SCHED_RR:
  3556. p->sched_class = &rt_sched_class;
  3557. break;
  3558. }
  3559. p->rt_priority = prio;
  3560. p->normal_prio = normal_prio(p);
  3561. /* we are holding p->pi_lock already */
  3562. p->prio = rt_mutex_getprio(p);
  3563. set_load_weight(p);
  3564. }
  3565. /**
  3566. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3567. * @p: the task in question.
  3568. * @policy: new policy.
  3569. * @param: structure containing the new RT priority.
  3570. *
  3571. * NOTE that the task may be already dead.
  3572. */
  3573. int sched_setscheduler(struct task_struct *p, int policy,
  3574. struct sched_param *param)
  3575. {
  3576. int retval, oldprio, oldpolicy = -1, on_rq;
  3577. unsigned long flags;
  3578. struct rq *rq;
  3579. /* may grab non-irq protected spin_locks */
  3580. BUG_ON(in_interrupt());
  3581. recheck:
  3582. /* double check policy once rq lock held */
  3583. if (policy < 0)
  3584. policy = oldpolicy = p->policy;
  3585. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3586. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3587. policy != SCHED_IDLE)
  3588. return -EINVAL;
  3589. /*
  3590. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3591. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3592. * SCHED_BATCH and SCHED_IDLE is 0.
  3593. */
  3594. if (param->sched_priority < 0 ||
  3595. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3596. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3597. return -EINVAL;
  3598. if (rt_policy(policy) != (param->sched_priority != 0))
  3599. return -EINVAL;
  3600. /*
  3601. * Allow unprivileged RT tasks to decrease priority:
  3602. */
  3603. if (!capable(CAP_SYS_NICE)) {
  3604. if (rt_policy(policy)) {
  3605. unsigned long rlim_rtprio;
  3606. if (!lock_task_sighand(p, &flags))
  3607. return -ESRCH;
  3608. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3609. unlock_task_sighand(p, &flags);
  3610. /* can't set/change the rt policy */
  3611. if (policy != p->policy && !rlim_rtprio)
  3612. return -EPERM;
  3613. /* can't increase priority */
  3614. if (param->sched_priority > p->rt_priority &&
  3615. param->sched_priority > rlim_rtprio)
  3616. return -EPERM;
  3617. }
  3618. /*
  3619. * Like positive nice levels, dont allow tasks to
  3620. * move out of SCHED_IDLE either:
  3621. */
  3622. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3623. return -EPERM;
  3624. /* can't change other user's priorities */
  3625. if ((current->euid != p->euid) &&
  3626. (current->euid != p->uid))
  3627. return -EPERM;
  3628. }
  3629. retval = security_task_setscheduler(p, policy, param);
  3630. if (retval)
  3631. return retval;
  3632. /*
  3633. * make sure no PI-waiters arrive (or leave) while we are
  3634. * changing the priority of the task:
  3635. */
  3636. spin_lock_irqsave(&p->pi_lock, flags);
  3637. /*
  3638. * To be able to change p->policy safely, the apropriate
  3639. * runqueue lock must be held.
  3640. */
  3641. rq = __task_rq_lock(p);
  3642. /* recheck policy now with rq lock held */
  3643. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3644. policy = oldpolicy = -1;
  3645. __task_rq_unlock(rq);
  3646. spin_unlock_irqrestore(&p->pi_lock, flags);
  3647. goto recheck;
  3648. }
  3649. on_rq = p->se.on_rq;
  3650. if (on_rq) {
  3651. update_rq_clock(rq);
  3652. deactivate_task(rq, p, 0, rq->clock);
  3653. }
  3654. oldprio = p->prio;
  3655. __setscheduler(rq, p, policy, param->sched_priority);
  3656. if (on_rq) {
  3657. activate_task(rq, p, 0);
  3658. /*
  3659. * Reschedule if we are currently running on this runqueue and
  3660. * our priority decreased, or if we are not currently running on
  3661. * this runqueue and our priority is higher than the current's
  3662. */
  3663. if (task_running(rq, p)) {
  3664. if (p->prio > oldprio)
  3665. resched_task(rq->curr);
  3666. } else {
  3667. check_preempt_curr(rq, p);
  3668. }
  3669. }
  3670. __task_rq_unlock(rq);
  3671. spin_unlock_irqrestore(&p->pi_lock, flags);
  3672. rt_mutex_adjust_pi(p);
  3673. return 0;
  3674. }
  3675. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3676. static int
  3677. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3678. {
  3679. struct sched_param lparam;
  3680. struct task_struct *p;
  3681. int retval;
  3682. if (!param || pid < 0)
  3683. return -EINVAL;
  3684. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3685. return -EFAULT;
  3686. rcu_read_lock();
  3687. retval = -ESRCH;
  3688. p = find_process_by_pid(pid);
  3689. if (p != NULL)
  3690. retval = sched_setscheduler(p, policy, &lparam);
  3691. rcu_read_unlock();
  3692. return retval;
  3693. }
  3694. /**
  3695. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3696. * @pid: the pid in question.
  3697. * @policy: new policy.
  3698. * @param: structure containing the new RT priority.
  3699. */
  3700. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3701. struct sched_param __user *param)
  3702. {
  3703. /* negative values for policy are not valid */
  3704. if (policy < 0)
  3705. return -EINVAL;
  3706. return do_sched_setscheduler(pid, policy, param);
  3707. }
  3708. /**
  3709. * sys_sched_setparam - set/change the RT priority of a thread
  3710. * @pid: the pid in question.
  3711. * @param: structure containing the new RT priority.
  3712. */
  3713. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3714. {
  3715. return do_sched_setscheduler(pid, -1, param);
  3716. }
  3717. /**
  3718. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3719. * @pid: the pid in question.
  3720. */
  3721. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3722. {
  3723. struct task_struct *p;
  3724. int retval = -EINVAL;
  3725. if (pid < 0)
  3726. goto out_nounlock;
  3727. retval = -ESRCH;
  3728. read_lock(&tasklist_lock);
  3729. p = find_process_by_pid(pid);
  3730. if (p) {
  3731. retval = security_task_getscheduler(p);
  3732. if (!retval)
  3733. retval = p->policy;
  3734. }
  3735. read_unlock(&tasklist_lock);
  3736. out_nounlock:
  3737. return retval;
  3738. }
  3739. /**
  3740. * sys_sched_getscheduler - get the RT priority of a thread
  3741. * @pid: the pid in question.
  3742. * @param: structure containing the RT priority.
  3743. */
  3744. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3745. {
  3746. struct sched_param lp;
  3747. struct task_struct *p;
  3748. int retval = -EINVAL;
  3749. if (!param || pid < 0)
  3750. goto out_nounlock;
  3751. read_lock(&tasklist_lock);
  3752. p = find_process_by_pid(pid);
  3753. retval = -ESRCH;
  3754. if (!p)
  3755. goto out_unlock;
  3756. retval = security_task_getscheduler(p);
  3757. if (retval)
  3758. goto out_unlock;
  3759. lp.sched_priority = p->rt_priority;
  3760. read_unlock(&tasklist_lock);
  3761. /*
  3762. * This one might sleep, we cannot do it with a spinlock held ...
  3763. */
  3764. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3765. out_nounlock:
  3766. return retval;
  3767. out_unlock:
  3768. read_unlock(&tasklist_lock);
  3769. return retval;
  3770. }
  3771. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3772. {
  3773. cpumask_t cpus_allowed;
  3774. struct task_struct *p;
  3775. int retval;
  3776. mutex_lock(&sched_hotcpu_mutex);
  3777. read_lock(&tasklist_lock);
  3778. p = find_process_by_pid(pid);
  3779. if (!p) {
  3780. read_unlock(&tasklist_lock);
  3781. mutex_unlock(&sched_hotcpu_mutex);
  3782. return -ESRCH;
  3783. }
  3784. /*
  3785. * It is not safe to call set_cpus_allowed with the
  3786. * tasklist_lock held. We will bump the task_struct's
  3787. * usage count and then drop tasklist_lock.
  3788. */
  3789. get_task_struct(p);
  3790. read_unlock(&tasklist_lock);
  3791. retval = -EPERM;
  3792. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3793. !capable(CAP_SYS_NICE))
  3794. goto out_unlock;
  3795. retval = security_task_setscheduler(p, 0, NULL);
  3796. if (retval)
  3797. goto out_unlock;
  3798. cpus_allowed = cpuset_cpus_allowed(p);
  3799. cpus_and(new_mask, new_mask, cpus_allowed);
  3800. retval = set_cpus_allowed(p, new_mask);
  3801. out_unlock:
  3802. put_task_struct(p);
  3803. mutex_unlock(&sched_hotcpu_mutex);
  3804. return retval;
  3805. }
  3806. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3807. cpumask_t *new_mask)
  3808. {
  3809. if (len < sizeof(cpumask_t)) {
  3810. memset(new_mask, 0, sizeof(cpumask_t));
  3811. } else if (len > sizeof(cpumask_t)) {
  3812. len = sizeof(cpumask_t);
  3813. }
  3814. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3815. }
  3816. /**
  3817. * sys_sched_setaffinity - set the cpu affinity of a process
  3818. * @pid: pid of the process
  3819. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3820. * @user_mask_ptr: user-space pointer to the new cpu mask
  3821. */
  3822. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3823. unsigned long __user *user_mask_ptr)
  3824. {
  3825. cpumask_t new_mask;
  3826. int retval;
  3827. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3828. if (retval)
  3829. return retval;
  3830. return sched_setaffinity(pid, new_mask);
  3831. }
  3832. /*
  3833. * Represents all cpu's present in the system
  3834. * In systems capable of hotplug, this map could dynamically grow
  3835. * as new cpu's are detected in the system via any platform specific
  3836. * method, such as ACPI for e.g.
  3837. */
  3838. cpumask_t cpu_present_map __read_mostly;
  3839. EXPORT_SYMBOL(cpu_present_map);
  3840. #ifndef CONFIG_SMP
  3841. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3842. EXPORT_SYMBOL(cpu_online_map);
  3843. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3844. EXPORT_SYMBOL(cpu_possible_map);
  3845. #endif
  3846. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3847. {
  3848. struct task_struct *p;
  3849. int retval;
  3850. mutex_lock(&sched_hotcpu_mutex);
  3851. read_lock(&tasklist_lock);
  3852. retval = -ESRCH;
  3853. p = find_process_by_pid(pid);
  3854. if (!p)
  3855. goto out_unlock;
  3856. retval = security_task_getscheduler(p);
  3857. if (retval)
  3858. goto out_unlock;
  3859. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3860. out_unlock:
  3861. read_unlock(&tasklist_lock);
  3862. mutex_unlock(&sched_hotcpu_mutex);
  3863. return retval;
  3864. }
  3865. /**
  3866. * sys_sched_getaffinity - get the cpu affinity of a process
  3867. * @pid: pid of the process
  3868. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3869. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3870. */
  3871. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3872. unsigned long __user *user_mask_ptr)
  3873. {
  3874. int ret;
  3875. cpumask_t mask;
  3876. if (len < sizeof(cpumask_t))
  3877. return -EINVAL;
  3878. ret = sched_getaffinity(pid, &mask);
  3879. if (ret < 0)
  3880. return ret;
  3881. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3882. return -EFAULT;
  3883. return sizeof(cpumask_t);
  3884. }
  3885. /**
  3886. * sys_sched_yield - yield the current processor to other threads.
  3887. *
  3888. * This function yields the current CPU to other tasks. If there are no
  3889. * other threads running on this CPU then this function will return.
  3890. */
  3891. asmlinkage long sys_sched_yield(void)
  3892. {
  3893. struct rq *rq = this_rq_lock();
  3894. schedstat_inc(rq, yld_cnt);
  3895. if (unlikely(rq->nr_running == 1))
  3896. schedstat_inc(rq, yld_act_empty);
  3897. else
  3898. current->sched_class->yield_task(rq, current);
  3899. /*
  3900. * Since we are going to call schedule() anyway, there's
  3901. * no need to preempt or enable interrupts:
  3902. */
  3903. __release(rq->lock);
  3904. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3905. _raw_spin_unlock(&rq->lock);
  3906. preempt_enable_no_resched();
  3907. schedule();
  3908. return 0;
  3909. }
  3910. static void __cond_resched(void)
  3911. {
  3912. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3913. __might_sleep(__FILE__, __LINE__);
  3914. #endif
  3915. /*
  3916. * The BKS might be reacquired before we have dropped
  3917. * PREEMPT_ACTIVE, which could trigger a second
  3918. * cond_resched() call.
  3919. */
  3920. do {
  3921. add_preempt_count(PREEMPT_ACTIVE);
  3922. schedule();
  3923. sub_preempt_count(PREEMPT_ACTIVE);
  3924. } while (need_resched());
  3925. }
  3926. int __sched cond_resched(void)
  3927. {
  3928. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  3929. system_state == SYSTEM_RUNNING) {
  3930. __cond_resched();
  3931. return 1;
  3932. }
  3933. return 0;
  3934. }
  3935. EXPORT_SYMBOL(cond_resched);
  3936. /*
  3937. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3938. * call schedule, and on return reacquire the lock.
  3939. *
  3940. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3941. * operations here to prevent schedule() from being called twice (once via
  3942. * spin_unlock(), once by hand).
  3943. */
  3944. int cond_resched_lock(spinlock_t *lock)
  3945. {
  3946. int ret = 0;
  3947. if (need_lockbreak(lock)) {
  3948. spin_unlock(lock);
  3949. cpu_relax();
  3950. ret = 1;
  3951. spin_lock(lock);
  3952. }
  3953. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3954. spin_release(&lock->dep_map, 1, _THIS_IP_);
  3955. _raw_spin_unlock(lock);
  3956. preempt_enable_no_resched();
  3957. __cond_resched();
  3958. ret = 1;
  3959. spin_lock(lock);
  3960. }
  3961. return ret;
  3962. }
  3963. EXPORT_SYMBOL(cond_resched_lock);
  3964. int __sched cond_resched_softirq(void)
  3965. {
  3966. BUG_ON(!in_softirq());
  3967. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3968. local_bh_enable();
  3969. __cond_resched();
  3970. local_bh_disable();
  3971. return 1;
  3972. }
  3973. return 0;
  3974. }
  3975. EXPORT_SYMBOL(cond_resched_softirq);
  3976. /**
  3977. * yield - yield the current processor to other threads.
  3978. *
  3979. * This is a shortcut for kernel-space yielding - it marks the
  3980. * thread runnable and calls sys_sched_yield().
  3981. */
  3982. void __sched yield(void)
  3983. {
  3984. set_current_state(TASK_RUNNING);
  3985. sys_sched_yield();
  3986. }
  3987. EXPORT_SYMBOL(yield);
  3988. /*
  3989. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3990. * that process accounting knows that this is a task in IO wait state.
  3991. *
  3992. * But don't do that if it is a deliberate, throttling IO wait (this task
  3993. * has set its backing_dev_info: the queue against which it should throttle)
  3994. */
  3995. void __sched io_schedule(void)
  3996. {
  3997. struct rq *rq = &__raw_get_cpu_var(runqueues);
  3998. delayacct_blkio_start();
  3999. atomic_inc(&rq->nr_iowait);
  4000. schedule();
  4001. atomic_dec(&rq->nr_iowait);
  4002. delayacct_blkio_end();
  4003. }
  4004. EXPORT_SYMBOL(io_schedule);
  4005. long __sched io_schedule_timeout(long timeout)
  4006. {
  4007. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4008. long ret;
  4009. delayacct_blkio_start();
  4010. atomic_inc(&rq->nr_iowait);
  4011. ret = schedule_timeout(timeout);
  4012. atomic_dec(&rq->nr_iowait);
  4013. delayacct_blkio_end();
  4014. return ret;
  4015. }
  4016. /**
  4017. * sys_sched_get_priority_max - return maximum RT priority.
  4018. * @policy: scheduling class.
  4019. *
  4020. * this syscall returns the maximum rt_priority that can be used
  4021. * by a given scheduling class.
  4022. */
  4023. asmlinkage long sys_sched_get_priority_max(int policy)
  4024. {
  4025. int ret = -EINVAL;
  4026. switch (policy) {
  4027. case SCHED_FIFO:
  4028. case SCHED_RR:
  4029. ret = MAX_USER_RT_PRIO-1;
  4030. break;
  4031. case SCHED_NORMAL:
  4032. case SCHED_BATCH:
  4033. case SCHED_IDLE:
  4034. ret = 0;
  4035. break;
  4036. }
  4037. return ret;
  4038. }
  4039. /**
  4040. * sys_sched_get_priority_min - return minimum RT priority.
  4041. * @policy: scheduling class.
  4042. *
  4043. * this syscall returns the minimum rt_priority that can be used
  4044. * by a given scheduling class.
  4045. */
  4046. asmlinkage long sys_sched_get_priority_min(int policy)
  4047. {
  4048. int ret = -EINVAL;
  4049. switch (policy) {
  4050. case SCHED_FIFO:
  4051. case SCHED_RR:
  4052. ret = 1;
  4053. break;
  4054. case SCHED_NORMAL:
  4055. case SCHED_BATCH:
  4056. case SCHED_IDLE:
  4057. ret = 0;
  4058. }
  4059. return ret;
  4060. }
  4061. /**
  4062. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4063. * @pid: pid of the process.
  4064. * @interval: userspace pointer to the timeslice value.
  4065. *
  4066. * this syscall writes the default timeslice value of a given process
  4067. * into the user-space timespec buffer. A value of '0' means infinity.
  4068. */
  4069. asmlinkage
  4070. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4071. {
  4072. struct task_struct *p;
  4073. int retval = -EINVAL;
  4074. struct timespec t;
  4075. if (pid < 0)
  4076. goto out_nounlock;
  4077. retval = -ESRCH;
  4078. read_lock(&tasklist_lock);
  4079. p = find_process_by_pid(pid);
  4080. if (!p)
  4081. goto out_unlock;
  4082. retval = security_task_getscheduler(p);
  4083. if (retval)
  4084. goto out_unlock;
  4085. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4086. 0 : static_prio_timeslice(p->static_prio), &t);
  4087. read_unlock(&tasklist_lock);
  4088. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4089. out_nounlock:
  4090. return retval;
  4091. out_unlock:
  4092. read_unlock(&tasklist_lock);
  4093. return retval;
  4094. }
  4095. static const char stat_nam[] = "RSDTtZX";
  4096. static void show_task(struct task_struct *p)
  4097. {
  4098. unsigned long free = 0;
  4099. unsigned state;
  4100. state = p->state ? __ffs(p->state) + 1 : 0;
  4101. printk("%-13.13s %c", p->comm,
  4102. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4103. #if BITS_PER_LONG == 32
  4104. if (state == TASK_RUNNING)
  4105. printk(" running ");
  4106. else
  4107. printk(" %08lx ", thread_saved_pc(p));
  4108. #else
  4109. if (state == TASK_RUNNING)
  4110. printk(" running task ");
  4111. else
  4112. printk(" %016lx ", thread_saved_pc(p));
  4113. #endif
  4114. #ifdef CONFIG_DEBUG_STACK_USAGE
  4115. {
  4116. unsigned long *n = end_of_stack(p);
  4117. while (!*n)
  4118. n++;
  4119. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4120. }
  4121. #endif
  4122. printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
  4123. if (state != TASK_RUNNING)
  4124. show_stack(p, NULL);
  4125. }
  4126. void show_state_filter(unsigned long state_filter)
  4127. {
  4128. struct task_struct *g, *p;
  4129. #if BITS_PER_LONG == 32
  4130. printk(KERN_INFO
  4131. " task PC stack pid father\n");
  4132. #else
  4133. printk(KERN_INFO
  4134. " task PC stack pid father\n");
  4135. #endif
  4136. read_lock(&tasklist_lock);
  4137. do_each_thread(g, p) {
  4138. /*
  4139. * reset the NMI-timeout, listing all files on a slow
  4140. * console might take alot of time:
  4141. */
  4142. touch_nmi_watchdog();
  4143. if (!state_filter || (p->state & state_filter))
  4144. show_task(p);
  4145. } while_each_thread(g, p);
  4146. touch_all_softlockup_watchdogs();
  4147. #ifdef CONFIG_SCHED_DEBUG
  4148. sysrq_sched_debug_show();
  4149. #endif
  4150. read_unlock(&tasklist_lock);
  4151. /*
  4152. * Only show locks if all tasks are dumped:
  4153. */
  4154. if (state_filter == -1)
  4155. debug_show_all_locks();
  4156. }
  4157. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4158. {
  4159. idle->sched_class = &idle_sched_class;
  4160. }
  4161. /**
  4162. * init_idle - set up an idle thread for a given CPU
  4163. * @idle: task in question
  4164. * @cpu: cpu the idle task belongs to
  4165. *
  4166. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4167. * flag, to make booting more robust.
  4168. */
  4169. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4170. {
  4171. struct rq *rq = cpu_rq(cpu);
  4172. unsigned long flags;
  4173. __sched_fork(idle);
  4174. idle->se.exec_start = sched_clock();
  4175. idle->prio = idle->normal_prio = MAX_PRIO;
  4176. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4177. __set_task_cpu(idle, cpu);
  4178. spin_lock_irqsave(&rq->lock, flags);
  4179. rq->curr = rq->idle = idle;
  4180. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4181. idle->oncpu = 1;
  4182. #endif
  4183. spin_unlock_irqrestore(&rq->lock, flags);
  4184. /* Set the preempt count _outside_ the spinlocks! */
  4185. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4186. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4187. #else
  4188. task_thread_info(idle)->preempt_count = 0;
  4189. #endif
  4190. /*
  4191. * The idle tasks have their own, simple scheduling class:
  4192. */
  4193. idle->sched_class = &idle_sched_class;
  4194. }
  4195. /*
  4196. * In a system that switches off the HZ timer nohz_cpu_mask
  4197. * indicates which cpus entered this state. This is used
  4198. * in the rcu update to wait only for active cpus. For system
  4199. * which do not switch off the HZ timer nohz_cpu_mask should
  4200. * always be CPU_MASK_NONE.
  4201. */
  4202. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4203. /*
  4204. * Increase the granularity value when there are more CPUs,
  4205. * because with more CPUs the 'effective latency' as visible
  4206. * to users decreases. But the relationship is not linear,
  4207. * so pick a second-best guess by going with the log2 of the
  4208. * number of CPUs.
  4209. *
  4210. * This idea comes from the SD scheduler of Con Kolivas:
  4211. */
  4212. static inline void sched_init_granularity(void)
  4213. {
  4214. unsigned int factor = 1 + ilog2(num_online_cpus());
  4215. const unsigned long gran_limit = 100000000;
  4216. sysctl_sched_granularity *= factor;
  4217. if (sysctl_sched_granularity > gran_limit)
  4218. sysctl_sched_granularity = gran_limit;
  4219. sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
  4220. sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
  4221. }
  4222. #ifdef CONFIG_SMP
  4223. /*
  4224. * This is how migration works:
  4225. *
  4226. * 1) we queue a struct migration_req structure in the source CPU's
  4227. * runqueue and wake up that CPU's migration thread.
  4228. * 2) we down() the locked semaphore => thread blocks.
  4229. * 3) migration thread wakes up (implicitly it forces the migrated
  4230. * thread off the CPU)
  4231. * 4) it gets the migration request and checks whether the migrated
  4232. * task is still in the wrong runqueue.
  4233. * 5) if it's in the wrong runqueue then the migration thread removes
  4234. * it and puts it into the right queue.
  4235. * 6) migration thread up()s the semaphore.
  4236. * 7) we wake up and the migration is done.
  4237. */
  4238. /*
  4239. * Change a given task's CPU affinity. Migrate the thread to a
  4240. * proper CPU and schedule it away if the CPU it's executing on
  4241. * is removed from the allowed bitmask.
  4242. *
  4243. * NOTE: the caller must have a valid reference to the task, the
  4244. * task must not exit() & deallocate itself prematurely. The
  4245. * call is not atomic; no spinlocks may be held.
  4246. */
  4247. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4248. {
  4249. struct migration_req req;
  4250. unsigned long flags;
  4251. struct rq *rq;
  4252. int ret = 0;
  4253. rq = task_rq_lock(p, &flags);
  4254. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4255. ret = -EINVAL;
  4256. goto out;
  4257. }
  4258. p->cpus_allowed = new_mask;
  4259. /* Can the task run on the task's current CPU? If so, we're done */
  4260. if (cpu_isset(task_cpu(p), new_mask))
  4261. goto out;
  4262. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4263. /* Need help from migration thread: drop lock and wait. */
  4264. task_rq_unlock(rq, &flags);
  4265. wake_up_process(rq->migration_thread);
  4266. wait_for_completion(&req.done);
  4267. tlb_migrate_finish(p->mm);
  4268. return 0;
  4269. }
  4270. out:
  4271. task_rq_unlock(rq, &flags);
  4272. return ret;
  4273. }
  4274. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4275. /*
  4276. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4277. * this because either it can't run here any more (set_cpus_allowed()
  4278. * away from this CPU, or CPU going down), or because we're
  4279. * attempting to rebalance this task on exec (sched_exec).
  4280. *
  4281. * So we race with normal scheduler movements, but that's OK, as long
  4282. * as the task is no longer on this CPU.
  4283. *
  4284. * Returns non-zero if task was successfully migrated.
  4285. */
  4286. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4287. {
  4288. struct rq *rq_dest, *rq_src;
  4289. int ret = 0, on_rq;
  4290. if (unlikely(cpu_is_offline(dest_cpu)))
  4291. return ret;
  4292. rq_src = cpu_rq(src_cpu);
  4293. rq_dest = cpu_rq(dest_cpu);
  4294. double_rq_lock(rq_src, rq_dest);
  4295. /* Already moved. */
  4296. if (task_cpu(p) != src_cpu)
  4297. goto out;
  4298. /* Affinity changed (again). */
  4299. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4300. goto out;
  4301. on_rq = p->se.on_rq;
  4302. if (on_rq) {
  4303. update_rq_clock(rq_src);
  4304. deactivate_task(rq_src, p, 0, rq_src->clock);
  4305. }
  4306. set_task_cpu(p, dest_cpu);
  4307. if (on_rq) {
  4308. activate_task(rq_dest, p, 0);
  4309. check_preempt_curr(rq_dest, p);
  4310. }
  4311. ret = 1;
  4312. out:
  4313. double_rq_unlock(rq_src, rq_dest);
  4314. return ret;
  4315. }
  4316. /*
  4317. * migration_thread - this is a highprio system thread that performs
  4318. * thread migration by bumping thread off CPU then 'pushing' onto
  4319. * another runqueue.
  4320. */
  4321. static int migration_thread(void *data)
  4322. {
  4323. int cpu = (long)data;
  4324. struct rq *rq;
  4325. rq = cpu_rq(cpu);
  4326. BUG_ON(rq->migration_thread != current);
  4327. set_current_state(TASK_INTERRUPTIBLE);
  4328. while (!kthread_should_stop()) {
  4329. struct migration_req *req;
  4330. struct list_head *head;
  4331. spin_lock_irq(&rq->lock);
  4332. if (cpu_is_offline(cpu)) {
  4333. spin_unlock_irq(&rq->lock);
  4334. goto wait_to_die;
  4335. }
  4336. if (rq->active_balance) {
  4337. active_load_balance(rq, cpu);
  4338. rq->active_balance = 0;
  4339. }
  4340. head = &rq->migration_queue;
  4341. if (list_empty(head)) {
  4342. spin_unlock_irq(&rq->lock);
  4343. schedule();
  4344. set_current_state(TASK_INTERRUPTIBLE);
  4345. continue;
  4346. }
  4347. req = list_entry(head->next, struct migration_req, list);
  4348. list_del_init(head->next);
  4349. spin_unlock(&rq->lock);
  4350. __migrate_task(req->task, cpu, req->dest_cpu);
  4351. local_irq_enable();
  4352. complete(&req->done);
  4353. }
  4354. __set_current_state(TASK_RUNNING);
  4355. return 0;
  4356. wait_to_die:
  4357. /* Wait for kthread_stop */
  4358. set_current_state(TASK_INTERRUPTIBLE);
  4359. while (!kthread_should_stop()) {
  4360. schedule();
  4361. set_current_state(TASK_INTERRUPTIBLE);
  4362. }
  4363. __set_current_state(TASK_RUNNING);
  4364. return 0;
  4365. }
  4366. #ifdef CONFIG_HOTPLUG_CPU
  4367. /*
  4368. * Figure out where task on dead CPU should go, use force if neccessary.
  4369. * NOTE: interrupts should be disabled by the caller
  4370. */
  4371. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4372. {
  4373. unsigned long flags;
  4374. cpumask_t mask;
  4375. struct rq *rq;
  4376. int dest_cpu;
  4377. restart:
  4378. /* On same node? */
  4379. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4380. cpus_and(mask, mask, p->cpus_allowed);
  4381. dest_cpu = any_online_cpu(mask);
  4382. /* On any allowed CPU? */
  4383. if (dest_cpu == NR_CPUS)
  4384. dest_cpu = any_online_cpu(p->cpus_allowed);
  4385. /* No more Mr. Nice Guy. */
  4386. if (dest_cpu == NR_CPUS) {
  4387. rq = task_rq_lock(p, &flags);
  4388. cpus_setall(p->cpus_allowed);
  4389. dest_cpu = any_online_cpu(p->cpus_allowed);
  4390. task_rq_unlock(rq, &flags);
  4391. /*
  4392. * Don't tell them about moving exiting tasks or
  4393. * kernel threads (both mm NULL), since they never
  4394. * leave kernel.
  4395. */
  4396. if (p->mm && printk_ratelimit())
  4397. printk(KERN_INFO "process %d (%s) no "
  4398. "longer affine to cpu%d\n",
  4399. p->pid, p->comm, dead_cpu);
  4400. }
  4401. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4402. goto restart;
  4403. }
  4404. /*
  4405. * While a dead CPU has no uninterruptible tasks queued at this point,
  4406. * it might still have a nonzero ->nr_uninterruptible counter, because
  4407. * for performance reasons the counter is not stricly tracking tasks to
  4408. * their home CPUs. So we just add the counter to another CPU's counter,
  4409. * to keep the global sum constant after CPU-down:
  4410. */
  4411. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4412. {
  4413. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4414. unsigned long flags;
  4415. local_irq_save(flags);
  4416. double_rq_lock(rq_src, rq_dest);
  4417. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4418. rq_src->nr_uninterruptible = 0;
  4419. double_rq_unlock(rq_src, rq_dest);
  4420. local_irq_restore(flags);
  4421. }
  4422. /* Run through task list and migrate tasks from the dead cpu. */
  4423. static void migrate_live_tasks(int src_cpu)
  4424. {
  4425. struct task_struct *p, *t;
  4426. write_lock_irq(&tasklist_lock);
  4427. do_each_thread(t, p) {
  4428. if (p == current)
  4429. continue;
  4430. if (task_cpu(p) == src_cpu)
  4431. move_task_off_dead_cpu(src_cpu, p);
  4432. } while_each_thread(t, p);
  4433. write_unlock_irq(&tasklist_lock);
  4434. }
  4435. /*
  4436. * Schedules idle task to be the next runnable task on current CPU.
  4437. * It does so by boosting its priority to highest possible and adding it to
  4438. * the _front_ of the runqueue. Used by CPU offline code.
  4439. */
  4440. void sched_idle_next(void)
  4441. {
  4442. int this_cpu = smp_processor_id();
  4443. struct rq *rq = cpu_rq(this_cpu);
  4444. struct task_struct *p = rq->idle;
  4445. unsigned long flags;
  4446. /* cpu has to be offline */
  4447. BUG_ON(cpu_online(this_cpu));
  4448. /*
  4449. * Strictly not necessary since rest of the CPUs are stopped by now
  4450. * and interrupts disabled on the current cpu.
  4451. */
  4452. spin_lock_irqsave(&rq->lock, flags);
  4453. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4454. /* Add idle task to the _front_ of its priority queue: */
  4455. activate_idle_task(p, rq);
  4456. spin_unlock_irqrestore(&rq->lock, flags);
  4457. }
  4458. /*
  4459. * Ensures that the idle task is using init_mm right before its cpu goes
  4460. * offline.
  4461. */
  4462. void idle_task_exit(void)
  4463. {
  4464. struct mm_struct *mm = current->active_mm;
  4465. BUG_ON(cpu_online(smp_processor_id()));
  4466. if (mm != &init_mm)
  4467. switch_mm(mm, &init_mm, current);
  4468. mmdrop(mm);
  4469. }
  4470. /* called under rq->lock with disabled interrupts */
  4471. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4472. {
  4473. struct rq *rq = cpu_rq(dead_cpu);
  4474. /* Must be exiting, otherwise would be on tasklist. */
  4475. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4476. /* Cannot have done final schedule yet: would have vanished. */
  4477. BUG_ON(p->state == TASK_DEAD);
  4478. get_task_struct(p);
  4479. /*
  4480. * Drop lock around migration; if someone else moves it,
  4481. * that's OK. No task can be added to this CPU, so iteration is
  4482. * fine.
  4483. * NOTE: interrupts should be left disabled --dev@
  4484. */
  4485. spin_unlock(&rq->lock);
  4486. move_task_off_dead_cpu(dead_cpu, p);
  4487. spin_lock(&rq->lock);
  4488. put_task_struct(p);
  4489. }
  4490. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4491. static void migrate_dead_tasks(unsigned int dead_cpu)
  4492. {
  4493. struct rq *rq = cpu_rq(dead_cpu);
  4494. struct task_struct *next;
  4495. for ( ; ; ) {
  4496. if (!rq->nr_running)
  4497. break;
  4498. update_rq_clock(rq);
  4499. next = pick_next_task(rq, rq->curr);
  4500. if (!next)
  4501. break;
  4502. migrate_dead(dead_cpu, next);
  4503. }
  4504. }
  4505. #endif /* CONFIG_HOTPLUG_CPU */
  4506. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4507. static struct ctl_table sd_ctl_dir[] = {
  4508. {
  4509. .procname = "sched_domain",
  4510. .mode = 0755,
  4511. },
  4512. {0,},
  4513. };
  4514. static struct ctl_table sd_ctl_root[] = {
  4515. {
  4516. .procname = "kernel",
  4517. .mode = 0755,
  4518. .child = sd_ctl_dir,
  4519. },
  4520. {0,},
  4521. };
  4522. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4523. {
  4524. struct ctl_table *entry =
  4525. kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
  4526. BUG_ON(!entry);
  4527. memset(entry, 0, n * sizeof(struct ctl_table));
  4528. return entry;
  4529. }
  4530. static void
  4531. set_table_entry(struct ctl_table *entry,
  4532. const char *procname, void *data, int maxlen,
  4533. mode_t mode, proc_handler *proc_handler)
  4534. {
  4535. entry->procname = procname;
  4536. entry->data = data;
  4537. entry->maxlen = maxlen;
  4538. entry->mode = mode;
  4539. entry->proc_handler = proc_handler;
  4540. }
  4541. static struct ctl_table *
  4542. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4543. {
  4544. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4545. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4546. sizeof(long), 0644, proc_doulongvec_minmax);
  4547. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4548. sizeof(long), 0644, proc_doulongvec_minmax);
  4549. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4550. sizeof(int), 0644, proc_dointvec_minmax);
  4551. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4552. sizeof(int), 0644, proc_dointvec_minmax);
  4553. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4554. sizeof(int), 0644, proc_dointvec_minmax);
  4555. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4556. sizeof(int), 0644, proc_dointvec_minmax);
  4557. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4558. sizeof(int), 0644, proc_dointvec_minmax);
  4559. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4560. sizeof(int), 0644, proc_dointvec_minmax);
  4561. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4562. sizeof(int), 0644, proc_dointvec_minmax);
  4563. set_table_entry(&table[10], "cache_nice_tries",
  4564. &sd->cache_nice_tries,
  4565. sizeof(int), 0644, proc_dointvec_minmax);
  4566. set_table_entry(&table[12], "flags", &sd->flags,
  4567. sizeof(int), 0644, proc_dointvec_minmax);
  4568. return table;
  4569. }
  4570. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4571. {
  4572. struct ctl_table *entry, *table;
  4573. struct sched_domain *sd;
  4574. int domain_num = 0, i;
  4575. char buf[32];
  4576. for_each_domain(cpu, sd)
  4577. domain_num++;
  4578. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4579. i = 0;
  4580. for_each_domain(cpu, sd) {
  4581. snprintf(buf, 32, "domain%d", i);
  4582. entry->procname = kstrdup(buf, GFP_KERNEL);
  4583. entry->mode = 0755;
  4584. entry->child = sd_alloc_ctl_domain_table(sd);
  4585. entry++;
  4586. i++;
  4587. }
  4588. return table;
  4589. }
  4590. static struct ctl_table_header *sd_sysctl_header;
  4591. static void init_sched_domain_sysctl(void)
  4592. {
  4593. int i, cpu_num = num_online_cpus();
  4594. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4595. char buf[32];
  4596. sd_ctl_dir[0].child = entry;
  4597. for (i = 0; i < cpu_num; i++, entry++) {
  4598. snprintf(buf, 32, "cpu%d", i);
  4599. entry->procname = kstrdup(buf, GFP_KERNEL);
  4600. entry->mode = 0755;
  4601. entry->child = sd_alloc_ctl_cpu_table(i);
  4602. }
  4603. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4604. }
  4605. #else
  4606. static void init_sched_domain_sysctl(void)
  4607. {
  4608. }
  4609. #endif
  4610. /*
  4611. * migration_call - callback that gets triggered when a CPU is added.
  4612. * Here we can start up the necessary migration thread for the new CPU.
  4613. */
  4614. static int __cpuinit
  4615. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4616. {
  4617. struct task_struct *p;
  4618. int cpu = (long)hcpu;
  4619. unsigned long flags;
  4620. struct rq *rq;
  4621. switch (action) {
  4622. case CPU_LOCK_ACQUIRE:
  4623. mutex_lock(&sched_hotcpu_mutex);
  4624. break;
  4625. case CPU_UP_PREPARE:
  4626. case CPU_UP_PREPARE_FROZEN:
  4627. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4628. if (IS_ERR(p))
  4629. return NOTIFY_BAD;
  4630. kthread_bind(p, cpu);
  4631. /* Must be high prio: stop_machine expects to yield to it. */
  4632. rq = task_rq_lock(p, &flags);
  4633. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4634. task_rq_unlock(rq, &flags);
  4635. cpu_rq(cpu)->migration_thread = p;
  4636. break;
  4637. case CPU_ONLINE:
  4638. case CPU_ONLINE_FROZEN:
  4639. /* Strictly unneccessary, as first user will wake it. */
  4640. wake_up_process(cpu_rq(cpu)->migration_thread);
  4641. break;
  4642. #ifdef CONFIG_HOTPLUG_CPU
  4643. case CPU_UP_CANCELED:
  4644. case CPU_UP_CANCELED_FROZEN:
  4645. if (!cpu_rq(cpu)->migration_thread)
  4646. break;
  4647. /* Unbind it from offline cpu so it can run. Fall thru. */
  4648. kthread_bind(cpu_rq(cpu)->migration_thread,
  4649. any_online_cpu(cpu_online_map));
  4650. kthread_stop(cpu_rq(cpu)->migration_thread);
  4651. cpu_rq(cpu)->migration_thread = NULL;
  4652. break;
  4653. case CPU_DEAD:
  4654. case CPU_DEAD_FROZEN:
  4655. migrate_live_tasks(cpu);
  4656. rq = cpu_rq(cpu);
  4657. kthread_stop(rq->migration_thread);
  4658. rq->migration_thread = NULL;
  4659. /* Idle task back to normal (off runqueue, low prio) */
  4660. rq = task_rq_lock(rq->idle, &flags);
  4661. update_rq_clock(rq);
  4662. deactivate_task(rq, rq->idle, 0, rq->clock);
  4663. rq->idle->static_prio = MAX_PRIO;
  4664. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4665. rq->idle->sched_class = &idle_sched_class;
  4666. migrate_dead_tasks(cpu);
  4667. task_rq_unlock(rq, &flags);
  4668. migrate_nr_uninterruptible(rq);
  4669. BUG_ON(rq->nr_running != 0);
  4670. /* No need to migrate the tasks: it was best-effort if
  4671. * they didn't take sched_hotcpu_mutex. Just wake up
  4672. * the requestors. */
  4673. spin_lock_irq(&rq->lock);
  4674. while (!list_empty(&rq->migration_queue)) {
  4675. struct migration_req *req;
  4676. req = list_entry(rq->migration_queue.next,
  4677. struct migration_req, list);
  4678. list_del_init(&req->list);
  4679. complete(&req->done);
  4680. }
  4681. spin_unlock_irq(&rq->lock);
  4682. break;
  4683. #endif
  4684. case CPU_LOCK_RELEASE:
  4685. mutex_unlock(&sched_hotcpu_mutex);
  4686. break;
  4687. }
  4688. return NOTIFY_OK;
  4689. }
  4690. /* Register at highest priority so that task migration (migrate_all_tasks)
  4691. * happens before everything else.
  4692. */
  4693. static struct notifier_block __cpuinitdata migration_notifier = {
  4694. .notifier_call = migration_call,
  4695. .priority = 10
  4696. };
  4697. int __init migration_init(void)
  4698. {
  4699. void *cpu = (void *)(long)smp_processor_id();
  4700. int err;
  4701. /* Start one for the boot CPU: */
  4702. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4703. BUG_ON(err == NOTIFY_BAD);
  4704. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4705. register_cpu_notifier(&migration_notifier);
  4706. return 0;
  4707. }
  4708. #endif
  4709. #ifdef CONFIG_SMP
  4710. /* Number of possible processor ids */
  4711. int nr_cpu_ids __read_mostly = NR_CPUS;
  4712. EXPORT_SYMBOL(nr_cpu_ids);
  4713. #undef SCHED_DOMAIN_DEBUG
  4714. #ifdef SCHED_DOMAIN_DEBUG
  4715. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4716. {
  4717. int level = 0;
  4718. if (!sd) {
  4719. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4720. return;
  4721. }
  4722. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4723. do {
  4724. int i;
  4725. char str[NR_CPUS];
  4726. struct sched_group *group = sd->groups;
  4727. cpumask_t groupmask;
  4728. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4729. cpus_clear(groupmask);
  4730. printk(KERN_DEBUG);
  4731. for (i = 0; i < level + 1; i++)
  4732. printk(" ");
  4733. printk("domain %d: ", level);
  4734. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4735. printk("does not load-balance\n");
  4736. if (sd->parent)
  4737. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4738. " has parent");
  4739. break;
  4740. }
  4741. printk("span %s\n", str);
  4742. if (!cpu_isset(cpu, sd->span))
  4743. printk(KERN_ERR "ERROR: domain->span does not contain "
  4744. "CPU%d\n", cpu);
  4745. if (!cpu_isset(cpu, group->cpumask))
  4746. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4747. " CPU%d\n", cpu);
  4748. printk(KERN_DEBUG);
  4749. for (i = 0; i < level + 2; i++)
  4750. printk(" ");
  4751. printk("groups:");
  4752. do {
  4753. if (!group) {
  4754. printk("\n");
  4755. printk(KERN_ERR "ERROR: group is NULL\n");
  4756. break;
  4757. }
  4758. if (!group->__cpu_power) {
  4759. printk("\n");
  4760. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4761. "set\n");
  4762. }
  4763. if (!cpus_weight(group->cpumask)) {
  4764. printk("\n");
  4765. printk(KERN_ERR "ERROR: empty group\n");
  4766. }
  4767. if (cpus_intersects(groupmask, group->cpumask)) {
  4768. printk("\n");
  4769. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4770. }
  4771. cpus_or(groupmask, groupmask, group->cpumask);
  4772. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4773. printk(" %s", str);
  4774. group = group->next;
  4775. } while (group != sd->groups);
  4776. printk("\n");
  4777. if (!cpus_equal(sd->span, groupmask))
  4778. printk(KERN_ERR "ERROR: groups don't span "
  4779. "domain->span\n");
  4780. level++;
  4781. sd = sd->parent;
  4782. if (!sd)
  4783. continue;
  4784. if (!cpus_subset(groupmask, sd->span))
  4785. printk(KERN_ERR "ERROR: parent span is not a superset "
  4786. "of domain->span\n");
  4787. } while (sd);
  4788. }
  4789. #else
  4790. # define sched_domain_debug(sd, cpu) do { } while (0)
  4791. #endif
  4792. static int sd_degenerate(struct sched_domain *sd)
  4793. {
  4794. if (cpus_weight(sd->span) == 1)
  4795. return 1;
  4796. /* Following flags need at least 2 groups */
  4797. if (sd->flags & (SD_LOAD_BALANCE |
  4798. SD_BALANCE_NEWIDLE |
  4799. SD_BALANCE_FORK |
  4800. SD_BALANCE_EXEC |
  4801. SD_SHARE_CPUPOWER |
  4802. SD_SHARE_PKG_RESOURCES)) {
  4803. if (sd->groups != sd->groups->next)
  4804. return 0;
  4805. }
  4806. /* Following flags don't use groups */
  4807. if (sd->flags & (SD_WAKE_IDLE |
  4808. SD_WAKE_AFFINE |
  4809. SD_WAKE_BALANCE))
  4810. return 0;
  4811. return 1;
  4812. }
  4813. static int
  4814. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4815. {
  4816. unsigned long cflags = sd->flags, pflags = parent->flags;
  4817. if (sd_degenerate(parent))
  4818. return 1;
  4819. if (!cpus_equal(sd->span, parent->span))
  4820. return 0;
  4821. /* Does parent contain flags not in child? */
  4822. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4823. if (cflags & SD_WAKE_AFFINE)
  4824. pflags &= ~SD_WAKE_BALANCE;
  4825. /* Flags needing groups don't count if only 1 group in parent */
  4826. if (parent->groups == parent->groups->next) {
  4827. pflags &= ~(SD_LOAD_BALANCE |
  4828. SD_BALANCE_NEWIDLE |
  4829. SD_BALANCE_FORK |
  4830. SD_BALANCE_EXEC |
  4831. SD_SHARE_CPUPOWER |
  4832. SD_SHARE_PKG_RESOURCES);
  4833. }
  4834. if (~cflags & pflags)
  4835. return 0;
  4836. return 1;
  4837. }
  4838. /*
  4839. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4840. * hold the hotplug lock.
  4841. */
  4842. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4843. {
  4844. struct rq *rq = cpu_rq(cpu);
  4845. struct sched_domain *tmp;
  4846. /* Remove the sched domains which do not contribute to scheduling. */
  4847. for (tmp = sd; tmp; tmp = tmp->parent) {
  4848. struct sched_domain *parent = tmp->parent;
  4849. if (!parent)
  4850. break;
  4851. if (sd_parent_degenerate(tmp, parent)) {
  4852. tmp->parent = parent->parent;
  4853. if (parent->parent)
  4854. parent->parent->child = tmp;
  4855. }
  4856. }
  4857. if (sd && sd_degenerate(sd)) {
  4858. sd = sd->parent;
  4859. if (sd)
  4860. sd->child = NULL;
  4861. }
  4862. sched_domain_debug(sd, cpu);
  4863. rcu_assign_pointer(rq->sd, sd);
  4864. }
  4865. /* cpus with isolated domains */
  4866. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  4867. /* Setup the mask of cpus configured for isolated domains */
  4868. static int __init isolated_cpu_setup(char *str)
  4869. {
  4870. int ints[NR_CPUS], i;
  4871. str = get_options(str, ARRAY_SIZE(ints), ints);
  4872. cpus_clear(cpu_isolated_map);
  4873. for (i = 1; i <= ints[0]; i++)
  4874. if (ints[i] < NR_CPUS)
  4875. cpu_set(ints[i], cpu_isolated_map);
  4876. return 1;
  4877. }
  4878. __setup ("isolcpus=", isolated_cpu_setup);
  4879. /*
  4880. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4881. * to a function which identifies what group(along with sched group) a CPU
  4882. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4883. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4884. *
  4885. * init_sched_build_groups will build a circular linked list of the groups
  4886. * covered by the given span, and will set each group's ->cpumask correctly,
  4887. * and ->cpu_power to 0.
  4888. */
  4889. static void
  4890. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4891. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4892. struct sched_group **sg))
  4893. {
  4894. struct sched_group *first = NULL, *last = NULL;
  4895. cpumask_t covered = CPU_MASK_NONE;
  4896. int i;
  4897. for_each_cpu_mask(i, span) {
  4898. struct sched_group *sg;
  4899. int group = group_fn(i, cpu_map, &sg);
  4900. int j;
  4901. if (cpu_isset(i, covered))
  4902. continue;
  4903. sg->cpumask = CPU_MASK_NONE;
  4904. sg->__cpu_power = 0;
  4905. for_each_cpu_mask(j, span) {
  4906. if (group_fn(j, cpu_map, NULL) != group)
  4907. continue;
  4908. cpu_set(j, covered);
  4909. cpu_set(j, sg->cpumask);
  4910. }
  4911. if (!first)
  4912. first = sg;
  4913. if (last)
  4914. last->next = sg;
  4915. last = sg;
  4916. }
  4917. last->next = first;
  4918. }
  4919. #define SD_NODES_PER_DOMAIN 16
  4920. #ifdef CONFIG_NUMA
  4921. /**
  4922. * find_next_best_node - find the next node to include in a sched_domain
  4923. * @node: node whose sched_domain we're building
  4924. * @used_nodes: nodes already in the sched_domain
  4925. *
  4926. * Find the next node to include in a given scheduling domain. Simply
  4927. * finds the closest node not already in the @used_nodes map.
  4928. *
  4929. * Should use nodemask_t.
  4930. */
  4931. static int find_next_best_node(int node, unsigned long *used_nodes)
  4932. {
  4933. int i, n, val, min_val, best_node = 0;
  4934. min_val = INT_MAX;
  4935. for (i = 0; i < MAX_NUMNODES; i++) {
  4936. /* Start at @node */
  4937. n = (node + i) % MAX_NUMNODES;
  4938. if (!nr_cpus_node(n))
  4939. continue;
  4940. /* Skip already used nodes */
  4941. if (test_bit(n, used_nodes))
  4942. continue;
  4943. /* Simple min distance search */
  4944. val = node_distance(node, n);
  4945. if (val < min_val) {
  4946. min_val = val;
  4947. best_node = n;
  4948. }
  4949. }
  4950. set_bit(best_node, used_nodes);
  4951. return best_node;
  4952. }
  4953. /**
  4954. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4955. * @node: node whose cpumask we're constructing
  4956. * @size: number of nodes to include in this span
  4957. *
  4958. * Given a node, construct a good cpumask for its sched_domain to span. It
  4959. * should be one that prevents unnecessary balancing, but also spreads tasks
  4960. * out optimally.
  4961. */
  4962. static cpumask_t sched_domain_node_span(int node)
  4963. {
  4964. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  4965. cpumask_t span, nodemask;
  4966. int i;
  4967. cpus_clear(span);
  4968. bitmap_zero(used_nodes, MAX_NUMNODES);
  4969. nodemask = node_to_cpumask(node);
  4970. cpus_or(span, span, nodemask);
  4971. set_bit(node, used_nodes);
  4972. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  4973. int next_node = find_next_best_node(node, used_nodes);
  4974. nodemask = node_to_cpumask(next_node);
  4975. cpus_or(span, span, nodemask);
  4976. }
  4977. return span;
  4978. }
  4979. #endif
  4980. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  4981. /*
  4982. * SMT sched-domains:
  4983. */
  4984. #ifdef CONFIG_SCHED_SMT
  4985. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  4986. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  4987. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  4988. struct sched_group **sg)
  4989. {
  4990. if (sg)
  4991. *sg = &per_cpu(sched_group_cpus, cpu);
  4992. return cpu;
  4993. }
  4994. #endif
  4995. /*
  4996. * multi-core sched-domains:
  4997. */
  4998. #ifdef CONFIG_SCHED_MC
  4999. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5000. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5001. #endif
  5002. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5003. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5004. struct sched_group **sg)
  5005. {
  5006. int group;
  5007. cpumask_t mask = cpu_sibling_map[cpu];
  5008. cpus_and(mask, mask, *cpu_map);
  5009. group = first_cpu(mask);
  5010. if (sg)
  5011. *sg = &per_cpu(sched_group_core, group);
  5012. return group;
  5013. }
  5014. #elif defined(CONFIG_SCHED_MC)
  5015. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5016. struct sched_group **sg)
  5017. {
  5018. if (sg)
  5019. *sg = &per_cpu(sched_group_core, cpu);
  5020. return cpu;
  5021. }
  5022. #endif
  5023. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5024. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5025. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5026. struct sched_group **sg)
  5027. {
  5028. int group;
  5029. #ifdef CONFIG_SCHED_MC
  5030. cpumask_t mask = cpu_coregroup_map(cpu);
  5031. cpus_and(mask, mask, *cpu_map);
  5032. group = first_cpu(mask);
  5033. #elif defined(CONFIG_SCHED_SMT)
  5034. cpumask_t mask = cpu_sibling_map[cpu];
  5035. cpus_and(mask, mask, *cpu_map);
  5036. group = first_cpu(mask);
  5037. #else
  5038. group = cpu;
  5039. #endif
  5040. if (sg)
  5041. *sg = &per_cpu(sched_group_phys, group);
  5042. return group;
  5043. }
  5044. #ifdef CONFIG_NUMA
  5045. /*
  5046. * The init_sched_build_groups can't handle what we want to do with node
  5047. * groups, so roll our own. Now each node has its own list of groups which
  5048. * gets dynamically allocated.
  5049. */
  5050. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5051. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5052. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5053. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5054. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5055. struct sched_group **sg)
  5056. {
  5057. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5058. int group;
  5059. cpus_and(nodemask, nodemask, *cpu_map);
  5060. group = first_cpu(nodemask);
  5061. if (sg)
  5062. *sg = &per_cpu(sched_group_allnodes, group);
  5063. return group;
  5064. }
  5065. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5066. {
  5067. struct sched_group *sg = group_head;
  5068. int j;
  5069. if (!sg)
  5070. return;
  5071. next_sg:
  5072. for_each_cpu_mask(j, sg->cpumask) {
  5073. struct sched_domain *sd;
  5074. sd = &per_cpu(phys_domains, j);
  5075. if (j != first_cpu(sd->groups->cpumask)) {
  5076. /*
  5077. * Only add "power" once for each
  5078. * physical package.
  5079. */
  5080. continue;
  5081. }
  5082. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5083. }
  5084. sg = sg->next;
  5085. if (sg != group_head)
  5086. goto next_sg;
  5087. }
  5088. #endif
  5089. #ifdef CONFIG_NUMA
  5090. /* Free memory allocated for various sched_group structures */
  5091. static void free_sched_groups(const cpumask_t *cpu_map)
  5092. {
  5093. int cpu, i;
  5094. for_each_cpu_mask(cpu, *cpu_map) {
  5095. struct sched_group **sched_group_nodes
  5096. = sched_group_nodes_bycpu[cpu];
  5097. if (!sched_group_nodes)
  5098. continue;
  5099. for (i = 0; i < MAX_NUMNODES; i++) {
  5100. cpumask_t nodemask = node_to_cpumask(i);
  5101. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5102. cpus_and(nodemask, nodemask, *cpu_map);
  5103. if (cpus_empty(nodemask))
  5104. continue;
  5105. if (sg == NULL)
  5106. continue;
  5107. sg = sg->next;
  5108. next_sg:
  5109. oldsg = sg;
  5110. sg = sg->next;
  5111. kfree(oldsg);
  5112. if (oldsg != sched_group_nodes[i])
  5113. goto next_sg;
  5114. }
  5115. kfree(sched_group_nodes);
  5116. sched_group_nodes_bycpu[cpu] = NULL;
  5117. }
  5118. }
  5119. #else
  5120. static void free_sched_groups(const cpumask_t *cpu_map)
  5121. {
  5122. }
  5123. #endif
  5124. /*
  5125. * Initialize sched groups cpu_power.
  5126. *
  5127. * cpu_power indicates the capacity of sched group, which is used while
  5128. * distributing the load between different sched groups in a sched domain.
  5129. * Typically cpu_power for all the groups in a sched domain will be same unless
  5130. * there are asymmetries in the topology. If there are asymmetries, group
  5131. * having more cpu_power will pickup more load compared to the group having
  5132. * less cpu_power.
  5133. *
  5134. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5135. * the maximum number of tasks a group can handle in the presence of other idle
  5136. * or lightly loaded groups in the same sched domain.
  5137. */
  5138. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5139. {
  5140. struct sched_domain *child;
  5141. struct sched_group *group;
  5142. WARN_ON(!sd || !sd->groups);
  5143. if (cpu != first_cpu(sd->groups->cpumask))
  5144. return;
  5145. child = sd->child;
  5146. sd->groups->__cpu_power = 0;
  5147. /*
  5148. * For perf policy, if the groups in child domain share resources
  5149. * (for example cores sharing some portions of the cache hierarchy
  5150. * or SMT), then set this domain groups cpu_power such that each group
  5151. * can handle only one task, when there are other idle groups in the
  5152. * same sched domain.
  5153. */
  5154. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5155. (child->flags &
  5156. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5157. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5158. return;
  5159. }
  5160. /*
  5161. * add cpu_power of each child group to this groups cpu_power
  5162. */
  5163. group = child->groups;
  5164. do {
  5165. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5166. group = group->next;
  5167. } while (group != child->groups);
  5168. }
  5169. /*
  5170. * Build sched domains for a given set of cpus and attach the sched domains
  5171. * to the individual cpus
  5172. */
  5173. static int build_sched_domains(const cpumask_t *cpu_map)
  5174. {
  5175. int i;
  5176. #ifdef CONFIG_NUMA
  5177. struct sched_group **sched_group_nodes = NULL;
  5178. int sd_allnodes = 0;
  5179. /*
  5180. * Allocate the per-node list of sched groups
  5181. */
  5182. sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
  5183. GFP_KERNEL);
  5184. if (!sched_group_nodes) {
  5185. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5186. return -ENOMEM;
  5187. }
  5188. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5189. #endif
  5190. /*
  5191. * Set up domains for cpus specified by the cpu_map.
  5192. */
  5193. for_each_cpu_mask(i, *cpu_map) {
  5194. struct sched_domain *sd = NULL, *p;
  5195. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5196. cpus_and(nodemask, nodemask, *cpu_map);
  5197. #ifdef CONFIG_NUMA
  5198. if (cpus_weight(*cpu_map) >
  5199. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5200. sd = &per_cpu(allnodes_domains, i);
  5201. *sd = SD_ALLNODES_INIT;
  5202. sd->span = *cpu_map;
  5203. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5204. p = sd;
  5205. sd_allnodes = 1;
  5206. } else
  5207. p = NULL;
  5208. sd = &per_cpu(node_domains, i);
  5209. *sd = SD_NODE_INIT;
  5210. sd->span = sched_domain_node_span(cpu_to_node(i));
  5211. sd->parent = p;
  5212. if (p)
  5213. p->child = sd;
  5214. cpus_and(sd->span, sd->span, *cpu_map);
  5215. #endif
  5216. p = sd;
  5217. sd = &per_cpu(phys_domains, i);
  5218. *sd = SD_CPU_INIT;
  5219. sd->span = nodemask;
  5220. sd->parent = p;
  5221. if (p)
  5222. p->child = sd;
  5223. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5224. #ifdef CONFIG_SCHED_MC
  5225. p = sd;
  5226. sd = &per_cpu(core_domains, i);
  5227. *sd = SD_MC_INIT;
  5228. sd->span = cpu_coregroup_map(i);
  5229. cpus_and(sd->span, sd->span, *cpu_map);
  5230. sd->parent = p;
  5231. p->child = sd;
  5232. cpu_to_core_group(i, cpu_map, &sd->groups);
  5233. #endif
  5234. #ifdef CONFIG_SCHED_SMT
  5235. p = sd;
  5236. sd = &per_cpu(cpu_domains, i);
  5237. *sd = SD_SIBLING_INIT;
  5238. sd->span = cpu_sibling_map[i];
  5239. cpus_and(sd->span, sd->span, *cpu_map);
  5240. sd->parent = p;
  5241. p->child = sd;
  5242. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5243. #endif
  5244. }
  5245. #ifdef CONFIG_SCHED_SMT
  5246. /* Set up CPU (sibling) groups */
  5247. for_each_cpu_mask(i, *cpu_map) {
  5248. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5249. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5250. if (i != first_cpu(this_sibling_map))
  5251. continue;
  5252. init_sched_build_groups(this_sibling_map, cpu_map,
  5253. &cpu_to_cpu_group);
  5254. }
  5255. #endif
  5256. #ifdef CONFIG_SCHED_MC
  5257. /* Set up multi-core groups */
  5258. for_each_cpu_mask(i, *cpu_map) {
  5259. cpumask_t this_core_map = cpu_coregroup_map(i);
  5260. cpus_and(this_core_map, this_core_map, *cpu_map);
  5261. if (i != first_cpu(this_core_map))
  5262. continue;
  5263. init_sched_build_groups(this_core_map, cpu_map,
  5264. &cpu_to_core_group);
  5265. }
  5266. #endif
  5267. /* Set up physical groups */
  5268. for (i = 0; i < MAX_NUMNODES; i++) {
  5269. cpumask_t nodemask = node_to_cpumask(i);
  5270. cpus_and(nodemask, nodemask, *cpu_map);
  5271. if (cpus_empty(nodemask))
  5272. continue;
  5273. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5274. }
  5275. #ifdef CONFIG_NUMA
  5276. /* Set up node groups */
  5277. if (sd_allnodes)
  5278. init_sched_build_groups(*cpu_map, cpu_map,
  5279. &cpu_to_allnodes_group);
  5280. for (i = 0; i < MAX_NUMNODES; i++) {
  5281. /* Set up node groups */
  5282. struct sched_group *sg, *prev;
  5283. cpumask_t nodemask = node_to_cpumask(i);
  5284. cpumask_t domainspan;
  5285. cpumask_t covered = CPU_MASK_NONE;
  5286. int j;
  5287. cpus_and(nodemask, nodemask, *cpu_map);
  5288. if (cpus_empty(nodemask)) {
  5289. sched_group_nodes[i] = NULL;
  5290. continue;
  5291. }
  5292. domainspan = sched_domain_node_span(i);
  5293. cpus_and(domainspan, domainspan, *cpu_map);
  5294. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5295. if (!sg) {
  5296. printk(KERN_WARNING "Can not alloc domain group for "
  5297. "node %d\n", i);
  5298. goto error;
  5299. }
  5300. sched_group_nodes[i] = sg;
  5301. for_each_cpu_mask(j, nodemask) {
  5302. struct sched_domain *sd;
  5303. sd = &per_cpu(node_domains, j);
  5304. sd->groups = sg;
  5305. }
  5306. sg->__cpu_power = 0;
  5307. sg->cpumask = nodemask;
  5308. sg->next = sg;
  5309. cpus_or(covered, covered, nodemask);
  5310. prev = sg;
  5311. for (j = 0; j < MAX_NUMNODES; j++) {
  5312. cpumask_t tmp, notcovered;
  5313. int n = (i + j) % MAX_NUMNODES;
  5314. cpus_complement(notcovered, covered);
  5315. cpus_and(tmp, notcovered, *cpu_map);
  5316. cpus_and(tmp, tmp, domainspan);
  5317. if (cpus_empty(tmp))
  5318. break;
  5319. nodemask = node_to_cpumask(n);
  5320. cpus_and(tmp, tmp, nodemask);
  5321. if (cpus_empty(tmp))
  5322. continue;
  5323. sg = kmalloc_node(sizeof(struct sched_group),
  5324. GFP_KERNEL, i);
  5325. if (!sg) {
  5326. printk(KERN_WARNING
  5327. "Can not alloc domain group for node %d\n", j);
  5328. goto error;
  5329. }
  5330. sg->__cpu_power = 0;
  5331. sg->cpumask = tmp;
  5332. sg->next = prev->next;
  5333. cpus_or(covered, covered, tmp);
  5334. prev->next = sg;
  5335. prev = sg;
  5336. }
  5337. }
  5338. #endif
  5339. /* Calculate CPU power for physical packages and nodes */
  5340. #ifdef CONFIG_SCHED_SMT
  5341. for_each_cpu_mask(i, *cpu_map) {
  5342. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5343. init_sched_groups_power(i, sd);
  5344. }
  5345. #endif
  5346. #ifdef CONFIG_SCHED_MC
  5347. for_each_cpu_mask(i, *cpu_map) {
  5348. struct sched_domain *sd = &per_cpu(core_domains, i);
  5349. init_sched_groups_power(i, sd);
  5350. }
  5351. #endif
  5352. for_each_cpu_mask(i, *cpu_map) {
  5353. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5354. init_sched_groups_power(i, sd);
  5355. }
  5356. #ifdef CONFIG_NUMA
  5357. for (i = 0; i < MAX_NUMNODES; i++)
  5358. init_numa_sched_groups_power(sched_group_nodes[i]);
  5359. if (sd_allnodes) {
  5360. struct sched_group *sg;
  5361. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5362. init_numa_sched_groups_power(sg);
  5363. }
  5364. #endif
  5365. /* Attach the domains */
  5366. for_each_cpu_mask(i, *cpu_map) {
  5367. struct sched_domain *sd;
  5368. #ifdef CONFIG_SCHED_SMT
  5369. sd = &per_cpu(cpu_domains, i);
  5370. #elif defined(CONFIG_SCHED_MC)
  5371. sd = &per_cpu(core_domains, i);
  5372. #else
  5373. sd = &per_cpu(phys_domains, i);
  5374. #endif
  5375. cpu_attach_domain(sd, i);
  5376. }
  5377. return 0;
  5378. #ifdef CONFIG_NUMA
  5379. error:
  5380. free_sched_groups(cpu_map);
  5381. return -ENOMEM;
  5382. #endif
  5383. }
  5384. /*
  5385. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5386. */
  5387. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5388. {
  5389. cpumask_t cpu_default_map;
  5390. int err;
  5391. /*
  5392. * Setup mask for cpus without special case scheduling requirements.
  5393. * For now this just excludes isolated cpus, but could be used to
  5394. * exclude other special cases in the future.
  5395. */
  5396. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5397. err = build_sched_domains(&cpu_default_map);
  5398. return err;
  5399. }
  5400. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5401. {
  5402. free_sched_groups(cpu_map);
  5403. }
  5404. /*
  5405. * Detach sched domains from a group of cpus specified in cpu_map
  5406. * These cpus will now be attached to the NULL domain
  5407. */
  5408. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5409. {
  5410. int i;
  5411. for_each_cpu_mask(i, *cpu_map)
  5412. cpu_attach_domain(NULL, i);
  5413. synchronize_sched();
  5414. arch_destroy_sched_domains(cpu_map);
  5415. }
  5416. /*
  5417. * Partition sched domains as specified by the cpumasks below.
  5418. * This attaches all cpus from the cpumasks to the NULL domain,
  5419. * waits for a RCU quiescent period, recalculates sched
  5420. * domain information and then attaches them back to the
  5421. * correct sched domains
  5422. * Call with hotplug lock held
  5423. */
  5424. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5425. {
  5426. cpumask_t change_map;
  5427. int err = 0;
  5428. cpus_and(*partition1, *partition1, cpu_online_map);
  5429. cpus_and(*partition2, *partition2, cpu_online_map);
  5430. cpus_or(change_map, *partition1, *partition2);
  5431. /* Detach sched domains from all of the affected cpus */
  5432. detach_destroy_domains(&change_map);
  5433. if (!cpus_empty(*partition1))
  5434. err = build_sched_domains(partition1);
  5435. if (!err && !cpus_empty(*partition2))
  5436. err = build_sched_domains(partition2);
  5437. return err;
  5438. }
  5439. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5440. int arch_reinit_sched_domains(void)
  5441. {
  5442. int err;
  5443. mutex_lock(&sched_hotcpu_mutex);
  5444. detach_destroy_domains(&cpu_online_map);
  5445. err = arch_init_sched_domains(&cpu_online_map);
  5446. mutex_unlock(&sched_hotcpu_mutex);
  5447. return err;
  5448. }
  5449. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5450. {
  5451. int ret;
  5452. if (buf[0] != '0' && buf[0] != '1')
  5453. return -EINVAL;
  5454. if (smt)
  5455. sched_smt_power_savings = (buf[0] == '1');
  5456. else
  5457. sched_mc_power_savings = (buf[0] == '1');
  5458. ret = arch_reinit_sched_domains();
  5459. return ret ? ret : count;
  5460. }
  5461. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5462. {
  5463. int err = 0;
  5464. #ifdef CONFIG_SCHED_SMT
  5465. if (smt_capable())
  5466. err = sysfs_create_file(&cls->kset.kobj,
  5467. &attr_sched_smt_power_savings.attr);
  5468. #endif
  5469. #ifdef CONFIG_SCHED_MC
  5470. if (!err && mc_capable())
  5471. err = sysfs_create_file(&cls->kset.kobj,
  5472. &attr_sched_mc_power_savings.attr);
  5473. #endif
  5474. return err;
  5475. }
  5476. #endif
  5477. #ifdef CONFIG_SCHED_MC
  5478. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5479. {
  5480. return sprintf(page, "%u\n", sched_mc_power_savings);
  5481. }
  5482. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5483. const char *buf, size_t count)
  5484. {
  5485. return sched_power_savings_store(buf, count, 0);
  5486. }
  5487. SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5488. sched_mc_power_savings_store);
  5489. #endif
  5490. #ifdef CONFIG_SCHED_SMT
  5491. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5492. {
  5493. return sprintf(page, "%u\n", sched_smt_power_savings);
  5494. }
  5495. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5496. const char *buf, size_t count)
  5497. {
  5498. return sched_power_savings_store(buf, count, 1);
  5499. }
  5500. SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5501. sched_smt_power_savings_store);
  5502. #endif
  5503. /*
  5504. * Force a reinitialization of the sched domains hierarchy. The domains
  5505. * and groups cannot be updated in place without racing with the balancing
  5506. * code, so we temporarily attach all running cpus to the NULL domain
  5507. * which will prevent rebalancing while the sched domains are recalculated.
  5508. */
  5509. static int update_sched_domains(struct notifier_block *nfb,
  5510. unsigned long action, void *hcpu)
  5511. {
  5512. switch (action) {
  5513. case CPU_UP_PREPARE:
  5514. case CPU_UP_PREPARE_FROZEN:
  5515. case CPU_DOWN_PREPARE:
  5516. case CPU_DOWN_PREPARE_FROZEN:
  5517. detach_destroy_domains(&cpu_online_map);
  5518. return NOTIFY_OK;
  5519. case CPU_UP_CANCELED:
  5520. case CPU_UP_CANCELED_FROZEN:
  5521. case CPU_DOWN_FAILED:
  5522. case CPU_DOWN_FAILED_FROZEN:
  5523. case CPU_ONLINE:
  5524. case CPU_ONLINE_FROZEN:
  5525. case CPU_DEAD:
  5526. case CPU_DEAD_FROZEN:
  5527. /*
  5528. * Fall through and re-initialise the domains.
  5529. */
  5530. break;
  5531. default:
  5532. return NOTIFY_DONE;
  5533. }
  5534. /* The hotplug lock is already held by cpu_up/cpu_down */
  5535. arch_init_sched_domains(&cpu_online_map);
  5536. return NOTIFY_OK;
  5537. }
  5538. void __init sched_init_smp(void)
  5539. {
  5540. cpumask_t non_isolated_cpus;
  5541. mutex_lock(&sched_hotcpu_mutex);
  5542. arch_init_sched_domains(&cpu_online_map);
  5543. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5544. if (cpus_empty(non_isolated_cpus))
  5545. cpu_set(smp_processor_id(), non_isolated_cpus);
  5546. mutex_unlock(&sched_hotcpu_mutex);
  5547. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5548. hotcpu_notifier(update_sched_domains, 0);
  5549. init_sched_domain_sysctl();
  5550. /* Move init over to a non-isolated CPU */
  5551. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5552. BUG();
  5553. sched_init_granularity();
  5554. }
  5555. #else
  5556. void __init sched_init_smp(void)
  5557. {
  5558. sched_init_granularity();
  5559. }
  5560. #endif /* CONFIG_SMP */
  5561. int in_sched_functions(unsigned long addr)
  5562. {
  5563. /* Linker adds these: start and end of __sched functions */
  5564. extern char __sched_text_start[], __sched_text_end[];
  5565. return in_lock_functions(addr) ||
  5566. (addr >= (unsigned long)__sched_text_start
  5567. && addr < (unsigned long)__sched_text_end);
  5568. }
  5569. static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5570. {
  5571. cfs_rq->tasks_timeline = RB_ROOT;
  5572. cfs_rq->fair_clock = 1;
  5573. #ifdef CONFIG_FAIR_GROUP_SCHED
  5574. cfs_rq->rq = rq;
  5575. #endif
  5576. }
  5577. void __init sched_init(void)
  5578. {
  5579. u64 now = sched_clock();
  5580. int highest_cpu = 0;
  5581. int i, j;
  5582. /*
  5583. * Link up the scheduling class hierarchy:
  5584. */
  5585. rt_sched_class.next = &fair_sched_class;
  5586. fair_sched_class.next = &idle_sched_class;
  5587. idle_sched_class.next = NULL;
  5588. for_each_possible_cpu(i) {
  5589. struct rt_prio_array *array;
  5590. struct rq *rq;
  5591. rq = cpu_rq(i);
  5592. spin_lock_init(&rq->lock);
  5593. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5594. rq->nr_running = 0;
  5595. rq->clock = 1;
  5596. init_cfs_rq(&rq->cfs, rq);
  5597. #ifdef CONFIG_FAIR_GROUP_SCHED
  5598. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5599. list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  5600. #endif
  5601. rq->ls.load_update_last = now;
  5602. rq->ls.load_update_start = now;
  5603. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5604. rq->cpu_load[j] = 0;
  5605. #ifdef CONFIG_SMP
  5606. rq->sd = NULL;
  5607. rq->active_balance = 0;
  5608. rq->next_balance = jiffies;
  5609. rq->push_cpu = 0;
  5610. rq->cpu = i;
  5611. rq->migration_thread = NULL;
  5612. INIT_LIST_HEAD(&rq->migration_queue);
  5613. #endif
  5614. atomic_set(&rq->nr_iowait, 0);
  5615. array = &rq->rt.active;
  5616. for (j = 0; j < MAX_RT_PRIO; j++) {
  5617. INIT_LIST_HEAD(array->queue + j);
  5618. __clear_bit(j, array->bitmap);
  5619. }
  5620. highest_cpu = i;
  5621. /* delimiter for bitsearch: */
  5622. __set_bit(MAX_RT_PRIO, array->bitmap);
  5623. }
  5624. set_load_weight(&init_task);
  5625. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5626. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5627. #endif
  5628. #ifdef CONFIG_SMP
  5629. nr_cpu_ids = highest_cpu + 1;
  5630. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5631. #endif
  5632. #ifdef CONFIG_RT_MUTEXES
  5633. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5634. #endif
  5635. /*
  5636. * The boot idle thread does lazy MMU switching as well:
  5637. */
  5638. atomic_inc(&init_mm.mm_count);
  5639. enter_lazy_tlb(&init_mm, current);
  5640. /*
  5641. * Make us the idle thread. Technically, schedule() should not be
  5642. * called from this thread, however somewhere below it might be,
  5643. * but because we are the idle thread, we just pick up running again
  5644. * when this runqueue becomes "idle".
  5645. */
  5646. init_idle(current, smp_processor_id());
  5647. /*
  5648. * During early bootup we pretend to be a normal task:
  5649. */
  5650. current->sched_class = &fair_sched_class;
  5651. }
  5652. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5653. void __might_sleep(char *file, int line)
  5654. {
  5655. #ifdef in_atomic
  5656. static unsigned long prev_jiffy; /* ratelimiting */
  5657. if ((in_atomic() || irqs_disabled()) &&
  5658. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5659. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5660. return;
  5661. prev_jiffy = jiffies;
  5662. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5663. " context at %s:%d\n", file, line);
  5664. printk("in_atomic():%d, irqs_disabled():%d\n",
  5665. in_atomic(), irqs_disabled());
  5666. debug_show_held_locks(current);
  5667. if (irqs_disabled())
  5668. print_irqtrace_events(current);
  5669. dump_stack();
  5670. }
  5671. #endif
  5672. }
  5673. EXPORT_SYMBOL(__might_sleep);
  5674. #endif
  5675. #ifdef CONFIG_MAGIC_SYSRQ
  5676. void normalize_rt_tasks(void)
  5677. {
  5678. struct task_struct *g, *p;
  5679. unsigned long flags;
  5680. struct rq *rq;
  5681. int on_rq;
  5682. read_lock_irq(&tasklist_lock);
  5683. do_each_thread(g, p) {
  5684. p->se.fair_key = 0;
  5685. p->se.wait_runtime = 0;
  5686. p->se.exec_start = 0;
  5687. p->se.wait_start_fair = 0;
  5688. p->se.sleep_start_fair = 0;
  5689. #ifdef CONFIG_SCHEDSTATS
  5690. p->se.wait_start = 0;
  5691. p->se.sleep_start = 0;
  5692. p->se.block_start = 0;
  5693. #endif
  5694. task_rq(p)->cfs.fair_clock = 0;
  5695. task_rq(p)->clock = 0;
  5696. if (!rt_task(p)) {
  5697. /*
  5698. * Renice negative nice level userspace
  5699. * tasks back to 0:
  5700. */
  5701. if (TASK_NICE(p) < 0 && p->mm)
  5702. set_user_nice(p, 0);
  5703. continue;
  5704. }
  5705. spin_lock_irqsave(&p->pi_lock, flags);
  5706. rq = __task_rq_lock(p);
  5707. #ifdef CONFIG_SMP
  5708. /*
  5709. * Do not touch the migration thread:
  5710. */
  5711. if (p == rq->migration_thread)
  5712. goto out_unlock;
  5713. #endif
  5714. on_rq = p->se.on_rq;
  5715. if (on_rq) {
  5716. update_rq_clock(task_rq(p));
  5717. deactivate_task(task_rq(p), p, 0, task_rq(p)->clock);
  5718. }
  5719. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5720. if (on_rq) {
  5721. activate_task(task_rq(p), p, 0);
  5722. resched_task(rq->curr);
  5723. }
  5724. #ifdef CONFIG_SMP
  5725. out_unlock:
  5726. #endif
  5727. __task_rq_unlock(rq);
  5728. spin_unlock_irqrestore(&p->pi_lock, flags);
  5729. } while_each_thread(g, p);
  5730. read_unlock_irq(&tasklist_lock);
  5731. }
  5732. #endif /* CONFIG_MAGIC_SYSRQ */
  5733. #ifdef CONFIG_IA64
  5734. /*
  5735. * These functions are only useful for the IA64 MCA handling.
  5736. *
  5737. * They can only be called when the whole system has been
  5738. * stopped - every CPU needs to be quiescent, and no scheduling
  5739. * activity can take place. Using them for anything else would
  5740. * be a serious bug, and as a result, they aren't even visible
  5741. * under any other configuration.
  5742. */
  5743. /**
  5744. * curr_task - return the current task for a given cpu.
  5745. * @cpu: the processor in question.
  5746. *
  5747. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5748. */
  5749. struct task_struct *curr_task(int cpu)
  5750. {
  5751. return cpu_curr(cpu);
  5752. }
  5753. /**
  5754. * set_curr_task - set the current task for a given cpu.
  5755. * @cpu: the processor in question.
  5756. * @p: the task pointer to set.
  5757. *
  5758. * Description: This function must only be used when non-maskable interrupts
  5759. * are serviced on a separate stack. It allows the architecture to switch the
  5760. * notion of the current task on a cpu in a non-blocking manner. This function
  5761. * must be called with all CPU's synchronized, and interrupts disabled, the
  5762. * and caller must save the original value of the current task (see
  5763. * curr_task() above) and restore that value before reenabling interrupts and
  5764. * re-starting the system.
  5765. *
  5766. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5767. */
  5768. void set_curr_task(int cpu, struct task_struct *p)
  5769. {
  5770. cpu_curr(cpu) = p;
  5771. }
  5772. #endif