af9035.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790
  1. /*
  2. * Afatech AF9035 DVB USB driver
  3. *
  4. * Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
  5. * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, write to the Free Software Foundation, Inc.,
  19. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  20. */
  21. #include "af9035.h"
  22. #include "af9033.h"
  23. #include "tua9001.h"
  24. DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr);
  25. static DEFINE_MUTEX(af9035_usb_mutex);
  26. static struct config af9035_config;
  27. static struct dvb_usb_device_properties af9035_properties[1];
  28. static int af9035_properties_count = ARRAY_SIZE(af9035_properties);
  29. static struct af9033_config af9035_af9033_config[] = {
  30. {
  31. .ts_mode = AF9033_TS_MODE_USB,
  32. }, {
  33. .ts_mode = AF9033_TS_MODE_SERIAL,
  34. }
  35. };
  36. static int af9035_ctrl_msg(struct usb_device *udev, struct usb_req *req)
  37. {
  38. #define BUF_LEN 63
  39. #define REQ_HDR_LEN 4 /* send header size */
  40. #define ACK_HDR_LEN 3 /* rece header size */
  41. #define CHECKSUM_LEN 2
  42. #define USB_TIMEOUT 2000
  43. int ret, i, act_len;
  44. u8 buf[BUF_LEN];
  45. u32 msg_len;
  46. static u8 seq; /* packet sequence number */
  47. u16 checksum = 0;
  48. /* buffer overflow check */
  49. if (req->wlen > (BUF_LEN - REQ_HDR_LEN - CHECKSUM_LEN) ||
  50. req->rlen > (BUF_LEN - ACK_HDR_LEN - CHECKSUM_LEN)) {
  51. pr_debug("%s: too much data wlen=%d rlen=%d\n", __func__,
  52. req->wlen, req->rlen);
  53. return -EINVAL;
  54. }
  55. if (mutex_lock_interruptible(&af9035_usb_mutex) < 0)
  56. return -EAGAIN;
  57. buf[0] = REQ_HDR_LEN + req->wlen + CHECKSUM_LEN - 1;
  58. buf[1] = req->mbox;
  59. buf[2] = req->cmd;
  60. buf[3] = seq++;
  61. if (req->wlen)
  62. memcpy(&buf[4], req->wbuf, req->wlen);
  63. /* calc and add checksum */
  64. for (i = 1; i < buf[0]-1; i++) {
  65. if (i % 2)
  66. checksum += buf[i] << 8;
  67. else
  68. checksum += buf[i];
  69. }
  70. checksum = ~checksum;
  71. buf[buf[0]-1] = (checksum >> 8);
  72. buf[buf[0]-0] = (checksum & 0xff);
  73. msg_len = REQ_HDR_LEN + req->wlen + CHECKSUM_LEN ;
  74. /* send req */
  75. ret = usb_bulk_msg(udev, usb_sndbulkpipe(udev, 0x02), buf, msg_len,
  76. &act_len, USB_TIMEOUT);
  77. if (ret < 0)
  78. err("bulk message failed=%d (%d/%d)", ret, msg_len, act_len);
  79. else
  80. if (act_len != msg_len)
  81. ret = -EIO; /* all data is not send */
  82. if (ret < 0)
  83. goto err_mutex_unlock;
  84. /* no ack for those packets */
  85. if (req->cmd == CMD_FW_DL)
  86. goto exit_mutex_unlock;
  87. /* receive ack and data if read req */
  88. msg_len = ACK_HDR_LEN + req->rlen + CHECKSUM_LEN;
  89. ret = usb_bulk_msg(udev, usb_rcvbulkpipe(udev, 0x81), buf, msg_len,
  90. &act_len, USB_TIMEOUT);
  91. if (ret < 0) {
  92. err("recv bulk message failed=%d", ret);
  93. ret = -EIO;
  94. goto err_mutex_unlock;
  95. }
  96. /* check status */
  97. if (buf[2]) {
  98. pr_debug("%s: command=%02x failed fw error=%d\n", __func__,
  99. req->cmd, buf[2]);
  100. ret = -EIO;
  101. goto err_mutex_unlock;
  102. }
  103. /* read request, copy returned data to return buf */
  104. if (req->rlen)
  105. memcpy(req->rbuf, &buf[ACK_HDR_LEN], req->rlen);
  106. err_mutex_unlock:
  107. exit_mutex_unlock:
  108. mutex_unlock(&af9035_usb_mutex);
  109. return ret;
  110. }
  111. /* write multiple registers */
  112. static int af9035_wr_regs(struct dvb_usb_device *d, u32 reg, u8 *val, int len)
  113. {
  114. u8 wbuf[6 + len];
  115. u8 mbox = (reg >> 16) & 0xff;
  116. struct usb_req req = { CMD_MEM_WR, mbox, sizeof(wbuf), wbuf, 0, NULL };
  117. wbuf[0] = len;
  118. wbuf[1] = 2;
  119. wbuf[2] = 0;
  120. wbuf[3] = 0;
  121. wbuf[4] = (reg >> 8) & 0xff;
  122. wbuf[5] = (reg >> 0) & 0xff;
  123. memcpy(&wbuf[6], val, len);
  124. return af9035_ctrl_msg(d->udev, &req);
  125. }
  126. /* read multiple registers */
  127. static int af9035_rd_regs(struct dvb_usb_device *d, u32 reg, u8 *val, int len)
  128. {
  129. u8 wbuf[] = { len, 2, 0, 0, (reg >> 8) & 0xff, reg & 0xff };
  130. u8 mbox = (reg >> 16) & 0xff;
  131. struct usb_req req = { CMD_MEM_RD, mbox, sizeof(wbuf), wbuf, len, val };
  132. return af9035_ctrl_msg(d->udev, &req);
  133. }
  134. /* write single register */
  135. static int af9035_wr_reg(struct dvb_usb_device *d, u32 reg, u8 val)
  136. {
  137. return af9035_wr_regs(d, reg, &val, 1);
  138. }
  139. /* read single register */
  140. static int af9035_rd_reg(struct dvb_usb_device *d, u32 reg, u8 *val)
  141. {
  142. return af9035_rd_regs(d, reg, val, 1);
  143. }
  144. /* write single register with mask */
  145. static int af9035_wr_reg_mask(struct dvb_usb_device *d, u32 reg, u8 val,
  146. u8 mask)
  147. {
  148. int ret;
  149. u8 tmp;
  150. /* no need for read if whole reg is written */
  151. if (mask != 0xff) {
  152. ret = af9035_rd_regs(d, reg, &tmp, 1);
  153. if (ret)
  154. return ret;
  155. val &= mask;
  156. tmp &= ~mask;
  157. val |= tmp;
  158. }
  159. return af9035_wr_regs(d, reg, &val, 1);
  160. }
  161. static int af9035_i2c_master_xfer(struct i2c_adapter *adap,
  162. struct i2c_msg msg[], int num)
  163. {
  164. struct dvb_usb_device *d = i2c_get_adapdata(adap);
  165. int ret;
  166. if (mutex_lock_interruptible(&d->i2c_mutex) < 0)
  167. return -EAGAIN;
  168. if (num == 2 && !(msg[0].flags & I2C_M_RD) &&
  169. (msg[1].flags & I2C_M_RD)) {
  170. if (msg[0].len > 40 || msg[1].len > 40) {
  171. /* TODO: correct limits > 40 */
  172. ret = -EOPNOTSUPP;
  173. } else if (msg[0].addr == af9035_af9033_config[0].i2c_addr) {
  174. /* integrated demod */
  175. u32 reg = msg[0].buf[0] << 16 | msg[0].buf[1] << 8 |
  176. msg[0].buf[2];
  177. ret = af9035_rd_regs(d, reg, &msg[1].buf[0],
  178. msg[1].len);
  179. } else {
  180. /* I2C */
  181. u8 buf[4 + msg[0].len];
  182. struct usb_req req = { CMD_I2C_RD, 0, sizeof(buf),
  183. buf, msg[1].len, msg[1].buf };
  184. buf[0] = msg[1].len;
  185. buf[1] = msg[0].addr << 1;
  186. buf[2] = 0x01;
  187. buf[3] = 0x00;
  188. memcpy(&buf[4], msg[0].buf, msg[0].len);
  189. ret = af9035_ctrl_msg(d->udev, &req);
  190. }
  191. } else if (num == 1 && !(msg[0].flags & I2C_M_RD)) {
  192. if (msg[0].len > 40) {
  193. /* TODO: correct limits > 40 */
  194. ret = -EOPNOTSUPP;
  195. } else if (msg[0].addr == af9035_af9033_config[0].i2c_addr) {
  196. /* integrated demod */
  197. u32 reg = msg[0].buf[0] << 16 | msg[0].buf[1] << 8 |
  198. msg[0].buf[2];
  199. ret = af9035_wr_regs(d, reg, &msg[0].buf[3],
  200. msg[0].len - 3);
  201. } else {
  202. /* I2C */
  203. u8 buf[4 + msg[0].len];
  204. struct usb_req req = { CMD_I2C_WR, 0, sizeof(buf), buf,
  205. 0, NULL };
  206. buf[0] = msg[0].len;
  207. buf[1] = msg[0].addr << 1;
  208. buf[2] = 0x01;
  209. buf[3] = 0x00;
  210. memcpy(&buf[4], msg[0].buf, msg[0].len);
  211. ret = af9035_ctrl_msg(d->udev, &req);
  212. }
  213. } else {
  214. /*
  215. * We support only two kind of I2C transactions:
  216. * 1) 1 x read + 1 x write
  217. * 2) 1 x write
  218. */
  219. ret = -EOPNOTSUPP;
  220. }
  221. mutex_unlock(&d->i2c_mutex);
  222. if (ret < 0)
  223. return ret;
  224. else
  225. return num;
  226. }
  227. static u32 af9035_i2c_functionality(struct i2c_adapter *adapter)
  228. {
  229. return I2C_FUNC_I2C;
  230. }
  231. static struct i2c_algorithm af9035_i2c_algo = {
  232. .master_xfer = af9035_i2c_master_xfer,
  233. .functionality = af9035_i2c_functionality,
  234. };
  235. static int af9035_init(struct dvb_usb_device *d)
  236. {
  237. int ret, i;
  238. u16 frame_size = 87 * 188 / 4;
  239. u8 packet_size = 512 / 4;
  240. struct reg_val_mask tab[] = {
  241. { 0x80f99d, 0x01, 0x01 },
  242. { 0x80f9a4, 0x01, 0x01 },
  243. { 0x00dd11, 0x00, 0x20 },
  244. { 0x00dd11, 0x00, 0x40 },
  245. { 0x00dd13, 0x00, 0x20 },
  246. { 0x00dd13, 0x00, 0x40 },
  247. { 0x00dd11, 0x20, 0x20 },
  248. { 0x00dd88, (frame_size >> 0) & 0xff, 0xff},
  249. { 0x00dd89, (frame_size >> 8) & 0xff, 0xff},
  250. { 0x00dd0c, packet_size, 0xff},
  251. { 0x00dd11, af9035_config.dual_mode << 6, 0x40 },
  252. { 0x00dd8a, (frame_size >> 0) & 0xff, 0xff},
  253. { 0x00dd8b, (frame_size >> 8) & 0xff, 0xff},
  254. { 0x00dd0d, packet_size, 0xff },
  255. { 0x80f9a3, 0x00, 0x01 },
  256. { 0x80f9cd, 0x00, 0x01 },
  257. { 0x80f99d, 0x00, 0x01 },
  258. { 0x80f9a4, 0x00, 0x01 },
  259. };
  260. pr_debug("%s: USB speed=%d frame_size=%04x packet_size=%02x\n",
  261. __func__, d->udev->speed, frame_size, packet_size);
  262. /* init endpoints */
  263. for (i = 0; i < ARRAY_SIZE(tab); i++) {
  264. ret = af9035_wr_reg_mask(d, tab[i].reg, tab[i].val,
  265. tab[i].mask);
  266. if (ret < 0)
  267. goto err;
  268. }
  269. return 0;
  270. err:
  271. pr_debug("%s: failed=%d\n", __func__, ret);
  272. return ret;
  273. }
  274. static int af9035_identify_state(struct usb_device *udev,
  275. struct dvb_usb_device_properties *props,
  276. struct dvb_usb_device_description **desc,
  277. int *cold)
  278. {
  279. int ret;
  280. u8 wbuf[1] = { 1 };
  281. u8 rbuf[4];
  282. struct usb_req req = { CMD_FW_QUERYINFO, 0, sizeof(wbuf), wbuf,
  283. sizeof(rbuf), rbuf };
  284. ret = af9035_ctrl_msg(udev, &req);
  285. if (ret < 0)
  286. goto err;
  287. pr_debug("%s: reply=%02x %02x %02x %02x\n", __func__,
  288. rbuf[0], rbuf[1], rbuf[2], rbuf[3]);
  289. if (rbuf[0] || rbuf[1] || rbuf[2] || rbuf[3])
  290. *cold = 0;
  291. else
  292. *cold = 1;
  293. return 0;
  294. err:
  295. pr_debug("%s: failed=%d\n", __func__, ret);
  296. return ret;
  297. }
  298. static int af9035_download_firmware(struct usb_device *udev,
  299. const struct firmware *fw)
  300. {
  301. int ret, i, j, len;
  302. u8 wbuf[1];
  303. u8 rbuf[4];
  304. struct usb_req req = { 0, 0, 0, NULL, 0, NULL };
  305. struct usb_req req_fw_dl = { CMD_FW_DL, 0, 0, wbuf, 0, NULL };
  306. struct usb_req req_fw_ver = { CMD_FW_QUERYINFO, 0, 1, wbuf, 4, rbuf } ;
  307. u8 hdr_core;
  308. u16 hdr_addr, hdr_data_len, hdr_checksum;
  309. #define MAX_DATA 57
  310. #define HDR_SIZE 7
  311. /*
  312. * Thanks to Daniel Glöckner <daniel-gl@gmx.net> about that info!
  313. *
  314. * byte 0: MCS 51 core
  315. * There are two inside the AF9035 (1=Link and 2=OFDM) with separate
  316. * address spaces
  317. * byte 1-2: Big endian destination address
  318. * byte 3-4: Big endian number of data bytes following the header
  319. * byte 5-6: Big endian header checksum, apparently ignored by the chip
  320. * Calculated as ~(h[0]*256+h[1]+h[2]*256+h[3]+h[4]*256)
  321. */
  322. for (i = fw->size; i > HDR_SIZE;) {
  323. hdr_core = fw->data[fw->size - i + 0];
  324. hdr_addr = fw->data[fw->size - i + 1] << 8;
  325. hdr_addr |= fw->data[fw->size - i + 2] << 0;
  326. hdr_data_len = fw->data[fw->size - i + 3] << 8;
  327. hdr_data_len |= fw->data[fw->size - i + 4] << 0;
  328. hdr_checksum = fw->data[fw->size - i + 5] << 8;
  329. hdr_checksum |= fw->data[fw->size - i + 6] << 0;
  330. pr_debug("%s: core=%d addr=%04x data_len=%d checksum=%04x\n",
  331. __func__, hdr_core, hdr_addr, hdr_data_len,
  332. hdr_checksum);
  333. if (((hdr_core != 1) && (hdr_core != 2)) ||
  334. (hdr_data_len > i)) {
  335. pr_debug("%s: bad firmware\n", __func__);
  336. break;
  337. }
  338. /* download begin packet */
  339. req.cmd = CMD_FW_DL_BEGIN;
  340. ret = af9035_ctrl_msg(udev, &req);
  341. if (ret < 0)
  342. goto err;
  343. /* download firmware packet(s) */
  344. for (j = HDR_SIZE + hdr_data_len; j > 0; j -= MAX_DATA) {
  345. len = j;
  346. if (len > MAX_DATA)
  347. len = MAX_DATA;
  348. req_fw_dl.wlen = len;
  349. req_fw_dl.wbuf = (u8 *) &fw->data[fw->size - i +
  350. HDR_SIZE + hdr_data_len - j];
  351. ret = af9035_ctrl_msg(udev, &req_fw_dl);
  352. if (ret < 0)
  353. goto err;
  354. }
  355. /* download end packet */
  356. req.cmd = CMD_FW_DL_END;
  357. ret = af9035_ctrl_msg(udev, &req);
  358. if (ret < 0)
  359. goto err;
  360. i -= hdr_data_len + HDR_SIZE;
  361. pr_debug("%s: data uploaded=%lu\n", __func__, fw->size - i);
  362. }
  363. /* firmware loaded, request boot */
  364. req.cmd = CMD_FW_BOOT;
  365. ret = af9035_ctrl_msg(udev, &req);
  366. if (ret < 0)
  367. goto err;
  368. /* ensure firmware starts */
  369. wbuf[0] = 1;
  370. ret = af9035_ctrl_msg(udev, &req_fw_ver);
  371. if (ret < 0)
  372. goto err;
  373. if (!(rbuf[0] || rbuf[1] || rbuf[2] || rbuf[3])) {
  374. info("firmware did not run");
  375. ret = -ENODEV;
  376. goto err;
  377. }
  378. info("firmware version=%d.%d.%d.%d", rbuf[0], rbuf[1], rbuf[2],
  379. rbuf[3]);
  380. return 0;
  381. err:
  382. pr_debug("%s: failed=%d\n", __func__, ret);
  383. return ret;
  384. }
  385. /* abuse that callback as there is no better one for reading eeprom */
  386. static int af9035_read_mac_address(struct dvb_usb_device *d, u8 mac[6])
  387. {
  388. int ret, i, eeprom_shift = 0;
  389. u8 tmp;
  390. u16 tmp16;
  391. /* check if there is dual tuners */
  392. ret = af9035_rd_reg(d, EEPROM_DUAL_MODE, &tmp);
  393. if (ret < 0)
  394. goto err;
  395. af9035_config.dual_mode = tmp;
  396. pr_debug("%s: dual mode=%d\n", __func__, af9035_config.dual_mode);
  397. for (i = 0; i < af9035_properties[0].num_adapters; i++) {
  398. /* tuner */
  399. ret = af9035_rd_reg(d, EEPROM_1_TUNER_ID + eeprom_shift, &tmp);
  400. if (ret < 0)
  401. goto err;
  402. af9035_af9033_config[i].tuner = tmp;
  403. pr_debug("%s: [%d]tuner=%02x\n", __func__, i, tmp);
  404. switch (tmp) {
  405. case AF9033_TUNER_TUA9001:
  406. af9035_af9033_config[i].spec_inv = 1;
  407. break;
  408. default:
  409. af9035_config.hw_not_supported = true;
  410. warn("tuner ID=%02x not supported, please report!",
  411. tmp);
  412. };
  413. /* tuner IF frequency */
  414. ret = af9035_rd_reg(d, EEPROM_1_IFFREQ_L + eeprom_shift, &tmp);
  415. if (ret < 0)
  416. goto err;
  417. tmp16 = tmp;
  418. ret = af9035_rd_reg(d, EEPROM_1_IFFREQ_H + eeprom_shift, &tmp);
  419. if (ret < 0)
  420. goto err;
  421. tmp16 |= tmp << 8;
  422. pr_debug("%s: [%d]IF=%d\n", __func__, i, tmp16);
  423. eeprom_shift = 0x10; /* shift for the 2nd tuner params */
  424. }
  425. /* get demod clock */
  426. ret = af9035_rd_reg(d, 0x00d800, &tmp);
  427. if (ret < 0)
  428. goto err;
  429. tmp = (tmp >> 0) & 0x0f;
  430. for (i = 0; i < af9035_properties[0].num_adapters; i++)
  431. af9035_af9033_config[i].clock = clock_lut[tmp];
  432. return 0;
  433. err:
  434. pr_debug("%s: failed=%d\n", __func__, ret);
  435. return ret;
  436. }
  437. static int af9035_frontend_attach(struct dvb_usb_adapter *adap)
  438. {
  439. int ret;
  440. if (af9035_config.hw_not_supported) {
  441. ret = -ENODEV;
  442. goto err;
  443. }
  444. if (adap->id == 0) {
  445. ret = af9035_wr_reg(adap->dev, 0x00417f,
  446. af9035_af9033_config[1].i2c_addr);
  447. if (ret < 0)
  448. goto err;
  449. ret = af9035_wr_reg(adap->dev, 0x00d81a,
  450. af9035_config.dual_mode);
  451. if (ret < 0)
  452. goto err;
  453. }
  454. /* attach demodulator */
  455. adap->fe_adap[0].fe = dvb_attach(af9033_attach,
  456. &af9035_af9033_config[adap->id], &adap->dev->i2c_adap);
  457. if (adap->fe_adap[0].fe == NULL) {
  458. ret = -ENODEV;
  459. goto err;
  460. }
  461. return 0;
  462. err:
  463. pr_debug("%s: failed=%d\n", __func__, ret);
  464. return ret;
  465. }
  466. static struct tua9001_config af9035_tua9001_config = {
  467. .i2c_addr = 0x60,
  468. };
  469. static int af9035_tuner_attach(struct dvb_usb_adapter *adap)
  470. {
  471. int ret;
  472. struct dvb_frontend *fe;
  473. switch (af9035_af9033_config[adap->id].tuner) {
  474. case AF9033_TUNER_TUA9001:
  475. /* AF9035 gpiot3 = TUA9001 RESETN
  476. AF9035 gpiot2 = TUA9001 RXEN */
  477. /* configure gpiot2 and gpiot2 as output */
  478. ret = af9035_wr_reg_mask(adap->dev, 0x00d8ec, 0x01, 0x01);
  479. if (ret < 0)
  480. goto err;
  481. ret = af9035_wr_reg_mask(adap->dev, 0x00d8ed, 0x01, 0x01);
  482. if (ret < 0)
  483. goto err;
  484. ret = af9035_wr_reg_mask(adap->dev, 0x00d8e8, 0x01, 0x01);
  485. if (ret < 0)
  486. goto err;
  487. ret = af9035_wr_reg_mask(adap->dev, 0x00d8e9, 0x01, 0x01);
  488. if (ret < 0)
  489. goto err;
  490. /* reset tuner */
  491. ret = af9035_wr_reg_mask(adap->dev, 0x00d8e7, 0x00, 0x01);
  492. if (ret < 0)
  493. goto err;
  494. usleep_range(2000, 20000);
  495. ret = af9035_wr_reg_mask(adap->dev, 0x00d8e7, 0x01, 0x01);
  496. if (ret < 0)
  497. goto err;
  498. /* activate tuner RX */
  499. /* TODO: use callback for TUA9001 RXEN */
  500. ret = af9035_wr_reg_mask(adap->dev, 0x00d8eb, 0x01, 0x01);
  501. if (ret < 0)
  502. goto err;
  503. /* attach tuner */
  504. fe = dvb_attach(tua9001_attach, adap->fe_adap[0].fe,
  505. &adap->dev->i2c_adap, &af9035_tua9001_config);
  506. break;
  507. default:
  508. fe = NULL;
  509. }
  510. if (fe == NULL) {
  511. ret = -ENODEV;
  512. goto err;
  513. }
  514. return 0;
  515. err:
  516. pr_debug("%s: failed=%d\n", __func__, ret);
  517. return ret;
  518. }
  519. enum af9035_id_entry {
  520. AF9035_0CCD_0093,
  521. };
  522. static struct usb_device_id af9035_id[] = {
  523. [AF9035_0CCD_0093] = {
  524. USB_DEVICE(USB_VID_TERRATEC, USB_PID_TERRATEC_CINERGY_T_STICK)},
  525. {},
  526. };
  527. MODULE_DEVICE_TABLE(usb, af9035_id);
  528. static struct dvb_usb_device_properties af9035_properties[] = {
  529. {
  530. .caps = DVB_USB_IS_AN_I2C_ADAPTER,
  531. .usb_ctrl = DEVICE_SPECIFIC,
  532. .download_firmware = af9035_download_firmware,
  533. .firmware = "dvb-usb-af9035-02.fw",
  534. .no_reconnect = 1,
  535. .num_adapters = 1,
  536. .adapter = {
  537. {
  538. .num_frontends = 1,
  539. .fe = {
  540. {
  541. .frontend_attach = af9035_frontend_attach,
  542. .tuner_attach = af9035_tuner_attach,
  543. .stream = {
  544. .type = USB_BULK,
  545. .count = 6,
  546. .endpoint = 0x84,
  547. .u = {
  548. .bulk = {
  549. .buffersize = (87 * 188),
  550. }
  551. }
  552. }
  553. }
  554. }
  555. }
  556. },
  557. .identify_state = af9035_identify_state,
  558. .read_mac_address = af9035_read_mac_address,
  559. .i2c_algo = &af9035_i2c_algo,
  560. .num_device_descs = 1,
  561. .devices = {
  562. {
  563. .name = "TerraTec Cinergy T Stick",
  564. .cold_ids = {
  565. &af9035_id[AF9035_0CCD_0093],
  566. },
  567. },
  568. }
  569. },
  570. };
  571. static int af9035_usb_probe(struct usb_interface *intf,
  572. const struct usb_device_id *id)
  573. {
  574. int ret, i;
  575. struct dvb_usb_device *d = NULL;
  576. struct usb_device *udev;
  577. bool found;
  578. pr_debug("%s: interface=%d\n", __func__,
  579. intf->cur_altsetting->desc.bInterfaceNumber);
  580. /* interface 0 is used by DVB-T receiver and
  581. interface 1 is for remote controller (HID) */
  582. if (intf->cur_altsetting->desc.bInterfaceNumber != 0)
  583. return 0;
  584. /* Dynamic USB ID support. Replaces first device ID with current one. */
  585. udev = interface_to_usbdev(intf);
  586. for (i = 0, found = false; i < ARRAY_SIZE(af9035_id) - 1; i++) {
  587. if (af9035_id[i].idVendor ==
  588. le16_to_cpu(udev->descriptor.idVendor) &&
  589. af9035_id[i].idProduct ==
  590. le16_to_cpu(udev->descriptor.idProduct)) {
  591. found = true;
  592. break;
  593. }
  594. }
  595. if (!found) {
  596. pr_debug("%s: using dynamic ID %04x:%04x\n", __func__,
  597. le16_to_cpu(udev->descriptor.idVendor),
  598. le16_to_cpu(udev->descriptor.idProduct));
  599. af9035_properties[0].devices[0].cold_ids[0]->idVendor =
  600. le16_to_cpu(udev->descriptor.idVendor);
  601. af9035_properties[0].devices[0].cold_ids[0]->idProduct =
  602. le16_to_cpu(udev->descriptor.idProduct);
  603. }
  604. for (i = 0; i < af9035_properties_count; i++) {
  605. ret = dvb_usb_device_init(intf, &af9035_properties[i],
  606. THIS_MODULE, &d, adapter_nr);
  607. if (ret == -ENODEV)
  608. continue;
  609. else
  610. break;
  611. }
  612. if (ret < 0)
  613. goto err;
  614. if (d) {
  615. ret = af9035_init(d);
  616. if (ret < 0)
  617. goto err;
  618. }
  619. return 0;
  620. err:
  621. pr_debug("%s: failed=%d\n", __func__, ret);
  622. return ret;
  623. }
  624. /* usb specific object needed to register this driver with the usb subsystem */
  625. static struct usb_driver af9035_usb_driver = {
  626. .name = "dvb_usb_af9035",
  627. .probe = af9035_usb_probe,
  628. .disconnect = dvb_usb_device_exit,
  629. .id_table = af9035_id,
  630. };
  631. /* module stuff */
  632. static int __init af9035_usb_module_init(void)
  633. {
  634. int ret;
  635. ret = usb_register(&af9035_usb_driver);
  636. if (ret < 0)
  637. goto err;
  638. return 0;
  639. err:
  640. pr_debug("%s: failed=%d\n", __func__, ret);
  641. return ret;
  642. }
  643. static void __exit af9035_usb_module_exit(void)
  644. {
  645. /* deregister this driver from the USB subsystem */
  646. usb_deregister(&af9035_usb_driver);
  647. }
  648. module_init(af9035_usb_module_init);
  649. module_exit(af9035_usb_module_exit);
  650. MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
  651. MODULE_DESCRIPTION("Afatech AF9035 driver");
  652. MODULE_LICENSE("GPL");