xfs_log_recover.c 105 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_mount.h"
  28. #include "xfs_error.h"
  29. #include "xfs_bmap_btree.h"
  30. #include "xfs_alloc_btree.h"
  31. #include "xfs_ialloc_btree.h"
  32. #include "xfs_dinode.h"
  33. #include "xfs_inode.h"
  34. #include "xfs_inode_item.h"
  35. #include "xfs_alloc.h"
  36. #include "xfs_ialloc.h"
  37. #include "xfs_log_priv.h"
  38. #include "xfs_buf_item.h"
  39. #include "xfs_log_recover.h"
  40. #include "xfs_extfree_item.h"
  41. #include "xfs_trans_priv.h"
  42. #include "xfs_quota.h"
  43. #include "xfs_rw.h"
  44. #include "xfs_utils.h"
  45. #include "xfs_trace.h"
  46. STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
  47. STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
  48. #if defined(DEBUG)
  49. STATIC void xlog_recover_check_summary(xlog_t *);
  50. #else
  51. #define xlog_recover_check_summary(log)
  52. #endif
  53. /*
  54. * This structure is used during recovery to record the buf log items which
  55. * have been canceled and should not be replayed.
  56. */
  57. struct xfs_buf_cancel {
  58. xfs_daddr_t bc_blkno;
  59. uint bc_len;
  60. int bc_refcount;
  61. struct list_head bc_list;
  62. };
  63. /*
  64. * Sector aligned buffer routines for buffer create/read/write/access
  65. */
  66. /*
  67. * Verify the given count of basic blocks is valid number of blocks
  68. * to specify for an operation involving the given XFS log buffer.
  69. * Returns nonzero if the count is valid, 0 otherwise.
  70. */
  71. static inline int
  72. xlog_buf_bbcount_valid(
  73. xlog_t *log,
  74. int bbcount)
  75. {
  76. return bbcount > 0 && bbcount <= log->l_logBBsize;
  77. }
  78. /*
  79. * Allocate a buffer to hold log data. The buffer needs to be able
  80. * to map to a range of nbblks basic blocks at any valid (basic
  81. * block) offset within the log.
  82. */
  83. STATIC xfs_buf_t *
  84. xlog_get_bp(
  85. xlog_t *log,
  86. int nbblks)
  87. {
  88. struct xfs_buf *bp;
  89. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  90. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  91. nbblks);
  92. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  93. return NULL;
  94. }
  95. /*
  96. * We do log I/O in units of log sectors (a power-of-2
  97. * multiple of the basic block size), so we round up the
  98. * requested size to accommodate the basic blocks required
  99. * for complete log sectors.
  100. *
  101. * In addition, the buffer may be used for a non-sector-
  102. * aligned block offset, in which case an I/O of the
  103. * requested size could extend beyond the end of the
  104. * buffer. If the requested size is only 1 basic block it
  105. * will never straddle a sector boundary, so this won't be
  106. * an issue. Nor will this be a problem if the log I/O is
  107. * done in basic blocks (sector size 1). But otherwise we
  108. * extend the buffer by one extra log sector to ensure
  109. * there's space to accommodate this possibility.
  110. */
  111. if (nbblks > 1 && log->l_sectBBsize > 1)
  112. nbblks += log->l_sectBBsize;
  113. nbblks = round_up(nbblks, log->l_sectBBsize);
  114. bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, BBTOB(nbblks), 0);
  115. if (bp)
  116. xfs_buf_unlock(bp);
  117. return bp;
  118. }
  119. STATIC void
  120. xlog_put_bp(
  121. xfs_buf_t *bp)
  122. {
  123. xfs_buf_free(bp);
  124. }
  125. /*
  126. * Return the address of the start of the given block number's data
  127. * in a log buffer. The buffer covers a log sector-aligned region.
  128. */
  129. STATIC xfs_caddr_t
  130. xlog_align(
  131. xlog_t *log,
  132. xfs_daddr_t blk_no,
  133. int nbblks,
  134. xfs_buf_t *bp)
  135. {
  136. xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
  137. ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp));
  138. return bp->b_addr + BBTOB(offset);
  139. }
  140. /*
  141. * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
  142. */
  143. STATIC int
  144. xlog_bread_noalign(
  145. xlog_t *log,
  146. xfs_daddr_t blk_no,
  147. int nbblks,
  148. xfs_buf_t *bp)
  149. {
  150. int error;
  151. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  152. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  153. nbblks);
  154. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  155. return EFSCORRUPTED;
  156. }
  157. blk_no = round_down(blk_no, log->l_sectBBsize);
  158. nbblks = round_up(nbblks, log->l_sectBBsize);
  159. ASSERT(nbblks > 0);
  160. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  161. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  162. XFS_BUF_READ(bp);
  163. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  164. xfsbdstrat(log->l_mp, bp);
  165. error = xfs_buf_iowait(bp);
  166. if (error)
  167. xfs_buf_ioerror_alert(bp, __func__);
  168. return error;
  169. }
  170. STATIC int
  171. xlog_bread(
  172. xlog_t *log,
  173. xfs_daddr_t blk_no,
  174. int nbblks,
  175. xfs_buf_t *bp,
  176. xfs_caddr_t *offset)
  177. {
  178. int error;
  179. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  180. if (error)
  181. return error;
  182. *offset = xlog_align(log, blk_no, nbblks, bp);
  183. return 0;
  184. }
  185. /*
  186. * Read at an offset into the buffer. Returns with the buffer in it's original
  187. * state regardless of the result of the read.
  188. */
  189. STATIC int
  190. xlog_bread_offset(
  191. xlog_t *log,
  192. xfs_daddr_t blk_no, /* block to read from */
  193. int nbblks, /* blocks to read */
  194. xfs_buf_t *bp,
  195. xfs_caddr_t offset)
  196. {
  197. xfs_caddr_t orig_offset = bp->b_addr;
  198. int orig_len = bp->b_buffer_length;
  199. int error, error2;
  200. error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
  201. if (error)
  202. return error;
  203. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  204. /* must reset buffer pointer even on error */
  205. error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
  206. if (error)
  207. return error;
  208. return error2;
  209. }
  210. /*
  211. * Write out the buffer at the given block for the given number of blocks.
  212. * The buffer is kept locked across the write and is returned locked.
  213. * This can only be used for synchronous log writes.
  214. */
  215. STATIC int
  216. xlog_bwrite(
  217. xlog_t *log,
  218. xfs_daddr_t blk_no,
  219. int nbblks,
  220. xfs_buf_t *bp)
  221. {
  222. int error;
  223. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  224. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  225. nbblks);
  226. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  227. return EFSCORRUPTED;
  228. }
  229. blk_no = round_down(blk_no, log->l_sectBBsize);
  230. nbblks = round_up(nbblks, log->l_sectBBsize);
  231. ASSERT(nbblks > 0);
  232. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  233. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  234. XFS_BUF_ZEROFLAGS(bp);
  235. xfs_buf_hold(bp);
  236. xfs_buf_lock(bp);
  237. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  238. error = xfs_bwrite(bp);
  239. if (error)
  240. xfs_buf_ioerror_alert(bp, __func__);
  241. xfs_buf_relse(bp);
  242. return error;
  243. }
  244. #ifdef DEBUG
  245. /*
  246. * dump debug superblock and log record information
  247. */
  248. STATIC void
  249. xlog_header_check_dump(
  250. xfs_mount_t *mp,
  251. xlog_rec_header_t *head)
  252. {
  253. xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
  254. __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
  255. xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
  256. &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
  257. }
  258. #else
  259. #define xlog_header_check_dump(mp, head)
  260. #endif
  261. /*
  262. * check log record header for recovery
  263. */
  264. STATIC int
  265. xlog_header_check_recover(
  266. xfs_mount_t *mp,
  267. xlog_rec_header_t *head)
  268. {
  269. ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
  270. /*
  271. * IRIX doesn't write the h_fmt field and leaves it zeroed
  272. * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
  273. * a dirty log created in IRIX.
  274. */
  275. if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
  276. xfs_warn(mp,
  277. "dirty log written in incompatible format - can't recover");
  278. xlog_header_check_dump(mp, head);
  279. XFS_ERROR_REPORT("xlog_header_check_recover(1)",
  280. XFS_ERRLEVEL_HIGH, mp);
  281. return XFS_ERROR(EFSCORRUPTED);
  282. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  283. xfs_warn(mp,
  284. "dirty log entry has mismatched uuid - can't recover");
  285. xlog_header_check_dump(mp, head);
  286. XFS_ERROR_REPORT("xlog_header_check_recover(2)",
  287. XFS_ERRLEVEL_HIGH, mp);
  288. return XFS_ERROR(EFSCORRUPTED);
  289. }
  290. return 0;
  291. }
  292. /*
  293. * read the head block of the log and check the header
  294. */
  295. STATIC int
  296. xlog_header_check_mount(
  297. xfs_mount_t *mp,
  298. xlog_rec_header_t *head)
  299. {
  300. ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
  301. if (uuid_is_nil(&head->h_fs_uuid)) {
  302. /*
  303. * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
  304. * h_fs_uuid is nil, we assume this log was last mounted
  305. * by IRIX and continue.
  306. */
  307. xfs_warn(mp, "nil uuid in log - IRIX style log");
  308. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  309. xfs_warn(mp, "log has mismatched uuid - can't recover");
  310. xlog_header_check_dump(mp, head);
  311. XFS_ERROR_REPORT("xlog_header_check_mount",
  312. XFS_ERRLEVEL_HIGH, mp);
  313. return XFS_ERROR(EFSCORRUPTED);
  314. }
  315. return 0;
  316. }
  317. STATIC void
  318. xlog_recover_iodone(
  319. struct xfs_buf *bp)
  320. {
  321. if (bp->b_error) {
  322. /*
  323. * We're not going to bother about retrying
  324. * this during recovery. One strike!
  325. */
  326. xfs_buf_ioerror_alert(bp, __func__);
  327. xfs_force_shutdown(bp->b_target->bt_mount,
  328. SHUTDOWN_META_IO_ERROR);
  329. }
  330. bp->b_iodone = NULL;
  331. xfs_buf_ioend(bp, 0);
  332. }
  333. /*
  334. * This routine finds (to an approximation) the first block in the physical
  335. * log which contains the given cycle. It uses a binary search algorithm.
  336. * Note that the algorithm can not be perfect because the disk will not
  337. * necessarily be perfect.
  338. */
  339. STATIC int
  340. xlog_find_cycle_start(
  341. xlog_t *log,
  342. xfs_buf_t *bp,
  343. xfs_daddr_t first_blk,
  344. xfs_daddr_t *last_blk,
  345. uint cycle)
  346. {
  347. xfs_caddr_t offset;
  348. xfs_daddr_t mid_blk;
  349. xfs_daddr_t end_blk;
  350. uint mid_cycle;
  351. int error;
  352. end_blk = *last_blk;
  353. mid_blk = BLK_AVG(first_blk, end_blk);
  354. while (mid_blk != first_blk && mid_blk != end_blk) {
  355. error = xlog_bread(log, mid_blk, 1, bp, &offset);
  356. if (error)
  357. return error;
  358. mid_cycle = xlog_get_cycle(offset);
  359. if (mid_cycle == cycle)
  360. end_blk = mid_blk; /* last_half_cycle == mid_cycle */
  361. else
  362. first_blk = mid_blk; /* first_half_cycle == mid_cycle */
  363. mid_blk = BLK_AVG(first_blk, end_blk);
  364. }
  365. ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
  366. (mid_blk == end_blk && mid_blk-1 == first_blk));
  367. *last_blk = end_blk;
  368. return 0;
  369. }
  370. /*
  371. * Check that a range of blocks does not contain stop_on_cycle_no.
  372. * Fill in *new_blk with the block offset where such a block is
  373. * found, or with -1 (an invalid block number) if there is no such
  374. * block in the range. The scan needs to occur from front to back
  375. * and the pointer into the region must be updated since a later
  376. * routine will need to perform another test.
  377. */
  378. STATIC int
  379. xlog_find_verify_cycle(
  380. xlog_t *log,
  381. xfs_daddr_t start_blk,
  382. int nbblks,
  383. uint stop_on_cycle_no,
  384. xfs_daddr_t *new_blk)
  385. {
  386. xfs_daddr_t i, j;
  387. uint cycle;
  388. xfs_buf_t *bp;
  389. xfs_daddr_t bufblks;
  390. xfs_caddr_t buf = NULL;
  391. int error = 0;
  392. /*
  393. * Greedily allocate a buffer big enough to handle the full
  394. * range of basic blocks we'll be examining. If that fails,
  395. * try a smaller size. We need to be able to read at least
  396. * a log sector, or we're out of luck.
  397. */
  398. bufblks = 1 << ffs(nbblks);
  399. while (bufblks > log->l_logBBsize)
  400. bufblks >>= 1;
  401. while (!(bp = xlog_get_bp(log, bufblks))) {
  402. bufblks >>= 1;
  403. if (bufblks < log->l_sectBBsize)
  404. return ENOMEM;
  405. }
  406. for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
  407. int bcount;
  408. bcount = min(bufblks, (start_blk + nbblks - i));
  409. error = xlog_bread(log, i, bcount, bp, &buf);
  410. if (error)
  411. goto out;
  412. for (j = 0; j < bcount; j++) {
  413. cycle = xlog_get_cycle(buf);
  414. if (cycle == stop_on_cycle_no) {
  415. *new_blk = i+j;
  416. goto out;
  417. }
  418. buf += BBSIZE;
  419. }
  420. }
  421. *new_blk = -1;
  422. out:
  423. xlog_put_bp(bp);
  424. return error;
  425. }
  426. /*
  427. * Potentially backup over partial log record write.
  428. *
  429. * In the typical case, last_blk is the number of the block directly after
  430. * a good log record. Therefore, we subtract one to get the block number
  431. * of the last block in the given buffer. extra_bblks contains the number
  432. * of blocks we would have read on a previous read. This happens when the
  433. * last log record is split over the end of the physical log.
  434. *
  435. * extra_bblks is the number of blocks potentially verified on a previous
  436. * call to this routine.
  437. */
  438. STATIC int
  439. xlog_find_verify_log_record(
  440. xlog_t *log,
  441. xfs_daddr_t start_blk,
  442. xfs_daddr_t *last_blk,
  443. int extra_bblks)
  444. {
  445. xfs_daddr_t i;
  446. xfs_buf_t *bp;
  447. xfs_caddr_t offset = NULL;
  448. xlog_rec_header_t *head = NULL;
  449. int error = 0;
  450. int smallmem = 0;
  451. int num_blks = *last_blk - start_blk;
  452. int xhdrs;
  453. ASSERT(start_blk != 0 || *last_blk != start_blk);
  454. if (!(bp = xlog_get_bp(log, num_blks))) {
  455. if (!(bp = xlog_get_bp(log, 1)))
  456. return ENOMEM;
  457. smallmem = 1;
  458. } else {
  459. error = xlog_bread(log, start_blk, num_blks, bp, &offset);
  460. if (error)
  461. goto out;
  462. offset += ((num_blks - 1) << BBSHIFT);
  463. }
  464. for (i = (*last_blk) - 1; i >= 0; i--) {
  465. if (i < start_blk) {
  466. /* valid log record not found */
  467. xfs_warn(log->l_mp,
  468. "Log inconsistent (didn't find previous header)");
  469. ASSERT(0);
  470. error = XFS_ERROR(EIO);
  471. goto out;
  472. }
  473. if (smallmem) {
  474. error = xlog_bread(log, i, 1, bp, &offset);
  475. if (error)
  476. goto out;
  477. }
  478. head = (xlog_rec_header_t *)offset;
  479. if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
  480. break;
  481. if (!smallmem)
  482. offset -= BBSIZE;
  483. }
  484. /*
  485. * We hit the beginning of the physical log & still no header. Return
  486. * to caller. If caller can handle a return of -1, then this routine
  487. * will be called again for the end of the physical log.
  488. */
  489. if (i == -1) {
  490. error = -1;
  491. goto out;
  492. }
  493. /*
  494. * We have the final block of the good log (the first block
  495. * of the log record _before_ the head. So we check the uuid.
  496. */
  497. if ((error = xlog_header_check_mount(log->l_mp, head)))
  498. goto out;
  499. /*
  500. * We may have found a log record header before we expected one.
  501. * last_blk will be the 1st block # with a given cycle #. We may end
  502. * up reading an entire log record. In this case, we don't want to
  503. * reset last_blk. Only when last_blk points in the middle of a log
  504. * record do we update last_blk.
  505. */
  506. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  507. uint h_size = be32_to_cpu(head->h_size);
  508. xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
  509. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  510. xhdrs++;
  511. } else {
  512. xhdrs = 1;
  513. }
  514. if (*last_blk - i + extra_bblks !=
  515. BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
  516. *last_blk = i;
  517. out:
  518. xlog_put_bp(bp);
  519. return error;
  520. }
  521. /*
  522. * Head is defined to be the point of the log where the next log write
  523. * write could go. This means that incomplete LR writes at the end are
  524. * eliminated when calculating the head. We aren't guaranteed that previous
  525. * LR have complete transactions. We only know that a cycle number of
  526. * current cycle number -1 won't be present in the log if we start writing
  527. * from our current block number.
  528. *
  529. * last_blk contains the block number of the first block with a given
  530. * cycle number.
  531. *
  532. * Return: zero if normal, non-zero if error.
  533. */
  534. STATIC int
  535. xlog_find_head(
  536. xlog_t *log,
  537. xfs_daddr_t *return_head_blk)
  538. {
  539. xfs_buf_t *bp;
  540. xfs_caddr_t offset;
  541. xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
  542. int num_scan_bblks;
  543. uint first_half_cycle, last_half_cycle;
  544. uint stop_on_cycle;
  545. int error, log_bbnum = log->l_logBBsize;
  546. /* Is the end of the log device zeroed? */
  547. if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
  548. *return_head_blk = first_blk;
  549. /* Is the whole lot zeroed? */
  550. if (!first_blk) {
  551. /* Linux XFS shouldn't generate totally zeroed logs -
  552. * mkfs etc write a dummy unmount record to a fresh
  553. * log so we can store the uuid in there
  554. */
  555. xfs_warn(log->l_mp, "totally zeroed log");
  556. }
  557. return 0;
  558. } else if (error) {
  559. xfs_warn(log->l_mp, "empty log check failed");
  560. return error;
  561. }
  562. first_blk = 0; /* get cycle # of 1st block */
  563. bp = xlog_get_bp(log, 1);
  564. if (!bp)
  565. return ENOMEM;
  566. error = xlog_bread(log, 0, 1, bp, &offset);
  567. if (error)
  568. goto bp_err;
  569. first_half_cycle = xlog_get_cycle(offset);
  570. last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
  571. error = xlog_bread(log, last_blk, 1, bp, &offset);
  572. if (error)
  573. goto bp_err;
  574. last_half_cycle = xlog_get_cycle(offset);
  575. ASSERT(last_half_cycle != 0);
  576. /*
  577. * If the 1st half cycle number is equal to the last half cycle number,
  578. * then the entire log is stamped with the same cycle number. In this
  579. * case, head_blk can't be set to zero (which makes sense). The below
  580. * math doesn't work out properly with head_blk equal to zero. Instead,
  581. * we set it to log_bbnum which is an invalid block number, but this
  582. * value makes the math correct. If head_blk doesn't changed through
  583. * all the tests below, *head_blk is set to zero at the very end rather
  584. * than log_bbnum. In a sense, log_bbnum and zero are the same block
  585. * in a circular file.
  586. */
  587. if (first_half_cycle == last_half_cycle) {
  588. /*
  589. * In this case we believe that the entire log should have
  590. * cycle number last_half_cycle. We need to scan backwards
  591. * from the end verifying that there are no holes still
  592. * containing last_half_cycle - 1. If we find such a hole,
  593. * then the start of that hole will be the new head. The
  594. * simple case looks like
  595. * x | x ... | x - 1 | x
  596. * Another case that fits this picture would be
  597. * x | x + 1 | x ... | x
  598. * In this case the head really is somewhere at the end of the
  599. * log, as one of the latest writes at the beginning was
  600. * incomplete.
  601. * One more case is
  602. * x | x + 1 | x ... | x - 1 | x
  603. * This is really the combination of the above two cases, and
  604. * the head has to end up at the start of the x-1 hole at the
  605. * end of the log.
  606. *
  607. * In the 256k log case, we will read from the beginning to the
  608. * end of the log and search for cycle numbers equal to x-1.
  609. * We don't worry about the x+1 blocks that we encounter,
  610. * because we know that they cannot be the head since the log
  611. * started with x.
  612. */
  613. head_blk = log_bbnum;
  614. stop_on_cycle = last_half_cycle - 1;
  615. } else {
  616. /*
  617. * In this case we want to find the first block with cycle
  618. * number matching last_half_cycle. We expect the log to be
  619. * some variation on
  620. * x + 1 ... | x ... | x
  621. * The first block with cycle number x (last_half_cycle) will
  622. * be where the new head belongs. First we do a binary search
  623. * for the first occurrence of last_half_cycle. The binary
  624. * search may not be totally accurate, so then we scan back
  625. * from there looking for occurrences of last_half_cycle before
  626. * us. If that backwards scan wraps around the beginning of
  627. * the log, then we look for occurrences of last_half_cycle - 1
  628. * at the end of the log. The cases we're looking for look
  629. * like
  630. * v binary search stopped here
  631. * x + 1 ... | x | x + 1 | x ... | x
  632. * ^ but we want to locate this spot
  633. * or
  634. * <---------> less than scan distance
  635. * x + 1 ... | x ... | x - 1 | x
  636. * ^ we want to locate this spot
  637. */
  638. stop_on_cycle = last_half_cycle;
  639. if ((error = xlog_find_cycle_start(log, bp, first_blk,
  640. &head_blk, last_half_cycle)))
  641. goto bp_err;
  642. }
  643. /*
  644. * Now validate the answer. Scan back some number of maximum possible
  645. * blocks and make sure each one has the expected cycle number. The
  646. * maximum is determined by the total possible amount of buffering
  647. * in the in-core log. The following number can be made tighter if
  648. * we actually look at the block size of the filesystem.
  649. */
  650. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  651. if (head_blk >= num_scan_bblks) {
  652. /*
  653. * We are guaranteed that the entire check can be performed
  654. * in one buffer.
  655. */
  656. start_blk = head_blk - num_scan_bblks;
  657. if ((error = xlog_find_verify_cycle(log,
  658. start_blk, num_scan_bblks,
  659. stop_on_cycle, &new_blk)))
  660. goto bp_err;
  661. if (new_blk != -1)
  662. head_blk = new_blk;
  663. } else { /* need to read 2 parts of log */
  664. /*
  665. * We are going to scan backwards in the log in two parts.
  666. * First we scan the physical end of the log. In this part
  667. * of the log, we are looking for blocks with cycle number
  668. * last_half_cycle - 1.
  669. * If we find one, then we know that the log starts there, as
  670. * we've found a hole that didn't get written in going around
  671. * the end of the physical log. The simple case for this is
  672. * x + 1 ... | x ... | x - 1 | x
  673. * <---------> less than scan distance
  674. * If all of the blocks at the end of the log have cycle number
  675. * last_half_cycle, then we check the blocks at the start of
  676. * the log looking for occurrences of last_half_cycle. If we
  677. * find one, then our current estimate for the location of the
  678. * first occurrence of last_half_cycle is wrong and we move
  679. * back to the hole we've found. This case looks like
  680. * x + 1 ... | x | x + 1 | x ...
  681. * ^ binary search stopped here
  682. * Another case we need to handle that only occurs in 256k
  683. * logs is
  684. * x + 1 ... | x ... | x+1 | x ...
  685. * ^ binary search stops here
  686. * In a 256k log, the scan at the end of the log will see the
  687. * x + 1 blocks. We need to skip past those since that is
  688. * certainly not the head of the log. By searching for
  689. * last_half_cycle-1 we accomplish that.
  690. */
  691. ASSERT(head_blk <= INT_MAX &&
  692. (xfs_daddr_t) num_scan_bblks >= head_blk);
  693. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  694. if ((error = xlog_find_verify_cycle(log, start_blk,
  695. num_scan_bblks - (int)head_blk,
  696. (stop_on_cycle - 1), &new_blk)))
  697. goto bp_err;
  698. if (new_blk != -1) {
  699. head_blk = new_blk;
  700. goto validate_head;
  701. }
  702. /*
  703. * Scan beginning of log now. The last part of the physical
  704. * log is good. This scan needs to verify that it doesn't find
  705. * the last_half_cycle.
  706. */
  707. start_blk = 0;
  708. ASSERT(head_blk <= INT_MAX);
  709. if ((error = xlog_find_verify_cycle(log,
  710. start_blk, (int)head_blk,
  711. stop_on_cycle, &new_blk)))
  712. goto bp_err;
  713. if (new_blk != -1)
  714. head_blk = new_blk;
  715. }
  716. validate_head:
  717. /*
  718. * Now we need to make sure head_blk is not pointing to a block in
  719. * the middle of a log record.
  720. */
  721. num_scan_bblks = XLOG_REC_SHIFT(log);
  722. if (head_blk >= num_scan_bblks) {
  723. start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
  724. /* start ptr at last block ptr before head_blk */
  725. if ((error = xlog_find_verify_log_record(log, start_blk,
  726. &head_blk, 0)) == -1) {
  727. error = XFS_ERROR(EIO);
  728. goto bp_err;
  729. } else if (error)
  730. goto bp_err;
  731. } else {
  732. start_blk = 0;
  733. ASSERT(head_blk <= INT_MAX);
  734. if ((error = xlog_find_verify_log_record(log, start_blk,
  735. &head_blk, 0)) == -1) {
  736. /* We hit the beginning of the log during our search */
  737. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  738. new_blk = log_bbnum;
  739. ASSERT(start_blk <= INT_MAX &&
  740. (xfs_daddr_t) log_bbnum-start_blk >= 0);
  741. ASSERT(head_blk <= INT_MAX);
  742. if ((error = xlog_find_verify_log_record(log,
  743. start_blk, &new_blk,
  744. (int)head_blk)) == -1) {
  745. error = XFS_ERROR(EIO);
  746. goto bp_err;
  747. } else if (error)
  748. goto bp_err;
  749. if (new_blk != log_bbnum)
  750. head_blk = new_blk;
  751. } else if (error)
  752. goto bp_err;
  753. }
  754. xlog_put_bp(bp);
  755. if (head_blk == log_bbnum)
  756. *return_head_blk = 0;
  757. else
  758. *return_head_blk = head_blk;
  759. /*
  760. * When returning here, we have a good block number. Bad block
  761. * means that during a previous crash, we didn't have a clean break
  762. * from cycle number N to cycle number N-1. In this case, we need
  763. * to find the first block with cycle number N-1.
  764. */
  765. return 0;
  766. bp_err:
  767. xlog_put_bp(bp);
  768. if (error)
  769. xfs_warn(log->l_mp, "failed to find log head");
  770. return error;
  771. }
  772. /*
  773. * Find the sync block number or the tail of the log.
  774. *
  775. * This will be the block number of the last record to have its
  776. * associated buffers synced to disk. Every log record header has
  777. * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
  778. * to get a sync block number. The only concern is to figure out which
  779. * log record header to believe.
  780. *
  781. * The following algorithm uses the log record header with the largest
  782. * lsn. The entire log record does not need to be valid. We only care
  783. * that the header is valid.
  784. *
  785. * We could speed up search by using current head_blk buffer, but it is not
  786. * available.
  787. */
  788. STATIC int
  789. xlog_find_tail(
  790. xlog_t *log,
  791. xfs_daddr_t *head_blk,
  792. xfs_daddr_t *tail_blk)
  793. {
  794. xlog_rec_header_t *rhead;
  795. xlog_op_header_t *op_head;
  796. xfs_caddr_t offset = NULL;
  797. xfs_buf_t *bp;
  798. int error, i, found;
  799. xfs_daddr_t umount_data_blk;
  800. xfs_daddr_t after_umount_blk;
  801. xfs_lsn_t tail_lsn;
  802. int hblks;
  803. found = 0;
  804. /*
  805. * Find previous log record
  806. */
  807. if ((error = xlog_find_head(log, head_blk)))
  808. return error;
  809. bp = xlog_get_bp(log, 1);
  810. if (!bp)
  811. return ENOMEM;
  812. if (*head_blk == 0) { /* special case */
  813. error = xlog_bread(log, 0, 1, bp, &offset);
  814. if (error)
  815. goto done;
  816. if (xlog_get_cycle(offset) == 0) {
  817. *tail_blk = 0;
  818. /* leave all other log inited values alone */
  819. goto done;
  820. }
  821. }
  822. /*
  823. * Search backwards looking for log record header block
  824. */
  825. ASSERT(*head_blk < INT_MAX);
  826. for (i = (int)(*head_blk) - 1; i >= 0; i--) {
  827. error = xlog_bread(log, i, 1, bp, &offset);
  828. if (error)
  829. goto done;
  830. if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
  831. found = 1;
  832. break;
  833. }
  834. }
  835. /*
  836. * If we haven't found the log record header block, start looking
  837. * again from the end of the physical log. XXXmiken: There should be
  838. * a check here to make sure we didn't search more than N blocks in
  839. * the previous code.
  840. */
  841. if (!found) {
  842. for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
  843. error = xlog_bread(log, i, 1, bp, &offset);
  844. if (error)
  845. goto done;
  846. if (*(__be32 *)offset ==
  847. cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
  848. found = 2;
  849. break;
  850. }
  851. }
  852. }
  853. if (!found) {
  854. xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
  855. ASSERT(0);
  856. return XFS_ERROR(EIO);
  857. }
  858. /* find blk_no of tail of log */
  859. rhead = (xlog_rec_header_t *)offset;
  860. *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
  861. /*
  862. * Reset log values according to the state of the log when we
  863. * crashed. In the case where head_blk == 0, we bump curr_cycle
  864. * one because the next write starts a new cycle rather than
  865. * continuing the cycle of the last good log record. At this
  866. * point we have guaranteed that all partial log records have been
  867. * accounted for. Therefore, we know that the last good log record
  868. * written was complete and ended exactly on the end boundary
  869. * of the physical log.
  870. */
  871. log->l_prev_block = i;
  872. log->l_curr_block = (int)*head_blk;
  873. log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
  874. if (found == 2)
  875. log->l_curr_cycle++;
  876. atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
  877. atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
  878. xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
  879. BBTOB(log->l_curr_block));
  880. xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
  881. BBTOB(log->l_curr_block));
  882. /*
  883. * Look for unmount record. If we find it, then we know there
  884. * was a clean unmount. Since 'i' could be the last block in
  885. * the physical log, we convert to a log block before comparing
  886. * to the head_blk.
  887. *
  888. * Save the current tail lsn to use to pass to
  889. * xlog_clear_stale_blocks() below. We won't want to clear the
  890. * unmount record if there is one, so we pass the lsn of the
  891. * unmount record rather than the block after it.
  892. */
  893. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  894. int h_size = be32_to_cpu(rhead->h_size);
  895. int h_version = be32_to_cpu(rhead->h_version);
  896. if ((h_version & XLOG_VERSION_2) &&
  897. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  898. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  899. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  900. hblks++;
  901. } else {
  902. hblks = 1;
  903. }
  904. } else {
  905. hblks = 1;
  906. }
  907. after_umount_blk = (i + hblks + (int)
  908. BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
  909. tail_lsn = atomic64_read(&log->l_tail_lsn);
  910. if (*head_blk == after_umount_blk &&
  911. be32_to_cpu(rhead->h_num_logops) == 1) {
  912. umount_data_blk = (i + hblks) % log->l_logBBsize;
  913. error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
  914. if (error)
  915. goto done;
  916. op_head = (xlog_op_header_t *)offset;
  917. if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
  918. /*
  919. * Set tail and last sync so that newly written
  920. * log records will point recovery to after the
  921. * current unmount record.
  922. */
  923. xlog_assign_atomic_lsn(&log->l_tail_lsn,
  924. log->l_curr_cycle, after_umount_blk);
  925. xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
  926. log->l_curr_cycle, after_umount_blk);
  927. *tail_blk = after_umount_blk;
  928. /*
  929. * Note that the unmount was clean. If the unmount
  930. * was not clean, we need to know this to rebuild the
  931. * superblock counters from the perag headers if we
  932. * have a filesystem using non-persistent counters.
  933. */
  934. log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
  935. }
  936. }
  937. /*
  938. * Make sure that there are no blocks in front of the head
  939. * with the same cycle number as the head. This can happen
  940. * because we allow multiple outstanding log writes concurrently,
  941. * and the later writes might make it out before earlier ones.
  942. *
  943. * We use the lsn from before modifying it so that we'll never
  944. * overwrite the unmount record after a clean unmount.
  945. *
  946. * Do this only if we are going to recover the filesystem
  947. *
  948. * NOTE: This used to say "if (!readonly)"
  949. * However on Linux, we can & do recover a read-only filesystem.
  950. * We only skip recovery if NORECOVERY is specified on mount,
  951. * in which case we would not be here.
  952. *
  953. * But... if the -device- itself is readonly, just skip this.
  954. * We can't recover this device anyway, so it won't matter.
  955. */
  956. if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
  957. error = xlog_clear_stale_blocks(log, tail_lsn);
  958. done:
  959. xlog_put_bp(bp);
  960. if (error)
  961. xfs_warn(log->l_mp, "failed to locate log tail");
  962. return error;
  963. }
  964. /*
  965. * Is the log zeroed at all?
  966. *
  967. * The last binary search should be changed to perform an X block read
  968. * once X becomes small enough. You can then search linearly through
  969. * the X blocks. This will cut down on the number of reads we need to do.
  970. *
  971. * If the log is partially zeroed, this routine will pass back the blkno
  972. * of the first block with cycle number 0. It won't have a complete LR
  973. * preceding it.
  974. *
  975. * Return:
  976. * 0 => the log is completely written to
  977. * -1 => use *blk_no as the first block of the log
  978. * >0 => error has occurred
  979. */
  980. STATIC int
  981. xlog_find_zeroed(
  982. xlog_t *log,
  983. xfs_daddr_t *blk_no)
  984. {
  985. xfs_buf_t *bp;
  986. xfs_caddr_t offset;
  987. uint first_cycle, last_cycle;
  988. xfs_daddr_t new_blk, last_blk, start_blk;
  989. xfs_daddr_t num_scan_bblks;
  990. int error, log_bbnum = log->l_logBBsize;
  991. *blk_no = 0;
  992. /* check totally zeroed log */
  993. bp = xlog_get_bp(log, 1);
  994. if (!bp)
  995. return ENOMEM;
  996. error = xlog_bread(log, 0, 1, bp, &offset);
  997. if (error)
  998. goto bp_err;
  999. first_cycle = xlog_get_cycle(offset);
  1000. if (first_cycle == 0) { /* completely zeroed log */
  1001. *blk_no = 0;
  1002. xlog_put_bp(bp);
  1003. return -1;
  1004. }
  1005. /* check partially zeroed log */
  1006. error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
  1007. if (error)
  1008. goto bp_err;
  1009. last_cycle = xlog_get_cycle(offset);
  1010. if (last_cycle != 0) { /* log completely written to */
  1011. xlog_put_bp(bp);
  1012. return 0;
  1013. } else if (first_cycle != 1) {
  1014. /*
  1015. * If the cycle of the last block is zero, the cycle of
  1016. * the first block must be 1. If it's not, maybe we're
  1017. * not looking at a log... Bail out.
  1018. */
  1019. xfs_warn(log->l_mp,
  1020. "Log inconsistent or not a log (last==0, first!=1)");
  1021. return XFS_ERROR(EINVAL);
  1022. }
  1023. /* we have a partially zeroed log */
  1024. last_blk = log_bbnum-1;
  1025. if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
  1026. goto bp_err;
  1027. /*
  1028. * Validate the answer. Because there is no way to guarantee that
  1029. * the entire log is made up of log records which are the same size,
  1030. * we scan over the defined maximum blocks. At this point, the maximum
  1031. * is not chosen to mean anything special. XXXmiken
  1032. */
  1033. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  1034. ASSERT(num_scan_bblks <= INT_MAX);
  1035. if (last_blk < num_scan_bblks)
  1036. num_scan_bblks = last_blk;
  1037. start_blk = last_blk - num_scan_bblks;
  1038. /*
  1039. * We search for any instances of cycle number 0 that occur before
  1040. * our current estimate of the head. What we're trying to detect is
  1041. * 1 ... | 0 | 1 | 0...
  1042. * ^ binary search ends here
  1043. */
  1044. if ((error = xlog_find_verify_cycle(log, start_blk,
  1045. (int)num_scan_bblks, 0, &new_blk)))
  1046. goto bp_err;
  1047. if (new_blk != -1)
  1048. last_blk = new_blk;
  1049. /*
  1050. * Potentially backup over partial log record write. We don't need
  1051. * to search the end of the log because we know it is zero.
  1052. */
  1053. if ((error = xlog_find_verify_log_record(log, start_blk,
  1054. &last_blk, 0)) == -1) {
  1055. error = XFS_ERROR(EIO);
  1056. goto bp_err;
  1057. } else if (error)
  1058. goto bp_err;
  1059. *blk_no = last_blk;
  1060. bp_err:
  1061. xlog_put_bp(bp);
  1062. if (error)
  1063. return error;
  1064. return -1;
  1065. }
  1066. /*
  1067. * These are simple subroutines used by xlog_clear_stale_blocks() below
  1068. * to initialize a buffer full of empty log record headers and write
  1069. * them into the log.
  1070. */
  1071. STATIC void
  1072. xlog_add_record(
  1073. xlog_t *log,
  1074. xfs_caddr_t buf,
  1075. int cycle,
  1076. int block,
  1077. int tail_cycle,
  1078. int tail_block)
  1079. {
  1080. xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
  1081. memset(buf, 0, BBSIZE);
  1082. recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
  1083. recp->h_cycle = cpu_to_be32(cycle);
  1084. recp->h_version = cpu_to_be32(
  1085. xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
  1086. recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
  1087. recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
  1088. recp->h_fmt = cpu_to_be32(XLOG_FMT);
  1089. memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
  1090. }
  1091. STATIC int
  1092. xlog_write_log_records(
  1093. xlog_t *log,
  1094. int cycle,
  1095. int start_block,
  1096. int blocks,
  1097. int tail_cycle,
  1098. int tail_block)
  1099. {
  1100. xfs_caddr_t offset;
  1101. xfs_buf_t *bp;
  1102. int balign, ealign;
  1103. int sectbb = log->l_sectBBsize;
  1104. int end_block = start_block + blocks;
  1105. int bufblks;
  1106. int error = 0;
  1107. int i, j = 0;
  1108. /*
  1109. * Greedily allocate a buffer big enough to handle the full
  1110. * range of basic blocks to be written. If that fails, try
  1111. * a smaller size. We need to be able to write at least a
  1112. * log sector, or we're out of luck.
  1113. */
  1114. bufblks = 1 << ffs(blocks);
  1115. while (bufblks > log->l_logBBsize)
  1116. bufblks >>= 1;
  1117. while (!(bp = xlog_get_bp(log, bufblks))) {
  1118. bufblks >>= 1;
  1119. if (bufblks < sectbb)
  1120. return ENOMEM;
  1121. }
  1122. /* We may need to do a read at the start to fill in part of
  1123. * the buffer in the starting sector not covered by the first
  1124. * write below.
  1125. */
  1126. balign = round_down(start_block, sectbb);
  1127. if (balign != start_block) {
  1128. error = xlog_bread_noalign(log, start_block, 1, bp);
  1129. if (error)
  1130. goto out_put_bp;
  1131. j = start_block - balign;
  1132. }
  1133. for (i = start_block; i < end_block; i += bufblks) {
  1134. int bcount, endcount;
  1135. bcount = min(bufblks, end_block - start_block);
  1136. endcount = bcount - j;
  1137. /* We may need to do a read at the end to fill in part of
  1138. * the buffer in the final sector not covered by the write.
  1139. * If this is the same sector as the above read, skip it.
  1140. */
  1141. ealign = round_down(end_block, sectbb);
  1142. if (j == 0 && (start_block + endcount > ealign)) {
  1143. offset = bp->b_addr + BBTOB(ealign - start_block);
  1144. error = xlog_bread_offset(log, ealign, sectbb,
  1145. bp, offset);
  1146. if (error)
  1147. break;
  1148. }
  1149. offset = xlog_align(log, start_block, endcount, bp);
  1150. for (; j < endcount; j++) {
  1151. xlog_add_record(log, offset, cycle, i+j,
  1152. tail_cycle, tail_block);
  1153. offset += BBSIZE;
  1154. }
  1155. error = xlog_bwrite(log, start_block, endcount, bp);
  1156. if (error)
  1157. break;
  1158. start_block += endcount;
  1159. j = 0;
  1160. }
  1161. out_put_bp:
  1162. xlog_put_bp(bp);
  1163. return error;
  1164. }
  1165. /*
  1166. * This routine is called to blow away any incomplete log writes out
  1167. * in front of the log head. We do this so that we won't become confused
  1168. * if we come up, write only a little bit more, and then crash again.
  1169. * If we leave the partial log records out there, this situation could
  1170. * cause us to think those partial writes are valid blocks since they
  1171. * have the current cycle number. We get rid of them by overwriting them
  1172. * with empty log records with the old cycle number rather than the
  1173. * current one.
  1174. *
  1175. * The tail lsn is passed in rather than taken from
  1176. * the log so that we will not write over the unmount record after a
  1177. * clean unmount in a 512 block log. Doing so would leave the log without
  1178. * any valid log records in it until a new one was written. If we crashed
  1179. * during that time we would not be able to recover.
  1180. */
  1181. STATIC int
  1182. xlog_clear_stale_blocks(
  1183. xlog_t *log,
  1184. xfs_lsn_t tail_lsn)
  1185. {
  1186. int tail_cycle, head_cycle;
  1187. int tail_block, head_block;
  1188. int tail_distance, max_distance;
  1189. int distance;
  1190. int error;
  1191. tail_cycle = CYCLE_LSN(tail_lsn);
  1192. tail_block = BLOCK_LSN(tail_lsn);
  1193. head_cycle = log->l_curr_cycle;
  1194. head_block = log->l_curr_block;
  1195. /*
  1196. * Figure out the distance between the new head of the log
  1197. * and the tail. We want to write over any blocks beyond the
  1198. * head that we may have written just before the crash, but
  1199. * we don't want to overwrite the tail of the log.
  1200. */
  1201. if (head_cycle == tail_cycle) {
  1202. /*
  1203. * The tail is behind the head in the physical log,
  1204. * so the distance from the head to the tail is the
  1205. * distance from the head to the end of the log plus
  1206. * the distance from the beginning of the log to the
  1207. * tail.
  1208. */
  1209. if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
  1210. XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
  1211. XFS_ERRLEVEL_LOW, log->l_mp);
  1212. return XFS_ERROR(EFSCORRUPTED);
  1213. }
  1214. tail_distance = tail_block + (log->l_logBBsize - head_block);
  1215. } else {
  1216. /*
  1217. * The head is behind the tail in the physical log,
  1218. * so the distance from the head to the tail is just
  1219. * the tail block minus the head block.
  1220. */
  1221. if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
  1222. XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
  1223. XFS_ERRLEVEL_LOW, log->l_mp);
  1224. return XFS_ERROR(EFSCORRUPTED);
  1225. }
  1226. tail_distance = tail_block - head_block;
  1227. }
  1228. /*
  1229. * If the head is right up against the tail, we can't clear
  1230. * anything.
  1231. */
  1232. if (tail_distance <= 0) {
  1233. ASSERT(tail_distance == 0);
  1234. return 0;
  1235. }
  1236. max_distance = XLOG_TOTAL_REC_SHIFT(log);
  1237. /*
  1238. * Take the smaller of the maximum amount of outstanding I/O
  1239. * we could have and the distance to the tail to clear out.
  1240. * We take the smaller so that we don't overwrite the tail and
  1241. * we don't waste all day writing from the head to the tail
  1242. * for no reason.
  1243. */
  1244. max_distance = MIN(max_distance, tail_distance);
  1245. if ((head_block + max_distance) <= log->l_logBBsize) {
  1246. /*
  1247. * We can stomp all the blocks we need to without
  1248. * wrapping around the end of the log. Just do it
  1249. * in a single write. Use the cycle number of the
  1250. * current cycle minus one so that the log will look like:
  1251. * n ... | n - 1 ...
  1252. */
  1253. error = xlog_write_log_records(log, (head_cycle - 1),
  1254. head_block, max_distance, tail_cycle,
  1255. tail_block);
  1256. if (error)
  1257. return error;
  1258. } else {
  1259. /*
  1260. * We need to wrap around the end of the physical log in
  1261. * order to clear all the blocks. Do it in two separate
  1262. * I/Os. The first write should be from the head to the
  1263. * end of the physical log, and it should use the current
  1264. * cycle number minus one just like above.
  1265. */
  1266. distance = log->l_logBBsize - head_block;
  1267. error = xlog_write_log_records(log, (head_cycle - 1),
  1268. head_block, distance, tail_cycle,
  1269. tail_block);
  1270. if (error)
  1271. return error;
  1272. /*
  1273. * Now write the blocks at the start of the physical log.
  1274. * This writes the remainder of the blocks we want to clear.
  1275. * It uses the current cycle number since we're now on the
  1276. * same cycle as the head so that we get:
  1277. * n ... n ... | n - 1 ...
  1278. * ^^^^^ blocks we're writing
  1279. */
  1280. distance = max_distance - (log->l_logBBsize - head_block);
  1281. error = xlog_write_log_records(log, head_cycle, 0, distance,
  1282. tail_cycle, tail_block);
  1283. if (error)
  1284. return error;
  1285. }
  1286. return 0;
  1287. }
  1288. /******************************************************************************
  1289. *
  1290. * Log recover routines
  1291. *
  1292. ******************************************************************************
  1293. */
  1294. STATIC xlog_recover_t *
  1295. xlog_recover_find_tid(
  1296. struct hlist_head *head,
  1297. xlog_tid_t tid)
  1298. {
  1299. xlog_recover_t *trans;
  1300. struct hlist_node *n;
  1301. hlist_for_each_entry(trans, n, head, r_list) {
  1302. if (trans->r_log_tid == tid)
  1303. return trans;
  1304. }
  1305. return NULL;
  1306. }
  1307. STATIC void
  1308. xlog_recover_new_tid(
  1309. struct hlist_head *head,
  1310. xlog_tid_t tid,
  1311. xfs_lsn_t lsn)
  1312. {
  1313. xlog_recover_t *trans;
  1314. trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
  1315. trans->r_log_tid = tid;
  1316. trans->r_lsn = lsn;
  1317. INIT_LIST_HEAD(&trans->r_itemq);
  1318. INIT_HLIST_NODE(&trans->r_list);
  1319. hlist_add_head(&trans->r_list, head);
  1320. }
  1321. STATIC void
  1322. xlog_recover_add_item(
  1323. struct list_head *head)
  1324. {
  1325. xlog_recover_item_t *item;
  1326. item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
  1327. INIT_LIST_HEAD(&item->ri_list);
  1328. list_add_tail(&item->ri_list, head);
  1329. }
  1330. STATIC int
  1331. xlog_recover_add_to_cont_trans(
  1332. struct log *log,
  1333. xlog_recover_t *trans,
  1334. xfs_caddr_t dp,
  1335. int len)
  1336. {
  1337. xlog_recover_item_t *item;
  1338. xfs_caddr_t ptr, old_ptr;
  1339. int old_len;
  1340. if (list_empty(&trans->r_itemq)) {
  1341. /* finish copying rest of trans header */
  1342. xlog_recover_add_item(&trans->r_itemq);
  1343. ptr = (xfs_caddr_t) &trans->r_theader +
  1344. sizeof(xfs_trans_header_t) - len;
  1345. memcpy(ptr, dp, len); /* d, s, l */
  1346. return 0;
  1347. }
  1348. /* take the tail entry */
  1349. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1350. old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
  1351. old_len = item->ri_buf[item->ri_cnt-1].i_len;
  1352. ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
  1353. memcpy(&ptr[old_len], dp, len); /* d, s, l */
  1354. item->ri_buf[item->ri_cnt-1].i_len += len;
  1355. item->ri_buf[item->ri_cnt-1].i_addr = ptr;
  1356. trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
  1357. return 0;
  1358. }
  1359. /*
  1360. * The next region to add is the start of a new region. It could be
  1361. * a whole region or it could be the first part of a new region. Because
  1362. * of this, the assumption here is that the type and size fields of all
  1363. * format structures fit into the first 32 bits of the structure.
  1364. *
  1365. * This works because all regions must be 32 bit aligned. Therefore, we
  1366. * either have both fields or we have neither field. In the case we have
  1367. * neither field, the data part of the region is zero length. We only have
  1368. * a log_op_header and can throw away the header since a new one will appear
  1369. * later. If we have at least 4 bytes, then we can determine how many regions
  1370. * will appear in the current log item.
  1371. */
  1372. STATIC int
  1373. xlog_recover_add_to_trans(
  1374. struct log *log,
  1375. xlog_recover_t *trans,
  1376. xfs_caddr_t dp,
  1377. int len)
  1378. {
  1379. xfs_inode_log_format_t *in_f; /* any will do */
  1380. xlog_recover_item_t *item;
  1381. xfs_caddr_t ptr;
  1382. if (!len)
  1383. return 0;
  1384. if (list_empty(&trans->r_itemq)) {
  1385. /* we need to catch log corruptions here */
  1386. if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
  1387. xfs_warn(log->l_mp, "%s: bad header magic number",
  1388. __func__);
  1389. ASSERT(0);
  1390. return XFS_ERROR(EIO);
  1391. }
  1392. if (len == sizeof(xfs_trans_header_t))
  1393. xlog_recover_add_item(&trans->r_itemq);
  1394. memcpy(&trans->r_theader, dp, len); /* d, s, l */
  1395. return 0;
  1396. }
  1397. ptr = kmem_alloc(len, KM_SLEEP);
  1398. memcpy(ptr, dp, len);
  1399. in_f = (xfs_inode_log_format_t *)ptr;
  1400. /* take the tail entry */
  1401. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1402. if (item->ri_total != 0 &&
  1403. item->ri_total == item->ri_cnt) {
  1404. /* tail item is in use, get a new one */
  1405. xlog_recover_add_item(&trans->r_itemq);
  1406. item = list_entry(trans->r_itemq.prev,
  1407. xlog_recover_item_t, ri_list);
  1408. }
  1409. if (item->ri_total == 0) { /* first region to be added */
  1410. if (in_f->ilf_size == 0 ||
  1411. in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
  1412. xfs_warn(log->l_mp,
  1413. "bad number of regions (%d) in inode log format",
  1414. in_f->ilf_size);
  1415. ASSERT(0);
  1416. return XFS_ERROR(EIO);
  1417. }
  1418. item->ri_total = in_f->ilf_size;
  1419. item->ri_buf =
  1420. kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
  1421. KM_SLEEP);
  1422. }
  1423. ASSERT(item->ri_total > item->ri_cnt);
  1424. /* Description region is ri_buf[0] */
  1425. item->ri_buf[item->ri_cnt].i_addr = ptr;
  1426. item->ri_buf[item->ri_cnt].i_len = len;
  1427. item->ri_cnt++;
  1428. trace_xfs_log_recover_item_add(log, trans, item, 0);
  1429. return 0;
  1430. }
  1431. /*
  1432. * Sort the log items in the transaction. Cancelled buffers need
  1433. * to be put first so they are processed before any items that might
  1434. * modify the buffers. If they are cancelled, then the modifications
  1435. * don't need to be replayed.
  1436. */
  1437. STATIC int
  1438. xlog_recover_reorder_trans(
  1439. struct log *log,
  1440. xlog_recover_t *trans,
  1441. int pass)
  1442. {
  1443. xlog_recover_item_t *item, *n;
  1444. LIST_HEAD(sort_list);
  1445. list_splice_init(&trans->r_itemq, &sort_list);
  1446. list_for_each_entry_safe(item, n, &sort_list, ri_list) {
  1447. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1448. switch (ITEM_TYPE(item)) {
  1449. case XFS_LI_BUF:
  1450. if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
  1451. trace_xfs_log_recover_item_reorder_head(log,
  1452. trans, item, pass);
  1453. list_move(&item->ri_list, &trans->r_itemq);
  1454. break;
  1455. }
  1456. case XFS_LI_INODE:
  1457. case XFS_LI_DQUOT:
  1458. case XFS_LI_QUOTAOFF:
  1459. case XFS_LI_EFD:
  1460. case XFS_LI_EFI:
  1461. trace_xfs_log_recover_item_reorder_tail(log,
  1462. trans, item, pass);
  1463. list_move_tail(&item->ri_list, &trans->r_itemq);
  1464. break;
  1465. default:
  1466. xfs_warn(log->l_mp,
  1467. "%s: unrecognized type of log operation",
  1468. __func__);
  1469. ASSERT(0);
  1470. return XFS_ERROR(EIO);
  1471. }
  1472. }
  1473. ASSERT(list_empty(&sort_list));
  1474. return 0;
  1475. }
  1476. /*
  1477. * Build up the table of buf cancel records so that we don't replay
  1478. * cancelled data in the second pass. For buffer records that are
  1479. * not cancel records, there is nothing to do here so we just return.
  1480. *
  1481. * If we get a cancel record which is already in the table, this indicates
  1482. * that the buffer was cancelled multiple times. In order to ensure
  1483. * that during pass 2 we keep the record in the table until we reach its
  1484. * last occurrence in the log, we keep a reference count in the cancel
  1485. * record in the table to tell us how many times we expect to see this
  1486. * record during the second pass.
  1487. */
  1488. STATIC int
  1489. xlog_recover_buffer_pass1(
  1490. struct log *log,
  1491. xlog_recover_item_t *item)
  1492. {
  1493. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1494. struct list_head *bucket;
  1495. struct xfs_buf_cancel *bcp;
  1496. /*
  1497. * If this isn't a cancel buffer item, then just return.
  1498. */
  1499. if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
  1500. trace_xfs_log_recover_buf_not_cancel(log, buf_f);
  1501. return 0;
  1502. }
  1503. /*
  1504. * Insert an xfs_buf_cancel record into the hash table of them.
  1505. * If there is already an identical record, bump its reference count.
  1506. */
  1507. bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
  1508. list_for_each_entry(bcp, bucket, bc_list) {
  1509. if (bcp->bc_blkno == buf_f->blf_blkno &&
  1510. bcp->bc_len == buf_f->blf_len) {
  1511. bcp->bc_refcount++;
  1512. trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
  1513. return 0;
  1514. }
  1515. }
  1516. bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
  1517. bcp->bc_blkno = buf_f->blf_blkno;
  1518. bcp->bc_len = buf_f->blf_len;
  1519. bcp->bc_refcount = 1;
  1520. list_add_tail(&bcp->bc_list, bucket);
  1521. trace_xfs_log_recover_buf_cancel_add(log, buf_f);
  1522. return 0;
  1523. }
  1524. /*
  1525. * Check to see whether the buffer being recovered has a corresponding
  1526. * entry in the buffer cancel record table. If it does then return 1
  1527. * so that it will be cancelled, otherwise return 0. If the buffer is
  1528. * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
  1529. * the refcount on the entry in the table and remove it from the table
  1530. * if this is the last reference.
  1531. *
  1532. * We remove the cancel record from the table when we encounter its
  1533. * last occurrence in the log so that if the same buffer is re-used
  1534. * again after its last cancellation we actually replay the changes
  1535. * made at that point.
  1536. */
  1537. STATIC int
  1538. xlog_check_buffer_cancelled(
  1539. struct log *log,
  1540. xfs_daddr_t blkno,
  1541. uint len,
  1542. ushort flags)
  1543. {
  1544. struct list_head *bucket;
  1545. struct xfs_buf_cancel *bcp;
  1546. if (log->l_buf_cancel_table == NULL) {
  1547. /*
  1548. * There is nothing in the table built in pass one,
  1549. * so this buffer must not be cancelled.
  1550. */
  1551. ASSERT(!(flags & XFS_BLF_CANCEL));
  1552. return 0;
  1553. }
  1554. /*
  1555. * Search for an entry in the cancel table that matches our buffer.
  1556. */
  1557. bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
  1558. list_for_each_entry(bcp, bucket, bc_list) {
  1559. if (bcp->bc_blkno == blkno && bcp->bc_len == len)
  1560. goto found;
  1561. }
  1562. /*
  1563. * We didn't find a corresponding entry in the table, so return 0 so
  1564. * that the buffer is NOT cancelled.
  1565. */
  1566. ASSERT(!(flags & XFS_BLF_CANCEL));
  1567. return 0;
  1568. found:
  1569. /*
  1570. * We've go a match, so return 1 so that the recovery of this buffer
  1571. * is cancelled. If this buffer is actually a buffer cancel log
  1572. * item, then decrement the refcount on the one in the table and
  1573. * remove it if this is the last reference.
  1574. */
  1575. if (flags & XFS_BLF_CANCEL) {
  1576. if (--bcp->bc_refcount == 0) {
  1577. list_del(&bcp->bc_list);
  1578. kmem_free(bcp);
  1579. }
  1580. }
  1581. return 1;
  1582. }
  1583. /*
  1584. * Perform recovery for a buffer full of inodes. In these buffers, the only
  1585. * data which should be recovered is that which corresponds to the
  1586. * di_next_unlinked pointers in the on disk inode structures. The rest of the
  1587. * data for the inodes is always logged through the inodes themselves rather
  1588. * than the inode buffer and is recovered in xlog_recover_inode_pass2().
  1589. *
  1590. * The only time when buffers full of inodes are fully recovered is when the
  1591. * buffer is full of newly allocated inodes. In this case the buffer will
  1592. * not be marked as an inode buffer and so will be sent to
  1593. * xlog_recover_do_reg_buffer() below during recovery.
  1594. */
  1595. STATIC int
  1596. xlog_recover_do_inode_buffer(
  1597. struct xfs_mount *mp,
  1598. xlog_recover_item_t *item,
  1599. struct xfs_buf *bp,
  1600. xfs_buf_log_format_t *buf_f)
  1601. {
  1602. int i;
  1603. int item_index = 0;
  1604. int bit = 0;
  1605. int nbits = 0;
  1606. int reg_buf_offset = 0;
  1607. int reg_buf_bytes = 0;
  1608. int next_unlinked_offset;
  1609. int inodes_per_buf;
  1610. xfs_agino_t *logged_nextp;
  1611. xfs_agino_t *buffer_nextp;
  1612. trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
  1613. inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
  1614. for (i = 0; i < inodes_per_buf; i++) {
  1615. next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
  1616. offsetof(xfs_dinode_t, di_next_unlinked);
  1617. while (next_unlinked_offset >=
  1618. (reg_buf_offset + reg_buf_bytes)) {
  1619. /*
  1620. * The next di_next_unlinked field is beyond
  1621. * the current logged region. Find the next
  1622. * logged region that contains or is beyond
  1623. * the current di_next_unlinked field.
  1624. */
  1625. bit += nbits;
  1626. bit = xfs_next_bit(buf_f->blf_data_map,
  1627. buf_f->blf_map_size, bit);
  1628. /*
  1629. * If there are no more logged regions in the
  1630. * buffer, then we're done.
  1631. */
  1632. if (bit == -1)
  1633. return 0;
  1634. nbits = xfs_contig_bits(buf_f->blf_data_map,
  1635. buf_f->blf_map_size, bit);
  1636. ASSERT(nbits > 0);
  1637. reg_buf_offset = bit << XFS_BLF_SHIFT;
  1638. reg_buf_bytes = nbits << XFS_BLF_SHIFT;
  1639. item_index++;
  1640. }
  1641. /*
  1642. * If the current logged region starts after the current
  1643. * di_next_unlinked field, then move on to the next
  1644. * di_next_unlinked field.
  1645. */
  1646. if (next_unlinked_offset < reg_buf_offset)
  1647. continue;
  1648. ASSERT(item->ri_buf[item_index].i_addr != NULL);
  1649. ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
  1650. ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
  1651. /*
  1652. * The current logged region contains a copy of the
  1653. * current di_next_unlinked field. Extract its value
  1654. * and copy it to the buffer copy.
  1655. */
  1656. logged_nextp = item->ri_buf[item_index].i_addr +
  1657. next_unlinked_offset - reg_buf_offset;
  1658. if (unlikely(*logged_nextp == 0)) {
  1659. xfs_alert(mp,
  1660. "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
  1661. "Trying to replay bad (0) inode di_next_unlinked field.",
  1662. item, bp);
  1663. XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
  1664. XFS_ERRLEVEL_LOW, mp);
  1665. return XFS_ERROR(EFSCORRUPTED);
  1666. }
  1667. buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
  1668. next_unlinked_offset);
  1669. *buffer_nextp = *logged_nextp;
  1670. }
  1671. return 0;
  1672. }
  1673. /*
  1674. * Perform a 'normal' buffer recovery. Each logged region of the
  1675. * buffer should be copied over the corresponding region in the
  1676. * given buffer. The bitmap in the buf log format structure indicates
  1677. * where to place the logged data.
  1678. */
  1679. STATIC void
  1680. xlog_recover_do_reg_buffer(
  1681. struct xfs_mount *mp,
  1682. xlog_recover_item_t *item,
  1683. struct xfs_buf *bp,
  1684. xfs_buf_log_format_t *buf_f)
  1685. {
  1686. int i;
  1687. int bit;
  1688. int nbits;
  1689. int error;
  1690. trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
  1691. bit = 0;
  1692. i = 1; /* 0 is the buf format structure */
  1693. while (1) {
  1694. bit = xfs_next_bit(buf_f->blf_data_map,
  1695. buf_f->blf_map_size, bit);
  1696. if (bit == -1)
  1697. break;
  1698. nbits = xfs_contig_bits(buf_f->blf_data_map,
  1699. buf_f->blf_map_size, bit);
  1700. ASSERT(nbits > 0);
  1701. ASSERT(item->ri_buf[i].i_addr != NULL);
  1702. ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
  1703. ASSERT(XFS_BUF_COUNT(bp) >=
  1704. ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT));
  1705. /*
  1706. * Do a sanity check if this is a dquot buffer. Just checking
  1707. * the first dquot in the buffer should do. XXXThis is
  1708. * probably a good thing to do for other buf types also.
  1709. */
  1710. error = 0;
  1711. if (buf_f->blf_flags &
  1712. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  1713. if (item->ri_buf[i].i_addr == NULL) {
  1714. xfs_alert(mp,
  1715. "XFS: NULL dquot in %s.", __func__);
  1716. goto next;
  1717. }
  1718. if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
  1719. xfs_alert(mp,
  1720. "XFS: dquot too small (%d) in %s.",
  1721. item->ri_buf[i].i_len, __func__);
  1722. goto next;
  1723. }
  1724. error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
  1725. -1, 0, XFS_QMOPT_DOWARN,
  1726. "dquot_buf_recover");
  1727. if (error)
  1728. goto next;
  1729. }
  1730. memcpy(xfs_buf_offset(bp,
  1731. (uint)bit << XFS_BLF_SHIFT), /* dest */
  1732. item->ri_buf[i].i_addr, /* source */
  1733. nbits<<XFS_BLF_SHIFT); /* length */
  1734. next:
  1735. i++;
  1736. bit += nbits;
  1737. }
  1738. /* Shouldn't be any more regions */
  1739. ASSERT(i == item->ri_total);
  1740. }
  1741. /*
  1742. * Do some primitive error checking on ondisk dquot data structures.
  1743. */
  1744. int
  1745. xfs_qm_dqcheck(
  1746. struct xfs_mount *mp,
  1747. xfs_disk_dquot_t *ddq,
  1748. xfs_dqid_t id,
  1749. uint type, /* used only when IO_dorepair is true */
  1750. uint flags,
  1751. char *str)
  1752. {
  1753. xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
  1754. int errs = 0;
  1755. /*
  1756. * We can encounter an uninitialized dquot buffer for 2 reasons:
  1757. * 1. If we crash while deleting the quotainode(s), and those blks got
  1758. * used for user data. This is because we take the path of regular
  1759. * file deletion; however, the size field of quotainodes is never
  1760. * updated, so all the tricks that we play in itruncate_finish
  1761. * don't quite matter.
  1762. *
  1763. * 2. We don't play the quota buffers when there's a quotaoff logitem.
  1764. * But the allocation will be replayed so we'll end up with an
  1765. * uninitialized quota block.
  1766. *
  1767. * This is all fine; things are still consistent, and we haven't lost
  1768. * any quota information. Just don't complain about bad dquot blks.
  1769. */
  1770. if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
  1771. if (flags & XFS_QMOPT_DOWARN)
  1772. xfs_alert(mp,
  1773. "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
  1774. str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
  1775. errs++;
  1776. }
  1777. if (ddq->d_version != XFS_DQUOT_VERSION) {
  1778. if (flags & XFS_QMOPT_DOWARN)
  1779. xfs_alert(mp,
  1780. "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
  1781. str, id, ddq->d_version, XFS_DQUOT_VERSION);
  1782. errs++;
  1783. }
  1784. if (ddq->d_flags != XFS_DQ_USER &&
  1785. ddq->d_flags != XFS_DQ_PROJ &&
  1786. ddq->d_flags != XFS_DQ_GROUP) {
  1787. if (flags & XFS_QMOPT_DOWARN)
  1788. xfs_alert(mp,
  1789. "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
  1790. str, id, ddq->d_flags);
  1791. errs++;
  1792. }
  1793. if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
  1794. if (flags & XFS_QMOPT_DOWARN)
  1795. xfs_alert(mp,
  1796. "%s : ondisk-dquot 0x%p, ID mismatch: "
  1797. "0x%x expected, found id 0x%x",
  1798. str, ddq, id, be32_to_cpu(ddq->d_id));
  1799. errs++;
  1800. }
  1801. if (!errs && ddq->d_id) {
  1802. if (ddq->d_blk_softlimit &&
  1803. be64_to_cpu(ddq->d_bcount) >
  1804. be64_to_cpu(ddq->d_blk_softlimit)) {
  1805. if (!ddq->d_btimer) {
  1806. if (flags & XFS_QMOPT_DOWARN)
  1807. xfs_alert(mp,
  1808. "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
  1809. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1810. errs++;
  1811. }
  1812. }
  1813. if (ddq->d_ino_softlimit &&
  1814. be64_to_cpu(ddq->d_icount) >
  1815. be64_to_cpu(ddq->d_ino_softlimit)) {
  1816. if (!ddq->d_itimer) {
  1817. if (flags & XFS_QMOPT_DOWARN)
  1818. xfs_alert(mp,
  1819. "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
  1820. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1821. errs++;
  1822. }
  1823. }
  1824. if (ddq->d_rtb_softlimit &&
  1825. be64_to_cpu(ddq->d_rtbcount) >
  1826. be64_to_cpu(ddq->d_rtb_softlimit)) {
  1827. if (!ddq->d_rtbtimer) {
  1828. if (flags & XFS_QMOPT_DOWARN)
  1829. xfs_alert(mp,
  1830. "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
  1831. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1832. errs++;
  1833. }
  1834. }
  1835. }
  1836. if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
  1837. return errs;
  1838. if (flags & XFS_QMOPT_DOWARN)
  1839. xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
  1840. /*
  1841. * Typically, a repair is only requested by quotacheck.
  1842. */
  1843. ASSERT(id != -1);
  1844. ASSERT(flags & XFS_QMOPT_DQREPAIR);
  1845. memset(d, 0, sizeof(xfs_dqblk_t));
  1846. d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
  1847. d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
  1848. d->dd_diskdq.d_flags = type;
  1849. d->dd_diskdq.d_id = cpu_to_be32(id);
  1850. return errs;
  1851. }
  1852. /*
  1853. * Perform a dquot buffer recovery.
  1854. * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
  1855. * (ie. USR or GRP), then just toss this buffer away; don't recover it.
  1856. * Else, treat it as a regular buffer and do recovery.
  1857. */
  1858. STATIC void
  1859. xlog_recover_do_dquot_buffer(
  1860. xfs_mount_t *mp,
  1861. xlog_t *log,
  1862. xlog_recover_item_t *item,
  1863. xfs_buf_t *bp,
  1864. xfs_buf_log_format_t *buf_f)
  1865. {
  1866. uint type;
  1867. trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
  1868. /*
  1869. * Filesystems are required to send in quota flags at mount time.
  1870. */
  1871. if (mp->m_qflags == 0) {
  1872. return;
  1873. }
  1874. type = 0;
  1875. if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
  1876. type |= XFS_DQ_USER;
  1877. if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
  1878. type |= XFS_DQ_PROJ;
  1879. if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
  1880. type |= XFS_DQ_GROUP;
  1881. /*
  1882. * This type of quotas was turned off, so ignore this buffer
  1883. */
  1884. if (log->l_quotaoffs_flag & type)
  1885. return;
  1886. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  1887. }
  1888. /*
  1889. * This routine replays a modification made to a buffer at runtime.
  1890. * There are actually two types of buffer, regular and inode, which
  1891. * are handled differently. Inode buffers are handled differently
  1892. * in that we only recover a specific set of data from them, namely
  1893. * the inode di_next_unlinked fields. This is because all other inode
  1894. * data is actually logged via inode records and any data we replay
  1895. * here which overlaps that may be stale.
  1896. *
  1897. * When meta-data buffers are freed at run time we log a buffer item
  1898. * with the XFS_BLF_CANCEL bit set to indicate that previous copies
  1899. * of the buffer in the log should not be replayed at recovery time.
  1900. * This is so that if the blocks covered by the buffer are reused for
  1901. * file data before we crash we don't end up replaying old, freed
  1902. * meta-data into a user's file.
  1903. *
  1904. * To handle the cancellation of buffer log items, we make two passes
  1905. * over the log during recovery. During the first we build a table of
  1906. * those buffers which have been cancelled, and during the second we
  1907. * only replay those buffers which do not have corresponding cancel
  1908. * records in the table. See xlog_recover_do_buffer_pass[1,2] above
  1909. * for more details on the implementation of the table of cancel records.
  1910. */
  1911. STATIC int
  1912. xlog_recover_buffer_pass2(
  1913. xlog_t *log,
  1914. struct list_head *buffer_list,
  1915. xlog_recover_item_t *item)
  1916. {
  1917. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1918. xfs_mount_t *mp = log->l_mp;
  1919. xfs_buf_t *bp;
  1920. int error;
  1921. uint buf_flags;
  1922. /*
  1923. * In this pass we only want to recover all the buffers which have
  1924. * not been cancelled and are not cancellation buffers themselves.
  1925. */
  1926. if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
  1927. buf_f->blf_len, buf_f->blf_flags)) {
  1928. trace_xfs_log_recover_buf_cancel(log, buf_f);
  1929. return 0;
  1930. }
  1931. trace_xfs_log_recover_buf_recover(log, buf_f);
  1932. buf_flags = XBF_LOCK;
  1933. if (!(buf_f->blf_flags & XFS_BLF_INODE_BUF))
  1934. buf_flags |= XBF_MAPPED;
  1935. bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
  1936. buf_flags);
  1937. if (!bp)
  1938. return XFS_ERROR(ENOMEM);
  1939. error = bp->b_error;
  1940. if (error) {
  1941. xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
  1942. xfs_buf_relse(bp);
  1943. return error;
  1944. }
  1945. if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
  1946. error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
  1947. } else if (buf_f->blf_flags &
  1948. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  1949. xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
  1950. } else {
  1951. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  1952. }
  1953. if (error)
  1954. return XFS_ERROR(error);
  1955. /*
  1956. * Perform delayed write on the buffer. Asynchronous writes will be
  1957. * slower when taking into account all the buffers to be flushed.
  1958. *
  1959. * Also make sure that only inode buffers with good sizes stay in
  1960. * the buffer cache. The kernel moves inodes in buffers of 1 block
  1961. * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
  1962. * buffers in the log can be a different size if the log was generated
  1963. * by an older kernel using unclustered inode buffers or a newer kernel
  1964. * running with a different inode cluster size. Regardless, if the
  1965. * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
  1966. * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
  1967. * the buffer out of the buffer cache so that the buffer won't
  1968. * overlap with future reads of those inodes.
  1969. */
  1970. if (XFS_DINODE_MAGIC ==
  1971. be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
  1972. (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
  1973. (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
  1974. xfs_buf_stale(bp);
  1975. error = xfs_bwrite(bp);
  1976. } else {
  1977. ASSERT(bp->b_target->bt_mount == mp);
  1978. bp->b_iodone = xlog_recover_iodone;
  1979. xfs_buf_delwri_queue(bp, buffer_list);
  1980. }
  1981. xfs_buf_relse(bp);
  1982. return error;
  1983. }
  1984. STATIC int
  1985. xlog_recover_inode_pass2(
  1986. xlog_t *log,
  1987. struct list_head *buffer_list,
  1988. xlog_recover_item_t *item)
  1989. {
  1990. xfs_inode_log_format_t *in_f;
  1991. xfs_mount_t *mp = log->l_mp;
  1992. xfs_buf_t *bp;
  1993. xfs_dinode_t *dip;
  1994. int len;
  1995. xfs_caddr_t src;
  1996. xfs_caddr_t dest;
  1997. int error;
  1998. int attr_index;
  1999. uint fields;
  2000. xfs_icdinode_t *dicp;
  2001. int need_free = 0;
  2002. if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
  2003. in_f = item->ri_buf[0].i_addr;
  2004. } else {
  2005. in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
  2006. need_free = 1;
  2007. error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
  2008. if (error)
  2009. goto error;
  2010. }
  2011. /*
  2012. * Inode buffers can be freed, look out for it,
  2013. * and do not replay the inode.
  2014. */
  2015. if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
  2016. in_f->ilf_len, 0)) {
  2017. error = 0;
  2018. trace_xfs_log_recover_inode_cancel(log, in_f);
  2019. goto error;
  2020. }
  2021. trace_xfs_log_recover_inode_recover(log, in_f);
  2022. bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
  2023. XBF_LOCK);
  2024. if (!bp) {
  2025. error = ENOMEM;
  2026. goto error;
  2027. }
  2028. error = bp->b_error;
  2029. if (error) {
  2030. xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
  2031. xfs_buf_relse(bp);
  2032. goto error;
  2033. }
  2034. ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
  2035. dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
  2036. /*
  2037. * Make sure the place we're flushing out to really looks
  2038. * like an inode!
  2039. */
  2040. if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
  2041. xfs_buf_relse(bp);
  2042. xfs_alert(mp,
  2043. "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
  2044. __func__, dip, bp, in_f->ilf_ino);
  2045. XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
  2046. XFS_ERRLEVEL_LOW, mp);
  2047. error = EFSCORRUPTED;
  2048. goto error;
  2049. }
  2050. dicp = item->ri_buf[1].i_addr;
  2051. if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
  2052. xfs_buf_relse(bp);
  2053. xfs_alert(mp,
  2054. "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
  2055. __func__, item, in_f->ilf_ino);
  2056. XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
  2057. XFS_ERRLEVEL_LOW, mp);
  2058. error = EFSCORRUPTED;
  2059. goto error;
  2060. }
  2061. /* Skip replay when the on disk inode is newer than the log one */
  2062. if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
  2063. /*
  2064. * Deal with the wrap case, DI_MAX_FLUSH is less
  2065. * than smaller numbers
  2066. */
  2067. if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
  2068. dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
  2069. /* do nothing */
  2070. } else {
  2071. xfs_buf_relse(bp);
  2072. trace_xfs_log_recover_inode_skip(log, in_f);
  2073. error = 0;
  2074. goto error;
  2075. }
  2076. }
  2077. /* Take the opportunity to reset the flush iteration count */
  2078. dicp->di_flushiter = 0;
  2079. if (unlikely(S_ISREG(dicp->di_mode))) {
  2080. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2081. (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
  2082. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
  2083. XFS_ERRLEVEL_LOW, mp, dicp);
  2084. xfs_buf_relse(bp);
  2085. xfs_alert(mp,
  2086. "%s: Bad regular inode log record, rec ptr 0x%p, "
  2087. "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2088. __func__, item, dip, bp, in_f->ilf_ino);
  2089. error = EFSCORRUPTED;
  2090. goto error;
  2091. }
  2092. } else if (unlikely(S_ISDIR(dicp->di_mode))) {
  2093. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2094. (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
  2095. (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
  2096. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
  2097. XFS_ERRLEVEL_LOW, mp, dicp);
  2098. xfs_buf_relse(bp);
  2099. xfs_alert(mp,
  2100. "%s: Bad dir inode log record, rec ptr 0x%p, "
  2101. "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2102. __func__, item, dip, bp, in_f->ilf_ino);
  2103. error = EFSCORRUPTED;
  2104. goto error;
  2105. }
  2106. }
  2107. if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
  2108. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
  2109. XFS_ERRLEVEL_LOW, mp, dicp);
  2110. xfs_buf_relse(bp);
  2111. xfs_alert(mp,
  2112. "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
  2113. "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
  2114. __func__, item, dip, bp, in_f->ilf_ino,
  2115. dicp->di_nextents + dicp->di_anextents,
  2116. dicp->di_nblocks);
  2117. error = EFSCORRUPTED;
  2118. goto error;
  2119. }
  2120. if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
  2121. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
  2122. XFS_ERRLEVEL_LOW, mp, dicp);
  2123. xfs_buf_relse(bp);
  2124. xfs_alert(mp,
  2125. "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
  2126. "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
  2127. item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
  2128. error = EFSCORRUPTED;
  2129. goto error;
  2130. }
  2131. if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
  2132. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
  2133. XFS_ERRLEVEL_LOW, mp, dicp);
  2134. xfs_buf_relse(bp);
  2135. xfs_alert(mp,
  2136. "%s: Bad inode log record length %d, rec ptr 0x%p",
  2137. __func__, item->ri_buf[1].i_len, item);
  2138. error = EFSCORRUPTED;
  2139. goto error;
  2140. }
  2141. /* The core is in in-core format */
  2142. xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
  2143. /* the rest is in on-disk format */
  2144. if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
  2145. memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
  2146. item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
  2147. item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
  2148. }
  2149. fields = in_f->ilf_fields;
  2150. switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
  2151. case XFS_ILOG_DEV:
  2152. xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
  2153. break;
  2154. case XFS_ILOG_UUID:
  2155. memcpy(XFS_DFORK_DPTR(dip),
  2156. &in_f->ilf_u.ilfu_uuid,
  2157. sizeof(uuid_t));
  2158. break;
  2159. }
  2160. if (in_f->ilf_size == 2)
  2161. goto write_inode_buffer;
  2162. len = item->ri_buf[2].i_len;
  2163. src = item->ri_buf[2].i_addr;
  2164. ASSERT(in_f->ilf_size <= 4);
  2165. ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
  2166. ASSERT(!(fields & XFS_ILOG_DFORK) ||
  2167. (len == in_f->ilf_dsize));
  2168. switch (fields & XFS_ILOG_DFORK) {
  2169. case XFS_ILOG_DDATA:
  2170. case XFS_ILOG_DEXT:
  2171. memcpy(XFS_DFORK_DPTR(dip), src, len);
  2172. break;
  2173. case XFS_ILOG_DBROOT:
  2174. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
  2175. (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
  2176. XFS_DFORK_DSIZE(dip, mp));
  2177. break;
  2178. default:
  2179. /*
  2180. * There are no data fork flags set.
  2181. */
  2182. ASSERT((fields & XFS_ILOG_DFORK) == 0);
  2183. break;
  2184. }
  2185. /*
  2186. * If we logged any attribute data, recover it. There may or
  2187. * may not have been any other non-core data logged in this
  2188. * transaction.
  2189. */
  2190. if (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2191. if (in_f->ilf_fields & XFS_ILOG_DFORK) {
  2192. attr_index = 3;
  2193. } else {
  2194. attr_index = 2;
  2195. }
  2196. len = item->ri_buf[attr_index].i_len;
  2197. src = item->ri_buf[attr_index].i_addr;
  2198. ASSERT(len == in_f->ilf_asize);
  2199. switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2200. case XFS_ILOG_ADATA:
  2201. case XFS_ILOG_AEXT:
  2202. dest = XFS_DFORK_APTR(dip);
  2203. ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
  2204. memcpy(dest, src, len);
  2205. break;
  2206. case XFS_ILOG_ABROOT:
  2207. dest = XFS_DFORK_APTR(dip);
  2208. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
  2209. len, (xfs_bmdr_block_t*)dest,
  2210. XFS_DFORK_ASIZE(dip, mp));
  2211. break;
  2212. default:
  2213. xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
  2214. ASSERT(0);
  2215. xfs_buf_relse(bp);
  2216. error = EIO;
  2217. goto error;
  2218. }
  2219. }
  2220. write_inode_buffer:
  2221. ASSERT(bp->b_target->bt_mount == mp);
  2222. bp->b_iodone = xlog_recover_iodone;
  2223. xfs_buf_delwri_queue(bp, buffer_list);
  2224. xfs_buf_relse(bp);
  2225. error:
  2226. if (need_free)
  2227. kmem_free(in_f);
  2228. return XFS_ERROR(error);
  2229. }
  2230. /*
  2231. * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
  2232. * structure, so that we know not to do any dquot item or dquot buffer recovery,
  2233. * of that type.
  2234. */
  2235. STATIC int
  2236. xlog_recover_quotaoff_pass1(
  2237. xlog_t *log,
  2238. xlog_recover_item_t *item)
  2239. {
  2240. xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
  2241. ASSERT(qoff_f);
  2242. /*
  2243. * The logitem format's flag tells us if this was user quotaoff,
  2244. * group/project quotaoff or both.
  2245. */
  2246. if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
  2247. log->l_quotaoffs_flag |= XFS_DQ_USER;
  2248. if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
  2249. log->l_quotaoffs_flag |= XFS_DQ_PROJ;
  2250. if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
  2251. log->l_quotaoffs_flag |= XFS_DQ_GROUP;
  2252. return (0);
  2253. }
  2254. /*
  2255. * Recover a dquot record
  2256. */
  2257. STATIC int
  2258. xlog_recover_dquot_pass2(
  2259. xlog_t *log,
  2260. struct list_head *buffer_list,
  2261. xlog_recover_item_t *item)
  2262. {
  2263. xfs_mount_t *mp = log->l_mp;
  2264. xfs_buf_t *bp;
  2265. struct xfs_disk_dquot *ddq, *recddq;
  2266. int error;
  2267. xfs_dq_logformat_t *dq_f;
  2268. uint type;
  2269. /*
  2270. * Filesystems are required to send in quota flags at mount time.
  2271. */
  2272. if (mp->m_qflags == 0)
  2273. return (0);
  2274. recddq = item->ri_buf[1].i_addr;
  2275. if (recddq == NULL) {
  2276. xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
  2277. return XFS_ERROR(EIO);
  2278. }
  2279. if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
  2280. xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
  2281. item->ri_buf[1].i_len, __func__);
  2282. return XFS_ERROR(EIO);
  2283. }
  2284. /*
  2285. * This type of quotas was turned off, so ignore this record.
  2286. */
  2287. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2288. ASSERT(type);
  2289. if (log->l_quotaoffs_flag & type)
  2290. return (0);
  2291. /*
  2292. * At this point we know that quota was _not_ turned off.
  2293. * Since the mount flags are not indicating to us otherwise, this
  2294. * must mean that quota is on, and the dquot needs to be replayed.
  2295. * Remember that we may not have fully recovered the superblock yet,
  2296. * so we can't do the usual trick of looking at the SB quota bits.
  2297. *
  2298. * The other possibility, of course, is that the quota subsystem was
  2299. * removed since the last mount - ENOSYS.
  2300. */
  2301. dq_f = item->ri_buf[0].i_addr;
  2302. ASSERT(dq_f);
  2303. error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2304. "xlog_recover_dquot_pass2 (log copy)");
  2305. if (error)
  2306. return XFS_ERROR(EIO);
  2307. ASSERT(dq_f->qlf_len == 1);
  2308. error = xfs_read_buf(mp, mp->m_ddev_targp,
  2309. dq_f->qlf_blkno,
  2310. XFS_FSB_TO_BB(mp, dq_f->qlf_len),
  2311. 0, &bp);
  2312. if (error) {
  2313. xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#3)");
  2314. return error;
  2315. }
  2316. ASSERT(bp);
  2317. ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
  2318. /*
  2319. * At least the magic num portion should be on disk because this
  2320. * was among a chunk of dquots created earlier, and we did some
  2321. * minimal initialization then.
  2322. */
  2323. error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2324. "xlog_recover_dquot_pass2");
  2325. if (error) {
  2326. xfs_buf_relse(bp);
  2327. return XFS_ERROR(EIO);
  2328. }
  2329. memcpy(ddq, recddq, item->ri_buf[1].i_len);
  2330. ASSERT(dq_f->qlf_size == 2);
  2331. ASSERT(bp->b_target->bt_mount == mp);
  2332. bp->b_iodone = xlog_recover_iodone;
  2333. xfs_buf_delwri_queue(bp, buffer_list);
  2334. xfs_buf_relse(bp);
  2335. return (0);
  2336. }
  2337. /*
  2338. * This routine is called to create an in-core extent free intent
  2339. * item from the efi format structure which was logged on disk.
  2340. * It allocates an in-core efi, copies the extents from the format
  2341. * structure into it, and adds the efi to the AIL with the given
  2342. * LSN.
  2343. */
  2344. STATIC int
  2345. xlog_recover_efi_pass2(
  2346. xlog_t *log,
  2347. xlog_recover_item_t *item,
  2348. xfs_lsn_t lsn)
  2349. {
  2350. int error;
  2351. xfs_mount_t *mp = log->l_mp;
  2352. xfs_efi_log_item_t *efip;
  2353. xfs_efi_log_format_t *efi_formatp;
  2354. efi_formatp = item->ri_buf[0].i_addr;
  2355. efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
  2356. if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
  2357. &(efip->efi_format)))) {
  2358. xfs_efi_item_free(efip);
  2359. return error;
  2360. }
  2361. atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
  2362. spin_lock(&log->l_ailp->xa_lock);
  2363. /*
  2364. * xfs_trans_ail_update() drops the AIL lock.
  2365. */
  2366. xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
  2367. return 0;
  2368. }
  2369. /*
  2370. * This routine is called when an efd format structure is found in
  2371. * a committed transaction in the log. It's purpose is to cancel
  2372. * the corresponding efi if it was still in the log. To do this
  2373. * it searches the AIL for the efi with an id equal to that in the
  2374. * efd format structure. If we find it, we remove the efi from the
  2375. * AIL and free it.
  2376. */
  2377. STATIC int
  2378. xlog_recover_efd_pass2(
  2379. xlog_t *log,
  2380. xlog_recover_item_t *item)
  2381. {
  2382. xfs_efd_log_format_t *efd_formatp;
  2383. xfs_efi_log_item_t *efip = NULL;
  2384. xfs_log_item_t *lip;
  2385. __uint64_t efi_id;
  2386. struct xfs_ail_cursor cur;
  2387. struct xfs_ail *ailp = log->l_ailp;
  2388. efd_formatp = item->ri_buf[0].i_addr;
  2389. ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
  2390. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
  2391. (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
  2392. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
  2393. efi_id = efd_formatp->efd_efi_id;
  2394. /*
  2395. * Search for the efi with the id in the efd format structure
  2396. * in the AIL.
  2397. */
  2398. spin_lock(&ailp->xa_lock);
  2399. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2400. while (lip != NULL) {
  2401. if (lip->li_type == XFS_LI_EFI) {
  2402. efip = (xfs_efi_log_item_t *)lip;
  2403. if (efip->efi_format.efi_id == efi_id) {
  2404. /*
  2405. * xfs_trans_ail_delete() drops the
  2406. * AIL lock.
  2407. */
  2408. xfs_trans_ail_delete(ailp, lip,
  2409. SHUTDOWN_CORRUPT_INCORE);
  2410. xfs_efi_item_free(efip);
  2411. spin_lock(&ailp->xa_lock);
  2412. break;
  2413. }
  2414. }
  2415. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2416. }
  2417. xfs_trans_ail_cursor_done(ailp, &cur);
  2418. spin_unlock(&ailp->xa_lock);
  2419. return 0;
  2420. }
  2421. /*
  2422. * Free up any resources allocated by the transaction
  2423. *
  2424. * Remember that EFIs, EFDs, and IUNLINKs are handled later.
  2425. */
  2426. STATIC void
  2427. xlog_recover_free_trans(
  2428. struct xlog_recover *trans)
  2429. {
  2430. xlog_recover_item_t *item, *n;
  2431. int i;
  2432. list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
  2433. /* Free the regions in the item. */
  2434. list_del(&item->ri_list);
  2435. for (i = 0; i < item->ri_cnt; i++)
  2436. kmem_free(item->ri_buf[i].i_addr);
  2437. /* Free the item itself */
  2438. kmem_free(item->ri_buf);
  2439. kmem_free(item);
  2440. }
  2441. /* Free the transaction recover structure */
  2442. kmem_free(trans);
  2443. }
  2444. STATIC int
  2445. xlog_recover_commit_pass1(
  2446. struct log *log,
  2447. struct xlog_recover *trans,
  2448. xlog_recover_item_t *item)
  2449. {
  2450. trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
  2451. switch (ITEM_TYPE(item)) {
  2452. case XFS_LI_BUF:
  2453. return xlog_recover_buffer_pass1(log, item);
  2454. case XFS_LI_QUOTAOFF:
  2455. return xlog_recover_quotaoff_pass1(log, item);
  2456. case XFS_LI_INODE:
  2457. case XFS_LI_EFI:
  2458. case XFS_LI_EFD:
  2459. case XFS_LI_DQUOT:
  2460. /* nothing to do in pass 1 */
  2461. return 0;
  2462. default:
  2463. xfs_warn(log->l_mp, "%s: invalid item type (%d)",
  2464. __func__, ITEM_TYPE(item));
  2465. ASSERT(0);
  2466. return XFS_ERROR(EIO);
  2467. }
  2468. }
  2469. STATIC int
  2470. xlog_recover_commit_pass2(
  2471. struct log *log,
  2472. struct xlog_recover *trans,
  2473. struct list_head *buffer_list,
  2474. xlog_recover_item_t *item)
  2475. {
  2476. trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
  2477. switch (ITEM_TYPE(item)) {
  2478. case XFS_LI_BUF:
  2479. return xlog_recover_buffer_pass2(log, buffer_list, item);
  2480. case XFS_LI_INODE:
  2481. return xlog_recover_inode_pass2(log, buffer_list, item);
  2482. case XFS_LI_EFI:
  2483. return xlog_recover_efi_pass2(log, item, trans->r_lsn);
  2484. case XFS_LI_EFD:
  2485. return xlog_recover_efd_pass2(log, item);
  2486. case XFS_LI_DQUOT:
  2487. return xlog_recover_dquot_pass2(log, buffer_list, item);
  2488. case XFS_LI_QUOTAOFF:
  2489. /* nothing to do in pass2 */
  2490. return 0;
  2491. default:
  2492. xfs_warn(log->l_mp, "%s: invalid item type (%d)",
  2493. __func__, ITEM_TYPE(item));
  2494. ASSERT(0);
  2495. return XFS_ERROR(EIO);
  2496. }
  2497. }
  2498. /*
  2499. * Perform the transaction.
  2500. *
  2501. * If the transaction modifies a buffer or inode, do it now. Otherwise,
  2502. * EFIs and EFDs get queued up by adding entries into the AIL for them.
  2503. */
  2504. STATIC int
  2505. xlog_recover_commit_trans(
  2506. struct log *log,
  2507. struct xlog_recover *trans,
  2508. int pass)
  2509. {
  2510. int error = 0, error2;
  2511. xlog_recover_item_t *item;
  2512. LIST_HEAD (buffer_list);
  2513. hlist_del(&trans->r_list);
  2514. error = xlog_recover_reorder_trans(log, trans, pass);
  2515. if (error)
  2516. return error;
  2517. list_for_each_entry(item, &trans->r_itemq, ri_list) {
  2518. switch (pass) {
  2519. case XLOG_RECOVER_PASS1:
  2520. error = xlog_recover_commit_pass1(log, trans, item);
  2521. break;
  2522. case XLOG_RECOVER_PASS2:
  2523. error = xlog_recover_commit_pass2(log, trans,
  2524. &buffer_list, item);
  2525. break;
  2526. default:
  2527. ASSERT(0);
  2528. }
  2529. if (error)
  2530. goto out;
  2531. }
  2532. xlog_recover_free_trans(trans);
  2533. out:
  2534. error2 = xfs_buf_delwri_submit(&buffer_list);
  2535. return error ? error : error2;
  2536. }
  2537. STATIC int
  2538. xlog_recover_unmount_trans(
  2539. struct log *log,
  2540. xlog_recover_t *trans)
  2541. {
  2542. /* Do nothing now */
  2543. xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
  2544. return 0;
  2545. }
  2546. /*
  2547. * There are two valid states of the r_state field. 0 indicates that the
  2548. * transaction structure is in a normal state. We have either seen the
  2549. * start of the transaction or the last operation we added was not a partial
  2550. * operation. If the last operation we added to the transaction was a
  2551. * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
  2552. *
  2553. * NOTE: skip LRs with 0 data length.
  2554. */
  2555. STATIC int
  2556. xlog_recover_process_data(
  2557. xlog_t *log,
  2558. struct hlist_head rhash[],
  2559. xlog_rec_header_t *rhead,
  2560. xfs_caddr_t dp,
  2561. int pass)
  2562. {
  2563. xfs_caddr_t lp;
  2564. int num_logops;
  2565. xlog_op_header_t *ohead;
  2566. xlog_recover_t *trans;
  2567. xlog_tid_t tid;
  2568. int error;
  2569. unsigned long hash;
  2570. uint flags;
  2571. lp = dp + be32_to_cpu(rhead->h_len);
  2572. num_logops = be32_to_cpu(rhead->h_num_logops);
  2573. /* check the log format matches our own - else we can't recover */
  2574. if (xlog_header_check_recover(log->l_mp, rhead))
  2575. return (XFS_ERROR(EIO));
  2576. while ((dp < lp) && num_logops) {
  2577. ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
  2578. ohead = (xlog_op_header_t *)dp;
  2579. dp += sizeof(xlog_op_header_t);
  2580. if (ohead->oh_clientid != XFS_TRANSACTION &&
  2581. ohead->oh_clientid != XFS_LOG) {
  2582. xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
  2583. __func__, ohead->oh_clientid);
  2584. ASSERT(0);
  2585. return (XFS_ERROR(EIO));
  2586. }
  2587. tid = be32_to_cpu(ohead->oh_tid);
  2588. hash = XLOG_RHASH(tid);
  2589. trans = xlog_recover_find_tid(&rhash[hash], tid);
  2590. if (trans == NULL) { /* not found; add new tid */
  2591. if (ohead->oh_flags & XLOG_START_TRANS)
  2592. xlog_recover_new_tid(&rhash[hash], tid,
  2593. be64_to_cpu(rhead->h_lsn));
  2594. } else {
  2595. if (dp + be32_to_cpu(ohead->oh_len) > lp) {
  2596. xfs_warn(log->l_mp, "%s: bad length 0x%x",
  2597. __func__, be32_to_cpu(ohead->oh_len));
  2598. WARN_ON(1);
  2599. return (XFS_ERROR(EIO));
  2600. }
  2601. flags = ohead->oh_flags & ~XLOG_END_TRANS;
  2602. if (flags & XLOG_WAS_CONT_TRANS)
  2603. flags &= ~XLOG_CONTINUE_TRANS;
  2604. switch (flags) {
  2605. case XLOG_COMMIT_TRANS:
  2606. error = xlog_recover_commit_trans(log,
  2607. trans, pass);
  2608. break;
  2609. case XLOG_UNMOUNT_TRANS:
  2610. error = xlog_recover_unmount_trans(log, trans);
  2611. break;
  2612. case XLOG_WAS_CONT_TRANS:
  2613. error = xlog_recover_add_to_cont_trans(log,
  2614. trans, dp,
  2615. be32_to_cpu(ohead->oh_len));
  2616. break;
  2617. case XLOG_START_TRANS:
  2618. xfs_warn(log->l_mp, "%s: bad transaction",
  2619. __func__);
  2620. ASSERT(0);
  2621. error = XFS_ERROR(EIO);
  2622. break;
  2623. case 0:
  2624. case XLOG_CONTINUE_TRANS:
  2625. error = xlog_recover_add_to_trans(log, trans,
  2626. dp, be32_to_cpu(ohead->oh_len));
  2627. break;
  2628. default:
  2629. xfs_warn(log->l_mp, "%s: bad flag 0x%x",
  2630. __func__, flags);
  2631. ASSERT(0);
  2632. error = XFS_ERROR(EIO);
  2633. break;
  2634. }
  2635. if (error)
  2636. return error;
  2637. }
  2638. dp += be32_to_cpu(ohead->oh_len);
  2639. num_logops--;
  2640. }
  2641. return 0;
  2642. }
  2643. /*
  2644. * Process an extent free intent item that was recovered from
  2645. * the log. We need to free the extents that it describes.
  2646. */
  2647. STATIC int
  2648. xlog_recover_process_efi(
  2649. xfs_mount_t *mp,
  2650. xfs_efi_log_item_t *efip)
  2651. {
  2652. xfs_efd_log_item_t *efdp;
  2653. xfs_trans_t *tp;
  2654. int i;
  2655. int error = 0;
  2656. xfs_extent_t *extp;
  2657. xfs_fsblock_t startblock_fsb;
  2658. ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
  2659. /*
  2660. * First check the validity of the extents described by the
  2661. * EFI. If any are bad, then assume that all are bad and
  2662. * just toss the EFI.
  2663. */
  2664. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2665. extp = &(efip->efi_format.efi_extents[i]);
  2666. startblock_fsb = XFS_BB_TO_FSB(mp,
  2667. XFS_FSB_TO_DADDR(mp, extp->ext_start));
  2668. if ((startblock_fsb == 0) ||
  2669. (extp->ext_len == 0) ||
  2670. (startblock_fsb >= mp->m_sb.sb_dblocks) ||
  2671. (extp->ext_len >= mp->m_sb.sb_agblocks)) {
  2672. /*
  2673. * This will pull the EFI from the AIL and
  2674. * free the memory associated with it.
  2675. */
  2676. xfs_efi_release(efip, efip->efi_format.efi_nextents);
  2677. return XFS_ERROR(EIO);
  2678. }
  2679. }
  2680. tp = xfs_trans_alloc(mp, 0);
  2681. error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
  2682. if (error)
  2683. goto abort_error;
  2684. efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
  2685. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2686. extp = &(efip->efi_format.efi_extents[i]);
  2687. error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
  2688. if (error)
  2689. goto abort_error;
  2690. xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
  2691. extp->ext_len);
  2692. }
  2693. set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
  2694. error = xfs_trans_commit(tp, 0);
  2695. return error;
  2696. abort_error:
  2697. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2698. return error;
  2699. }
  2700. /*
  2701. * When this is called, all of the EFIs which did not have
  2702. * corresponding EFDs should be in the AIL. What we do now
  2703. * is free the extents associated with each one.
  2704. *
  2705. * Since we process the EFIs in normal transactions, they
  2706. * will be removed at some point after the commit. This prevents
  2707. * us from just walking down the list processing each one.
  2708. * We'll use a flag in the EFI to skip those that we've already
  2709. * processed and use the AIL iteration mechanism's generation
  2710. * count to try to speed this up at least a bit.
  2711. *
  2712. * When we start, we know that the EFIs are the only things in
  2713. * the AIL. As we process them, however, other items are added
  2714. * to the AIL. Since everything added to the AIL must come after
  2715. * everything already in the AIL, we stop processing as soon as
  2716. * we see something other than an EFI in the AIL.
  2717. */
  2718. STATIC int
  2719. xlog_recover_process_efis(
  2720. xlog_t *log)
  2721. {
  2722. xfs_log_item_t *lip;
  2723. xfs_efi_log_item_t *efip;
  2724. int error = 0;
  2725. struct xfs_ail_cursor cur;
  2726. struct xfs_ail *ailp;
  2727. ailp = log->l_ailp;
  2728. spin_lock(&ailp->xa_lock);
  2729. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2730. while (lip != NULL) {
  2731. /*
  2732. * We're done when we see something other than an EFI.
  2733. * There should be no EFIs left in the AIL now.
  2734. */
  2735. if (lip->li_type != XFS_LI_EFI) {
  2736. #ifdef DEBUG
  2737. for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
  2738. ASSERT(lip->li_type != XFS_LI_EFI);
  2739. #endif
  2740. break;
  2741. }
  2742. /*
  2743. * Skip EFIs that we've already processed.
  2744. */
  2745. efip = (xfs_efi_log_item_t *)lip;
  2746. if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
  2747. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2748. continue;
  2749. }
  2750. spin_unlock(&ailp->xa_lock);
  2751. error = xlog_recover_process_efi(log->l_mp, efip);
  2752. spin_lock(&ailp->xa_lock);
  2753. if (error)
  2754. goto out;
  2755. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2756. }
  2757. out:
  2758. xfs_trans_ail_cursor_done(ailp, &cur);
  2759. spin_unlock(&ailp->xa_lock);
  2760. return error;
  2761. }
  2762. /*
  2763. * This routine performs a transaction to null out a bad inode pointer
  2764. * in an agi unlinked inode hash bucket.
  2765. */
  2766. STATIC void
  2767. xlog_recover_clear_agi_bucket(
  2768. xfs_mount_t *mp,
  2769. xfs_agnumber_t agno,
  2770. int bucket)
  2771. {
  2772. xfs_trans_t *tp;
  2773. xfs_agi_t *agi;
  2774. xfs_buf_t *agibp;
  2775. int offset;
  2776. int error;
  2777. tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
  2778. error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
  2779. 0, 0, 0);
  2780. if (error)
  2781. goto out_abort;
  2782. error = xfs_read_agi(mp, tp, agno, &agibp);
  2783. if (error)
  2784. goto out_abort;
  2785. agi = XFS_BUF_TO_AGI(agibp);
  2786. agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
  2787. offset = offsetof(xfs_agi_t, agi_unlinked) +
  2788. (sizeof(xfs_agino_t) * bucket);
  2789. xfs_trans_log_buf(tp, agibp, offset,
  2790. (offset + sizeof(xfs_agino_t) - 1));
  2791. error = xfs_trans_commit(tp, 0);
  2792. if (error)
  2793. goto out_error;
  2794. return;
  2795. out_abort:
  2796. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2797. out_error:
  2798. xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
  2799. return;
  2800. }
  2801. STATIC xfs_agino_t
  2802. xlog_recover_process_one_iunlink(
  2803. struct xfs_mount *mp,
  2804. xfs_agnumber_t agno,
  2805. xfs_agino_t agino,
  2806. int bucket)
  2807. {
  2808. struct xfs_buf *ibp;
  2809. struct xfs_dinode *dip;
  2810. struct xfs_inode *ip;
  2811. xfs_ino_t ino;
  2812. int error;
  2813. ino = XFS_AGINO_TO_INO(mp, agno, agino);
  2814. error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
  2815. if (error)
  2816. goto fail;
  2817. /*
  2818. * Get the on disk inode to find the next inode in the bucket.
  2819. */
  2820. error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
  2821. if (error)
  2822. goto fail_iput;
  2823. ASSERT(ip->i_d.di_nlink == 0);
  2824. ASSERT(ip->i_d.di_mode != 0);
  2825. /* setup for the next pass */
  2826. agino = be32_to_cpu(dip->di_next_unlinked);
  2827. xfs_buf_relse(ibp);
  2828. /*
  2829. * Prevent any DMAPI event from being sent when the reference on
  2830. * the inode is dropped.
  2831. */
  2832. ip->i_d.di_dmevmask = 0;
  2833. IRELE(ip);
  2834. return agino;
  2835. fail_iput:
  2836. IRELE(ip);
  2837. fail:
  2838. /*
  2839. * We can't read in the inode this bucket points to, or this inode
  2840. * is messed up. Just ditch this bucket of inodes. We will lose
  2841. * some inodes and space, but at least we won't hang.
  2842. *
  2843. * Call xlog_recover_clear_agi_bucket() to perform a transaction to
  2844. * clear the inode pointer in the bucket.
  2845. */
  2846. xlog_recover_clear_agi_bucket(mp, agno, bucket);
  2847. return NULLAGINO;
  2848. }
  2849. /*
  2850. * xlog_iunlink_recover
  2851. *
  2852. * This is called during recovery to process any inodes which
  2853. * we unlinked but not freed when the system crashed. These
  2854. * inodes will be on the lists in the AGI blocks. What we do
  2855. * here is scan all the AGIs and fully truncate and free any
  2856. * inodes found on the lists. Each inode is removed from the
  2857. * lists when it has been fully truncated and is freed. The
  2858. * freeing of the inode and its removal from the list must be
  2859. * atomic.
  2860. */
  2861. STATIC void
  2862. xlog_recover_process_iunlinks(
  2863. xlog_t *log)
  2864. {
  2865. xfs_mount_t *mp;
  2866. xfs_agnumber_t agno;
  2867. xfs_agi_t *agi;
  2868. xfs_buf_t *agibp;
  2869. xfs_agino_t agino;
  2870. int bucket;
  2871. int error;
  2872. uint mp_dmevmask;
  2873. mp = log->l_mp;
  2874. /*
  2875. * Prevent any DMAPI event from being sent while in this function.
  2876. */
  2877. mp_dmevmask = mp->m_dmevmask;
  2878. mp->m_dmevmask = 0;
  2879. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  2880. /*
  2881. * Find the agi for this ag.
  2882. */
  2883. error = xfs_read_agi(mp, NULL, agno, &agibp);
  2884. if (error) {
  2885. /*
  2886. * AGI is b0rked. Don't process it.
  2887. *
  2888. * We should probably mark the filesystem as corrupt
  2889. * after we've recovered all the ag's we can....
  2890. */
  2891. continue;
  2892. }
  2893. /*
  2894. * Unlock the buffer so that it can be acquired in the normal
  2895. * course of the transaction to truncate and free each inode.
  2896. * Because we are not racing with anyone else here for the AGI
  2897. * buffer, we don't even need to hold it locked to read the
  2898. * initial unlinked bucket entries out of the buffer. We keep
  2899. * buffer reference though, so that it stays pinned in memory
  2900. * while we need the buffer.
  2901. */
  2902. agi = XFS_BUF_TO_AGI(agibp);
  2903. xfs_buf_unlock(agibp);
  2904. for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
  2905. agino = be32_to_cpu(agi->agi_unlinked[bucket]);
  2906. while (agino != NULLAGINO) {
  2907. agino = xlog_recover_process_one_iunlink(mp,
  2908. agno, agino, bucket);
  2909. }
  2910. }
  2911. xfs_buf_rele(agibp);
  2912. }
  2913. mp->m_dmevmask = mp_dmevmask;
  2914. }
  2915. #ifdef DEBUG
  2916. STATIC void
  2917. xlog_pack_data_checksum(
  2918. xlog_t *log,
  2919. xlog_in_core_t *iclog,
  2920. int size)
  2921. {
  2922. int i;
  2923. __be32 *up;
  2924. uint chksum = 0;
  2925. up = (__be32 *)iclog->ic_datap;
  2926. /* divide length by 4 to get # words */
  2927. for (i = 0; i < (size >> 2); i++) {
  2928. chksum ^= be32_to_cpu(*up);
  2929. up++;
  2930. }
  2931. iclog->ic_header.h_chksum = cpu_to_be32(chksum);
  2932. }
  2933. #else
  2934. #define xlog_pack_data_checksum(log, iclog, size)
  2935. #endif
  2936. /*
  2937. * Stamp cycle number in every block
  2938. */
  2939. void
  2940. xlog_pack_data(
  2941. xlog_t *log,
  2942. xlog_in_core_t *iclog,
  2943. int roundoff)
  2944. {
  2945. int i, j, k;
  2946. int size = iclog->ic_offset + roundoff;
  2947. __be32 cycle_lsn;
  2948. xfs_caddr_t dp;
  2949. xlog_pack_data_checksum(log, iclog, size);
  2950. cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
  2951. dp = iclog->ic_datap;
  2952. for (i = 0; i < BTOBB(size) &&
  2953. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  2954. iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
  2955. *(__be32 *)dp = cycle_lsn;
  2956. dp += BBSIZE;
  2957. }
  2958. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  2959. xlog_in_core_2_t *xhdr = iclog->ic_data;
  2960. for ( ; i < BTOBB(size); i++) {
  2961. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2962. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2963. xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
  2964. *(__be32 *)dp = cycle_lsn;
  2965. dp += BBSIZE;
  2966. }
  2967. for (i = 1; i < log->l_iclog_heads; i++) {
  2968. xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
  2969. }
  2970. }
  2971. }
  2972. STATIC void
  2973. xlog_unpack_data(
  2974. xlog_rec_header_t *rhead,
  2975. xfs_caddr_t dp,
  2976. xlog_t *log)
  2977. {
  2978. int i, j, k;
  2979. for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
  2980. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  2981. *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
  2982. dp += BBSIZE;
  2983. }
  2984. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  2985. xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
  2986. for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
  2987. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2988. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2989. *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
  2990. dp += BBSIZE;
  2991. }
  2992. }
  2993. }
  2994. STATIC int
  2995. xlog_valid_rec_header(
  2996. xlog_t *log,
  2997. xlog_rec_header_t *rhead,
  2998. xfs_daddr_t blkno)
  2999. {
  3000. int hlen;
  3001. if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
  3002. XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
  3003. XFS_ERRLEVEL_LOW, log->l_mp);
  3004. return XFS_ERROR(EFSCORRUPTED);
  3005. }
  3006. if (unlikely(
  3007. (!rhead->h_version ||
  3008. (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
  3009. xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
  3010. __func__, be32_to_cpu(rhead->h_version));
  3011. return XFS_ERROR(EIO);
  3012. }
  3013. /* LR body must have data or it wouldn't have been written */
  3014. hlen = be32_to_cpu(rhead->h_len);
  3015. if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
  3016. XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
  3017. XFS_ERRLEVEL_LOW, log->l_mp);
  3018. return XFS_ERROR(EFSCORRUPTED);
  3019. }
  3020. if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
  3021. XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
  3022. XFS_ERRLEVEL_LOW, log->l_mp);
  3023. return XFS_ERROR(EFSCORRUPTED);
  3024. }
  3025. return 0;
  3026. }
  3027. /*
  3028. * Read the log from tail to head and process the log records found.
  3029. * Handle the two cases where the tail and head are in the same cycle
  3030. * and where the active portion of the log wraps around the end of
  3031. * the physical log separately. The pass parameter is passed through
  3032. * to the routines called to process the data and is not looked at
  3033. * here.
  3034. */
  3035. STATIC int
  3036. xlog_do_recovery_pass(
  3037. xlog_t *log,
  3038. xfs_daddr_t head_blk,
  3039. xfs_daddr_t tail_blk,
  3040. int pass)
  3041. {
  3042. xlog_rec_header_t *rhead;
  3043. xfs_daddr_t blk_no;
  3044. xfs_caddr_t offset;
  3045. xfs_buf_t *hbp, *dbp;
  3046. int error = 0, h_size;
  3047. int bblks, split_bblks;
  3048. int hblks, split_hblks, wrapped_hblks;
  3049. struct hlist_head rhash[XLOG_RHASH_SIZE];
  3050. ASSERT(head_blk != tail_blk);
  3051. /*
  3052. * Read the header of the tail block and get the iclog buffer size from
  3053. * h_size. Use this to tell how many sectors make up the log header.
  3054. */
  3055. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3056. /*
  3057. * When using variable length iclogs, read first sector of
  3058. * iclog header and extract the header size from it. Get a
  3059. * new hbp that is the correct size.
  3060. */
  3061. hbp = xlog_get_bp(log, 1);
  3062. if (!hbp)
  3063. return ENOMEM;
  3064. error = xlog_bread(log, tail_blk, 1, hbp, &offset);
  3065. if (error)
  3066. goto bread_err1;
  3067. rhead = (xlog_rec_header_t *)offset;
  3068. error = xlog_valid_rec_header(log, rhead, tail_blk);
  3069. if (error)
  3070. goto bread_err1;
  3071. h_size = be32_to_cpu(rhead->h_size);
  3072. if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
  3073. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  3074. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  3075. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  3076. hblks++;
  3077. xlog_put_bp(hbp);
  3078. hbp = xlog_get_bp(log, hblks);
  3079. } else {
  3080. hblks = 1;
  3081. }
  3082. } else {
  3083. ASSERT(log->l_sectBBsize == 1);
  3084. hblks = 1;
  3085. hbp = xlog_get_bp(log, 1);
  3086. h_size = XLOG_BIG_RECORD_BSIZE;
  3087. }
  3088. if (!hbp)
  3089. return ENOMEM;
  3090. dbp = xlog_get_bp(log, BTOBB(h_size));
  3091. if (!dbp) {
  3092. xlog_put_bp(hbp);
  3093. return ENOMEM;
  3094. }
  3095. memset(rhash, 0, sizeof(rhash));
  3096. if (tail_blk <= head_blk) {
  3097. for (blk_no = tail_blk; blk_no < head_blk; ) {
  3098. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3099. if (error)
  3100. goto bread_err2;
  3101. rhead = (xlog_rec_header_t *)offset;
  3102. error = xlog_valid_rec_header(log, rhead, blk_no);
  3103. if (error)
  3104. goto bread_err2;
  3105. /* blocks in data section */
  3106. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3107. error = xlog_bread(log, blk_no + hblks, bblks, dbp,
  3108. &offset);
  3109. if (error)
  3110. goto bread_err2;
  3111. xlog_unpack_data(rhead, offset, log);
  3112. if ((error = xlog_recover_process_data(log,
  3113. rhash, rhead, offset, pass)))
  3114. goto bread_err2;
  3115. blk_no += bblks + hblks;
  3116. }
  3117. } else {
  3118. /*
  3119. * Perform recovery around the end of the physical log.
  3120. * When the head is not on the same cycle number as the tail,
  3121. * we can't do a sequential recovery as above.
  3122. */
  3123. blk_no = tail_blk;
  3124. while (blk_no < log->l_logBBsize) {
  3125. /*
  3126. * Check for header wrapping around physical end-of-log
  3127. */
  3128. offset = hbp->b_addr;
  3129. split_hblks = 0;
  3130. wrapped_hblks = 0;
  3131. if (blk_no + hblks <= log->l_logBBsize) {
  3132. /* Read header in one read */
  3133. error = xlog_bread(log, blk_no, hblks, hbp,
  3134. &offset);
  3135. if (error)
  3136. goto bread_err2;
  3137. } else {
  3138. /* This LR is split across physical log end */
  3139. if (blk_no != log->l_logBBsize) {
  3140. /* some data before physical log end */
  3141. ASSERT(blk_no <= INT_MAX);
  3142. split_hblks = log->l_logBBsize - (int)blk_no;
  3143. ASSERT(split_hblks > 0);
  3144. error = xlog_bread(log, blk_no,
  3145. split_hblks, hbp,
  3146. &offset);
  3147. if (error)
  3148. goto bread_err2;
  3149. }
  3150. /*
  3151. * Note: this black magic still works with
  3152. * large sector sizes (non-512) only because:
  3153. * - we increased the buffer size originally
  3154. * by 1 sector giving us enough extra space
  3155. * for the second read;
  3156. * - the log start is guaranteed to be sector
  3157. * aligned;
  3158. * - we read the log end (LR header start)
  3159. * _first_, then the log start (LR header end)
  3160. * - order is important.
  3161. */
  3162. wrapped_hblks = hblks - split_hblks;
  3163. error = xlog_bread_offset(log, 0,
  3164. wrapped_hblks, hbp,
  3165. offset + BBTOB(split_hblks));
  3166. if (error)
  3167. goto bread_err2;
  3168. }
  3169. rhead = (xlog_rec_header_t *)offset;
  3170. error = xlog_valid_rec_header(log, rhead,
  3171. split_hblks ? blk_no : 0);
  3172. if (error)
  3173. goto bread_err2;
  3174. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3175. blk_no += hblks;
  3176. /* Read in data for log record */
  3177. if (blk_no + bblks <= log->l_logBBsize) {
  3178. error = xlog_bread(log, blk_no, bblks, dbp,
  3179. &offset);
  3180. if (error)
  3181. goto bread_err2;
  3182. } else {
  3183. /* This log record is split across the
  3184. * physical end of log */
  3185. offset = dbp->b_addr;
  3186. split_bblks = 0;
  3187. if (blk_no != log->l_logBBsize) {
  3188. /* some data is before the physical
  3189. * end of log */
  3190. ASSERT(!wrapped_hblks);
  3191. ASSERT(blk_no <= INT_MAX);
  3192. split_bblks =
  3193. log->l_logBBsize - (int)blk_no;
  3194. ASSERT(split_bblks > 0);
  3195. error = xlog_bread(log, blk_no,
  3196. split_bblks, dbp,
  3197. &offset);
  3198. if (error)
  3199. goto bread_err2;
  3200. }
  3201. /*
  3202. * Note: this black magic still works with
  3203. * large sector sizes (non-512) only because:
  3204. * - we increased the buffer size originally
  3205. * by 1 sector giving us enough extra space
  3206. * for the second read;
  3207. * - the log start is guaranteed to be sector
  3208. * aligned;
  3209. * - we read the log end (LR header start)
  3210. * _first_, then the log start (LR header end)
  3211. * - order is important.
  3212. */
  3213. error = xlog_bread_offset(log, 0,
  3214. bblks - split_bblks, hbp,
  3215. offset + BBTOB(split_bblks));
  3216. if (error)
  3217. goto bread_err2;
  3218. }
  3219. xlog_unpack_data(rhead, offset, log);
  3220. if ((error = xlog_recover_process_data(log, rhash,
  3221. rhead, offset, pass)))
  3222. goto bread_err2;
  3223. blk_no += bblks;
  3224. }
  3225. ASSERT(blk_no >= log->l_logBBsize);
  3226. blk_no -= log->l_logBBsize;
  3227. /* read first part of physical log */
  3228. while (blk_no < head_blk) {
  3229. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3230. if (error)
  3231. goto bread_err2;
  3232. rhead = (xlog_rec_header_t *)offset;
  3233. error = xlog_valid_rec_header(log, rhead, blk_no);
  3234. if (error)
  3235. goto bread_err2;
  3236. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3237. error = xlog_bread(log, blk_no+hblks, bblks, dbp,
  3238. &offset);
  3239. if (error)
  3240. goto bread_err2;
  3241. xlog_unpack_data(rhead, offset, log);
  3242. if ((error = xlog_recover_process_data(log, rhash,
  3243. rhead, offset, pass)))
  3244. goto bread_err2;
  3245. blk_no += bblks + hblks;
  3246. }
  3247. }
  3248. bread_err2:
  3249. xlog_put_bp(dbp);
  3250. bread_err1:
  3251. xlog_put_bp(hbp);
  3252. return error;
  3253. }
  3254. /*
  3255. * Do the recovery of the log. We actually do this in two phases.
  3256. * The two passes are necessary in order to implement the function
  3257. * of cancelling a record written into the log. The first pass
  3258. * determines those things which have been cancelled, and the
  3259. * second pass replays log items normally except for those which
  3260. * have been cancelled. The handling of the replay and cancellations
  3261. * takes place in the log item type specific routines.
  3262. *
  3263. * The table of items which have cancel records in the log is allocated
  3264. * and freed at this level, since only here do we know when all of
  3265. * the log recovery has been completed.
  3266. */
  3267. STATIC int
  3268. xlog_do_log_recovery(
  3269. xlog_t *log,
  3270. xfs_daddr_t head_blk,
  3271. xfs_daddr_t tail_blk)
  3272. {
  3273. int error, i;
  3274. ASSERT(head_blk != tail_blk);
  3275. /*
  3276. * First do a pass to find all of the cancelled buf log items.
  3277. * Store them in the buf_cancel_table for use in the second pass.
  3278. */
  3279. log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
  3280. sizeof(struct list_head),
  3281. KM_SLEEP);
  3282. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3283. INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
  3284. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3285. XLOG_RECOVER_PASS1);
  3286. if (error != 0) {
  3287. kmem_free(log->l_buf_cancel_table);
  3288. log->l_buf_cancel_table = NULL;
  3289. return error;
  3290. }
  3291. /*
  3292. * Then do a second pass to actually recover the items in the log.
  3293. * When it is complete free the table of buf cancel items.
  3294. */
  3295. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3296. XLOG_RECOVER_PASS2);
  3297. #ifdef DEBUG
  3298. if (!error) {
  3299. int i;
  3300. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3301. ASSERT(list_empty(&log->l_buf_cancel_table[i]));
  3302. }
  3303. #endif /* DEBUG */
  3304. kmem_free(log->l_buf_cancel_table);
  3305. log->l_buf_cancel_table = NULL;
  3306. return error;
  3307. }
  3308. /*
  3309. * Do the actual recovery
  3310. */
  3311. STATIC int
  3312. xlog_do_recover(
  3313. xlog_t *log,
  3314. xfs_daddr_t head_blk,
  3315. xfs_daddr_t tail_blk)
  3316. {
  3317. int error;
  3318. xfs_buf_t *bp;
  3319. xfs_sb_t *sbp;
  3320. /*
  3321. * First replay the images in the log.
  3322. */
  3323. error = xlog_do_log_recovery(log, head_blk, tail_blk);
  3324. if (error)
  3325. return error;
  3326. /*
  3327. * If IO errors happened during recovery, bail out.
  3328. */
  3329. if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
  3330. return (EIO);
  3331. }
  3332. /*
  3333. * We now update the tail_lsn since much of the recovery has completed
  3334. * and there may be space available to use. If there were no extent
  3335. * or iunlinks, we can free up the entire log and set the tail_lsn to
  3336. * be the last_sync_lsn. This was set in xlog_find_tail to be the
  3337. * lsn of the last known good LR on disk. If there are extent frees
  3338. * or iunlinks they will have some entries in the AIL; so we look at
  3339. * the AIL to determine how to set the tail_lsn.
  3340. */
  3341. xlog_assign_tail_lsn(log->l_mp);
  3342. /*
  3343. * Now that we've finished replaying all buffer and inode
  3344. * updates, re-read in the superblock.
  3345. */
  3346. bp = xfs_getsb(log->l_mp, 0);
  3347. XFS_BUF_UNDONE(bp);
  3348. ASSERT(!(XFS_BUF_ISWRITE(bp)));
  3349. XFS_BUF_READ(bp);
  3350. XFS_BUF_UNASYNC(bp);
  3351. xfsbdstrat(log->l_mp, bp);
  3352. error = xfs_buf_iowait(bp);
  3353. if (error) {
  3354. xfs_buf_ioerror_alert(bp, __func__);
  3355. ASSERT(0);
  3356. xfs_buf_relse(bp);
  3357. return error;
  3358. }
  3359. /* Convert superblock from on-disk format */
  3360. sbp = &log->l_mp->m_sb;
  3361. xfs_sb_from_disk(log->l_mp, XFS_BUF_TO_SBP(bp));
  3362. ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
  3363. ASSERT(xfs_sb_good_version(sbp));
  3364. xfs_buf_relse(bp);
  3365. /* We've re-read the superblock so re-initialize per-cpu counters */
  3366. xfs_icsb_reinit_counters(log->l_mp);
  3367. xlog_recover_check_summary(log);
  3368. /* Normal transactions can now occur */
  3369. log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
  3370. return 0;
  3371. }
  3372. /*
  3373. * Perform recovery and re-initialize some log variables in xlog_find_tail.
  3374. *
  3375. * Return error or zero.
  3376. */
  3377. int
  3378. xlog_recover(
  3379. xlog_t *log)
  3380. {
  3381. xfs_daddr_t head_blk, tail_blk;
  3382. int error;
  3383. /* find the tail of the log */
  3384. if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
  3385. return error;
  3386. if (tail_blk != head_blk) {
  3387. /* There used to be a comment here:
  3388. *
  3389. * disallow recovery on read-only mounts. note -- mount
  3390. * checks for ENOSPC and turns it into an intelligent
  3391. * error message.
  3392. * ...but this is no longer true. Now, unless you specify
  3393. * NORECOVERY (in which case this function would never be
  3394. * called), we just go ahead and recover. We do this all
  3395. * under the vfs layer, so we can get away with it unless
  3396. * the device itself is read-only, in which case we fail.
  3397. */
  3398. if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
  3399. return error;
  3400. }
  3401. xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
  3402. log->l_mp->m_logname ? log->l_mp->m_logname
  3403. : "internal");
  3404. error = xlog_do_recover(log, head_blk, tail_blk);
  3405. log->l_flags |= XLOG_RECOVERY_NEEDED;
  3406. }
  3407. return error;
  3408. }
  3409. /*
  3410. * In the first part of recovery we replay inodes and buffers and build
  3411. * up the list of extent free items which need to be processed. Here
  3412. * we process the extent free items and clean up the on disk unlinked
  3413. * inode lists. This is separated from the first part of recovery so
  3414. * that the root and real-time bitmap inodes can be read in from disk in
  3415. * between the two stages. This is necessary so that we can free space
  3416. * in the real-time portion of the file system.
  3417. */
  3418. int
  3419. xlog_recover_finish(
  3420. xlog_t *log)
  3421. {
  3422. /*
  3423. * Now we're ready to do the transactions needed for the
  3424. * rest of recovery. Start with completing all the extent
  3425. * free intent records and then process the unlinked inode
  3426. * lists. At this point, we essentially run in normal mode
  3427. * except that we're still performing recovery actions
  3428. * rather than accepting new requests.
  3429. */
  3430. if (log->l_flags & XLOG_RECOVERY_NEEDED) {
  3431. int error;
  3432. error = xlog_recover_process_efis(log);
  3433. if (error) {
  3434. xfs_alert(log->l_mp, "Failed to recover EFIs");
  3435. return error;
  3436. }
  3437. /*
  3438. * Sync the log to get all the EFIs out of the AIL.
  3439. * This isn't absolutely necessary, but it helps in
  3440. * case the unlink transactions would have problems
  3441. * pushing the EFIs out of the way.
  3442. */
  3443. xfs_log_force(log->l_mp, XFS_LOG_SYNC);
  3444. xlog_recover_process_iunlinks(log);
  3445. xlog_recover_check_summary(log);
  3446. xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
  3447. log->l_mp->m_logname ? log->l_mp->m_logname
  3448. : "internal");
  3449. log->l_flags &= ~XLOG_RECOVERY_NEEDED;
  3450. } else {
  3451. xfs_info(log->l_mp, "Ending clean mount");
  3452. }
  3453. return 0;
  3454. }
  3455. #if defined(DEBUG)
  3456. /*
  3457. * Read all of the agf and agi counters and check that they
  3458. * are consistent with the superblock counters.
  3459. */
  3460. void
  3461. xlog_recover_check_summary(
  3462. xlog_t *log)
  3463. {
  3464. xfs_mount_t *mp;
  3465. xfs_agf_t *agfp;
  3466. xfs_buf_t *agfbp;
  3467. xfs_buf_t *agibp;
  3468. xfs_agnumber_t agno;
  3469. __uint64_t freeblks;
  3470. __uint64_t itotal;
  3471. __uint64_t ifree;
  3472. int error;
  3473. mp = log->l_mp;
  3474. freeblks = 0LL;
  3475. itotal = 0LL;
  3476. ifree = 0LL;
  3477. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  3478. error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
  3479. if (error) {
  3480. xfs_alert(mp, "%s agf read failed agno %d error %d",
  3481. __func__, agno, error);
  3482. } else {
  3483. agfp = XFS_BUF_TO_AGF(agfbp);
  3484. freeblks += be32_to_cpu(agfp->agf_freeblks) +
  3485. be32_to_cpu(agfp->agf_flcount);
  3486. xfs_buf_relse(agfbp);
  3487. }
  3488. error = xfs_read_agi(mp, NULL, agno, &agibp);
  3489. if (error) {
  3490. xfs_alert(mp, "%s agi read failed agno %d error %d",
  3491. __func__, agno, error);
  3492. } else {
  3493. struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
  3494. itotal += be32_to_cpu(agi->agi_count);
  3495. ifree += be32_to_cpu(agi->agi_freecount);
  3496. xfs_buf_relse(agibp);
  3497. }
  3498. }
  3499. }
  3500. #endif /* DEBUG */