intel_display.c 254 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/cpufreq.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include "drmP.h"
  35. #include "intel_drv.h"
  36. #include "i915_drm.h"
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include "drm_dp_helper.h"
  40. #include "drm_crtc_helper.h"
  41. #include <linux/dma_remapping.h>
  42. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  43. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  44. static void intel_update_watermarks(struct drm_device *dev);
  45. static void intel_increase_pllclock(struct drm_crtc *crtc);
  46. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  47. typedef struct {
  48. /* given values */
  49. int n;
  50. int m1, m2;
  51. int p1, p2;
  52. /* derived values */
  53. int dot;
  54. int vco;
  55. int m;
  56. int p;
  57. } intel_clock_t;
  58. typedef struct {
  59. int min, max;
  60. } intel_range_t;
  61. typedef struct {
  62. int dot_limit;
  63. int p2_slow, p2_fast;
  64. } intel_p2_t;
  65. #define INTEL_P2_NUM 2
  66. typedef struct intel_limit intel_limit_t;
  67. struct intel_limit {
  68. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  69. intel_p2_t p2;
  70. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  71. int, int, intel_clock_t *, intel_clock_t *);
  72. };
  73. /* FDI */
  74. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  75. static bool
  76. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  77. int target, int refclk, intel_clock_t *match_clock,
  78. intel_clock_t *best_clock);
  79. static bool
  80. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  81. int target, int refclk, intel_clock_t *match_clock,
  82. intel_clock_t *best_clock);
  83. static bool
  84. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  85. int target, int refclk, intel_clock_t *match_clock,
  86. intel_clock_t *best_clock);
  87. static bool
  88. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  89. int target, int refclk, intel_clock_t *match_clock,
  90. intel_clock_t *best_clock);
  91. static inline u32 /* units of 100MHz */
  92. intel_fdi_link_freq(struct drm_device *dev)
  93. {
  94. if (IS_GEN5(dev)) {
  95. struct drm_i915_private *dev_priv = dev->dev_private;
  96. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  97. } else
  98. return 27;
  99. }
  100. static const intel_limit_t intel_limits_i8xx_dvo = {
  101. .dot = { .min = 25000, .max = 350000 },
  102. .vco = { .min = 930000, .max = 1400000 },
  103. .n = { .min = 3, .max = 16 },
  104. .m = { .min = 96, .max = 140 },
  105. .m1 = { .min = 18, .max = 26 },
  106. .m2 = { .min = 6, .max = 16 },
  107. .p = { .min = 4, .max = 128 },
  108. .p1 = { .min = 2, .max = 33 },
  109. .p2 = { .dot_limit = 165000,
  110. .p2_slow = 4, .p2_fast = 2 },
  111. .find_pll = intel_find_best_PLL,
  112. };
  113. static const intel_limit_t intel_limits_i8xx_lvds = {
  114. .dot = { .min = 25000, .max = 350000 },
  115. .vco = { .min = 930000, .max = 1400000 },
  116. .n = { .min = 3, .max = 16 },
  117. .m = { .min = 96, .max = 140 },
  118. .m1 = { .min = 18, .max = 26 },
  119. .m2 = { .min = 6, .max = 16 },
  120. .p = { .min = 4, .max = 128 },
  121. .p1 = { .min = 1, .max = 6 },
  122. .p2 = { .dot_limit = 165000,
  123. .p2_slow = 14, .p2_fast = 7 },
  124. .find_pll = intel_find_best_PLL,
  125. };
  126. static const intel_limit_t intel_limits_i9xx_sdvo = {
  127. .dot = { .min = 20000, .max = 400000 },
  128. .vco = { .min = 1400000, .max = 2800000 },
  129. .n = { .min = 1, .max = 6 },
  130. .m = { .min = 70, .max = 120 },
  131. .m1 = { .min = 10, .max = 22 },
  132. .m2 = { .min = 5, .max = 9 },
  133. .p = { .min = 5, .max = 80 },
  134. .p1 = { .min = 1, .max = 8 },
  135. .p2 = { .dot_limit = 200000,
  136. .p2_slow = 10, .p2_fast = 5 },
  137. .find_pll = intel_find_best_PLL,
  138. };
  139. static const intel_limit_t intel_limits_i9xx_lvds = {
  140. .dot = { .min = 20000, .max = 400000 },
  141. .vco = { .min = 1400000, .max = 2800000 },
  142. .n = { .min = 1, .max = 6 },
  143. .m = { .min = 70, .max = 120 },
  144. .m1 = { .min = 10, .max = 22 },
  145. .m2 = { .min = 5, .max = 9 },
  146. .p = { .min = 7, .max = 98 },
  147. .p1 = { .min = 1, .max = 8 },
  148. .p2 = { .dot_limit = 112000,
  149. .p2_slow = 14, .p2_fast = 7 },
  150. .find_pll = intel_find_best_PLL,
  151. };
  152. static const intel_limit_t intel_limits_g4x_sdvo = {
  153. .dot = { .min = 25000, .max = 270000 },
  154. .vco = { .min = 1750000, .max = 3500000},
  155. .n = { .min = 1, .max = 4 },
  156. .m = { .min = 104, .max = 138 },
  157. .m1 = { .min = 17, .max = 23 },
  158. .m2 = { .min = 5, .max = 11 },
  159. .p = { .min = 10, .max = 30 },
  160. .p1 = { .min = 1, .max = 3},
  161. .p2 = { .dot_limit = 270000,
  162. .p2_slow = 10,
  163. .p2_fast = 10
  164. },
  165. .find_pll = intel_g4x_find_best_PLL,
  166. };
  167. static const intel_limit_t intel_limits_g4x_hdmi = {
  168. .dot = { .min = 22000, .max = 400000 },
  169. .vco = { .min = 1750000, .max = 3500000},
  170. .n = { .min = 1, .max = 4 },
  171. .m = { .min = 104, .max = 138 },
  172. .m1 = { .min = 16, .max = 23 },
  173. .m2 = { .min = 5, .max = 11 },
  174. .p = { .min = 5, .max = 80 },
  175. .p1 = { .min = 1, .max = 8},
  176. .p2 = { .dot_limit = 165000,
  177. .p2_slow = 10, .p2_fast = 5 },
  178. .find_pll = intel_g4x_find_best_PLL,
  179. };
  180. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  181. .dot = { .min = 20000, .max = 115000 },
  182. .vco = { .min = 1750000, .max = 3500000 },
  183. .n = { .min = 1, .max = 3 },
  184. .m = { .min = 104, .max = 138 },
  185. .m1 = { .min = 17, .max = 23 },
  186. .m2 = { .min = 5, .max = 11 },
  187. .p = { .min = 28, .max = 112 },
  188. .p1 = { .min = 2, .max = 8 },
  189. .p2 = { .dot_limit = 0,
  190. .p2_slow = 14, .p2_fast = 14
  191. },
  192. .find_pll = intel_g4x_find_best_PLL,
  193. };
  194. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  195. .dot = { .min = 80000, .max = 224000 },
  196. .vco = { .min = 1750000, .max = 3500000 },
  197. .n = { .min = 1, .max = 3 },
  198. .m = { .min = 104, .max = 138 },
  199. .m1 = { .min = 17, .max = 23 },
  200. .m2 = { .min = 5, .max = 11 },
  201. .p = { .min = 14, .max = 42 },
  202. .p1 = { .min = 2, .max = 6 },
  203. .p2 = { .dot_limit = 0,
  204. .p2_slow = 7, .p2_fast = 7
  205. },
  206. .find_pll = intel_g4x_find_best_PLL,
  207. };
  208. static const intel_limit_t intel_limits_g4x_display_port = {
  209. .dot = { .min = 161670, .max = 227000 },
  210. .vco = { .min = 1750000, .max = 3500000},
  211. .n = { .min = 1, .max = 2 },
  212. .m = { .min = 97, .max = 108 },
  213. .m1 = { .min = 0x10, .max = 0x12 },
  214. .m2 = { .min = 0x05, .max = 0x06 },
  215. .p = { .min = 10, .max = 20 },
  216. .p1 = { .min = 1, .max = 2},
  217. .p2 = { .dot_limit = 0,
  218. .p2_slow = 10, .p2_fast = 10 },
  219. .find_pll = intel_find_pll_g4x_dp,
  220. };
  221. static const intel_limit_t intel_limits_pineview_sdvo = {
  222. .dot = { .min = 20000, .max = 400000},
  223. .vco = { .min = 1700000, .max = 3500000 },
  224. /* Pineview's Ncounter is a ring counter */
  225. .n = { .min = 3, .max = 6 },
  226. .m = { .min = 2, .max = 256 },
  227. /* Pineview only has one combined m divider, which we treat as m2. */
  228. .m1 = { .min = 0, .max = 0 },
  229. .m2 = { .min = 0, .max = 254 },
  230. .p = { .min = 5, .max = 80 },
  231. .p1 = { .min = 1, .max = 8 },
  232. .p2 = { .dot_limit = 200000,
  233. .p2_slow = 10, .p2_fast = 5 },
  234. .find_pll = intel_find_best_PLL,
  235. };
  236. static const intel_limit_t intel_limits_pineview_lvds = {
  237. .dot = { .min = 20000, .max = 400000 },
  238. .vco = { .min = 1700000, .max = 3500000 },
  239. .n = { .min = 3, .max = 6 },
  240. .m = { .min = 2, .max = 256 },
  241. .m1 = { .min = 0, .max = 0 },
  242. .m2 = { .min = 0, .max = 254 },
  243. .p = { .min = 7, .max = 112 },
  244. .p1 = { .min = 1, .max = 8 },
  245. .p2 = { .dot_limit = 112000,
  246. .p2_slow = 14, .p2_fast = 14 },
  247. .find_pll = intel_find_best_PLL,
  248. };
  249. /* Ironlake / Sandybridge
  250. *
  251. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  252. * the range value for them is (actual_value - 2).
  253. */
  254. static const intel_limit_t intel_limits_ironlake_dac = {
  255. .dot = { .min = 25000, .max = 350000 },
  256. .vco = { .min = 1760000, .max = 3510000 },
  257. .n = { .min = 1, .max = 5 },
  258. .m = { .min = 79, .max = 127 },
  259. .m1 = { .min = 12, .max = 22 },
  260. .m2 = { .min = 5, .max = 9 },
  261. .p = { .min = 5, .max = 80 },
  262. .p1 = { .min = 1, .max = 8 },
  263. .p2 = { .dot_limit = 225000,
  264. .p2_slow = 10, .p2_fast = 5 },
  265. .find_pll = intel_g4x_find_best_PLL,
  266. };
  267. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  268. .dot = { .min = 25000, .max = 350000 },
  269. .vco = { .min = 1760000, .max = 3510000 },
  270. .n = { .min = 1, .max = 3 },
  271. .m = { .min = 79, .max = 118 },
  272. .m1 = { .min = 12, .max = 22 },
  273. .m2 = { .min = 5, .max = 9 },
  274. .p = { .min = 28, .max = 112 },
  275. .p1 = { .min = 2, .max = 8 },
  276. .p2 = { .dot_limit = 225000,
  277. .p2_slow = 14, .p2_fast = 14 },
  278. .find_pll = intel_g4x_find_best_PLL,
  279. };
  280. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  281. .dot = { .min = 25000, .max = 350000 },
  282. .vco = { .min = 1760000, .max = 3510000 },
  283. .n = { .min = 1, .max = 3 },
  284. .m = { .min = 79, .max = 127 },
  285. .m1 = { .min = 12, .max = 22 },
  286. .m2 = { .min = 5, .max = 9 },
  287. .p = { .min = 14, .max = 56 },
  288. .p1 = { .min = 2, .max = 8 },
  289. .p2 = { .dot_limit = 225000,
  290. .p2_slow = 7, .p2_fast = 7 },
  291. .find_pll = intel_g4x_find_best_PLL,
  292. };
  293. /* LVDS 100mhz refclk limits. */
  294. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  295. .dot = { .min = 25000, .max = 350000 },
  296. .vco = { .min = 1760000, .max = 3510000 },
  297. .n = { .min = 1, .max = 2 },
  298. .m = { .min = 79, .max = 126 },
  299. .m1 = { .min = 12, .max = 22 },
  300. .m2 = { .min = 5, .max = 9 },
  301. .p = { .min = 28, .max = 112 },
  302. .p1 = { .min = 2, .max = 8 },
  303. .p2 = { .dot_limit = 225000,
  304. .p2_slow = 14, .p2_fast = 14 },
  305. .find_pll = intel_g4x_find_best_PLL,
  306. };
  307. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  308. .dot = { .min = 25000, .max = 350000 },
  309. .vco = { .min = 1760000, .max = 3510000 },
  310. .n = { .min = 1, .max = 3 },
  311. .m = { .min = 79, .max = 126 },
  312. .m1 = { .min = 12, .max = 22 },
  313. .m2 = { .min = 5, .max = 9 },
  314. .p = { .min = 14, .max = 42 },
  315. .p1 = { .min = 2, .max = 6 },
  316. .p2 = { .dot_limit = 225000,
  317. .p2_slow = 7, .p2_fast = 7 },
  318. .find_pll = intel_g4x_find_best_PLL,
  319. };
  320. static const intel_limit_t intel_limits_ironlake_display_port = {
  321. .dot = { .min = 25000, .max = 350000 },
  322. .vco = { .min = 1760000, .max = 3510000},
  323. .n = { .min = 1, .max = 2 },
  324. .m = { .min = 81, .max = 90 },
  325. .m1 = { .min = 12, .max = 22 },
  326. .m2 = { .min = 5, .max = 9 },
  327. .p = { .min = 10, .max = 20 },
  328. .p1 = { .min = 1, .max = 2},
  329. .p2 = { .dot_limit = 0,
  330. .p2_slow = 10, .p2_fast = 10 },
  331. .find_pll = intel_find_pll_ironlake_dp,
  332. };
  333. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  334. int refclk)
  335. {
  336. struct drm_device *dev = crtc->dev;
  337. struct drm_i915_private *dev_priv = dev->dev_private;
  338. const intel_limit_t *limit;
  339. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  340. if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
  341. LVDS_CLKB_POWER_UP) {
  342. /* LVDS dual channel */
  343. if (refclk == 100000)
  344. limit = &intel_limits_ironlake_dual_lvds_100m;
  345. else
  346. limit = &intel_limits_ironlake_dual_lvds;
  347. } else {
  348. if (refclk == 100000)
  349. limit = &intel_limits_ironlake_single_lvds_100m;
  350. else
  351. limit = &intel_limits_ironlake_single_lvds;
  352. }
  353. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  354. HAS_eDP)
  355. limit = &intel_limits_ironlake_display_port;
  356. else
  357. limit = &intel_limits_ironlake_dac;
  358. return limit;
  359. }
  360. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  361. {
  362. struct drm_device *dev = crtc->dev;
  363. struct drm_i915_private *dev_priv = dev->dev_private;
  364. const intel_limit_t *limit;
  365. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  366. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  367. LVDS_CLKB_POWER_UP)
  368. /* LVDS with dual channel */
  369. limit = &intel_limits_g4x_dual_channel_lvds;
  370. else
  371. /* LVDS with dual channel */
  372. limit = &intel_limits_g4x_single_channel_lvds;
  373. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  374. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  375. limit = &intel_limits_g4x_hdmi;
  376. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  377. limit = &intel_limits_g4x_sdvo;
  378. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  379. limit = &intel_limits_g4x_display_port;
  380. } else /* The option is for other outputs */
  381. limit = &intel_limits_i9xx_sdvo;
  382. return limit;
  383. }
  384. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  385. {
  386. struct drm_device *dev = crtc->dev;
  387. const intel_limit_t *limit;
  388. if (HAS_PCH_SPLIT(dev))
  389. limit = intel_ironlake_limit(crtc, refclk);
  390. else if (IS_G4X(dev)) {
  391. limit = intel_g4x_limit(crtc);
  392. } else if (IS_PINEVIEW(dev)) {
  393. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  394. limit = &intel_limits_pineview_lvds;
  395. else
  396. limit = &intel_limits_pineview_sdvo;
  397. } else if (!IS_GEN2(dev)) {
  398. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  399. limit = &intel_limits_i9xx_lvds;
  400. else
  401. limit = &intel_limits_i9xx_sdvo;
  402. } else {
  403. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  404. limit = &intel_limits_i8xx_lvds;
  405. else
  406. limit = &intel_limits_i8xx_dvo;
  407. }
  408. return limit;
  409. }
  410. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  411. static void pineview_clock(int refclk, intel_clock_t *clock)
  412. {
  413. clock->m = clock->m2 + 2;
  414. clock->p = clock->p1 * clock->p2;
  415. clock->vco = refclk * clock->m / clock->n;
  416. clock->dot = clock->vco / clock->p;
  417. }
  418. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  419. {
  420. if (IS_PINEVIEW(dev)) {
  421. pineview_clock(refclk, clock);
  422. return;
  423. }
  424. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  425. clock->p = clock->p1 * clock->p2;
  426. clock->vco = refclk * clock->m / (clock->n + 2);
  427. clock->dot = clock->vco / clock->p;
  428. }
  429. /**
  430. * Returns whether any output on the specified pipe is of the specified type
  431. */
  432. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  433. {
  434. struct drm_device *dev = crtc->dev;
  435. struct drm_mode_config *mode_config = &dev->mode_config;
  436. struct intel_encoder *encoder;
  437. list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
  438. if (encoder->base.crtc == crtc && encoder->type == type)
  439. return true;
  440. return false;
  441. }
  442. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  443. /**
  444. * Returns whether the given set of divisors are valid for a given refclk with
  445. * the given connectors.
  446. */
  447. static bool intel_PLL_is_valid(struct drm_device *dev,
  448. const intel_limit_t *limit,
  449. const intel_clock_t *clock)
  450. {
  451. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  452. INTELPllInvalid("p1 out of range\n");
  453. if (clock->p < limit->p.min || limit->p.max < clock->p)
  454. INTELPllInvalid("p out of range\n");
  455. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  456. INTELPllInvalid("m2 out of range\n");
  457. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  458. INTELPllInvalid("m1 out of range\n");
  459. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  460. INTELPllInvalid("m1 <= m2\n");
  461. if (clock->m < limit->m.min || limit->m.max < clock->m)
  462. INTELPllInvalid("m out of range\n");
  463. if (clock->n < limit->n.min || limit->n.max < clock->n)
  464. INTELPllInvalid("n out of range\n");
  465. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  466. INTELPllInvalid("vco out of range\n");
  467. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  468. * connector, etc., rather than just a single range.
  469. */
  470. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  471. INTELPllInvalid("dot out of range\n");
  472. return true;
  473. }
  474. static bool
  475. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  476. int target, int refclk, intel_clock_t *match_clock,
  477. intel_clock_t *best_clock)
  478. {
  479. struct drm_device *dev = crtc->dev;
  480. struct drm_i915_private *dev_priv = dev->dev_private;
  481. intel_clock_t clock;
  482. int err = target;
  483. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  484. (I915_READ(LVDS)) != 0) {
  485. /*
  486. * For LVDS, if the panel is on, just rely on its current
  487. * settings for dual-channel. We haven't figured out how to
  488. * reliably set up different single/dual channel state, if we
  489. * even can.
  490. */
  491. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  492. LVDS_CLKB_POWER_UP)
  493. clock.p2 = limit->p2.p2_fast;
  494. else
  495. clock.p2 = limit->p2.p2_slow;
  496. } else {
  497. if (target < limit->p2.dot_limit)
  498. clock.p2 = limit->p2.p2_slow;
  499. else
  500. clock.p2 = limit->p2.p2_fast;
  501. }
  502. memset(best_clock, 0, sizeof(*best_clock));
  503. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  504. clock.m1++) {
  505. for (clock.m2 = limit->m2.min;
  506. clock.m2 <= limit->m2.max; clock.m2++) {
  507. /* m1 is always 0 in Pineview */
  508. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  509. break;
  510. for (clock.n = limit->n.min;
  511. clock.n <= limit->n.max; clock.n++) {
  512. for (clock.p1 = limit->p1.min;
  513. clock.p1 <= limit->p1.max; clock.p1++) {
  514. int this_err;
  515. intel_clock(dev, refclk, &clock);
  516. if (!intel_PLL_is_valid(dev, limit,
  517. &clock))
  518. continue;
  519. if (match_clock &&
  520. clock.p != match_clock->p)
  521. continue;
  522. this_err = abs(clock.dot - target);
  523. if (this_err < err) {
  524. *best_clock = clock;
  525. err = this_err;
  526. }
  527. }
  528. }
  529. }
  530. }
  531. return (err != target);
  532. }
  533. static bool
  534. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  535. int target, int refclk, intel_clock_t *match_clock,
  536. intel_clock_t *best_clock)
  537. {
  538. struct drm_device *dev = crtc->dev;
  539. struct drm_i915_private *dev_priv = dev->dev_private;
  540. intel_clock_t clock;
  541. int max_n;
  542. bool found;
  543. /* approximately equals target * 0.00585 */
  544. int err_most = (target >> 8) + (target >> 9);
  545. found = false;
  546. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  547. int lvds_reg;
  548. if (HAS_PCH_SPLIT(dev))
  549. lvds_reg = PCH_LVDS;
  550. else
  551. lvds_reg = LVDS;
  552. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  553. LVDS_CLKB_POWER_UP)
  554. clock.p2 = limit->p2.p2_fast;
  555. else
  556. clock.p2 = limit->p2.p2_slow;
  557. } else {
  558. if (target < limit->p2.dot_limit)
  559. clock.p2 = limit->p2.p2_slow;
  560. else
  561. clock.p2 = limit->p2.p2_fast;
  562. }
  563. memset(best_clock, 0, sizeof(*best_clock));
  564. max_n = limit->n.max;
  565. /* based on hardware requirement, prefer smaller n to precision */
  566. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  567. /* based on hardware requirement, prefere larger m1,m2 */
  568. for (clock.m1 = limit->m1.max;
  569. clock.m1 >= limit->m1.min; clock.m1--) {
  570. for (clock.m2 = limit->m2.max;
  571. clock.m2 >= limit->m2.min; clock.m2--) {
  572. for (clock.p1 = limit->p1.max;
  573. clock.p1 >= limit->p1.min; clock.p1--) {
  574. int this_err;
  575. intel_clock(dev, refclk, &clock);
  576. if (!intel_PLL_is_valid(dev, limit,
  577. &clock))
  578. continue;
  579. if (match_clock &&
  580. clock.p != match_clock->p)
  581. continue;
  582. this_err = abs(clock.dot - target);
  583. if (this_err < err_most) {
  584. *best_clock = clock;
  585. err_most = this_err;
  586. max_n = clock.n;
  587. found = true;
  588. }
  589. }
  590. }
  591. }
  592. }
  593. return found;
  594. }
  595. static bool
  596. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  597. int target, int refclk, intel_clock_t *match_clock,
  598. intel_clock_t *best_clock)
  599. {
  600. struct drm_device *dev = crtc->dev;
  601. intel_clock_t clock;
  602. if (target < 200000) {
  603. clock.n = 1;
  604. clock.p1 = 2;
  605. clock.p2 = 10;
  606. clock.m1 = 12;
  607. clock.m2 = 9;
  608. } else {
  609. clock.n = 2;
  610. clock.p1 = 1;
  611. clock.p2 = 10;
  612. clock.m1 = 14;
  613. clock.m2 = 8;
  614. }
  615. intel_clock(dev, refclk, &clock);
  616. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  617. return true;
  618. }
  619. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  620. static bool
  621. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  622. int target, int refclk, intel_clock_t *match_clock,
  623. intel_clock_t *best_clock)
  624. {
  625. intel_clock_t clock;
  626. if (target < 200000) {
  627. clock.p1 = 2;
  628. clock.p2 = 10;
  629. clock.n = 2;
  630. clock.m1 = 23;
  631. clock.m2 = 8;
  632. } else {
  633. clock.p1 = 1;
  634. clock.p2 = 10;
  635. clock.n = 1;
  636. clock.m1 = 14;
  637. clock.m2 = 2;
  638. }
  639. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  640. clock.p = (clock.p1 * clock.p2);
  641. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  642. clock.vco = 0;
  643. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  644. return true;
  645. }
  646. /**
  647. * intel_wait_for_vblank - wait for vblank on a given pipe
  648. * @dev: drm device
  649. * @pipe: pipe to wait for
  650. *
  651. * Wait for vblank to occur on a given pipe. Needed for various bits of
  652. * mode setting code.
  653. */
  654. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  655. {
  656. struct drm_i915_private *dev_priv = dev->dev_private;
  657. int pipestat_reg = PIPESTAT(pipe);
  658. /* Clear existing vblank status. Note this will clear any other
  659. * sticky status fields as well.
  660. *
  661. * This races with i915_driver_irq_handler() with the result
  662. * that either function could miss a vblank event. Here it is not
  663. * fatal, as we will either wait upon the next vblank interrupt or
  664. * timeout. Generally speaking intel_wait_for_vblank() is only
  665. * called during modeset at which time the GPU should be idle and
  666. * should *not* be performing page flips and thus not waiting on
  667. * vblanks...
  668. * Currently, the result of us stealing a vblank from the irq
  669. * handler is that a single frame will be skipped during swapbuffers.
  670. */
  671. I915_WRITE(pipestat_reg,
  672. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  673. /* Wait for vblank interrupt bit to set */
  674. if (wait_for(I915_READ(pipestat_reg) &
  675. PIPE_VBLANK_INTERRUPT_STATUS,
  676. 50))
  677. DRM_DEBUG_KMS("vblank wait timed out\n");
  678. }
  679. /*
  680. * intel_wait_for_pipe_off - wait for pipe to turn off
  681. * @dev: drm device
  682. * @pipe: pipe to wait for
  683. *
  684. * After disabling a pipe, we can't wait for vblank in the usual way,
  685. * spinning on the vblank interrupt status bit, since we won't actually
  686. * see an interrupt when the pipe is disabled.
  687. *
  688. * On Gen4 and above:
  689. * wait for the pipe register state bit to turn off
  690. *
  691. * Otherwise:
  692. * wait for the display line value to settle (it usually
  693. * ends up stopping at the start of the next frame).
  694. *
  695. */
  696. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  697. {
  698. struct drm_i915_private *dev_priv = dev->dev_private;
  699. if (INTEL_INFO(dev)->gen >= 4) {
  700. int reg = PIPECONF(pipe);
  701. /* Wait for the Pipe State to go off */
  702. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  703. 100))
  704. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  705. } else {
  706. u32 last_line;
  707. int reg = PIPEDSL(pipe);
  708. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  709. /* Wait for the display line to settle */
  710. do {
  711. last_line = I915_READ(reg) & DSL_LINEMASK;
  712. mdelay(5);
  713. } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
  714. time_after(timeout, jiffies));
  715. if (time_after(jiffies, timeout))
  716. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  717. }
  718. }
  719. static const char *state_string(bool enabled)
  720. {
  721. return enabled ? "on" : "off";
  722. }
  723. /* Only for pre-ILK configs */
  724. static void assert_pll(struct drm_i915_private *dev_priv,
  725. enum pipe pipe, bool state)
  726. {
  727. int reg;
  728. u32 val;
  729. bool cur_state;
  730. reg = DPLL(pipe);
  731. val = I915_READ(reg);
  732. cur_state = !!(val & DPLL_VCO_ENABLE);
  733. WARN(cur_state != state,
  734. "PLL state assertion failure (expected %s, current %s)\n",
  735. state_string(state), state_string(cur_state));
  736. }
  737. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  738. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  739. /* For ILK+ */
  740. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  741. enum pipe pipe, bool state)
  742. {
  743. int reg;
  744. u32 val;
  745. bool cur_state;
  746. if (HAS_PCH_CPT(dev_priv->dev)) {
  747. u32 pch_dpll;
  748. pch_dpll = I915_READ(PCH_DPLL_SEL);
  749. /* Make sure the selected PLL is enabled to the transcoder */
  750. WARN(!((pch_dpll >> (4 * pipe)) & 8),
  751. "transcoder %d PLL not enabled\n", pipe);
  752. /* Convert the transcoder pipe number to a pll pipe number */
  753. pipe = (pch_dpll >> (4 * pipe)) & 1;
  754. }
  755. reg = PCH_DPLL(pipe);
  756. val = I915_READ(reg);
  757. cur_state = !!(val & DPLL_VCO_ENABLE);
  758. WARN(cur_state != state,
  759. "PCH PLL state assertion failure (expected %s, current %s)\n",
  760. state_string(state), state_string(cur_state));
  761. }
  762. #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
  763. #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
  764. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  765. enum pipe pipe, bool state)
  766. {
  767. int reg;
  768. u32 val;
  769. bool cur_state;
  770. reg = FDI_TX_CTL(pipe);
  771. val = I915_READ(reg);
  772. cur_state = !!(val & FDI_TX_ENABLE);
  773. WARN(cur_state != state,
  774. "FDI TX state assertion failure (expected %s, current %s)\n",
  775. state_string(state), state_string(cur_state));
  776. }
  777. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  778. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  779. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  780. enum pipe pipe, bool state)
  781. {
  782. int reg;
  783. u32 val;
  784. bool cur_state;
  785. reg = FDI_RX_CTL(pipe);
  786. val = I915_READ(reg);
  787. cur_state = !!(val & FDI_RX_ENABLE);
  788. WARN(cur_state != state,
  789. "FDI RX state assertion failure (expected %s, current %s)\n",
  790. state_string(state), state_string(cur_state));
  791. }
  792. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  793. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  794. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  795. enum pipe pipe)
  796. {
  797. int reg;
  798. u32 val;
  799. /* ILK FDI PLL is always enabled */
  800. if (dev_priv->info->gen == 5)
  801. return;
  802. reg = FDI_TX_CTL(pipe);
  803. val = I915_READ(reg);
  804. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  805. }
  806. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  807. enum pipe pipe)
  808. {
  809. int reg;
  810. u32 val;
  811. reg = FDI_RX_CTL(pipe);
  812. val = I915_READ(reg);
  813. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  814. }
  815. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  816. enum pipe pipe)
  817. {
  818. int pp_reg, lvds_reg;
  819. u32 val;
  820. enum pipe panel_pipe = PIPE_A;
  821. bool locked = true;
  822. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  823. pp_reg = PCH_PP_CONTROL;
  824. lvds_reg = PCH_LVDS;
  825. } else {
  826. pp_reg = PP_CONTROL;
  827. lvds_reg = LVDS;
  828. }
  829. val = I915_READ(pp_reg);
  830. if (!(val & PANEL_POWER_ON) ||
  831. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  832. locked = false;
  833. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  834. panel_pipe = PIPE_B;
  835. WARN(panel_pipe == pipe && locked,
  836. "panel assertion failure, pipe %c regs locked\n",
  837. pipe_name(pipe));
  838. }
  839. void assert_pipe(struct drm_i915_private *dev_priv,
  840. enum pipe pipe, bool state)
  841. {
  842. int reg;
  843. u32 val;
  844. bool cur_state;
  845. /* if we need the pipe A quirk it must be always on */
  846. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  847. state = true;
  848. reg = PIPECONF(pipe);
  849. val = I915_READ(reg);
  850. cur_state = !!(val & PIPECONF_ENABLE);
  851. WARN(cur_state != state,
  852. "pipe %c assertion failure (expected %s, current %s)\n",
  853. pipe_name(pipe), state_string(state), state_string(cur_state));
  854. }
  855. static void assert_plane(struct drm_i915_private *dev_priv,
  856. enum plane plane, bool state)
  857. {
  858. int reg;
  859. u32 val;
  860. bool cur_state;
  861. reg = DSPCNTR(plane);
  862. val = I915_READ(reg);
  863. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  864. WARN(cur_state != state,
  865. "plane %c assertion failure (expected %s, current %s)\n",
  866. plane_name(plane), state_string(state), state_string(cur_state));
  867. }
  868. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  869. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  870. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  871. enum pipe pipe)
  872. {
  873. int reg, i;
  874. u32 val;
  875. int cur_pipe;
  876. /* Planes are fixed to pipes on ILK+ */
  877. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  878. reg = DSPCNTR(pipe);
  879. val = I915_READ(reg);
  880. WARN((val & DISPLAY_PLANE_ENABLE),
  881. "plane %c assertion failure, should be disabled but not\n",
  882. plane_name(pipe));
  883. return;
  884. }
  885. /* Need to check both planes against the pipe */
  886. for (i = 0; i < 2; i++) {
  887. reg = DSPCNTR(i);
  888. val = I915_READ(reg);
  889. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  890. DISPPLANE_SEL_PIPE_SHIFT;
  891. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  892. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  893. plane_name(i), pipe_name(pipe));
  894. }
  895. }
  896. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  897. {
  898. u32 val;
  899. bool enabled;
  900. val = I915_READ(PCH_DREF_CONTROL);
  901. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  902. DREF_SUPERSPREAD_SOURCE_MASK));
  903. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  904. }
  905. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  906. enum pipe pipe)
  907. {
  908. int reg;
  909. u32 val;
  910. bool enabled;
  911. reg = TRANSCONF(pipe);
  912. val = I915_READ(reg);
  913. enabled = !!(val & TRANS_ENABLE);
  914. WARN(enabled,
  915. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  916. pipe_name(pipe));
  917. }
  918. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  919. enum pipe pipe, u32 port_sel, u32 val)
  920. {
  921. if ((val & DP_PORT_EN) == 0)
  922. return false;
  923. if (HAS_PCH_CPT(dev_priv->dev)) {
  924. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  925. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  926. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  927. return false;
  928. } else {
  929. if ((val & DP_PIPE_MASK) != (pipe << 30))
  930. return false;
  931. }
  932. return true;
  933. }
  934. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  935. enum pipe pipe, u32 val)
  936. {
  937. if ((val & PORT_ENABLE) == 0)
  938. return false;
  939. if (HAS_PCH_CPT(dev_priv->dev)) {
  940. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  941. return false;
  942. } else {
  943. if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
  944. return false;
  945. }
  946. return true;
  947. }
  948. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  949. enum pipe pipe, u32 val)
  950. {
  951. if ((val & LVDS_PORT_EN) == 0)
  952. return false;
  953. if (HAS_PCH_CPT(dev_priv->dev)) {
  954. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  955. return false;
  956. } else {
  957. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  958. return false;
  959. }
  960. return true;
  961. }
  962. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  963. enum pipe pipe, u32 val)
  964. {
  965. if ((val & ADPA_DAC_ENABLE) == 0)
  966. return false;
  967. if (HAS_PCH_CPT(dev_priv->dev)) {
  968. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  969. return false;
  970. } else {
  971. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  972. return false;
  973. }
  974. return true;
  975. }
  976. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  977. enum pipe pipe, int reg, u32 port_sel)
  978. {
  979. u32 val = I915_READ(reg);
  980. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  981. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  982. reg, pipe_name(pipe));
  983. }
  984. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  985. enum pipe pipe, int reg)
  986. {
  987. u32 val = I915_READ(reg);
  988. WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
  989. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  990. reg, pipe_name(pipe));
  991. }
  992. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  993. enum pipe pipe)
  994. {
  995. int reg;
  996. u32 val;
  997. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  998. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  999. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1000. reg = PCH_ADPA;
  1001. val = I915_READ(reg);
  1002. WARN(adpa_pipe_enabled(dev_priv, val, pipe),
  1003. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1004. pipe_name(pipe));
  1005. reg = PCH_LVDS;
  1006. val = I915_READ(reg);
  1007. WARN(lvds_pipe_enabled(dev_priv, val, pipe),
  1008. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1009. pipe_name(pipe));
  1010. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
  1011. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
  1012. assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
  1013. }
  1014. /**
  1015. * intel_enable_pll - enable a PLL
  1016. * @dev_priv: i915 private structure
  1017. * @pipe: pipe PLL to enable
  1018. *
  1019. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1020. * make sure the PLL reg is writable first though, since the panel write
  1021. * protect mechanism may be enabled.
  1022. *
  1023. * Note! This is for pre-ILK only.
  1024. */
  1025. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1026. {
  1027. int reg;
  1028. u32 val;
  1029. /* No really, not for ILK+ */
  1030. BUG_ON(dev_priv->info->gen >= 5);
  1031. /* PLL is protected by panel, make sure we can write it */
  1032. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1033. assert_panel_unlocked(dev_priv, pipe);
  1034. reg = DPLL(pipe);
  1035. val = I915_READ(reg);
  1036. val |= DPLL_VCO_ENABLE;
  1037. /* We do this three times for luck */
  1038. I915_WRITE(reg, val);
  1039. POSTING_READ(reg);
  1040. udelay(150); /* wait for warmup */
  1041. I915_WRITE(reg, val);
  1042. POSTING_READ(reg);
  1043. udelay(150); /* wait for warmup */
  1044. I915_WRITE(reg, val);
  1045. POSTING_READ(reg);
  1046. udelay(150); /* wait for warmup */
  1047. }
  1048. /**
  1049. * intel_disable_pll - disable a PLL
  1050. * @dev_priv: i915 private structure
  1051. * @pipe: pipe PLL to disable
  1052. *
  1053. * Disable the PLL for @pipe, making sure the pipe is off first.
  1054. *
  1055. * Note! This is for pre-ILK only.
  1056. */
  1057. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1058. {
  1059. int reg;
  1060. u32 val;
  1061. /* Don't disable pipe A or pipe A PLLs if needed */
  1062. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1063. return;
  1064. /* Make sure the pipe isn't still relying on us */
  1065. assert_pipe_disabled(dev_priv, pipe);
  1066. reg = DPLL(pipe);
  1067. val = I915_READ(reg);
  1068. val &= ~DPLL_VCO_ENABLE;
  1069. I915_WRITE(reg, val);
  1070. POSTING_READ(reg);
  1071. }
  1072. /**
  1073. * intel_enable_pch_pll - enable PCH PLL
  1074. * @dev_priv: i915 private structure
  1075. * @pipe: pipe PLL to enable
  1076. *
  1077. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1078. * drives the transcoder clock.
  1079. */
  1080. static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
  1081. enum pipe pipe)
  1082. {
  1083. int reg;
  1084. u32 val;
  1085. if (pipe > 1)
  1086. return;
  1087. /* PCH only available on ILK+ */
  1088. BUG_ON(dev_priv->info->gen < 5);
  1089. /* PCH refclock must be enabled first */
  1090. assert_pch_refclk_enabled(dev_priv);
  1091. reg = PCH_DPLL(pipe);
  1092. val = I915_READ(reg);
  1093. val |= DPLL_VCO_ENABLE;
  1094. I915_WRITE(reg, val);
  1095. POSTING_READ(reg);
  1096. udelay(200);
  1097. }
  1098. static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
  1099. enum pipe pipe)
  1100. {
  1101. int reg;
  1102. u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
  1103. pll_sel = TRANSC_DPLL_ENABLE;
  1104. if (pipe > 1)
  1105. return;
  1106. /* PCH only available on ILK+ */
  1107. BUG_ON(dev_priv->info->gen < 5);
  1108. /* Make sure transcoder isn't still depending on us */
  1109. assert_transcoder_disabled(dev_priv, pipe);
  1110. if (pipe == 0)
  1111. pll_sel |= TRANSC_DPLLA_SEL;
  1112. else if (pipe == 1)
  1113. pll_sel |= TRANSC_DPLLB_SEL;
  1114. if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
  1115. return;
  1116. reg = PCH_DPLL(pipe);
  1117. val = I915_READ(reg);
  1118. val &= ~DPLL_VCO_ENABLE;
  1119. I915_WRITE(reg, val);
  1120. POSTING_READ(reg);
  1121. udelay(200);
  1122. }
  1123. static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
  1124. enum pipe pipe)
  1125. {
  1126. int reg;
  1127. u32 val, pipeconf_val;
  1128. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1129. /* PCH only available on ILK+ */
  1130. BUG_ON(dev_priv->info->gen < 5);
  1131. /* Make sure PCH DPLL is enabled */
  1132. assert_pch_pll_enabled(dev_priv, pipe);
  1133. /* FDI must be feeding us bits for PCH ports */
  1134. assert_fdi_tx_enabled(dev_priv, pipe);
  1135. assert_fdi_rx_enabled(dev_priv, pipe);
  1136. reg = TRANSCONF(pipe);
  1137. val = I915_READ(reg);
  1138. pipeconf_val = I915_READ(PIPECONF(pipe));
  1139. if (HAS_PCH_IBX(dev_priv->dev)) {
  1140. /*
  1141. * make the BPC in transcoder be consistent with
  1142. * that in pipeconf reg.
  1143. */
  1144. val &= ~PIPE_BPC_MASK;
  1145. val |= pipeconf_val & PIPE_BPC_MASK;
  1146. }
  1147. val &= ~TRANS_INTERLACE_MASK;
  1148. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1149. if (HAS_PCH_IBX(dev_priv->dev) &&
  1150. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1151. val |= TRANS_LEGACY_INTERLACED_ILK;
  1152. else
  1153. val |= TRANS_INTERLACED;
  1154. else
  1155. val |= TRANS_PROGRESSIVE;
  1156. I915_WRITE(reg, val | TRANS_ENABLE);
  1157. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1158. DRM_ERROR("failed to enable transcoder %d\n", pipe);
  1159. }
  1160. static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
  1161. enum pipe pipe)
  1162. {
  1163. int reg;
  1164. u32 val;
  1165. /* FDI relies on the transcoder */
  1166. assert_fdi_tx_disabled(dev_priv, pipe);
  1167. assert_fdi_rx_disabled(dev_priv, pipe);
  1168. /* Ports must be off as well */
  1169. assert_pch_ports_disabled(dev_priv, pipe);
  1170. reg = TRANSCONF(pipe);
  1171. val = I915_READ(reg);
  1172. val &= ~TRANS_ENABLE;
  1173. I915_WRITE(reg, val);
  1174. /* wait for PCH transcoder off, transcoder state */
  1175. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1176. DRM_ERROR("failed to disable transcoder %d\n", pipe);
  1177. }
  1178. /**
  1179. * intel_enable_pipe - enable a pipe, asserting requirements
  1180. * @dev_priv: i915 private structure
  1181. * @pipe: pipe to enable
  1182. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1183. *
  1184. * Enable @pipe, making sure that various hardware specific requirements
  1185. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1186. *
  1187. * @pipe should be %PIPE_A or %PIPE_B.
  1188. *
  1189. * Will wait until the pipe is actually running (i.e. first vblank) before
  1190. * returning.
  1191. */
  1192. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1193. bool pch_port)
  1194. {
  1195. int reg;
  1196. u32 val;
  1197. /*
  1198. * A pipe without a PLL won't actually be able to drive bits from
  1199. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1200. * need the check.
  1201. */
  1202. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1203. assert_pll_enabled(dev_priv, pipe);
  1204. else {
  1205. if (pch_port) {
  1206. /* if driving the PCH, we need FDI enabled */
  1207. assert_fdi_rx_pll_enabled(dev_priv, pipe);
  1208. assert_fdi_tx_pll_enabled(dev_priv, pipe);
  1209. }
  1210. /* FIXME: assert CPU port conditions for SNB+ */
  1211. }
  1212. reg = PIPECONF(pipe);
  1213. val = I915_READ(reg);
  1214. if (val & PIPECONF_ENABLE)
  1215. return;
  1216. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1217. intel_wait_for_vblank(dev_priv->dev, pipe);
  1218. }
  1219. /**
  1220. * intel_disable_pipe - disable a pipe, asserting requirements
  1221. * @dev_priv: i915 private structure
  1222. * @pipe: pipe to disable
  1223. *
  1224. * Disable @pipe, making sure that various hardware specific requirements
  1225. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1226. *
  1227. * @pipe should be %PIPE_A or %PIPE_B.
  1228. *
  1229. * Will wait until the pipe has shut down before returning.
  1230. */
  1231. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1232. enum pipe pipe)
  1233. {
  1234. int reg;
  1235. u32 val;
  1236. /*
  1237. * Make sure planes won't keep trying to pump pixels to us,
  1238. * or we might hang the display.
  1239. */
  1240. assert_planes_disabled(dev_priv, pipe);
  1241. /* Don't disable pipe A or pipe A PLLs if needed */
  1242. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1243. return;
  1244. reg = PIPECONF(pipe);
  1245. val = I915_READ(reg);
  1246. if ((val & PIPECONF_ENABLE) == 0)
  1247. return;
  1248. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1249. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1250. }
  1251. /*
  1252. * Plane regs are double buffered, going from enabled->disabled needs a
  1253. * trigger in order to latch. The display address reg provides this.
  1254. */
  1255. static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1256. enum plane plane)
  1257. {
  1258. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1259. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1260. }
  1261. /**
  1262. * intel_enable_plane - enable a display plane on a given pipe
  1263. * @dev_priv: i915 private structure
  1264. * @plane: plane to enable
  1265. * @pipe: pipe being fed
  1266. *
  1267. * Enable @plane on @pipe, making sure that @pipe is running first.
  1268. */
  1269. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1270. enum plane plane, enum pipe pipe)
  1271. {
  1272. int reg;
  1273. u32 val;
  1274. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1275. assert_pipe_enabled(dev_priv, pipe);
  1276. reg = DSPCNTR(plane);
  1277. val = I915_READ(reg);
  1278. if (val & DISPLAY_PLANE_ENABLE)
  1279. return;
  1280. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1281. intel_flush_display_plane(dev_priv, plane);
  1282. intel_wait_for_vblank(dev_priv->dev, pipe);
  1283. }
  1284. /**
  1285. * intel_disable_plane - disable a display plane
  1286. * @dev_priv: i915 private structure
  1287. * @plane: plane to disable
  1288. * @pipe: pipe consuming the data
  1289. *
  1290. * Disable @plane; should be an independent operation.
  1291. */
  1292. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1293. enum plane plane, enum pipe pipe)
  1294. {
  1295. int reg;
  1296. u32 val;
  1297. reg = DSPCNTR(plane);
  1298. val = I915_READ(reg);
  1299. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1300. return;
  1301. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1302. intel_flush_display_plane(dev_priv, plane);
  1303. intel_wait_for_vblank(dev_priv->dev, pipe);
  1304. }
  1305. static void disable_pch_dp(struct drm_i915_private *dev_priv,
  1306. enum pipe pipe, int reg, u32 port_sel)
  1307. {
  1308. u32 val = I915_READ(reg);
  1309. if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
  1310. DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
  1311. I915_WRITE(reg, val & ~DP_PORT_EN);
  1312. }
  1313. }
  1314. static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
  1315. enum pipe pipe, int reg)
  1316. {
  1317. u32 val = I915_READ(reg);
  1318. if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
  1319. DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
  1320. reg, pipe);
  1321. I915_WRITE(reg, val & ~PORT_ENABLE);
  1322. }
  1323. }
  1324. /* Disable any ports connected to this transcoder */
  1325. static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
  1326. enum pipe pipe)
  1327. {
  1328. u32 reg, val;
  1329. val = I915_READ(PCH_PP_CONTROL);
  1330. I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
  1331. disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1332. disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1333. disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1334. reg = PCH_ADPA;
  1335. val = I915_READ(reg);
  1336. if (adpa_pipe_enabled(dev_priv, val, pipe))
  1337. I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
  1338. reg = PCH_LVDS;
  1339. val = I915_READ(reg);
  1340. if (lvds_pipe_enabled(dev_priv, val, pipe)) {
  1341. DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
  1342. I915_WRITE(reg, val & ~LVDS_PORT_EN);
  1343. POSTING_READ(reg);
  1344. udelay(100);
  1345. }
  1346. disable_pch_hdmi(dev_priv, pipe, HDMIB);
  1347. disable_pch_hdmi(dev_priv, pipe, HDMIC);
  1348. disable_pch_hdmi(dev_priv, pipe, HDMID);
  1349. }
  1350. static void i8xx_disable_fbc(struct drm_device *dev)
  1351. {
  1352. struct drm_i915_private *dev_priv = dev->dev_private;
  1353. u32 fbc_ctl;
  1354. /* Disable compression */
  1355. fbc_ctl = I915_READ(FBC_CONTROL);
  1356. if ((fbc_ctl & FBC_CTL_EN) == 0)
  1357. return;
  1358. fbc_ctl &= ~FBC_CTL_EN;
  1359. I915_WRITE(FBC_CONTROL, fbc_ctl);
  1360. /* Wait for compressing bit to clear */
  1361. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  1362. DRM_DEBUG_KMS("FBC idle timed out\n");
  1363. return;
  1364. }
  1365. DRM_DEBUG_KMS("disabled FBC\n");
  1366. }
  1367. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1368. {
  1369. struct drm_device *dev = crtc->dev;
  1370. struct drm_i915_private *dev_priv = dev->dev_private;
  1371. struct drm_framebuffer *fb = crtc->fb;
  1372. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1373. struct drm_i915_gem_object *obj = intel_fb->obj;
  1374. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1375. int cfb_pitch;
  1376. int plane, i;
  1377. u32 fbc_ctl, fbc_ctl2;
  1378. cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  1379. if (fb->pitches[0] < cfb_pitch)
  1380. cfb_pitch = fb->pitches[0];
  1381. /* FBC_CTL wants 64B units */
  1382. cfb_pitch = (cfb_pitch / 64) - 1;
  1383. plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  1384. /* Clear old tags */
  1385. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  1386. I915_WRITE(FBC_TAG + (i * 4), 0);
  1387. /* Set it up... */
  1388. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  1389. fbc_ctl2 |= plane;
  1390. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  1391. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  1392. /* enable it... */
  1393. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  1394. if (IS_I945GM(dev))
  1395. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  1396. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  1397. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  1398. fbc_ctl |= obj->fence_reg;
  1399. I915_WRITE(FBC_CONTROL, fbc_ctl);
  1400. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
  1401. cfb_pitch, crtc->y, intel_crtc->plane);
  1402. }
  1403. static bool i8xx_fbc_enabled(struct drm_device *dev)
  1404. {
  1405. struct drm_i915_private *dev_priv = dev->dev_private;
  1406. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  1407. }
  1408. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1409. {
  1410. struct drm_device *dev = crtc->dev;
  1411. struct drm_i915_private *dev_priv = dev->dev_private;
  1412. struct drm_framebuffer *fb = crtc->fb;
  1413. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1414. struct drm_i915_gem_object *obj = intel_fb->obj;
  1415. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1416. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  1417. unsigned long stall_watermark = 200;
  1418. u32 dpfc_ctl;
  1419. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  1420. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  1421. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  1422. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1423. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1424. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1425. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  1426. /* enable it... */
  1427. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  1428. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1429. }
  1430. static void g4x_disable_fbc(struct drm_device *dev)
  1431. {
  1432. struct drm_i915_private *dev_priv = dev->dev_private;
  1433. u32 dpfc_ctl;
  1434. /* Disable compression */
  1435. dpfc_ctl = I915_READ(DPFC_CONTROL);
  1436. if (dpfc_ctl & DPFC_CTL_EN) {
  1437. dpfc_ctl &= ~DPFC_CTL_EN;
  1438. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  1439. DRM_DEBUG_KMS("disabled FBC\n");
  1440. }
  1441. }
  1442. static bool g4x_fbc_enabled(struct drm_device *dev)
  1443. {
  1444. struct drm_i915_private *dev_priv = dev->dev_private;
  1445. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  1446. }
  1447. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  1448. {
  1449. struct drm_i915_private *dev_priv = dev->dev_private;
  1450. u32 blt_ecoskpd;
  1451. /* Make sure blitter notifies FBC of writes */
  1452. gen6_gt_force_wake_get(dev_priv);
  1453. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  1454. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  1455. GEN6_BLITTER_LOCK_SHIFT;
  1456. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1457. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  1458. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1459. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  1460. GEN6_BLITTER_LOCK_SHIFT);
  1461. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1462. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  1463. gen6_gt_force_wake_put(dev_priv);
  1464. }
  1465. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1466. {
  1467. struct drm_device *dev = crtc->dev;
  1468. struct drm_i915_private *dev_priv = dev->dev_private;
  1469. struct drm_framebuffer *fb = crtc->fb;
  1470. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1471. struct drm_i915_gem_object *obj = intel_fb->obj;
  1472. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1473. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  1474. unsigned long stall_watermark = 200;
  1475. u32 dpfc_ctl;
  1476. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1477. dpfc_ctl &= DPFC_RESERVED;
  1478. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  1479. /* Set persistent mode for front-buffer rendering, ala X. */
  1480. dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
  1481. dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
  1482. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  1483. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1484. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1485. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1486. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  1487. I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
  1488. /* enable it... */
  1489. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  1490. if (IS_GEN6(dev)) {
  1491. I915_WRITE(SNB_DPFC_CTL_SA,
  1492. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  1493. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  1494. sandybridge_blit_fbc_update(dev);
  1495. }
  1496. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1497. }
  1498. static void ironlake_disable_fbc(struct drm_device *dev)
  1499. {
  1500. struct drm_i915_private *dev_priv = dev->dev_private;
  1501. u32 dpfc_ctl;
  1502. /* Disable compression */
  1503. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1504. if (dpfc_ctl & DPFC_CTL_EN) {
  1505. dpfc_ctl &= ~DPFC_CTL_EN;
  1506. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  1507. DRM_DEBUG_KMS("disabled FBC\n");
  1508. }
  1509. }
  1510. static bool ironlake_fbc_enabled(struct drm_device *dev)
  1511. {
  1512. struct drm_i915_private *dev_priv = dev->dev_private;
  1513. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  1514. }
  1515. bool intel_fbc_enabled(struct drm_device *dev)
  1516. {
  1517. struct drm_i915_private *dev_priv = dev->dev_private;
  1518. if (!dev_priv->display.fbc_enabled)
  1519. return false;
  1520. return dev_priv->display.fbc_enabled(dev);
  1521. }
  1522. static void intel_fbc_work_fn(struct work_struct *__work)
  1523. {
  1524. struct intel_fbc_work *work =
  1525. container_of(to_delayed_work(__work),
  1526. struct intel_fbc_work, work);
  1527. struct drm_device *dev = work->crtc->dev;
  1528. struct drm_i915_private *dev_priv = dev->dev_private;
  1529. mutex_lock(&dev->struct_mutex);
  1530. if (work == dev_priv->fbc_work) {
  1531. /* Double check that we haven't switched fb without cancelling
  1532. * the prior work.
  1533. */
  1534. if (work->crtc->fb == work->fb) {
  1535. dev_priv->display.enable_fbc(work->crtc,
  1536. work->interval);
  1537. dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
  1538. dev_priv->cfb_fb = work->crtc->fb->base.id;
  1539. dev_priv->cfb_y = work->crtc->y;
  1540. }
  1541. dev_priv->fbc_work = NULL;
  1542. }
  1543. mutex_unlock(&dev->struct_mutex);
  1544. kfree(work);
  1545. }
  1546. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  1547. {
  1548. if (dev_priv->fbc_work == NULL)
  1549. return;
  1550. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  1551. /* Synchronisation is provided by struct_mutex and checking of
  1552. * dev_priv->fbc_work, so we can perform the cancellation
  1553. * entirely asynchronously.
  1554. */
  1555. if (cancel_delayed_work(&dev_priv->fbc_work->work))
  1556. /* tasklet was killed before being run, clean up */
  1557. kfree(dev_priv->fbc_work);
  1558. /* Mark the work as no longer wanted so that if it does
  1559. * wake-up (because the work was already running and waiting
  1560. * for our mutex), it will discover that is no longer
  1561. * necessary to run.
  1562. */
  1563. dev_priv->fbc_work = NULL;
  1564. }
  1565. static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1566. {
  1567. struct intel_fbc_work *work;
  1568. struct drm_device *dev = crtc->dev;
  1569. struct drm_i915_private *dev_priv = dev->dev_private;
  1570. if (!dev_priv->display.enable_fbc)
  1571. return;
  1572. intel_cancel_fbc_work(dev_priv);
  1573. work = kzalloc(sizeof *work, GFP_KERNEL);
  1574. if (work == NULL) {
  1575. dev_priv->display.enable_fbc(crtc, interval);
  1576. return;
  1577. }
  1578. work->crtc = crtc;
  1579. work->fb = crtc->fb;
  1580. work->interval = interval;
  1581. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  1582. dev_priv->fbc_work = work;
  1583. DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
  1584. /* Delay the actual enabling to let pageflipping cease and the
  1585. * display to settle before starting the compression. Note that
  1586. * this delay also serves a second purpose: it allows for a
  1587. * vblank to pass after disabling the FBC before we attempt
  1588. * to modify the control registers.
  1589. *
  1590. * A more complicated solution would involve tracking vblanks
  1591. * following the termination of the page-flipping sequence
  1592. * and indeed performing the enable as a co-routine and not
  1593. * waiting synchronously upon the vblank.
  1594. */
  1595. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  1596. }
  1597. void intel_disable_fbc(struct drm_device *dev)
  1598. {
  1599. struct drm_i915_private *dev_priv = dev->dev_private;
  1600. intel_cancel_fbc_work(dev_priv);
  1601. if (!dev_priv->display.disable_fbc)
  1602. return;
  1603. dev_priv->display.disable_fbc(dev);
  1604. dev_priv->cfb_plane = -1;
  1605. }
  1606. /**
  1607. * intel_update_fbc - enable/disable FBC as needed
  1608. * @dev: the drm_device
  1609. *
  1610. * Set up the framebuffer compression hardware at mode set time. We
  1611. * enable it if possible:
  1612. * - plane A only (on pre-965)
  1613. * - no pixel mulitply/line duplication
  1614. * - no alpha buffer discard
  1615. * - no dual wide
  1616. * - framebuffer <= 2048 in width, 1536 in height
  1617. *
  1618. * We can't assume that any compression will take place (worst case),
  1619. * so the compressed buffer has to be the same size as the uncompressed
  1620. * one. It also must reside (along with the line length buffer) in
  1621. * stolen memory.
  1622. *
  1623. * We need to enable/disable FBC on a global basis.
  1624. */
  1625. static void intel_update_fbc(struct drm_device *dev)
  1626. {
  1627. struct drm_i915_private *dev_priv = dev->dev_private;
  1628. struct drm_crtc *crtc = NULL, *tmp_crtc;
  1629. struct intel_crtc *intel_crtc;
  1630. struct drm_framebuffer *fb;
  1631. struct intel_framebuffer *intel_fb;
  1632. struct drm_i915_gem_object *obj;
  1633. int enable_fbc;
  1634. DRM_DEBUG_KMS("\n");
  1635. if (!i915_powersave)
  1636. return;
  1637. if (!I915_HAS_FBC(dev))
  1638. return;
  1639. /*
  1640. * If FBC is already on, we just have to verify that we can
  1641. * keep it that way...
  1642. * Need to disable if:
  1643. * - more than one pipe is active
  1644. * - changing FBC params (stride, fence, mode)
  1645. * - new fb is too large to fit in compressed buffer
  1646. * - going to an unsupported config (interlace, pixel multiply, etc.)
  1647. */
  1648. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  1649. if (tmp_crtc->enabled && tmp_crtc->fb) {
  1650. if (crtc) {
  1651. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  1652. dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
  1653. goto out_disable;
  1654. }
  1655. crtc = tmp_crtc;
  1656. }
  1657. }
  1658. if (!crtc || crtc->fb == NULL) {
  1659. DRM_DEBUG_KMS("no output, disabling\n");
  1660. dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
  1661. goto out_disable;
  1662. }
  1663. intel_crtc = to_intel_crtc(crtc);
  1664. fb = crtc->fb;
  1665. intel_fb = to_intel_framebuffer(fb);
  1666. obj = intel_fb->obj;
  1667. enable_fbc = i915_enable_fbc;
  1668. if (enable_fbc < 0) {
  1669. DRM_DEBUG_KMS("fbc set to per-chip default\n");
  1670. enable_fbc = 1;
  1671. if (INTEL_INFO(dev)->gen <= 6)
  1672. enable_fbc = 0;
  1673. }
  1674. if (!enable_fbc) {
  1675. DRM_DEBUG_KMS("fbc disabled per module param\n");
  1676. dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
  1677. goto out_disable;
  1678. }
  1679. if (intel_fb->obj->base.size > dev_priv->cfb_size) {
  1680. DRM_DEBUG_KMS("framebuffer too large, disabling "
  1681. "compression\n");
  1682. dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
  1683. goto out_disable;
  1684. }
  1685. if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
  1686. (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
  1687. DRM_DEBUG_KMS("mode incompatible with compression, "
  1688. "disabling\n");
  1689. dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
  1690. goto out_disable;
  1691. }
  1692. if ((crtc->mode.hdisplay > 2048) ||
  1693. (crtc->mode.vdisplay > 1536)) {
  1694. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  1695. dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
  1696. goto out_disable;
  1697. }
  1698. if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
  1699. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  1700. dev_priv->no_fbc_reason = FBC_BAD_PLANE;
  1701. goto out_disable;
  1702. }
  1703. /* The use of a CPU fence is mandatory in order to detect writes
  1704. * by the CPU to the scanout and trigger updates to the FBC.
  1705. */
  1706. if (obj->tiling_mode != I915_TILING_X ||
  1707. obj->fence_reg == I915_FENCE_REG_NONE) {
  1708. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  1709. dev_priv->no_fbc_reason = FBC_NOT_TILED;
  1710. goto out_disable;
  1711. }
  1712. /* If the kernel debugger is active, always disable compression */
  1713. if (in_dbg_master())
  1714. goto out_disable;
  1715. /* If the scanout has not changed, don't modify the FBC settings.
  1716. * Note that we make the fundamental assumption that the fb->obj
  1717. * cannot be unpinned (and have its GTT offset and fence revoked)
  1718. * without first being decoupled from the scanout and FBC disabled.
  1719. */
  1720. if (dev_priv->cfb_plane == intel_crtc->plane &&
  1721. dev_priv->cfb_fb == fb->base.id &&
  1722. dev_priv->cfb_y == crtc->y)
  1723. return;
  1724. if (intel_fbc_enabled(dev)) {
  1725. /* We update FBC along two paths, after changing fb/crtc
  1726. * configuration (modeswitching) and after page-flipping
  1727. * finishes. For the latter, we know that not only did
  1728. * we disable the FBC at the start of the page-flip
  1729. * sequence, but also more than one vblank has passed.
  1730. *
  1731. * For the former case of modeswitching, it is possible
  1732. * to switch between two FBC valid configurations
  1733. * instantaneously so we do need to disable the FBC
  1734. * before we can modify its control registers. We also
  1735. * have to wait for the next vblank for that to take
  1736. * effect. However, since we delay enabling FBC we can
  1737. * assume that a vblank has passed since disabling and
  1738. * that we can safely alter the registers in the deferred
  1739. * callback.
  1740. *
  1741. * In the scenario that we go from a valid to invalid
  1742. * and then back to valid FBC configuration we have
  1743. * no strict enforcement that a vblank occurred since
  1744. * disabling the FBC. However, along all current pipe
  1745. * disabling paths we do need to wait for a vblank at
  1746. * some point. And we wait before enabling FBC anyway.
  1747. */
  1748. DRM_DEBUG_KMS("disabling active FBC for update\n");
  1749. intel_disable_fbc(dev);
  1750. }
  1751. intel_enable_fbc(crtc, 500);
  1752. return;
  1753. out_disable:
  1754. /* Multiple disables should be harmless */
  1755. if (intel_fbc_enabled(dev)) {
  1756. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  1757. intel_disable_fbc(dev);
  1758. }
  1759. }
  1760. int
  1761. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1762. struct drm_i915_gem_object *obj,
  1763. struct intel_ring_buffer *pipelined)
  1764. {
  1765. struct drm_i915_private *dev_priv = dev->dev_private;
  1766. u32 alignment;
  1767. int ret;
  1768. switch (obj->tiling_mode) {
  1769. case I915_TILING_NONE:
  1770. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1771. alignment = 128 * 1024;
  1772. else if (INTEL_INFO(dev)->gen >= 4)
  1773. alignment = 4 * 1024;
  1774. else
  1775. alignment = 64 * 1024;
  1776. break;
  1777. case I915_TILING_X:
  1778. /* pin() will align the object as required by fence */
  1779. alignment = 0;
  1780. break;
  1781. case I915_TILING_Y:
  1782. /* FIXME: Is this true? */
  1783. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1784. return -EINVAL;
  1785. default:
  1786. BUG();
  1787. }
  1788. dev_priv->mm.interruptible = false;
  1789. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1790. if (ret)
  1791. goto err_interruptible;
  1792. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1793. * fence, whereas 965+ only requires a fence if using
  1794. * framebuffer compression. For simplicity, we always install
  1795. * a fence as the cost is not that onerous.
  1796. */
  1797. if (obj->tiling_mode != I915_TILING_NONE) {
  1798. ret = i915_gem_object_get_fence(obj, pipelined);
  1799. if (ret)
  1800. goto err_unpin;
  1801. i915_gem_object_pin_fence(obj);
  1802. }
  1803. dev_priv->mm.interruptible = true;
  1804. return 0;
  1805. err_unpin:
  1806. i915_gem_object_unpin(obj);
  1807. err_interruptible:
  1808. dev_priv->mm.interruptible = true;
  1809. return ret;
  1810. }
  1811. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1812. {
  1813. i915_gem_object_unpin_fence(obj);
  1814. i915_gem_object_unpin(obj);
  1815. }
  1816. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1817. int x, int y)
  1818. {
  1819. struct drm_device *dev = crtc->dev;
  1820. struct drm_i915_private *dev_priv = dev->dev_private;
  1821. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1822. struct intel_framebuffer *intel_fb;
  1823. struct drm_i915_gem_object *obj;
  1824. int plane = intel_crtc->plane;
  1825. unsigned long Start, Offset;
  1826. u32 dspcntr;
  1827. u32 reg;
  1828. switch (plane) {
  1829. case 0:
  1830. case 1:
  1831. break;
  1832. default:
  1833. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1834. return -EINVAL;
  1835. }
  1836. intel_fb = to_intel_framebuffer(fb);
  1837. obj = intel_fb->obj;
  1838. reg = DSPCNTR(plane);
  1839. dspcntr = I915_READ(reg);
  1840. /* Mask out pixel format bits in case we change it */
  1841. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1842. switch (fb->bits_per_pixel) {
  1843. case 8:
  1844. dspcntr |= DISPPLANE_8BPP;
  1845. break;
  1846. case 16:
  1847. if (fb->depth == 15)
  1848. dspcntr |= DISPPLANE_15_16BPP;
  1849. else
  1850. dspcntr |= DISPPLANE_16BPP;
  1851. break;
  1852. case 24:
  1853. case 32:
  1854. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1855. break;
  1856. default:
  1857. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1858. return -EINVAL;
  1859. }
  1860. if (INTEL_INFO(dev)->gen >= 4) {
  1861. if (obj->tiling_mode != I915_TILING_NONE)
  1862. dspcntr |= DISPPLANE_TILED;
  1863. else
  1864. dspcntr &= ~DISPPLANE_TILED;
  1865. }
  1866. I915_WRITE(reg, dspcntr);
  1867. Start = obj->gtt_offset;
  1868. Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1869. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1870. Start, Offset, x, y, fb->pitches[0]);
  1871. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1872. if (INTEL_INFO(dev)->gen >= 4) {
  1873. I915_WRITE(DSPSURF(plane), Start);
  1874. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1875. I915_WRITE(DSPADDR(plane), Offset);
  1876. } else
  1877. I915_WRITE(DSPADDR(plane), Start + Offset);
  1878. POSTING_READ(reg);
  1879. return 0;
  1880. }
  1881. static int ironlake_update_plane(struct drm_crtc *crtc,
  1882. struct drm_framebuffer *fb, int x, int y)
  1883. {
  1884. struct drm_device *dev = crtc->dev;
  1885. struct drm_i915_private *dev_priv = dev->dev_private;
  1886. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1887. struct intel_framebuffer *intel_fb;
  1888. struct drm_i915_gem_object *obj;
  1889. int plane = intel_crtc->plane;
  1890. unsigned long Start, Offset;
  1891. u32 dspcntr;
  1892. u32 reg;
  1893. switch (plane) {
  1894. case 0:
  1895. case 1:
  1896. case 2:
  1897. break;
  1898. default:
  1899. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1900. return -EINVAL;
  1901. }
  1902. intel_fb = to_intel_framebuffer(fb);
  1903. obj = intel_fb->obj;
  1904. reg = DSPCNTR(plane);
  1905. dspcntr = I915_READ(reg);
  1906. /* Mask out pixel format bits in case we change it */
  1907. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1908. switch (fb->bits_per_pixel) {
  1909. case 8:
  1910. dspcntr |= DISPPLANE_8BPP;
  1911. break;
  1912. case 16:
  1913. if (fb->depth != 16)
  1914. return -EINVAL;
  1915. dspcntr |= DISPPLANE_16BPP;
  1916. break;
  1917. case 24:
  1918. case 32:
  1919. if (fb->depth == 24)
  1920. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1921. else if (fb->depth == 30)
  1922. dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
  1923. else
  1924. return -EINVAL;
  1925. break;
  1926. default:
  1927. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1928. return -EINVAL;
  1929. }
  1930. if (obj->tiling_mode != I915_TILING_NONE)
  1931. dspcntr |= DISPPLANE_TILED;
  1932. else
  1933. dspcntr &= ~DISPPLANE_TILED;
  1934. /* must disable */
  1935. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1936. I915_WRITE(reg, dspcntr);
  1937. Start = obj->gtt_offset;
  1938. Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1939. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1940. Start, Offset, x, y, fb->pitches[0]);
  1941. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1942. I915_WRITE(DSPSURF(plane), Start);
  1943. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1944. I915_WRITE(DSPADDR(plane), Offset);
  1945. POSTING_READ(reg);
  1946. return 0;
  1947. }
  1948. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1949. static int
  1950. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1951. int x, int y, enum mode_set_atomic state)
  1952. {
  1953. struct drm_device *dev = crtc->dev;
  1954. struct drm_i915_private *dev_priv = dev->dev_private;
  1955. int ret;
  1956. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1957. if (ret)
  1958. return ret;
  1959. intel_update_fbc(dev);
  1960. intel_increase_pllclock(crtc);
  1961. return 0;
  1962. }
  1963. static int
  1964. intel_finish_fb(struct drm_framebuffer *old_fb)
  1965. {
  1966. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1967. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1968. bool was_interruptible = dev_priv->mm.interruptible;
  1969. int ret;
  1970. wait_event(dev_priv->pending_flip_queue,
  1971. atomic_read(&dev_priv->mm.wedged) ||
  1972. atomic_read(&obj->pending_flip) == 0);
  1973. /* Big Hammer, we also need to ensure that any pending
  1974. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1975. * current scanout is retired before unpinning the old
  1976. * framebuffer.
  1977. *
  1978. * This should only fail upon a hung GPU, in which case we
  1979. * can safely continue.
  1980. */
  1981. dev_priv->mm.interruptible = false;
  1982. ret = i915_gem_object_finish_gpu(obj);
  1983. dev_priv->mm.interruptible = was_interruptible;
  1984. return ret;
  1985. }
  1986. static int
  1987. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1988. struct drm_framebuffer *old_fb)
  1989. {
  1990. struct drm_device *dev = crtc->dev;
  1991. struct drm_i915_master_private *master_priv;
  1992. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1993. int ret;
  1994. /* no fb bound */
  1995. if (!crtc->fb) {
  1996. DRM_ERROR("No FB bound\n");
  1997. return 0;
  1998. }
  1999. switch (intel_crtc->plane) {
  2000. case 0:
  2001. case 1:
  2002. break;
  2003. case 2:
  2004. if (IS_IVYBRIDGE(dev))
  2005. break;
  2006. /* fall through otherwise */
  2007. default:
  2008. DRM_ERROR("no plane for crtc\n");
  2009. return -EINVAL;
  2010. }
  2011. mutex_lock(&dev->struct_mutex);
  2012. ret = intel_pin_and_fence_fb_obj(dev,
  2013. to_intel_framebuffer(crtc->fb)->obj,
  2014. NULL);
  2015. if (ret != 0) {
  2016. mutex_unlock(&dev->struct_mutex);
  2017. DRM_ERROR("pin & fence failed\n");
  2018. return ret;
  2019. }
  2020. if (old_fb)
  2021. intel_finish_fb(old_fb);
  2022. ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
  2023. LEAVE_ATOMIC_MODE_SET);
  2024. if (ret) {
  2025. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  2026. mutex_unlock(&dev->struct_mutex);
  2027. DRM_ERROR("failed to update base address\n");
  2028. return ret;
  2029. }
  2030. if (old_fb) {
  2031. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2032. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2033. }
  2034. mutex_unlock(&dev->struct_mutex);
  2035. if (!dev->primary->master)
  2036. return 0;
  2037. master_priv = dev->primary->master->driver_priv;
  2038. if (!master_priv->sarea_priv)
  2039. return 0;
  2040. if (intel_crtc->pipe) {
  2041. master_priv->sarea_priv->pipeB_x = x;
  2042. master_priv->sarea_priv->pipeB_y = y;
  2043. } else {
  2044. master_priv->sarea_priv->pipeA_x = x;
  2045. master_priv->sarea_priv->pipeA_y = y;
  2046. }
  2047. return 0;
  2048. }
  2049. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  2050. {
  2051. struct drm_device *dev = crtc->dev;
  2052. struct drm_i915_private *dev_priv = dev->dev_private;
  2053. u32 dpa_ctl;
  2054. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  2055. dpa_ctl = I915_READ(DP_A);
  2056. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  2057. if (clock < 200000) {
  2058. u32 temp;
  2059. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  2060. /* workaround for 160Mhz:
  2061. 1) program 0x4600c bits 15:0 = 0x8124
  2062. 2) program 0x46010 bit 0 = 1
  2063. 3) program 0x46034 bit 24 = 1
  2064. 4) program 0x64000 bit 14 = 1
  2065. */
  2066. temp = I915_READ(0x4600c);
  2067. temp &= 0xffff0000;
  2068. I915_WRITE(0x4600c, temp | 0x8124);
  2069. temp = I915_READ(0x46010);
  2070. I915_WRITE(0x46010, temp | 1);
  2071. temp = I915_READ(0x46034);
  2072. I915_WRITE(0x46034, temp | (1 << 24));
  2073. } else {
  2074. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  2075. }
  2076. I915_WRITE(DP_A, dpa_ctl);
  2077. POSTING_READ(DP_A);
  2078. udelay(500);
  2079. }
  2080. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2081. {
  2082. struct drm_device *dev = crtc->dev;
  2083. struct drm_i915_private *dev_priv = dev->dev_private;
  2084. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2085. int pipe = intel_crtc->pipe;
  2086. u32 reg, temp;
  2087. /* enable normal train */
  2088. reg = FDI_TX_CTL(pipe);
  2089. temp = I915_READ(reg);
  2090. if (IS_IVYBRIDGE(dev)) {
  2091. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2092. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2093. } else {
  2094. temp &= ~FDI_LINK_TRAIN_NONE;
  2095. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2096. }
  2097. I915_WRITE(reg, temp);
  2098. reg = FDI_RX_CTL(pipe);
  2099. temp = I915_READ(reg);
  2100. if (HAS_PCH_CPT(dev)) {
  2101. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2102. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2103. } else {
  2104. temp &= ~FDI_LINK_TRAIN_NONE;
  2105. temp |= FDI_LINK_TRAIN_NONE;
  2106. }
  2107. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2108. /* wait one idle pattern time */
  2109. POSTING_READ(reg);
  2110. udelay(1000);
  2111. /* IVB wants error correction enabled */
  2112. if (IS_IVYBRIDGE(dev))
  2113. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2114. FDI_FE_ERRC_ENABLE);
  2115. }
  2116. static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
  2117. {
  2118. struct drm_i915_private *dev_priv = dev->dev_private;
  2119. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2120. flags |= FDI_PHASE_SYNC_OVR(pipe);
  2121. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
  2122. flags |= FDI_PHASE_SYNC_EN(pipe);
  2123. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
  2124. POSTING_READ(SOUTH_CHICKEN1);
  2125. }
  2126. /* The FDI link training functions for ILK/Ibexpeak. */
  2127. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2128. {
  2129. struct drm_device *dev = crtc->dev;
  2130. struct drm_i915_private *dev_priv = dev->dev_private;
  2131. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2132. int pipe = intel_crtc->pipe;
  2133. int plane = intel_crtc->plane;
  2134. u32 reg, temp, tries;
  2135. /* FDI needs bits from pipe & plane first */
  2136. assert_pipe_enabled(dev_priv, pipe);
  2137. assert_plane_enabled(dev_priv, plane);
  2138. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2139. for train result */
  2140. reg = FDI_RX_IMR(pipe);
  2141. temp = I915_READ(reg);
  2142. temp &= ~FDI_RX_SYMBOL_LOCK;
  2143. temp &= ~FDI_RX_BIT_LOCK;
  2144. I915_WRITE(reg, temp);
  2145. I915_READ(reg);
  2146. udelay(150);
  2147. /* enable CPU FDI TX and PCH FDI RX */
  2148. reg = FDI_TX_CTL(pipe);
  2149. temp = I915_READ(reg);
  2150. temp &= ~(7 << 19);
  2151. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2152. temp &= ~FDI_LINK_TRAIN_NONE;
  2153. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2154. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2155. reg = FDI_RX_CTL(pipe);
  2156. temp = I915_READ(reg);
  2157. temp &= ~FDI_LINK_TRAIN_NONE;
  2158. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2159. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2160. POSTING_READ(reg);
  2161. udelay(150);
  2162. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2163. if (HAS_PCH_IBX(dev)) {
  2164. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2165. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2166. FDI_RX_PHASE_SYNC_POINTER_EN);
  2167. }
  2168. reg = FDI_RX_IIR(pipe);
  2169. for (tries = 0; tries < 5; tries++) {
  2170. temp = I915_READ(reg);
  2171. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2172. if ((temp & FDI_RX_BIT_LOCK)) {
  2173. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2174. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2175. break;
  2176. }
  2177. }
  2178. if (tries == 5)
  2179. DRM_ERROR("FDI train 1 fail!\n");
  2180. /* Train 2 */
  2181. reg = FDI_TX_CTL(pipe);
  2182. temp = I915_READ(reg);
  2183. temp &= ~FDI_LINK_TRAIN_NONE;
  2184. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2185. I915_WRITE(reg, temp);
  2186. reg = FDI_RX_CTL(pipe);
  2187. temp = I915_READ(reg);
  2188. temp &= ~FDI_LINK_TRAIN_NONE;
  2189. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2190. I915_WRITE(reg, temp);
  2191. POSTING_READ(reg);
  2192. udelay(150);
  2193. reg = FDI_RX_IIR(pipe);
  2194. for (tries = 0; tries < 5; tries++) {
  2195. temp = I915_READ(reg);
  2196. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2197. if (temp & FDI_RX_SYMBOL_LOCK) {
  2198. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2199. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2200. break;
  2201. }
  2202. }
  2203. if (tries == 5)
  2204. DRM_ERROR("FDI train 2 fail!\n");
  2205. DRM_DEBUG_KMS("FDI train done\n");
  2206. }
  2207. static const int snb_b_fdi_train_param[] = {
  2208. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2209. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2210. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2211. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2212. };
  2213. /* The FDI link training functions for SNB/Cougarpoint. */
  2214. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2215. {
  2216. struct drm_device *dev = crtc->dev;
  2217. struct drm_i915_private *dev_priv = dev->dev_private;
  2218. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2219. int pipe = intel_crtc->pipe;
  2220. u32 reg, temp, i;
  2221. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2222. for train result */
  2223. reg = FDI_RX_IMR(pipe);
  2224. temp = I915_READ(reg);
  2225. temp &= ~FDI_RX_SYMBOL_LOCK;
  2226. temp &= ~FDI_RX_BIT_LOCK;
  2227. I915_WRITE(reg, temp);
  2228. POSTING_READ(reg);
  2229. udelay(150);
  2230. /* enable CPU FDI TX and PCH FDI RX */
  2231. reg = FDI_TX_CTL(pipe);
  2232. temp = I915_READ(reg);
  2233. temp &= ~(7 << 19);
  2234. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2235. temp &= ~FDI_LINK_TRAIN_NONE;
  2236. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2237. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2238. /* SNB-B */
  2239. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2240. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2241. reg = FDI_RX_CTL(pipe);
  2242. temp = I915_READ(reg);
  2243. if (HAS_PCH_CPT(dev)) {
  2244. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2245. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2246. } else {
  2247. temp &= ~FDI_LINK_TRAIN_NONE;
  2248. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2249. }
  2250. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2251. POSTING_READ(reg);
  2252. udelay(150);
  2253. if (HAS_PCH_CPT(dev))
  2254. cpt_phase_pointer_enable(dev, pipe);
  2255. for (i = 0; i < 4; i++) {
  2256. reg = FDI_TX_CTL(pipe);
  2257. temp = I915_READ(reg);
  2258. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2259. temp |= snb_b_fdi_train_param[i];
  2260. I915_WRITE(reg, temp);
  2261. POSTING_READ(reg);
  2262. udelay(500);
  2263. reg = FDI_RX_IIR(pipe);
  2264. temp = I915_READ(reg);
  2265. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2266. if (temp & FDI_RX_BIT_LOCK) {
  2267. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2268. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2269. break;
  2270. }
  2271. }
  2272. if (i == 4)
  2273. DRM_ERROR("FDI train 1 fail!\n");
  2274. /* Train 2 */
  2275. reg = FDI_TX_CTL(pipe);
  2276. temp = I915_READ(reg);
  2277. temp &= ~FDI_LINK_TRAIN_NONE;
  2278. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2279. if (IS_GEN6(dev)) {
  2280. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2281. /* SNB-B */
  2282. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2283. }
  2284. I915_WRITE(reg, temp);
  2285. reg = FDI_RX_CTL(pipe);
  2286. temp = I915_READ(reg);
  2287. if (HAS_PCH_CPT(dev)) {
  2288. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2289. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2290. } else {
  2291. temp &= ~FDI_LINK_TRAIN_NONE;
  2292. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2293. }
  2294. I915_WRITE(reg, temp);
  2295. POSTING_READ(reg);
  2296. udelay(150);
  2297. for (i = 0; i < 4; i++) {
  2298. reg = FDI_TX_CTL(pipe);
  2299. temp = I915_READ(reg);
  2300. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2301. temp |= snb_b_fdi_train_param[i];
  2302. I915_WRITE(reg, temp);
  2303. POSTING_READ(reg);
  2304. udelay(500);
  2305. reg = FDI_RX_IIR(pipe);
  2306. temp = I915_READ(reg);
  2307. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2308. if (temp & FDI_RX_SYMBOL_LOCK) {
  2309. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2310. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2311. break;
  2312. }
  2313. }
  2314. if (i == 4)
  2315. DRM_ERROR("FDI train 2 fail!\n");
  2316. DRM_DEBUG_KMS("FDI train done.\n");
  2317. }
  2318. /* Manual link training for Ivy Bridge A0 parts */
  2319. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2320. {
  2321. struct drm_device *dev = crtc->dev;
  2322. struct drm_i915_private *dev_priv = dev->dev_private;
  2323. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2324. int pipe = intel_crtc->pipe;
  2325. u32 reg, temp, i;
  2326. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2327. for train result */
  2328. reg = FDI_RX_IMR(pipe);
  2329. temp = I915_READ(reg);
  2330. temp &= ~FDI_RX_SYMBOL_LOCK;
  2331. temp &= ~FDI_RX_BIT_LOCK;
  2332. I915_WRITE(reg, temp);
  2333. POSTING_READ(reg);
  2334. udelay(150);
  2335. /* enable CPU FDI TX and PCH FDI RX */
  2336. reg = FDI_TX_CTL(pipe);
  2337. temp = I915_READ(reg);
  2338. temp &= ~(7 << 19);
  2339. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2340. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2341. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2342. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2343. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2344. temp |= FDI_COMPOSITE_SYNC;
  2345. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2346. reg = FDI_RX_CTL(pipe);
  2347. temp = I915_READ(reg);
  2348. temp &= ~FDI_LINK_TRAIN_AUTO;
  2349. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2350. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2351. temp |= FDI_COMPOSITE_SYNC;
  2352. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2353. POSTING_READ(reg);
  2354. udelay(150);
  2355. if (HAS_PCH_CPT(dev))
  2356. cpt_phase_pointer_enable(dev, pipe);
  2357. for (i = 0; i < 4; i++) {
  2358. reg = FDI_TX_CTL(pipe);
  2359. temp = I915_READ(reg);
  2360. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2361. temp |= snb_b_fdi_train_param[i];
  2362. I915_WRITE(reg, temp);
  2363. POSTING_READ(reg);
  2364. udelay(500);
  2365. reg = FDI_RX_IIR(pipe);
  2366. temp = I915_READ(reg);
  2367. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2368. if (temp & FDI_RX_BIT_LOCK ||
  2369. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2370. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2371. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2372. break;
  2373. }
  2374. }
  2375. if (i == 4)
  2376. DRM_ERROR("FDI train 1 fail!\n");
  2377. /* Train 2 */
  2378. reg = FDI_TX_CTL(pipe);
  2379. temp = I915_READ(reg);
  2380. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2381. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2382. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2383. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2384. I915_WRITE(reg, temp);
  2385. reg = FDI_RX_CTL(pipe);
  2386. temp = I915_READ(reg);
  2387. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2388. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2389. I915_WRITE(reg, temp);
  2390. POSTING_READ(reg);
  2391. udelay(150);
  2392. for (i = 0; i < 4; i++) {
  2393. reg = FDI_TX_CTL(pipe);
  2394. temp = I915_READ(reg);
  2395. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2396. temp |= snb_b_fdi_train_param[i];
  2397. I915_WRITE(reg, temp);
  2398. POSTING_READ(reg);
  2399. udelay(500);
  2400. reg = FDI_RX_IIR(pipe);
  2401. temp = I915_READ(reg);
  2402. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2403. if (temp & FDI_RX_SYMBOL_LOCK) {
  2404. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2405. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2406. break;
  2407. }
  2408. }
  2409. if (i == 4)
  2410. DRM_ERROR("FDI train 2 fail!\n");
  2411. DRM_DEBUG_KMS("FDI train done.\n");
  2412. }
  2413. static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
  2414. {
  2415. struct drm_device *dev = crtc->dev;
  2416. struct drm_i915_private *dev_priv = dev->dev_private;
  2417. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2418. int pipe = intel_crtc->pipe;
  2419. u32 reg, temp;
  2420. /* Write the TU size bits so error detection works */
  2421. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2422. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2423. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2424. reg = FDI_RX_CTL(pipe);
  2425. temp = I915_READ(reg);
  2426. temp &= ~((0x7 << 19) | (0x7 << 16));
  2427. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2428. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2429. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2430. POSTING_READ(reg);
  2431. udelay(200);
  2432. /* Switch from Rawclk to PCDclk */
  2433. temp = I915_READ(reg);
  2434. I915_WRITE(reg, temp | FDI_PCDCLK);
  2435. POSTING_READ(reg);
  2436. udelay(200);
  2437. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2438. reg = FDI_TX_CTL(pipe);
  2439. temp = I915_READ(reg);
  2440. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2441. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2442. POSTING_READ(reg);
  2443. udelay(100);
  2444. }
  2445. }
  2446. static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
  2447. {
  2448. struct drm_i915_private *dev_priv = dev->dev_private;
  2449. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2450. flags &= ~(FDI_PHASE_SYNC_EN(pipe));
  2451. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
  2452. flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
  2453. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
  2454. POSTING_READ(SOUTH_CHICKEN1);
  2455. }
  2456. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2457. {
  2458. struct drm_device *dev = crtc->dev;
  2459. struct drm_i915_private *dev_priv = dev->dev_private;
  2460. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2461. int pipe = intel_crtc->pipe;
  2462. u32 reg, temp;
  2463. /* disable CPU FDI tx and PCH FDI rx */
  2464. reg = FDI_TX_CTL(pipe);
  2465. temp = I915_READ(reg);
  2466. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2467. POSTING_READ(reg);
  2468. reg = FDI_RX_CTL(pipe);
  2469. temp = I915_READ(reg);
  2470. temp &= ~(0x7 << 16);
  2471. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2472. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2473. POSTING_READ(reg);
  2474. udelay(100);
  2475. /* Ironlake workaround, disable clock pointer after downing FDI */
  2476. if (HAS_PCH_IBX(dev)) {
  2477. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2478. I915_WRITE(FDI_RX_CHICKEN(pipe),
  2479. I915_READ(FDI_RX_CHICKEN(pipe) &
  2480. ~FDI_RX_PHASE_SYNC_POINTER_EN));
  2481. } else if (HAS_PCH_CPT(dev)) {
  2482. cpt_phase_pointer_disable(dev, pipe);
  2483. }
  2484. /* still set train pattern 1 */
  2485. reg = FDI_TX_CTL(pipe);
  2486. temp = I915_READ(reg);
  2487. temp &= ~FDI_LINK_TRAIN_NONE;
  2488. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2489. I915_WRITE(reg, temp);
  2490. reg = FDI_RX_CTL(pipe);
  2491. temp = I915_READ(reg);
  2492. if (HAS_PCH_CPT(dev)) {
  2493. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2494. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2495. } else {
  2496. temp &= ~FDI_LINK_TRAIN_NONE;
  2497. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2498. }
  2499. /* BPC in FDI rx is consistent with that in PIPECONF */
  2500. temp &= ~(0x07 << 16);
  2501. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2502. I915_WRITE(reg, temp);
  2503. POSTING_READ(reg);
  2504. udelay(100);
  2505. }
  2506. /*
  2507. * When we disable a pipe, we need to clear any pending scanline wait events
  2508. * to avoid hanging the ring, which we assume we are waiting on.
  2509. */
  2510. static void intel_clear_scanline_wait(struct drm_device *dev)
  2511. {
  2512. struct drm_i915_private *dev_priv = dev->dev_private;
  2513. struct intel_ring_buffer *ring;
  2514. u32 tmp;
  2515. if (IS_GEN2(dev))
  2516. /* Can't break the hang on i8xx */
  2517. return;
  2518. ring = LP_RING(dev_priv);
  2519. tmp = I915_READ_CTL(ring);
  2520. if (tmp & RING_WAIT)
  2521. I915_WRITE_CTL(ring, tmp);
  2522. }
  2523. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2524. {
  2525. struct drm_i915_gem_object *obj;
  2526. struct drm_i915_private *dev_priv;
  2527. if (crtc->fb == NULL)
  2528. return;
  2529. obj = to_intel_framebuffer(crtc->fb)->obj;
  2530. dev_priv = crtc->dev->dev_private;
  2531. wait_event(dev_priv->pending_flip_queue,
  2532. atomic_read(&obj->pending_flip) == 0);
  2533. }
  2534. static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
  2535. {
  2536. struct drm_device *dev = crtc->dev;
  2537. struct drm_mode_config *mode_config = &dev->mode_config;
  2538. struct intel_encoder *encoder;
  2539. /*
  2540. * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
  2541. * must be driven by its own crtc; no sharing is possible.
  2542. */
  2543. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  2544. if (encoder->base.crtc != crtc)
  2545. continue;
  2546. switch (encoder->type) {
  2547. case INTEL_OUTPUT_EDP:
  2548. if (!intel_encoder_is_pch_edp(&encoder->base))
  2549. return false;
  2550. continue;
  2551. }
  2552. }
  2553. return true;
  2554. }
  2555. /*
  2556. * Enable PCH resources required for PCH ports:
  2557. * - PCH PLLs
  2558. * - FDI training & RX/TX
  2559. * - update transcoder timings
  2560. * - DP transcoding bits
  2561. * - transcoder
  2562. */
  2563. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2564. {
  2565. struct drm_device *dev = crtc->dev;
  2566. struct drm_i915_private *dev_priv = dev->dev_private;
  2567. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2568. int pipe = intel_crtc->pipe;
  2569. u32 reg, temp, transc_sel;
  2570. /* For PCH output, training FDI link */
  2571. dev_priv->display.fdi_link_train(crtc);
  2572. intel_enable_pch_pll(dev_priv, pipe);
  2573. if (HAS_PCH_CPT(dev)) {
  2574. transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
  2575. TRANSC_DPLLB_SEL;
  2576. /* Be sure PCH DPLL SEL is set */
  2577. temp = I915_READ(PCH_DPLL_SEL);
  2578. if (pipe == 0) {
  2579. temp &= ~(TRANSA_DPLLB_SEL);
  2580. temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  2581. } else if (pipe == 1) {
  2582. temp &= ~(TRANSB_DPLLB_SEL);
  2583. temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2584. } else if (pipe == 2) {
  2585. temp &= ~(TRANSC_DPLLB_SEL);
  2586. temp |= (TRANSC_DPLL_ENABLE | transc_sel);
  2587. }
  2588. I915_WRITE(PCH_DPLL_SEL, temp);
  2589. }
  2590. /* set transcoder timing, panel must allow it */
  2591. assert_panel_unlocked(dev_priv, pipe);
  2592. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2593. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2594. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2595. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2596. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2597. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2598. I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
  2599. intel_fdi_normal_train(crtc);
  2600. /* For PCH DP, enable TRANS_DP_CTL */
  2601. if (HAS_PCH_CPT(dev) &&
  2602. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2603. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2604. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
  2605. reg = TRANS_DP_CTL(pipe);
  2606. temp = I915_READ(reg);
  2607. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2608. TRANS_DP_SYNC_MASK |
  2609. TRANS_DP_BPC_MASK);
  2610. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2611. TRANS_DP_ENH_FRAMING);
  2612. temp |= bpc << 9; /* same format but at 11:9 */
  2613. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2614. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2615. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2616. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2617. switch (intel_trans_dp_port_sel(crtc)) {
  2618. case PCH_DP_B:
  2619. temp |= TRANS_DP_PORT_SEL_B;
  2620. break;
  2621. case PCH_DP_C:
  2622. temp |= TRANS_DP_PORT_SEL_C;
  2623. break;
  2624. case PCH_DP_D:
  2625. temp |= TRANS_DP_PORT_SEL_D;
  2626. break;
  2627. default:
  2628. DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
  2629. temp |= TRANS_DP_PORT_SEL_B;
  2630. break;
  2631. }
  2632. I915_WRITE(reg, temp);
  2633. }
  2634. intel_enable_transcoder(dev_priv, pipe);
  2635. }
  2636. void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
  2637. {
  2638. struct drm_i915_private *dev_priv = dev->dev_private;
  2639. int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
  2640. u32 temp;
  2641. temp = I915_READ(dslreg);
  2642. udelay(500);
  2643. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2644. /* Without this, mode sets may fail silently on FDI */
  2645. I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
  2646. udelay(250);
  2647. I915_WRITE(tc2reg, 0);
  2648. if (wait_for(I915_READ(dslreg) != temp, 5))
  2649. DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
  2650. }
  2651. }
  2652. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2653. {
  2654. struct drm_device *dev = crtc->dev;
  2655. struct drm_i915_private *dev_priv = dev->dev_private;
  2656. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2657. int pipe = intel_crtc->pipe;
  2658. int plane = intel_crtc->plane;
  2659. u32 temp;
  2660. bool is_pch_port;
  2661. if (intel_crtc->active)
  2662. return;
  2663. intel_crtc->active = true;
  2664. intel_update_watermarks(dev);
  2665. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2666. temp = I915_READ(PCH_LVDS);
  2667. if ((temp & LVDS_PORT_EN) == 0)
  2668. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2669. }
  2670. is_pch_port = intel_crtc_driving_pch(crtc);
  2671. if (is_pch_port)
  2672. ironlake_fdi_pll_enable(crtc);
  2673. else
  2674. ironlake_fdi_disable(crtc);
  2675. /* Enable panel fitting for LVDS */
  2676. if (dev_priv->pch_pf_size &&
  2677. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
  2678. /* Force use of hard-coded filter coefficients
  2679. * as some pre-programmed values are broken,
  2680. * e.g. x201.
  2681. */
  2682. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2683. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2684. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2685. }
  2686. /*
  2687. * On ILK+ LUT must be loaded before the pipe is running but with
  2688. * clocks enabled
  2689. */
  2690. intel_crtc_load_lut(crtc);
  2691. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2692. intel_enable_plane(dev_priv, plane, pipe);
  2693. if (is_pch_port)
  2694. ironlake_pch_enable(crtc);
  2695. mutex_lock(&dev->struct_mutex);
  2696. intel_update_fbc(dev);
  2697. mutex_unlock(&dev->struct_mutex);
  2698. intel_crtc_update_cursor(crtc, true);
  2699. }
  2700. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2701. {
  2702. struct drm_device *dev = crtc->dev;
  2703. struct drm_i915_private *dev_priv = dev->dev_private;
  2704. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2705. int pipe = intel_crtc->pipe;
  2706. int plane = intel_crtc->plane;
  2707. u32 reg, temp;
  2708. if (!intel_crtc->active)
  2709. return;
  2710. intel_crtc_wait_for_pending_flips(crtc);
  2711. drm_vblank_off(dev, pipe);
  2712. intel_crtc_update_cursor(crtc, false);
  2713. intel_disable_plane(dev_priv, plane, pipe);
  2714. if (dev_priv->cfb_plane == plane)
  2715. intel_disable_fbc(dev);
  2716. intel_disable_pipe(dev_priv, pipe);
  2717. /* Disable PF */
  2718. I915_WRITE(PF_CTL(pipe), 0);
  2719. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2720. ironlake_fdi_disable(crtc);
  2721. /* This is a horrible layering violation; we should be doing this in
  2722. * the connector/encoder ->prepare instead, but we don't always have
  2723. * enough information there about the config to know whether it will
  2724. * actually be necessary or just cause undesired flicker.
  2725. */
  2726. intel_disable_pch_ports(dev_priv, pipe);
  2727. intel_disable_transcoder(dev_priv, pipe);
  2728. if (HAS_PCH_CPT(dev)) {
  2729. /* disable TRANS_DP_CTL */
  2730. reg = TRANS_DP_CTL(pipe);
  2731. temp = I915_READ(reg);
  2732. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2733. temp |= TRANS_DP_PORT_SEL_NONE;
  2734. I915_WRITE(reg, temp);
  2735. /* disable DPLL_SEL */
  2736. temp = I915_READ(PCH_DPLL_SEL);
  2737. switch (pipe) {
  2738. case 0:
  2739. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  2740. break;
  2741. case 1:
  2742. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2743. break;
  2744. case 2:
  2745. /* C shares PLL A or B */
  2746. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2747. break;
  2748. default:
  2749. BUG(); /* wtf */
  2750. }
  2751. I915_WRITE(PCH_DPLL_SEL, temp);
  2752. }
  2753. /* disable PCH DPLL */
  2754. if (!intel_crtc->no_pll)
  2755. intel_disable_pch_pll(dev_priv, pipe);
  2756. /* Switch from PCDclk to Rawclk */
  2757. reg = FDI_RX_CTL(pipe);
  2758. temp = I915_READ(reg);
  2759. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2760. /* Disable CPU FDI TX PLL */
  2761. reg = FDI_TX_CTL(pipe);
  2762. temp = I915_READ(reg);
  2763. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2764. POSTING_READ(reg);
  2765. udelay(100);
  2766. reg = FDI_RX_CTL(pipe);
  2767. temp = I915_READ(reg);
  2768. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2769. /* Wait for the clocks to turn off. */
  2770. POSTING_READ(reg);
  2771. udelay(100);
  2772. intel_crtc->active = false;
  2773. intel_update_watermarks(dev);
  2774. mutex_lock(&dev->struct_mutex);
  2775. intel_update_fbc(dev);
  2776. intel_clear_scanline_wait(dev);
  2777. mutex_unlock(&dev->struct_mutex);
  2778. }
  2779. static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
  2780. {
  2781. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2782. int pipe = intel_crtc->pipe;
  2783. int plane = intel_crtc->plane;
  2784. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2785. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2786. */
  2787. switch (mode) {
  2788. case DRM_MODE_DPMS_ON:
  2789. case DRM_MODE_DPMS_STANDBY:
  2790. case DRM_MODE_DPMS_SUSPEND:
  2791. DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
  2792. ironlake_crtc_enable(crtc);
  2793. break;
  2794. case DRM_MODE_DPMS_OFF:
  2795. DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
  2796. ironlake_crtc_disable(crtc);
  2797. break;
  2798. }
  2799. }
  2800. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  2801. {
  2802. if (!enable && intel_crtc->overlay) {
  2803. struct drm_device *dev = intel_crtc->base.dev;
  2804. struct drm_i915_private *dev_priv = dev->dev_private;
  2805. mutex_lock(&dev->struct_mutex);
  2806. dev_priv->mm.interruptible = false;
  2807. (void) intel_overlay_switch_off(intel_crtc->overlay);
  2808. dev_priv->mm.interruptible = true;
  2809. mutex_unlock(&dev->struct_mutex);
  2810. }
  2811. /* Let userspace switch the overlay on again. In most cases userspace
  2812. * has to recompute where to put it anyway.
  2813. */
  2814. }
  2815. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  2816. {
  2817. struct drm_device *dev = crtc->dev;
  2818. struct drm_i915_private *dev_priv = dev->dev_private;
  2819. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2820. int pipe = intel_crtc->pipe;
  2821. int plane = intel_crtc->plane;
  2822. if (intel_crtc->active)
  2823. return;
  2824. intel_crtc->active = true;
  2825. intel_update_watermarks(dev);
  2826. intel_enable_pll(dev_priv, pipe);
  2827. intel_enable_pipe(dev_priv, pipe, false);
  2828. intel_enable_plane(dev_priv, plane, pipe);
  2829. intel_crtc_load_lut(crtc);
  2830. intel_update_fbc(dev);
  2831. /* Give the overlay scaler a chance to enable if it's on this pipe */
  2832. intel_crtc_dpms_overlay(intel_crtc, true);
  2833. intel_crtc_update_cursor(crtc, true);
  2834. }
  2835. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  2836. {
  2837. struct drm_device *dev = crtc->dev;
  2838. struct drm_i915_private *dev_priv = dev->dev_private;
  2839. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2840. int pipe = intel_crtc->pipe;
  2841. int plane = intel_crtc->plane;
  2842. if (!intel_crtc->active)
  2843. return;
  2844. /* Give the overlay scaler a chance to disable if it's on this pipe */
  2845. intel_crtc_wait_for_pending_flips(crtc);
  2846. drm_vblank_off(dev, pipe);
  2847. intel_crtc_dpms_overlay(intel_crtc, false);
  2848. intel_crtc_update_cursor(crtc, false);
  2849. if (dev_priv->cfb_plane == plane)
  2850. intel_disable_fbc(dev);
  2851. intel_disable_plane(dev_priv, plane, pipe);
  2852. intel_disable_pipe(dev_priv, pipe);
  2853. intel_disable_pll(dev_priv, pipe);
  2854. intel_crtc->active = false;
  2855. intel_update_fbc(dev);
  2856. intel_update_watermarks(dev);
  2857. intel_clear_scanline_wait(dev);
  2858. }
  2859. static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
  2860. {
  2861. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2862. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2863. */
  2864. switch (mode) {
  2865. case DRM_MODE_DPMS_ON:
  2866. case DRM_MODE_DPMS_STANDBY:
  2867. case DRM_MODE_DPMS_SUSPEND:
  2868. i9xx_crtc_enable(crtc);
  2869. break;
  2870. case DRM_MODE_DPMS_OFF:
  2871. i9xx_crtc_disable(crtc);
  2872. break;
  2873. }
  2874. }
  2875. /**
  2876. * Sets the power management mode of the pipe and plane.
  2877. */
  2878. static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
  2879. {
  2880. struct drm_device *dev = crtc->dev;
  2881. struct drm_i915_private *dev_priv = dev->dev_private;
  2882. struct drm_i915_master_private *master_priv;
  2883. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2884. int pipe = intel_crtc->pipe;
  2885. bool enabled;
  2886. if (intel_crtc->dpms_mode == mode)
  2887. return;
  2888. intel_crtc->dpms_mode = mode;
  2889. dev_priv->display.dpms(crtc, mode);
  2890. if (!dev->primary->master)
  2891. return;
  2892. master_priv = dev->primary->master->driver_priv;
  2893. if (!master_priv->sarea_priv)
  2894. return;
  2895. enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
  2896. switch (pipe) {
  2897. case 0:
  2898. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  2899. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  2900. break;
  2901. case 1:
  2902. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  2903. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  2904. break;
  2905. default:
  2906. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  2907. break;
  2908. }
  2909. }
  2910. static void intel_crtc_disable(struct drm_crtc *crtc)
  2911. {
  2912. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  2913. struct drm_device *dev = crtc->dev;
  2914. /* Flush any pending WAITs before we disable the pipe. Note that
  2915. * we need to drop the struct_mutex in order to acquire it again
  2916. * during the lowlevel dpms routines around a couple of the
  2917. * operations. It does not look trivial nor desirable to move
  2918. * that locking higher. So instead we leave a window for the
  2919. * submission of further commands on the fb before we can actually
  2920. * disable it. This race with userspace exists anyway, and we can
  2921. * only rely on the pipe being disabled by userspace after it
  2922. * receives the hotplug notification and has flushed any pending
  2923. * batches.
  2924. */
  2925. if (crtc->fb) {
  2926. mutex_lock(&dev->struct_mutex);
  2927. intel_finish_fb(crtc->fb);
  2928. mutex_unlock(&dev->struct_mutex);
  2929. }
  2930. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
  2931. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  2932. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  2933. if (crtc->fb) {
  2934. mutex_lock(&dev->struct_mutex);
  2935. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  2936. mutex_unlock(&dev->struct_mutex);
  2937. }
  2938. }
  2939. /* Prepare for a mode set.
  2940. *
  2941. * Note we could be a lot smarter here. We need to figure out which outputs
  2942. * will be enabled, which disabled (in short, how the config will changes)
  2943. * and perform the minimum necessary steps to accomplish that, e.g. updating
  2944. * watermarks, FBC configuration, making sure PLLs are programmed correctly,
  2945. * panel fitting is in the proper state, etc.
  2946. */
  2947. static void i9xx_crtc_prepare(struct drm_crtc *crtc)
  2948. {
  2949. i9xx_crtc_disable(crtc);
  2950. }
  2951. static void i9xx_crtc_commit(struct drm_crtc *crtc)
  2952. {
  2953. i9xx_crtc_enable(crtc);
  2954. }
  2955. static void ironlake_crtc_prepare(struct drm_crtc *crtc)
  2956. {
  2957. ironlake_crtc_disable(crtc);
  2958. }
  2959. static void ironlake_crtc_commit(struct drm_crtc *crtc)
  2960. {
  2961. ironlake_crtc_enable(crtc);
  2962. }
  2963. void intel_encoder_prepare(struct drm_encoder *encoder)
  2964. {
  2965. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2966. /* lvds has its own version of prepare see intel_lvds_prepare */
  2967. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
  2968. }
  2969. void intel_encoder_commit(struct drm_encoder *encoder)
  2970. {
  2971. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2972. struct drm_device *dev = encoder->dev;
  2973. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  2974. struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  2975. /* lvds has its own version of commit see intel_lvds_commit */
  2976. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  2977. if (HAS_PCH_CPT(dev))
  2978. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  2979. }
  2980. void intel_encoder_destroy(struct drm_encoder *encoder)
  2981. {
  2982. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  2983. drm_encoder_cleanup(encoder);
  2984. kfree(intel_encoder);
  2985. }
  2986. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  2987. struct drm_display_mode *mode,
  2988. struct drm_display_mode *adjusted_mode)
  2989. {
  2990. struct drm_device *dev = crtc->dev;
  2991. if (HAS_PCH_SPLIT(dev)) {
  2992. /* FDI link clock is fixed at 2.7G */
  2993. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  2994. return false;
  2995. }
  2996. /* All interlaced capable intel hw wants timings in frames. */
  2997. drm_mode_set_crtcinfo(adjusted_mode, 0);
  2998. return true;
  2999. }
  3000. static int i945_get_display_clock_speed(struct drm_device *dev)
  3001. {
  3002. return 400000;
  3003. }
  3004. static int i915_get_display_clock_speed(struct drm_device *dev)
  3005. {
  3006. return 333000;
  3007. }
  3008. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3009. {
  3010. return 200000;
  3011. }
  3012. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3013. {
  3014. u16 gcfgc = 0;
  3015. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3016. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3017. return 133000;
  3018. else {
  3019. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3020. case GC_DISPLAY_CLOCK_333_MHZ:
  3021. return 333000;
  3022. default:
  3023. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3024. return 190000;
  3025. }
  3026. }
  3027. }
  3028. static int i865_get_display_clock_speed(struct drm_device *dev)
  3029. {
  3030. return 266000;
  3031. }
  3032. static int i855_get_display_clock_speed(struct drm_device *dev)
  3033. {
  3034. u16 hpllcc = 0;
  3035. /* Assume that the hardware is in the high speed state. This
  3036. * should be the default.
  3037. */
  3038. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3039. case GC_CLOCK_133_200:
  3040. case GC_CLOCK_100_200:
  3041. return 200000;
  3042. case GC_CLOCK_166_250:
  3043. return 250000;
  3044. case GC_CLOCK_100_133:
  3045. return 133000;
  3046. }
  3047. /* Shouldn't happen */
  3048. return 0;
  3049. }
  3050. static int i830_get_display_clock_speed(struct drm_device *dev)
  3051. {
  3052. return 133000;
  3053. }
  3054. struct fdi_m_n {
  3055. u32 tu;
  3056. u32 gmch_m;
  3057. u32 gmch_n;
  3058. u32 link_m;
  3059. u32 link_n;
  3060. };
  3061. static void
  3062. fdi_reduce_ratio(u32 *num, u32 *den)
  3063. {
  3064. while (*num > 0xffffff || *den > 0xffffff) {
  3065. *num >>= 1;
  3066. *den >>= 1;
  3067. }
  3068. }
  3069. static void
  3070. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  3071. int link_clock, struct fdi_m_n *m_n)
  3072. {
  3073. m_n->tu = 64; /* default size */
  3074. /* BUG_ON(pixel_clock > INT_MAX / 36); */
  3075. m_n->gmch_m = bits_per_pixel * pixel_clock;
  3076. m_n->gmch_n = link_clock * nlanes * 8;
  3077. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3078. m_n->link_m = pixel_clock;
  3079. m_n->link_n = link_clock;
  3080. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3081. }
  3082. struct intel_watermark_params {
  3083. unsigned long fifo_size;
  3084. unsigned long max_wm;
  3085. unsigned long default_wm;
  3086. unsigned long guard_size;
  3087. unsigned long cacheline_size;
  3088. };
  3089. /* Pineview has different values for various configs */
  3090. static const struct intel_watermark_params pineview_display_wm = {
  3091. PINEVIEW_DISPLAY_FIFO,
  3092. PINEVIEW_MAX_WM,
  3093. PINEVIEW_DFT_WM,
  3094. PINEVIEW_GUARD_WM,
  3095. PINEVIEW_FIFO_LINE_SIZE
  3096. };
  3097. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  3098. PINEVIEW_DISPLAY_FIFO,
  3099. PINEVIEW_MAX_WM,
  3100. PINEVIEW_DFT_HPLLOFF_WM,
  3101. PINEVIEW_GUARD_WM,
  3102. PINEVIEW_FIFO_LINE_SIZE
  3103. };
  3104. static const struct intel_watermark_params pineview_cursor_wm = {
  3105. PINEVIEW_CURSOR_FIFO,
  3106. PINEVIEW_CURSOR_MAX_WM,
  3107. PINEVIEW_CURSOR_DFT_WM,
  3108. PINEVIEW_CURSOR_GUARD_WM,
  3109. PINEVIEW_FIFO_LINE_SIZE,
  3110. };
  3111. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  3112. PINEVIEW_CURSOR_FIFO,
  3113. PINEVIEW_CURSOR_MAX_WM,
  3114. PINEVIEW_CURSOR_DFT_WM,
  3115. PINEVIEW_CURSOR_GUARD_WM,
  3116. PINEVIEW_FIFO_LINE_SIZE
  3117. };
  3118. static const struct intel_watermark_params g4x_wm_info = {
  3119. G4X_FIFO_SIZE,
  3120. G4X_MAX_WM,
  3121. G4X_MAX_WM,
  3122. 2,
  3123. G4X_FIFO_LINE_SIZE,
  3124. };
  3125. static const struct intel_watermark_params g4x_cursor_wm_info = {
  3126. I965_CURSOR_FIFO,
  3127. I965_CURSOR_MAX_WM,
  3128. I965_CURSOR_DFT_WM,
  3129. 2,
  3130. G4X_FIFO_LINE_SIZE,
  3131. };
  3132. static const struct intel_watermark_params i965_cursor_wm_info = {
  3133. I965_CURSOR_FIFO,
  3134. I965_CURSOR_MAX_WM,
  3135. I965_CURSOR_DFT_WM,
  3136. 2,
  3137. I915_FIFO_LINE_SIZE,
  3138. };
  3139. static const struct intel_watermark_params i945_wm_info = {
  3140. I945_FIFO_SIZE,
  3141. I915_MAX_WM,
  3142. 1,
  3143. 2,
  3144. I915_FIFO_LINE_SIZE
  3145. };
  3146. static const struct intel_watermark_params i915_wm_info = {
  3147. I915_FIFO_SIZE,
  3148. I915_MAX_WM,
  3149. 1,
  3150. 2,
  3151. I915_FIFO_LINE_SIZE
  3152. };
  3153. static const struct intel_watermark_params i855_wm_info = {
  3154. I855GM_FIFO_SIZE,
  3155. I915_MAX_WM,
  3156. 1,
  3157. 2,
  3158. I830_FIFO_LINE_SIZE
  3159. };
  3160. static const struct intel_watermark_params i830_wm_info = {
  3161. I830_FIFO_SIZE,
  3162. I915_MAX_WM,
  3163. 1,
  3164. 2,
  3165. I830_FIFO_LINE_SIZE
  3166. };
  3167. static const struct intel_watermark_params ironlake_display_wm_info = {
  3168. ILK_DISPLAY_FIFO,
  3169. ILK_DISPLAY_MAXWM,
  3170. ILK_DISPLAY_DFTWM,
  3171. 2,
  3172. ILK_FIFO_LINE_SIZE
  3173. };
  3174. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  3175. ILK_CURSOR_FIFO,
  3176. ILK_CURSOR_MAXWM,
  3177. ILK_CURSOR_DFTWM,
  3178. 2,
  3179. ILK_FIFO_LINE_SIZE
  3180. };
  3181. static const struct intel_watermark_params ironlake_display_srwm_info = {
  3182. ILK_DISPLAY_SR_FIFO,
  3183. ILK_DISPLAY_MAX_SRWM,
  3184. ILK_DISPLAY_DFT_SRWM,
  3185. 2,
  3186. ILK_FIFO_LINE_SIZE
  3187. };
  3188. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  3189. ILK_CURSOR_SR_FIFO,
  3190. ILK_CURSOR_MAX_SRWM,
  3191. ILK_CURSOR_DFT_SRWM,
  3192. 2,
  3193. ILK_FIFO_LINE_SIZE
  3194. };
  3195. static const struct intel_watermark_params sandybridge_display_wm_info = {
  3196. SNB_DISPLAY_FIFO,
  3197. SNB_DISPLAY_MAXWM,
  3198. SNB_DISPLAY_DFTWM,
  3199. 2,
  3200. SNB_FIFO_LINE_SIZE
  3201. };
  3202. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  3203. SNB_CURSOR_FIFO,
  3204. SNB_CURSOR_MAXWM,
  3205. SNB_CURSOR_DFTWM,
  3206. 2,
  3207. SNB_FIFO_LINE_SIZE
  3208. };
  3209. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  3210. SNB_DISPLAY_SR_FIFO,
  3211. SNB_DISPLAY_MAX_SRWM,
  3212. SNB_DISPLAY_DFT_SRWM,
  3213. 2,
  3214. SNB_FIFO_LINE_SIZE
  3215. };
  3216. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  3217. SNB_CURSOR_SR_FIFO,
  3218. SNB_CURSOR_MAX_SRWM,
  3219. SNB_CURSOR_DFT_SRWM,
  3220. 2,
  3221. SNB_FIFO_LINE_SIZE
  3222. };
  3223. /**
  3224. * intel_calculate_wm - calculate watermark level
  3225. * @clock_in_khz: pixel clock
  3226. * @wm: chip FIFO params
  3227. * @pixel_size: display pixel size
  3228. * @latency_ns: memory latency for the platform
  3229. *
  3230. * Calculate the watermark level (the level at which the display plane will
  3231. * start fetching from memory again). Each chip has a different display
  3232. * FIFO size and allocation, so the caller needs to figure that out and pass
  3233. * in the correct intel_watermark_params structure.
  3234. *
  3235. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  3236. * on the pixel size. When it reaches the watermark level, it'll start
  3237. * fetching FIFO line sized based chunks from memory until the FIFO fills
  3238. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  3239. * will occur, and a display engine hang could result.
  3240. */
  3241. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  3242. const struct intel_watermark_params *wm,
  3243. int fifo_size,
  3244. int pixel_size,
  3245. unsigned long latency_ns)
  3246. {
  3247. long entries_required, wm_size;
  3248. /*
  3249. * Note: we need to make sure we don't overflow for various clock &
  3250. * latency values.
  3251. * clocks go from a few thousand to several hundred thousand.
  3252. * latency is usually a few thousand
  3253. */
  3254. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  3255. 1000;
  3256. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  3257. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  3258. wm_size = fifo_size - (entries_required + wm->guard_size);
  3259. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  3260. /* Don't promote wm_size to unsigned... */
  3261. if (wm_size > (long)wm->max_wm)
  3262. wm_size = wm->max_wm;
  3263. if (wm_size <= 0)
  3264. wm_size = wm->default_wm;
  3265. return wm_size;
  3266. }
  3267. struct cxsr_latency {
  3268. int is_desktop;
  3269. int is_ddr3;
  3270. unsigned long fsb_freq;
  3271. unsigned long mem_freq;
  3272. unsigned long display_sr;
  3273. unsigned long display_hpll_disable;
  3274. unsigned long cursor_sr;
  3275. unsigned long cursor_hpll_disable;
  3276. };
  3277. static const struct cxsr_latency cxsr_latency_table[] = {
  3278. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  3279. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  3280. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  3281. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  3282. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  3283. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  3284. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  3285. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  3286. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  3287. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  3288. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  3289. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  3290. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  3291. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  3292. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  3293. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  3294. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  3295. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  3296. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  3297. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  3298. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  3299. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  3300. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  3301. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  3302. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  3303. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  3304. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  3305. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  3306. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  3307. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  3308. };
  3309. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  3310. int is_ddr3,
  3311. int fsb,
  3312. int mem)
  3313. {
  3314. const struct cxsr_latency *latency;
  3315. int i;
  3316. if (fsb == 0 || mem == 0)
  3317. return NULL;
  3318. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  3319. latency = &cxsr_latency_table[i];
  3320. if (is_desktop == latency->is_desktop &&
  3321. is_ddr3 == latency->is_ddr3 &&
  3322. fsb == latency->fsb_freq && mem == latency->mem_freq)
  3323. return latency;
  3324. }
  3325. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  3326. return NULL;
  3327. }
  3328. static void pineview_disable_cxsr(struct drm_device *dev)
  3329. {
  3330. struct drm_i915_private *dev_priv = dev->dev_private;
  3331. /* deactivate cxsr */
  3332. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  3333. }
  3334. /*
  3335. * Latency for FIFO fetches is dependent on several factors:
  3336. * - memory configuration (speed, channels)
  3337. * - chipset
  3338. * - current MCH state
  3339. * It can be fairly high in some situations, so here we assume a fairly
  3340. * pessimal value. It's a tradeoff between extra memory fetches (if we
  3341. * set this value too high, the FIFO will fetch frequently to stay full)
  3342. * and power consumption (set it too low to save power and we might see
  3343. * FIFO underruns and display "flicker").
  3344. *
  3345. * A value of 5us seems to be a good balance; safe for very low end
  3346. * platforms but not overly aggressive on lower latency configs.
  3347. */
  3348. static const int latency_ns = 5000;
  3349. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  3350. {
  3351. struct drm_i915_private *dev_priv = dev->dev_private;
  3352. uint32_t dsparb = I915_READ(DSPARB);
  3353. int size;
  3354. size = dsparb & 0x7f;
  3355. if (plane)
  3356. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  3357. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3358. plane ? "B" : "A", size);
  3359. return size;
  3360. }
  3361. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  3362. {
  3363. struct drm_i915_private *dev_priv = dev->dev_private;
  3364. uint32_t dsparb = I915_READ(DSPARB);
  3365. int size;
  3366. size = dsparb & 0x1ff;
  3367. if (plane)
  3368. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  3369. size >>= 1; /* Convert to cachelines */
  3370. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3371. plane ? "B" : "A", size);
  3372. return size;
  3373. }
  3374. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  3375. {
  3376. struct drm_i915_private *dev_priv = dev->dev_private;
  3377. uint32_t dsparb = I915_READ(DSPARB);
  3378. int size;
  3379. size = dsparb & 0x7f;
  3380. size >>= 2; /* Convert to cachelines */
  3381. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3382. plane ? "B" : "A",
  3383. size);
  3384. return size;
  3385. }
  3386. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  3387. {
  3388. struct drm_i915_private *dev_priv = dev->dev_private;
  3389. uint32_t dsparb = I915_READ(DSPARB);
  3390. int size;
  3391. size = dsparb & 0x7f;
  3392. size >>= 1; /* Convert to cachelines */
  3393. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3394. plane ? "B" : "A", size);
  3395. return size;
  3396. }
  3397. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  3398. {
  3399. struct drm_crtc *crtc, *enabled = NULL;
  3400. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3401. if (crtc->enabled && crtc->fb) {
  3402. if (enabled)
  3403. return NULL;
  3404. enabled = crtc;
  3405. }
  3406. }
  3407. return enabled;
  3408. }
  3409. static void pineview_update_wm(struct drm_device *dev)
  3410. {
  3411. struct drm_i915_private *dev_priv = dev->dev_private;
  3412. struct drm_crtc *crtc;
  3413. const struct cxsr_latency *latency;
  3414. u32 reg;
  3415. unsigned long wm;
  3416. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  3417. dev_priv->fsb_freq, dev_priv->mem_freq);
  3418. if (!latency) {
  3419. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  3420. pineview_disable_cxsr(dev);
  3421. return;
  3422. }
  3423. crtc = single_enabled_crtc(dev);
  3424. if (crtc) {
  3425. int clock = crtc->mode.clock;
  3426. int pixel_size = crtc->fb->bits_per_pixel / 8;
  3427. /* Display SR */
  3428. wm = intel_calculate_wm(clock, &pineview_display_wm,
  3429. pineview_display_wm.fifo_size,
  3430. pixel_size, latency->display_sr);
  3431. reg = I915_READ(DSPFW1);
  3432. reg &= ~DSPFW_SR_MASK;
  3433. reg |= wm << DSPFW_SR_SHIFT;
  3434. I915_WRITE(DSPFW1, reg);
  3435. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  3436. /* cursor SR */
  3437. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  3438. pineview_display_wm.fifo_size,
  3439. pixel_size, latency->cursor_sr);
  3440. reg = I915_READ(DSPFW3);
  3441. reg &= ~DSPFW_CURSOR_SR_MASK;
  3442. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  3443. I915_WRITE(DSPFW3, reg);
  3444. /* Display HPLL off SR */
  3445. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  3446. pineview_display_hplloff_wm.fifo_size,
  3447. pixel_size, latency->display_hpll_disable);
  3448. reg = I915_READ(DSPFW3);
  3449. reg &= ~DSPFW_HPLL_SR_MASK;
  3450. reg |= wm & DSPFW_HPLL_SR_MASK;
  3451. I915_WRITE(DSPFW3, reg);
  3452. /* cursor HPLL off SR */
  3453. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  3454. pineview_display_hplloff_wm.fifo_size,
  3455. pixel_size, latency->cursor_hpll_disable);
  3456. reg = I915_READ(DSPFW3);
  3457. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  3458. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  3459. I915_WRITE(DSPFW3, reg);
  3460. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  3461. /* activate cxsr */
  3462. I915_WRITE(DSPFW3,
  3463. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  3464. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  3465. } else {
  3466. pineview_disable_cxsr(dev);
  3467. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  3468. }
  3469. }
  3470. static bool g4x_compute_wm0(struct drm_device *dev,
  3471. int plane,
  3472. const struct intel_watermark_params *display,
  3473. int display_latency_ns,
  3474. const struct intel_watermark_params *cursor,
  3475. int cursor_latency_ns,
  3476. int *plane_wm,
  3477. int *cursor_wm)
  3478. {
  3479. struct drm_crtc *crtc;
  3480. int htotal, hdisplay, clock, pixel_size;
  3481. int line_time_us, line_count;
  3482. int entries, tlb_miss;
  3483. crtc = intel_get_crtc_for_plane(dev, plane);
  3484. if (crtc->fb == NULL || !crtc->enabled) {
  3485. *cursor_wm = cursor->guard_size;
  3486. *plane_wm = display->guard_size;
  3487. return false;
  3488. }
  3489. htotal = crtc->mode.htotal;
  3490. hdisplay = crtc->mode.hdisplay;
  3491. clock = crtc->mode.clock;
  3492. pixel_size = crtc->fb->bits_per_pixel / 8;
  3493. /* Use the small buffer method to calculate plane watermark */
  3494. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  3495. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  3496. if (tlb_miss > 0)
  3497. entries += tlb_miss;
  3498. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  3499. *plane_wm = entries + display->guard_size;
  3500. if (*plane_wm > (int)display->max_wm)
  3501. *plane_wm = display->max_wm;
  3502. /* Use the large buffer method to calculate cursor watermark */
  3503. line_time_us = ((htotal * 1000) / clock);
  3504. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  3505. entries = line_count * 64 * pixel_size;
  3506. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  3507. if (tlb_miss > 0)
  3508. entries += tlb_miss;
  3509. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3510. *cursor_wm = entries + cursor->guard_size;
  3511. if (*cursor_wm > (int)cursor->max_wm)
  3512. *cursor_wm = (int)cursor->max_wm;
  3513. return true;
  3514. }
  3515. /*
  3516. * Check the wm result.
  3517. *
  3518. * If any calculated watermark values is larger than the maximum value that
  3519. * can be programmed into the associated watermark register, that watermark
  3520. * must be disabled.
  3521. */
  3522. static bool g4x_check_srwm(struct drm_device *dev,
  3523. int display_wm, int cursor_wm,
  3524. const struct intel_watermark_params *display,
  3525. const struct intel_watermark_params *cursor)
  3526. {
  3527. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  3528. display_wm, cursor_wm);
  3529. if (display_wm > display->max_wm) {
  3530. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  3531. display_wm, display->max_wm);
  3532. return false;
  3533. }
  3534. if (cursor_wm > cursor->max_wm) {
  3535. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  3536. cursor_wm, cursor->max_wm);
  3537. return false;
  3538. }
  3539. if (!(display_wm || cursor_wm)) {
  3540. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  3541. return false;
  3542. }
  3543. return true;
  3544. }
  3545. static bool g4x_compute_srwm(struct drm_device *dev,
  3546. int plane,
  3547. int latency_ns,
  3548. const struct intel_watermark_params *display,
  3549. const struct intel_watermark_params *cursor,
  3550. int *display_wm, int *cursor_wm)
  3551. {
  3552. struct drm_crtc *crtc;
  3553. int hdisplay, htotal, pixel_size, clock;
  3554. unsigned long line_time_us;
  3555. int line_count, line_size;
  3556. int small, large;
  3557. int entries;
  3558. if (!latency_ns) {
  3559. *display_wm = *cursor_wm = 0;
  3560. return false;
  3561. }
  3562. crtc = intel_get_crtc_for_plane(dev, plane);
  3563. hdisplay = crtc->mode.hdisplay;
  3564. htotal = crtc->mode.htotal;
  3565. clock = crtc->mode.clock;
  3566. pixel_size = crtc->fb->bits_per_pixel / 8;
  3567. line_time_us = (htotal * 1000) / clock;
  3568. line_count = (latency_ns / line_time_us + 1000) / 1000;
  3569. line_size = hdisplay * pixel_size;
  3570. /* Use the minimum of the small and large buffer method for primary */
  3571. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  3572. large = line_count * line_size;
  3573. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  3574. *display_wm = entries + display->guard_size;
  3575. /* calculate the self-refresh watermark for display cursor */
  3576. entries = line_count * pixel_size * 64;
  3577. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3578. *cursor_wm = entries + cursor->guard_size;
  3579. return g4x_check_srwm(dev,
  3580. *display_wm, *cursor_wm,
  3581. display, cursor);
  3582. }
  3583. #define single_plane_enabled(mask) is_power_of_2(mask)
  3584. static void g4x_update_wm(struct drm_device *dev)
  3585. {
  3586. static const int sr_latency_ns = 12000;
  3587. struct drm_i915_private *dev_priv = dev->dev_private;
  3588. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  3589. int plane_sr, cursor_sr;
  3590. unsigned int enabled = 0;
  3591. if (g4x_compute_wm0(dev, 0,
  3592. &g4x_wm_info, latency_ns,
  3593. &g4x_cursor_wm_info, latency_ns,
  3594. &planea_wm, &cursora_wm))
  3595. enabled |= 1;
  3596. if (g4x_compute_wm0(dev, 1,
  3597. &g4x_wm_info, latency_ns,
  3598. &g4x_cursor_wm_info, latency_ns,
  3599. &planeb_wm, &cursorb_wm))
  3600. enabled |= 2;
  3601. plane_sr = cursor_sr = 0;
  3602. if (single_plane_enabled(enabled) &&
  3603. g4x_compute_srwm(dev, ffs(enabled) - 1,
  3604. sr_latency_ns,
  3605. &g4x_wm_info,
  3606. &g4x_cursor_wm_info,
  3607. &plane_sr, &cursor_sr))
  3608. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  3609. else
  3610. I915_WRITE(FW_BLC_SELF,
  3611. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  3612. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  3613. planea_wm, cursora_wm,
  3614. planeb_wm, cursorb_wm,
  3615. plane_sr, cursor_sr);
  3616. I915_WRITE(DSPFW1,
  3617. (plane_sr << DSPFW_SR_SHIFT) |
  3618. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  3619. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  3620. planea_wm);
  3621. I915_WRITE(DSPFW2,
  3622. (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
  3623. (cursora_wm << DSPFW_CURSORA_SHIFT));
  3624. /* HPLL off in SR has some issues on G4x... disable it */
  3625. I915_WRITE(DSPFW3,
  3626. (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
  3627. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  3628. }
  3629. static void i965_update_wm(struct drm_device *dev)
  3630. {
  3631. struct drm_i915_private *dev_priv = dev->dev_private;
  3632. struct drm_crtc *crtc;
  3633. int srwm = 1;
  3634. int cursor_sr = 16;
  3635. /* Calc sr entries for one plane configs */
  3636. crtc = single_enabled_crtc(dev);
  3637. if (crtc) {
  3638. /* self-refresh has much higher latency */
  3639. static const int sr_latency_ns = 12000;
  3640. int clock = crtc->mode.clock;
  3641. int htotal = crtc->mode.htotal;
  3642. int hdisplay = crtc->mode.hdisplay;
  3643. int pixel_size = crtc->fb->bits_per_pixel / 8;
  3644. unsigned long line_time_us;
  3645. int entries;
  3646. line_time_us = ((htotal * 1000) / clock);
  3647. /* Use ns/us then divide to preserve precision */
  3648. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3649. pixel_size * hdisplay;
  3650. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  3651. srwm = I965_FIFO_SIZE - entries;
  3652. if (srwm < 0)
  3653. srwm = 1;
  3654. srwm &= 0x1ff;
  3655. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  3656. entries, srwm);
  3657. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3658. pixel_size * 64;
  3659. entries = DIV_ROUND_UP(entries,
  3660. i965_cursor_wm_info.cacheline_size);
  3661. cursor_sr = i965_cursor_wm_info.fifo_size -
  3662. (entries + i965_cursor_wm_info.guard_size);
  3663. if (cursor_sr > i965_cursor_wm_info.max_wm)
  3664. cursor_sr = i965_cursor_wm_info.max_wm;
  3665. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  3666. "cursor %d\n", srwm, cursor_sr);
  3667. if (IS_CRESTLINE(dev))
  3668. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  3669. } else {
  3670. /* Turn off self refresh if both pipes are enabled */
  3671. if (IS_CRESTLINE(dev))
  3672. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  3673. & ~FW_BLC_SELF_EN);
  3674. }
  3675. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  3676. srwm);
  3677. /* 965 has limitations... */
  3678. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  3679. (8 << 16) | (8 << 8) | (8 << 0));
  3680. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  3681. /* update cursor SR watermark */
  3682. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  3683. }
  3684. static void i9xx_update_wm(struct drm_device *dev)
  3685. {
  3686. struct drm_i915_private *dev_priv = dev->dev_private;
  3687. const struct intel_watermark_params *wm_info;
  3688. uint32_t fwater_lo;
  3689. uint32_t fwater_hi;
  3690. int cwm, srwm = 1;
  3691. int fifo_size;
  3692. int planea_wm, planeb_wm;
  3693. struct drm_crtc *crtc, *enabled = NULL;
  3694. if (IS_I945GM(dev))
  3695. wm_info = &i945_wm_info;
  3696. else if (!IS_GEN2(dev))
  3697. wm_info = &i915_wm_info;
  3698. else
  3699. wm_info = &i855_wm_info;
  3700. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  3701. crtc = intel_get_crtc_for_plane(dev, 0);
  3702. if (crtc->enabled && crtc->fb) {
  3703. planea_wm = intel_calculate_wm(crtc->mode.clock,
  3704. wm_info, fifo_size,
  3705. crtc->fb->bits_per_pixel / 8,
  3706. latency_ns);
  3707. enabled = crtc;
  3708. } else
  3709. planea_wm = fifo_size - wm_info->guard_size;
  3710. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  3711. crtc = intel_get_crtc_for_plane(dev, 1);
  3712. if (crtc->enabled && crtc->fb) {
  3713. planeb_wm = intel_calculate_wm(crtc->mode.clock,
  3714. wm_info, fifo_size,
  3715. crtc->fb->bits_per_pixel / 8,
  3716. latency_ns);
  3717. if (enabled == NULL)
  3718. enabled = crtc;
  3719. else
  3720. enabled = NULL;
  3721. } else
  3722. planeb_wm = fifo_size - wm_info->guard_size;
  3723. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  3724. /*
  3725. * Overlay gets an aggressive default since video jitter is bad.
  3726. */
  3727. cwm = 2;
  3728. /* Play safe and disable self-refresh before adjusting watermarks. */
  3729. if (IS_I945G(dev) || IS_I945GM(dev))
  3730. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  3731. else if (IS_I915GM(dev))
  3732. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  3733. /* Calc sr entries for one plane configs */
  3734. if (HAS_FW_BLC(dev) && enabled) {
  3735. /* self-refresh has much higher latency */
  3736. static const int sr_latency_ns = 6000;
  3737. int clock = enabled->mode.clock;
  3738. int htotal = enabled->mode.htotal;
  3739. int hdisplay = enabled->mode.hdisplay;
  3740. int pixel_size = enabled->fb->bits_per_pixel / 8;
  3741. unsigned long line_time_us;
  3742. int entries;
  3743. line_time_us = (htotal * 1000) / clock;
  3744. /* Use ns/us then divide to preserve precision */
  3745. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3746. pixel_size * hdisplay;
  3747. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  3748. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  3749. srwm = wm_info->fifo_size - entries;
  3750. if (srwm < 0)
  3751. srwm = 1;
  3752. if (IS_I945G(dev) || IS_I945GM(dev))
  3753. I915_WRITE(FW_BLC_SELF,
  3754. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  3755. else if (IS_I915GM(dev))
  3756. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  3757. }
  3758. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  3759. planea_wm, planeb_wm, cwm, srwm);
  3760. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  3761. fwater_hi = (cwm & 0x1f);
  3762. /* Set request length to 8 cachelines per fetch */
  3763. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  3764. fwater_hi = fwater_hi | (1 << 8);
  3765. I915_WRITE(FW_BLC, fwater_lo);
  3766. I915_WRITE(FW_BLC2, fwater_hi);
  3767. if (HAS_FW_BLC(dev)) {
  3768. if (enabled) {
  3769. if (IS_I945G(dev) || IS_I945GM(dev))
  3770. I915_WRITE(FW_BLC_SELF,
  3771. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  3772. else if (IS_I915GM(dev))
  3773. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  3774. DRM_DEBUG_KMS("memory self refresh enabled\n");
  3775. } else
  3776. DRM_DEBUG_KMS("memory self refresh disabled\n");
  3777. }
  3778. }
  3779. static void i830_update_wm(struct drm_device *dev)
  3780. {
  3781. struct drm_i915_private *dev_priv = dev->dev_private;
  3782. struct drm_crtc *crtc;
  3783. uint32_t fwater_lo;
  3784. int planea_wm;
  3785. crtc = single_enabled_crtc(dev);
  3786. if (crtc == NULL)
  3787. return;
  3788. planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
  3789. dev_priv->display.get_fifo_size(dev, 0),
  3790. crtc->fb->bits_per_pixel / 8,
  3791. latency_ns);
  3792. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  3793. fwater_lo |= (3<<8) | planea_wm;
  3794. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  3795. I915_WRITE(FW_BLC, fwater_lo);
  3796. }
  3797. #define ILK_LP0_PLANE_LATENCY 700
  3798. #define ILK_LP0_CURSOR_LATENCY 1300
  3799. /*
  3800. * Check the wm result.
  3801. *
  3802. * If any calculated watermark values is larger than the maximum value that
  3803. * can be programmed into the associated watermark register, that watermark
  3804. * must be disabled.
  3805. */
  3806. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  3807. int fbc_wm, int display_wm, int cursor_wm,
  3808. const struct intel_watermark_params *display,
  3809. const struct intel_watermark_params *cursor)
  3810. {
  3811. struct drm_i915_private *dev_priv = dev->dev_private;
  3812. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  3813. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  3814. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  3815. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  3816. fbc_wm, SNB_FBC_MAX_SRWM, level);
  3817. /* fbc has it's own way to disable FBC WM */
  3818. I915_WRITE(DISP_ARB_CTL,
  3819. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  3820. return false;
  3821. }
  3822. if (display_wm > display->max_wm) {
  3823. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  3824. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  3825. return false;
  3826. }
  3827. if (cursor_wm > cursor->max_wm) {
  3828. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  3829. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  3830. return false;
  3831. }
  3832. if (!(fbc_wm || display_wm || cursor_wm)) {
  3833. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  3834. return false;
  3835. }
  3836. return true;
  3837. }
  3838. /*
  3839. * Compute watermark values of WM[1-3],
  3840. */
  3841. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  3842. int latency_ns,
  3843. const struct intel_watermark_params *display,
  3844. const struct intel_watermark_params *cursor,
  3845. int *fbc_wm, int *display_wm, int *cursor_wm)
  3846. {
  3847. struct drm_crtc *crtc;
  3848. unsigned long line_time_us;
  3849. int hdisplay, htotal, pixel_size, clock;
  3850. int line_count, line_size;
  3851. int small, large;
  3852. int entries;
  3853. if (!latency_ns) {
  3854. *fbc_wm = *display_wm = *cursor_wm = 0;
  3855. return false;
  3856. }
  3857. crtc = intel_get_crtc_for_plane(dev, plane);
  3858. hdisplay = crtc->mode.hdisplay;
  3859. htotal = crtc->mode.htotal;
  3860. clock = crtc->mode.clock;
  3861. pixel_size = crtc->fb->bits_per_pixel / 8;
  3862. line_time_us = (htotal * 1000) / clock;
  3863. line_count = (latency_ns / line_time_us + 1000) / 1000;
  3864. line_size = hdisplay * pixel_size;
  3865. /* Use the minimum of the small and large buffer method for primary */
  3866. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  3867. large = line_count * line_size;
  3868. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  3869. *display_wm = entries + display->guard_size;
  3870. /*
  3871. * Spec says:
  3872. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  3873. */
  3874. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  3875. /* calculate the self-refresh watermark for display cursor */
  3876. entries = line_count * pixel_size * 64;
  3877. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3878. *cursor_wm = entries + cursor->guard_size;
  3879. return ironlake_check_srwm(dev, level,
  3880. *fbc_wm, *display_wm, *cursor_wm,
  3881. display, cursor);
  3882. }
  3883. static void ironlake_update_wm(struct drm_device *dev)
  3884. {
  3885. struct drm_i915_private *dev_priv = dev->dev_private;
  3886. int fbc_wm, plane_wm, cursor_wm;
  3887. unsigned int enabled;
  3888. enabled = 0;
  3889. if (g4x_compute_wm0(dev, 0,
  3890. &ironlake_display_wm_info,
  3891. ILK_LP0_PLANE_LATENCY,
  3892. &ironlake_cursor_wm_info,
  3893. ILK_LP0_CURSOR_LATENCY,
  3894. &plane_wm, &cursor_wm)) {
  3895. I915_WRITE(WM0_PIPEA_ILK,
  3896. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3897. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  3898. " plane %d, " "cursor: %d\n",
  3899. plane_wm, cursor_wm);
  3900. enabled |= 1;
  3901. }
  3902. if (g4x_compute_wm0(dev, 1,
  3903. &ironlake_display_wm_info,
  3904. ILK_LP0_PLANE_LATENCY,
  3905. &ironlake_cursor_wm_info,
  3906. ILK_LP0_CURSOR_LATENCY,
  3907. &plane_wm, &cursor_wm)) {
  3908. I915_WRITE(WM0_PIPEB_ILK,
  3909. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3910. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  3911. " plane %d, cursor: %d\n",
  3912. plane_wm, cursor_wm);
  3913. enabled |= 2;
  3914. }
  3915. /*
  3916. * Calculate and update the self-refresh watermark only when one
  3917. * display plane is used.
  3918. */
  3919. I915_WRITE(WM3_LP_ILK, 0);
  3920. I915_WRITE(WM2_LP_ILK, 0);
  3921. I915_WRITE(WM1_LP_ILK, 0);
  3922. if (!single_plane_enabled(enabled))
  3923. return;
  3924. enabled = ffs(enabled) - 1;
  3925. /* WM1 */
  3926. if (!ironlake_compute_srwm(dev, 1, enabled,
  3927. ILK_READ_WM1_LATENCY() * 500,
  3928. &ironlake_display_srwm_info,
  3929. &ironlake_cursor_srwm_info,
  3930. &fbc_wm, &plane_wm, &cursor_wm))
  3931. return;
  3932. I915_WRITE(WM1_LP_ILK,
  3933. WM1_LP_SR_EN |
  3934. (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3935. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3936. (plane_wm << WM1_LP_SR_SHIFT) |
  3937. cursor_wm);
  3938. /* WM2 */
  3939. if (!ironlake_compute_srwm(dev, 2, enabled,
  3940. ILK_READ_WM2_LATENCY() * 500,
  3941. &ironlake_display_srwm_info,
  3942. &ironlake_cursor_srwm_info,
  3943. &fbc_wm, &plane_wm, &cursor_wm))
  3944. return;
  3945. I915_WRITE(WM2_LP_ILK,
  3946. WM2_LP_EN |
  3947. (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3948. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3949. (plane_wm << WM1_LP_SR_SHIFT) |
  3950. cursor_wm);
  3951. /*
  3952. * WM3 is unsupported on ILK, probably because we don't have latency
  3953. * data for that power state
  3954. */
  3955. }
  3956. void sandybridge_update_wm(struct drm_device *dev)
  3957. {
  3958. struct drm_i915_private *dev_priv = dev->dev_private;
  3959. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  3960. u32 val;
  3961. int fbc_wm, plane_wm, cursor_wm;
  3962. unsigned int enabled;
  3963. enabled = 0;
  3964. if (g4x_compute_wm0(dev, 0,
  3965. &sandybridge_display_wm_info, latency,
  3966. &sandybridge_cursor_wm_info, latency,
  3967. &plane_wm, &cursor_wm)) {
  3968. val = I915_READ(WM0_PIPEA_ILK);
  3969. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  3970. I915_WRITE(WM0_PIPEA_ILK, val |
  3971. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  3972. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  3973. " plane %d, " "cursor: %d\n",
  3974. plane_wm, cursor_wm);
  3975. enabled |= 1;
  3976. }
  3977. if (g4x_compute_wm0(dev, 1,
  3978. &sandybridge_display_wm_info, latency,
  3979. &sandybridge_cursor_wm_info, latency,
  3980. &plane_wm, &cursor_wm)) {
  3981. val = I915_READ(WM0_PIPEB_ILK);
  3982. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  3983. I915_WRITE(WM0_PIPEB_ILK, val |
  3984. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  3985. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  3986. " plane %d, cursor: %d\n",
  3987. plane_wm, cursor_wm);
  3988. enabled |= 2;
  3989. }
  3990. /* IVB has 3 pipes */
  3991. if (IS_IVYBRIDGE(dev) &&
  3992. g4x_compute_wm0(dev, 2,
  3993. &sandybridge_display_wm_info, latency,
  3994. &sandybridge_cursor_wm_info, latency,
  3995. &plane_wm, &cursor_wm)) {
  3996. val = I915_READ(WM0_PIPEC_IVB);
  3997. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  3998. I915_WRITE(WM0_PIPEC_IVB, val |
  3999. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  4000. DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
  4001. " plane %d, cursor: %d\n",
  4002. plane_wm, cursor_wm);
  4003. enabled |= 3;
  4004. }
  4005. /*
  4006. * Calculate and update the self-refresh watermark only when one
  4007. * display plane is used.
  4008. *
  4009. * SNB support 3 levels of watermark.
  4010. *
  4011. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  4012. * and disabled in the descending order
  4013. *
  4014. */
  4015. I915_WRITE(WM3_LP_ILK, 0);
  4016. I915_WRITE(WM2_LP_ILK, 0);
  4017. I915_WRITE(WM1_LP_ILK, 0);
  4018. if (!single_plane_enabled(enabled) ||
  4019. dev_priv->sprite_scaling_enabled)
  4020. return;
  4021. enabled = ffs(enabled) - 1;
  4022. /* WM1 */
  4023. if (!ironlake_compute_srwm(dev, 1, enabled,
  4024. SNB_READ_WM1_LATENCY() * 500,
  4025. &sandybridge_display_srwm_info,
  4026. &sandybridge_cursor_srwm_info,
  4027. &fbc_wm, &plane_wm, &cursor_wm))
  4028. return;
  4029. I915_WRITE(WM1_LP_ILK,
  4030. WM1_LP_SR_EN |
  4031. (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  4032. (fbc_wm << WM1_LP_FBC_SHIFT) |
  4033. (plane_wm << WM1_LP_SR_SHIFT) |
  4034. cursor_wm);
  4035. /* WM2 */
  4036. if (!ironlake_compute_srwm(dev, 2, enabled,
  4037. SNB_READ_WM2_LATENCY() * 500,
  4038. &sandybridge_display_srwm_info,
  4039. &sandybridge_cursor_srwm_info,
  4040. &fbc_wm, &plane_wm, &cursor_wm))
  4041. return;
  4042. I915_WRITE(WM2_LP_ILK,
  4043. WM2_LP_EN |
  4044. (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  4045. (fbc_wm << WM1_LP_FBC_SHIFT) |
  4046. (plane_wm << WM1_LP_SR_SHIFT) |
  4047. cursor_wm);
  4048. /* WM3 */
  4049. if (!ironlake_compute_srwm(dev, 3, enabled,
  4050. SNB_READ_WM3_LATENCY() * 500,
  4051. &sandybridge_display_srwm_info,
  4052. &sandybridge_cursor_srwm_info,
  4053. &fbc_wm, &plane_wm, &cursor_wm))
  4054. return;
  4055. I915_WRITE(WM3_LP_ILK,
  4056. WM3_LP_EN |
  4057. (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  4058. (fbc_wm << WM1_LP_FBC_SHIFT) |
  4059. (plane_wm << WM1_LP_SR_SHIFT) |
  4060. cursor_wm);
  4061. }
  4062. static bool
  4063. sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
  4064. uint32_t sprite_width, int pixel_size,
  4065. const struct intel_watermark_params *display,
  4066. int display_latency_ns, int *sprite_wm)
  4067. {
  4068. struct drm_crtc *crtc;
  4069. int clock;
  4070. int entries, tlb_miss;
  4071. crtc = intel_get_crtc_for_plane(dev, plane);
  4072. if (crtc->fb == NULL || !crtc->enabled) {
  4073. *sprite_wm = display->guard_size;
  4074. return false;
  4075. }
  4076. clock = crtc->mode.clock;
  4077. /* Use the small buffer method to calculate the sprite watermark */
  4078. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  4079. tlb_miss = display->fifo_size*display->cacheline_size -
  4080. sprite_width * 8;
  4081. if (tlb_miss > 0)
  4082. entries += tlb_miss;
  4083. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  4084. *sprite_wm = entries + display->guard_size;
  4085. if (*sprite_wm > (int)display->max_wm)
  4086. *sprite_wm = display->max_wm;
  4087. return true;
  4088. }
  4089. static bool
  4090. sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
  4091. uint32_t sprite_width, int pixel_size,
  4092. const struct intel_watermark_params *display,
  4093. int latency_ns, int *sprite_wm)
  4094. {
  4095. struct drm_crtc *crtc;
  4096. unsigned long line_time_us;
  4097. int clock;
  4098. int line_count, line_size;
  4099. int small, large;
  4100. int entries;
  4101. if (!latency_ns) {
  4102. *sprite_wm = 0;
  4103. return false;
  4104. }
  4105. crtc = intel_get_crtc_for_plane(dev, plane);
  4106. clock = crtc->mode.clock;
  4107. if (!clock) {
  4108. *sprite_wm = 0;
  4109. return false;
  4110. }
  4111. line_time_us = (sprite_width * 1000) / clock;
  4112. if (!line_time_us) {
  4113. *sprite_wm = 0;
  4114. return false;
  4115. }
  4116. line_count = (latency_ns / line_time_us + 1000) / 1000;
  4117. line_size = sprite_width * pixel_size;
  4118. /* Use the minimum of the small and large buffer method for primary */
  4119. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  4120. large = line_count * line_size;
  4121. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  4122. *sprite_wm = entries + display->guard_size;
  4123. return *sprite_wm > 0x3ff ? false : true;
  4124. }
  4125. static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
  4126. uint32_t sprite_width, int pixel_size)
  4127. {
  4128. struct drm_i915_private *dev_priv = dev->dev_private;
  4129. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  4130. u32 val;
  4131. int sprite_wm, reg;
  4132. int ret;
  4133. switch (pipe) {
  4134. case 0:
  4135. reg = WM0_PIPEA_ILK;
  4136. break;
  4137. case 1:
  4138. reg = WM0_PIPEB_ILK;
  4139. break;
  4140. case 2:
  4141. reg = WM0_PIPEC_IVB;
  4142. break;
  4143. default:
  4144. return; /* bad pipe */
  4145. }
  4146. ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
  4147. &sandybridge_display_wm_info,
  4148. latency, &sprite_wm);
  4149. if (!ret) {
  4150. DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
  4151. pipe);
  4152. return;
  4153. }
  4154. val = I915_READ(reg);
  4155. val &= ~WM0_PIPE_SPRITE_MASK;
  4156. I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
  4157. DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
  4158. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  4159. pixel_size,
  4160. &sandybridge_display_srwm_info,
  4161. SNB_READ_WM1_LATENCY() * 500,
  4162. &sprite_wm);
  4163. if (!ret) {
  4164. DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
  4165. pipe);
  4166. return;
  4167. }
  4168. I915_WRITE(WM1S_LP_ILK, sprite_wm);
  4169. /* Only IVB has two more LP watermarks for sprite */
  4170. if (!IS_IVYBRIDGE(dev))
  4171. return;
  4172. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  4173. pixel_size,
  4174. &sandybridge_display_srwm_info,
  4175. SNB_READ_WM2_LATENCY() * 500,
  4176. &sprite_wm);
  4177. if (!ret) {
  4178. DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
  4179. pipe);
  4180. return;
  4181. }
  4182. I915_WRITE(WM2S_LP_IVB, sprite_wm);
  4183. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  4184. pixel_size,
  4185. &sandybridge_display_srwm_info,
  4186. SNB_READ_WM3_LATENCY() * 500,
  4187. &sprite_wm);
  4188. if (!ret) {
  4189. DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
  4190. pipe);
  4191. return;
  4192. }
  4193. I915_WRITE(WM3S_LP_IVB, sprite_wm);
  4194. }
  4195. /**
  4196. * intel_update_watermarks - update FIFO watermark values based on current modes
  4197. *
  4198. * Calculate watermark values for the various WM regs based on current mode
  4199. * and plane configuration.
  4200. *
  4201. * There are several cases to deal with here:
  4202. * - normal (i.e. non-self-refresh)
  4203. * - self-refresh (SR) mode
  4204. * - lines are large relative to FIFO size (buffer can hold up to 2)
  4205. * - lines are small relative to FIFO size (buffer can hold more than 2
  4206. * lines), so need to account for TLB latency
  4207. *
  4208. * The normal calculation is:
  4209. * watermark = dotclock * bytes per pixel * latency
  4210. * where latency is platform & configuration dependent (we assume pessimal
  4211. * values here).
  4212. *
  4213. * The SR calculation is:
  4214. * watermark = (trunc(latency/line time)+1) * surface width *
  4215. * bytes per pixel
  4216. * where
  4217. * line time = htotal / dotclock
  4218. * surface width = hdisplay for normal plane and 64 for cursor
  4219. * and latency is assumed to be high, as above.
  4220. *
  4221. * The final value programmed to the register should always be rounded up,
  4222. * and include an extra 2 entries to account for clock crossings.
  4223. *
  4224. * We don't use the sprite, so we can ignore that. And on Crestline we have
  4225. * to set the non-SR watermarks to 8.
  4226. */
  4227. static void intel_update_watermarks(struct drm_device *dev)
  4228. {
  4229. struct drm_i915_private *dev_priv = dev->dev_private;
  4230. if (dev_priv->display.update_wm)
  4231. dev_priv->display.update_wm(dev);
  4232. }
  4233. void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
  4234. uint32_t sprite_width, int pixel_size)
  4235. {
  4236. struct drm_i915_private *dev_priv = dev->dev_private;
  4237. if (dev_priv->display.update_sprite_wm)
  4238. dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
  4239. pixel_size);
  4240. }
  4241. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  4242. {
  4243. if (i915_panel_use_ssc >= 0)
  4244. return i915_panel_use_ssc != 0;
  4245. return dev_priv->lvds_use_ssc
  4246. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  4247. }
  4248. /**
  4249. * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
  4250. * @crtc: CRTC structure
  4251. * @mode: requested mode
  4252. *
  4253. * A pipe may be connected to one or more outputs. Based on the depth of the
  4254. * attached framebuffer, choose a good color depth to use on the pipe.
  4255. *
  4256. * If possible, match the pipe depth to the fb depth. In some cases, this
  4257. * isn't ideal, because the connected output supports a lesser or restricted
  4258. * set of depths. Resolve that here:
  4259. * LVDS typically supports only 6bpc, so clamp down in that case
  4260. * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
  4261. * Displays may support a restricted set as well, check EDID and clamp as
  4262. * appropriate.
  4263. * DP may want to dither down to 6bpc to fit larger modes
  4264. *
  4265. * RETURNS:
  4266. * Dithering requirement (i.e. false if display bpc and pipe bpc match,
  4267. * true if they don't match).
  4268. */
  4269. static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
  4270. unsigned int *pipe_bpp,
  4271. struct drm_display_mode *mode)
  4272. {
  4273. struct drm_device *dev = crtc->dev;
  4274. struct drm_i915_private *dev_priv = dev->dev_private;
  4275. struct drm_encoder *encoder;
  4276. struct drm_connector *connector;
  4277. unsigned int display_bpc = UINT_MAX, bpc;
  4278. /* Walk the encoders & connectors on this crtc, get min bpc */
  4279. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  4280. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  4281. if (encoder->crtc != crtc)
  4282. continue;
  4283. if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
  4284. unsigned int lvds_bpc;
  4285. if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
  4286. LVDS_A3_POWER_UP)
  4287. lvds_bpc = 8;
  4288. else
  4289. lvds_bpc = 6;
  4290. if (lvds_bpc < display_bpc) {
  4291. DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
  4292. display_bpc = lvds_bpc;
  4293. }
  4294. continue;
  4295. }
  4296. if (intel_encoder->type == INTEL_OUTPUT_EDP) {
  4297. /* Use VBT settings if we have an eDP panel */
  4298. unsigned int edp_bpc = dev_priv->edp.bpp / 3;
  4299. if (edp_bpc < display_bpc) {
  4300. DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
  4301. display_bpc = edp_bpc;
  4302. }
  4303. continue;
  4304. }
  4305. /* Not one of the known troublemakers, check the EDID */
  4306. list_for_each_entry(connector, &dev->mode_config.connector_list,
  4307. head) {
  4308. if (connector->encoder != encoder)
  4309. continue;
  4310. /* Don't use an invalid EDID bpc value */
  4311. if (connector->display_info.bpc &&
  4312. connector->display_info.bpc < display_bpc) {
  4313. DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
  4314. display_bpc = connector->display_info.bpc;
  4315. }
  4316. }
  4317. /*
  4318. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  4319. * through, clamp it down. (Note: >12bpc will be caught below.)
  4320. */
  4321. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  4322. if (display_bpc > 8 && display_bpc < 12) {
  4323. DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
  4324. display_bpc = 12;
  4325. } else {
  4326. DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
  4327. display_bpc = 8;
  4328. }
  4329. }
  4330. }
  4331. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4332. DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
  4333. display_bpc = 6;
  4334. }
  4335. /*
  4336. * We could just drive the pipe at the highest bpc all the time and
  4337. * enable dithering as needed, but that costs bandwidth. So choose
  4338. * the minimum value that expresses the full color range of the fb but
  4339. * also stays within the max display bpc discovered above.
  4340. */
  4341. switch (crtc->fb->depth) {
  4342. case 8:
  4343. bpc = 8; /* since we go through a colormap */
  4344. break;
  4345. case 15:
  4346. case 16:
  4347. bpc = 6; /* min is 18bpp */
  4348. break;
  4349. case 24:
  4350. bpc = 8;
  4351. break;
  4352. case 30:
  4353. bpc = 10;
  4354. break;
  4355. case 48:
  4356. bpc = 12;
  4357. break;
  4358. default:
  4359. DRM_DEBUG("unsupported depth, assuming 24 bits\n");
  4360. bpc = min((unsigned int)8, display_bpc);
  4361. break;
  4362. }
  4363. display_bpc = min(display_bpc, bpc);
  4364. DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
  4365. bpc, display_bpc);
  4366. *pipe_bpp = display_bpc * 3;
  4367. return display_bpc != bpc;
  4368. }
  4369. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  4370. {
  4371. struct drm_device *dev = crtc->dev;
  4372. struct drm_i915_private *dev_priv = dev->dev_private;
  4373. int refclk;
  4374. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  4375. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4376. refclk = dev_priv->lvds_ssc_freq * 1000;
  4377. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4378. refclk / 1000);
  4379. } else if (!IS_GEN2(dev)) {
  4380. refclk = 96000;
  4381. } else {
  4382. refclk = 48000;
  4383. }
  4384. return refclk;
  4385. }
  4386. static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
  4387. intel_clock_t *clock)
  4388. {
  4389. /* SDVO TV has fixed PLL values depend on its clock range,
  4390. this mirrors vbios setting. */
  4391. if (adjusted_mode->clock >= 100000
  4392. && adjusted_mode->clock < 140500) {
  4393. clock->p1 = 2;
  4394. clock->p2 = 10;
  4395. clock->n = 3;
  4396. clock->m1 = 16;
  4397. clock->m2 = 8;
  4398. } else if (adjusted_mode->clock >= 140500
  4399. && adjusted_mode->clock <= 200000) {
  4400. clock->p1 = 1;
  4401. clock->p2 = 10;
  4402. clock->n = 6;
  4403. clock->m1 = 12;
  4404. clock->m2 = 8;
  4405. }
  4406. }
  4407. static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
  4408. intel_clock_t *clock,
  4409. intel_clock_t *reduced_clock)
  4410. {
  4411. struct drm_device *dev = crtc->dev;
  4412. struct drm_i915_private *dev_priv = dev->dev_private;
  4413. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4414. int pipe = intel_crtc->pipe;
  4415. u32 fp, fp2 = 0;
  4416. if (IS_PINEVIEW(dev)) {
  4417. fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
  4418. if (reduced_clock)
  4419. fp2 = (1 << reduced_clock->n) << 16 |
  4420. reduced_clock->m1 << 8 | reduced_clock->m2;
  4421. } else {
  4422. fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
  4423. if (reduced_clock)
  4424. fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
  4425. reduced_clock->m2;
  4426. }
  4427. I915_WRITE(FP0(pipe), fp);
  4428. intel_crtc->lowfreq_avail = false;
  4429. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  4430. reduced_clock && i915_powersave) {
  4431. I915_WRITE(FP1(pipe), fp2);
  4432. intel_crtc->lowfreq_avail = true;
  4433. } else {
  4434. I915_WRITE(FP1(pipe), fp);
  4435. }
  4436. }
  4437. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4438. struct drm_display_mode *mode,
  4439. struct drm_display_mode *adjusted_mode,
  4440. int x, int y,
  4441. struct drm_framebuffer *old_fb)
  4442. {
  4443. struct drm_device *dev = crtc->dev;
  4444. struct drm_i915_private *dev_priv = dev->dev_private;
  4445. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4446. int pipe = intel_crtc->pipe;
  4447. int plane = intel_crtc->plane;
  4448. int refclk, num_connectors = 0;
  4449. intel_clock_t clock, reduced_clock;
  4450. u32 dpll, dspcntr, pipeconf, vsyncshift;
  4451. bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
  4452. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  4453. struct drm_mode_config *mode_config = &dev->mode_config;
  4454. struct intel_encoder *encoder;
  4455. const intel_limit_t *limit;
  4456. int ret;
  4457. u32 temp;
  4458. u32 lvds_sync = 0;
  4459. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4460. if (encoder->base.crtc != crtc)
  4461. continue;
  4462. switch (encoder->type) {
  4463. case INTEL_OUTPUT_LVDS:
  4464. is_lvds = true;
  4465. break;
  4466. case INTEL_OUTPUT_SDVO:
  4467. case INTEL_OUTPUT_HDMI:
  4468. is_sdvo = true;
  4469. if (encoder->needs_tv_clock)
  4470. is_tv = true;
  4471. break;
  4472. case INTEL_OUTPUT_DVO:
  4473. is_dvo = true;
  4474. break;
  4475. case INTEL_OUTPUT_TVOUT:
  4476. is_tv = true;
  4477. break;
  4478. case INTEL_OUTPUT_ANALOG:
  4479. is_crt = true;
  4480. break;
  4481. case INTEL_OUTPUT_DISPLAYPORT:
  4482. is_dp = true;
  4483. break;
  4484. }
  4485. num_connectors++;
  4486. }
  4487. refclk = i9xx_get_refclk(crtc, num_connectors);
  4488. /*
  4489. * Returns a set of divisors for the desired target clock with the given
  4490. * refclk, or FALSE. The returned values represent the clock equation:
  4491. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4492. */
  4493. limit = intel_limit(crtc, refclk);
  4494. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4495. &clock);
  4496. if (!ok) {
  4497. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4498. return -EINVAL;
  4499. }
  4500. /* Ensure that the cursor is valid for the new mode before changing... */
  4501. intel_crtc_update_cursor(crtc, true);
  4502. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4503. /*
  4504. * Ensure we match the reduced clock's P to the target clock.
  4505. * If the clocks don't match, we can't switch the display clock
  4506. * by using the FP0/FP1. In such case we will disable the LVDS
  4507. * downclock feature.
  4508. */
  4509. has_reduced_clock = limit->find_pll(limit, crtc,
  4510. dev_priv->lvds_downclock,
  4511. refclk,
  4512. &clock,
  4513. &reduced_clock);
  4514. }
  4515. if (is_sdvo && is_tv)
  4516. i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
  4517. i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
  4518. &reduced_clock : NULL);
  4519. dpll = DPLL_VGA_MODE_DIS;
  4520. if (!IS_GEN2(dev)) {
  4521. if (is_lvds)
  4522. dpll |= DPLLB_MODE_LVDS;
  4523. else
  4524. dpll |= DPLLB_MODE_DAC_SERIAL;
  4525. if (is_sdvo) {
  4526. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4527. if (pixel_multiplier > 1) {
  4528. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4529. dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  4530. }
  4531. dpll |= DPLL_DVO_HIGH_SPEED;
  4532. }
  4533. if (is_dp)
  4534. dpll |= DPLL_DVO_HIGH_SPEED;
  4535. /* compute bitmask from p1 value */
  4536. if (IS_PINEVIEW(dev))
  4537. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  4538. else {
  4539. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4540. if (IS_G4X(dev) && has_reduced_clock)
  4541. dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4542. }
  4543. switch (clock.p2) {
  4544. case 5:
  4545. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4546. break;
  4547. case 7:
  4548. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4549. break;
  4550. case 10:
  4551. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4552. break;
  4553. case 14:
  4554. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4555. break;
  4556. }
  4557. if (INTEL_INFO(dev)->gen >= 4)
  4558. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  4559. } else {
  4560. if (is_lvds) {
  4561. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4562. } else {
  4563. if (clock.p1 == 2)
  4564. dpll |= PLL_P1_DIVIDE_BY_TWO;
  4565. else
  4566. dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4567. if (clock.p2 == 4)
  4568. dpll |= PLL_P2_DIVIDE_BY_4;
  4569. }
  4570. }
  4571. if (is_sdvo && is_tv)
  4572. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4573. else if (is_tv)
  4574. /* XXX: just matching BIOS for now */
  4575. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4576. dpll |= 3;
  4577. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4578. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4579. else
  4580. dpll |= PLL_REF_INPUT_DREFCLK;
  4581. /* setup pipeconf */
  4582. pipeconf = I915_READ(PIPECONF(pipe));
  4583. /* Set up the display plane register */
  4584. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4585. if (pipe == 0)
  4586. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4587. else
  4588. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4589. if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4590. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4591. * core speed.
  4592. *
  4593. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4594. * pipe == 0 check?
  4595. */
  4596. if (mode->clock >
  4597. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4598. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4599. else
  4600. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4601. }
  4602. /* default to 8bpc */
  4603. pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
  4604. if (is_dp) {
  4605. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4606. pipeconf |= PIPECONF_BPP_6 |
  4607. PIPECONF_DITHER_EN |
  4608. PIPECONF_DITHER_TYPE_SP;
  4609. }
  4610. }
  4611. dpll |= DPLL_VCO_ENABLE;
  4612. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  4613. drm_mode_debug_printmodeline(mode);
  4614. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  4615. POSTING_READ(DPLL(pipe));
  4616. udelay(150);
  4617. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4618. * This is an exception to the general rule that mode_set doesn't turn
  4619. * things on.
  4620. */
  4621. if (is_lvds) {
  4622. temp = I915_READ(LVDS);
  4623. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4624. if (pipe == 1) {
  4625. temp |= LVDS_PIPEB_SELECT;
  4626. } else {
  4627. temp &= ~LVDS_PIPEB_SELECT;
  4628. }
  4629. /* set the corresponsding LVDS_BORDER bit */
  4630. temp |= dev_priv->lvds_border_bits;
  4631. /* Set the B0-B3 data pairs corresponding to whether we're going to
  4632. * set the DPLLs for dual-channel mode or not.
  4633. */
  4634. if (clock.p2 == 7)
  4635. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4636. else
  4637. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  4638. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  4639. * appropriately here, but we need to look more thoroughly into how
  4640. * panels behave in the two modes.
  4641. */
  4642. /* set the dithering flag on LVDS as needed */
  4643. if (INTEL_INFO(dev)->gen >= 4) {
  4644. if (dev_priv->lvds_dither)
  4645. temp |= LVDS_ENABLE_DITHER;
  4646. else
  4647. temp &= ~LVDS_ENABLE_DITHER;
  4648. }
  4649. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4650. lvds_sync |= LVDS_HSYNC_POLARITY;
  4651. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4652. lvds_sync |= LVDS_VSYNC_POLARITY;
  4653. if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
  4654. != lvds_sync) {
  4655. char flags[2] = "-+";
  4656. DRM_INFO("Changing LVDS panel from "
  4657. "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
  4658. flags[!(temp & LVDS_HSYNC_POLARITY)],
  4659. flags[!(temp & LVDS_VSYNC_POLARITY)],
  4660. flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
  4661. flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
  4662. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4663. temp |= lvds_sync;
  4664. }
  4665. I915_WRITE(LVDS, temp);
  4666. }
  4667. if (is_dp) {
  4668. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4669. }
  4670. I915_WRITE(DPLL(pipe), dpll);
  4671. /* Wait for the clocks to stabilize. */
  4672. POSTING_READ(DPLL(pipe));
  4673. udelay(150);
  4674. if (INTEL_INFO(dev)->gen >= 4) {
  4675. temp = 0;
  4676. if (is_sdvo) {
  4677. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  4678. if (temp > 1)
  4679. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  4680. else
  4681. temp = 0;
  4682. }
  4683. I915_WRITE(DPLL_MD(pipe), temp);
  4684. } else {
  4685. /* The pixel multiplier can only be updated once the
  4686. * DPLL is enabled and the clocks are stable.
  4687. *
  4688. * So write it again.
  4689. */
  4690. I915_WRITE(DPLL(pipe), dpll);
  4691. }
  4692. if (HAS_PIPE_CXSR(dev)) {
  4693. if (intel_crtc->lowfreq_avail) {
  4694. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4695. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4696. } else {
  4697. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4698. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4699. }
  4700. }
  4701. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4702. if (!IS_GEN2(dev) &&
  4703. adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  4704. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4705. /* the chip adds 2 halflines automatically */
  4706. adjusted_mode->crtc_vtotal -= 1;
  4707. adjusted_mode->crtc_vblank_end -= 1;
  4708. vsyncshift = adjusted_mode->crtc_hsync_start
  4709. - adjusted_mode->crtc_htotal/2;
  4710. } else {
  4711. pipeconf |= PIPECONF_PROGRESSIVE;
  4712. vsyncshift = 0;
  4713. }
  4714. if (!IS_GEN3(dev))
  4715. I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
  4716. I915_WRITE(HTOTAL(pipe),
  4717. (adjusted_mode->crtc_hdisplay - 1) |
  4718. ((adjusted_mode->crtc_htotal - 1) << 16));
  4719. I915_WRITE(HBLANK(pipe),
  4720. (adjusted_mode->crtc_hblank_start - 1) |
  4721. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  4722. I915_WRITE(HSYNC(pipe),
  4723. (adjusted_mode->crtc_hsync_start - 1) |
  4724. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  4725. I915_WRITE(VTOTAL(pipe),
  4726. (adjusted_mode->crtc_vdisplay - 1) |
  4727. ((adjusted_mode->crtc_vtotal - 1) << 16));
  4728. I915_WRITE(VBLANK(pipe),
  4729. (adjusted_mode->crtc_vblank_start - 1) |
  4730. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  4731. I915_WRITE(VSYNC(pipe),
  4732. (adjusted_mode->crtc_vsync_start - 1) |
  4733. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  4734. /* pipesrc and dspsize control the size that is scaled from,
  4735. * which should always be the user's requested size.
  4736. */
  4737. I915_WRITE(DSPSIZE(plane),
  4738. ((mode->vdisplay - 1) << 16) |
  4739. (mode->hdisplay - 1));
  4740. I915_WRITE(DSPPOS(plane), 0);
  4741. I915_WRITE(PIPESRC(pipe),
  4742. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  4743. I915_WRITE(PIPECONF(pipe), pipeconf);
  4744. POSTING_READ(PIPECONF(pipe));
  4745. intel_enable_pipe(dev_priv, pipe, false);
  4746. intel_wait_for_vblank(dev, pipe);
  4747. I915_WRITE(DSPCNTR(plane), dspcntr);
  4748. POSTING_READ(DSPCNTR(plane));
  4749. intel_enable_plane(dev_priv, plane, pipe);
  4750. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  4751. intel_update_watermarks(dev);
  4752. return ret;
  4753. }
  4754. /*
  4755. * Initialize reference clocks when the driver loads
  4756. */
  4757. void ironlake_init_pch_refclk(struct drm_device *dev)
  4758. {
  4759. struct drm_i915_private *dev_priv = dev->dev_private;
  4760. struct drm_mode_config *mode_config = &dev->mode_config;
  4761. struct intel_encoder *encoder;
  4762. u32 temp;
  4763. bool has_lvds = false;
  4764. bool has_cpu_edp = false;
  4765. bool has_pch_edp = false;
  4766. bool has_panel = false;
  4767. bool has_ck505 = false;
  4768. bool can_ssc = false;
  4769. /* We need to take the global config into account */
  4770. list_for_each_entry(encoder, &mode_config->encoder_list,
  4771. base.head) {
  4772. switch (encoder->type) {
  4773. case INTEL_OUTPUT_LVDS:
  4774. has_panel = true;
  4775. has_lvds = true;
  4776. break;
  4777. case INTEL_OUTPUT_EDP:
  4778. has_panel = true;
  4779. if (intel_encoder_is_pch_edp(&encoder->base))
  4780. has_pch_edp = true;
  4781. else
  4782. has_cpu_edp = true;
  4783. break;
  4784. }
  4785. }
  4786. if (HAS_PCH_IBX(dev)) {
  4787. has_ck505 = dev_priv->display_clock_mode;
  4788. can_ssc = has_ck505;
  4789. } else {
  4790. has_ck505 = false;
  4791. can_ssc = true;
  4792. }
  4793. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  4794. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  4795. has_ck505);
  4796. /* Ironlake: try to setup display ref clock before DPLL
  4797. * enabling. This is only under driver's control after
  4798. * PCH B stepping, previous chipset stepping should be
  4799. * ignoring this setting.
  4800. */
  4801. temp = I915_READ(PCH_DREF_CONTROL);
  4802. /* Always enable nonspread source */
  4803. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  4804. if (has_ck505)
  4805. temp |= DREF_NONSPREAD_CK505_ENABLE;
  4806. else
  4807. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  4808. if (has_panel) {
  4809. temp &= ~DREF_SSC_SOURCE_MASK;
  4810. temp |= DREF_SSC_SOURCE_ENABLE;
  4811. /* SSC must be turned on before enabling the CPU output */
  4812. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4813. DRM_DEBUG_KMS("Using SSC on panel\n");
  4814. temp |= DREF_SSC1_ENABLE;
  4815. } else
  4816. temp &= ~DREF_SSC1_ENABLE;
  4817. /* Get SSC going before enabling the outputs */
  4818. I915_WRITE(PCH_DREF_CONTROL, temp);
  4819. POSTING_READ(PCH_DREF_CONTROL);
  4820. udelay(200);
  4821. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4822. /* Enable CPU source on CPU attached eDP */
  4823. if (has_cpu_edp) {
  4824. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4825. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4826. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4827. }
  4828. else
  4829. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4830. } else
  4831. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4832. I915_WRITE(PCH_DREF_CONTROL, temp);
  4833. POSTING_READ(PCH_DREF_CONTROL);
  4834. udelay(200);
  4835. } else {
  4836. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4837. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4838. /* Turn off CPU output */
  4839. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4840. I915_WRITE(PCH_DREF_CONTROL, temp);
  4841. POSTING_READ(PCH_DREF_CONTROL);
  4842. udelay(200);
  4843. /* Turn off the SSC source */
  4844. temp &= ~DREF_SSC_SOURCE_MASK;
  4845. temp |= DREF_SSC_SOURCE_DISABLE;
  4846. /* Turn off SSC1 */
  4847. temp &= ~ DREF_SSC1_ENABLE;
  4848. I915_WRITE(PCH_DREF_CONTROL, temp);
  4849. POSTING_READ(PCH_DREF_CONTROL);
  4850. udelay(200);
  4851. }
  4852. }
  4853. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4854. {
  4855. struct drm_device *dev = crtc->dev;
  4856. struct drm_i915_private *dev_priv = dev->dev_private;
  4857. struct intel_encoder *encoder;
  4858. struct drm_mode_config *mode_config = &dev->mode_config;
  4859. struct intel_encoder *edp_encoder = NULL;
  4860. int num_connectors = 0;
  4861. bool is_lvds = false;
  4862. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4863. if (encoder->base.crtc != crtc)
  4864. continue;
  4865. switch (encoder->type) {
  4866. case INTEL_OUTPUT_LVDS:
  4867. is_lvds = true;
  4868. break;
  4869. case INTEL_OUTPUT_EDP:
  4870. edp_encoder = encoder;
  4871. break;
  4872. }
  4873. num_connectors++;
  4874. }
  4875. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4876. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4877. dev_priv->lvds_ssc_freq);
  4878. return dev_priv->lvds_ssc_freq * 1000;
  4879. }
  4880. return 120000;
  4881. }
  4882. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4883. struct drm_display_mode *mode,
  4884. struct drm_display_mode *adjusted_mode,
  4885. int x, int y,
  4886. struct drm_framebuffer *old_fb)
  4887. {
  4888. struct drm_device *dev = crtc->dev;
  4889. struct drm_i915_private *dev_priv = dev->dev_private;
  4890. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4891. int pipe = intel_crtc->pipe;
  4892. int plane = intel_crtc->plane;
  4893. int refclk, num_connectors = 0;
  4894. intel_clock_t clock, reduced_clock;
  4895. u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
  4896. bool ok, has_reduced_clock = false, is_sdvo = false;
  4897. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  4898. struct intel_encoder *has_edp_encoder = NULL;
  4899. struct drm_mode_config *mode_config = &dev->mode_config;
  4900. struct intel_encoder *encoder;
  4901. const intel_limit_t *limit;
  4902. int ret;
  4903. struct fdi_m_n m_n = {0};
  4904. u32 temp;
  4905. u32 lvds_sync = 0;
  4906. int target_clock, pixel_multiplier, lane, link_bw, factor;
  4907. unsigned int pipe_bpp;
  4908. bool dither;
  4909. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4910. if (encoder->base.crtc != crtc)
  4911. continue;
  4912. switch (encoder->type) {
  4913. case INTEL_OUTPUT_LVDS:
  4914. is_lvds = true;
  4915. break;
  4916. case INTEL_OUTPUT_SDVO:
  4917. case INTEL_OUTPUT_HDMI:
  4918. is_sdvo = true;
  4919. if (encoder->needs_tv_clock)
  4920. is_tv = true;
  4921. break;
  4922. case INTEL_OUTPUT_TVOUT:
  4923. is_tv = true;
  4924. break;
  4925. case INTEL_OUTPUT_ANALOG:
  4926. is_crt = true;
  4927. break;
  4928. case INTEL_OUTPUT_DISPLAYPORT:
  4929. is_dp = true;
  4930. break;
  4931. case INTEL_OUTPUT_EDP:
  4932. has_edp_encoder = encoder;
  4933. break;
  4934. }
  4935. num_connectors++;
  4936. }
  4937. refclk = ironlake_get_refclk(crtc);
  4938. /*
  4939. * Returns a set of divisors for the desired target clock with the given
  4940. * refclk, or FALSE. The returned values represent the clock equation:
  4941. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4942. */
  4943. limit = intel_limit(crtc, refclk);
  4944. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4945. &clock);
  4946. if (!ok) {
  4947. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4948. return -EINVAL;
  4949. }
  4950. /* Ensure that the cursor is valid for the new mode before changing... */
  4951. intel_crtc_update_cursor(crtc, true);
  4952. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4953. /*
  4954. * Ensure we match the reduced clock's P to the target clock.
  4955. * If the clocks don't match, we can't switch the display clock
  4956. * by using the FP0/FP1. In such case we will disable the LVDS
  4957. * downclock feature.
  4958. */
  4959. has_reduced_clock = limit->find_pll(limit, crtc,
  4960. dev_priv->lvds_downclock,
  4961. refclk,
  4962. &clock,
  4963. &reduced_clock);
  4964. }
  4965. /* SDVO TV has fixed PLL values depend on its clock range,
  4966. this mirrors vbios setting. */
  4967. if (is_sdvo && is_tv) {
  4968. if (adjusted_mode->clock >= 100000
  4969. && adjusted_mode->clock < 140500) {
  4970. clock.p1 = 2;
  4971. clock.p2 = 10;
  4972. clock.n = 3;
  4973. clock.m1 = 16;
  4974. clock.m2 = 8;
  4975. } else if (adjusted_mode->clock >= 140500
  4976. && adjusted_mode->clock <= 200000) {
  4977. clock.p1 = 1;
  4978. clock.p2 = 10;
  4979. clock.n = 6;
  4980. clock.m1 = 12;
  4981. clock.m2 = 8;
  4982. }
  4983. }
  4984. /* FDI link */
  4985. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4986. lane = 0;
  4987. /* CPU eDP doesn't require FDI link, so just set DP M/N
  4988. according to current link config */
  4989. if (has_edp_encoder &&
  4990. !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  4991. target_clock = mode->clock;
  4992. intel_edp_link_config(has_edp_encoder,
  4993. &lane, &link_bw);
  4994. } else {
  4995. /* [e]DP over FDI requires target mode clock
  4996. instead of link clock */
  4997. if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
  4998. target_clock = mode->clock;
  4999. else
  5000. target_clock = adjusted_mode->clock;
  5001. /* FDI is a binary signal running at ~2.7GHz, encoding
  5002. * each output octet as 10 bits. The actual frequency
  5003. * is stored as a divider into a 100MHz clock, and the
  5004. * mode pixel clock is stored in units of 1KHz.
  5005. * Hence the bw of each lane in terms of the mode signal
  5006. * is:
  5007. */
  5008. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  5009. }
  5010. /* determine panel color depth */
  5011. temp = I915_READ(PIPECONF(pipe));
  5012. temp &= ~PIPE_BPC_MASK;
  5013. dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
  5014. switch (pipe_bpp) {
  5015. case 18:
  5016. temp |= PIPE_6BPC;
  5017. break;
  5018. case 24:
  5019. temp |= PIPE_8BPC;
  5020. break;
  5021. case 30:
  5022. temp |= PIPE_10BPC;
  5023. break;
  5024. case 36:
  5025. temp |= PIPE_12BPC;
  5026. break;
  5027. default:
  5028. WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
  5029. pipe_bpp);
  5030. temp |= PIPE_8BPC;
  5031. pipe_bpp = 24;
  5032. break;
  5033. }
  5034. intel_crtc->bpp = pipe_bpp;
  5035. I915_WRITE(PIPECONF(pipe), temp);
  5036. if (!lane) {
  5037. /*
  5038. * Account for spread spectrum to avoid
  5039. * oversubscribing the link. Max center spread
  5040. * is 2.5%; use 5% for safety's sake.
  5041. */
  5042. u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
  5043. lane = bps / (link_bw * 8) + 1;
  5044. }
  5045. intel_crtc->fdi_lanes = lane;
  5046. if (pixel_multiplier > 1)
  5047. link_bw *= pixel_multiplier;
  5048. ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
  5049. &m_n);
  5050. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  5051. if (has_reduced_clock)
  5052. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  5053. reduced_clock.m2;
  5054. /* Enable autotuning of the PLL clock (if permissible) */
  5055. factor = 21;
  5056. if (is_lvds) {
  5057. if ((intel_panel_use_ssc(dev_priv) &&
  5058. dev_priv->lvds_ssc_freq == 100) ||
  5059. (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
  5060. factor = 25;
  5061. } else if (is_sdvo && is_tv)
  5062. factor = 20;
  5063. if (clock.m < factor * clock.n)
  5064. fp |= FP_CB_TUNE;
  5065. dpll = 0;
  5066. if (is_lvds)
  5067. dpll |= DPLLB_MODE_LVDS;
  5068. else
  5069. dpll |= DPLLB_MODE_DAC_SERIAL;
  5070. if (is_sdvo) {
  5071. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  5072. if (pixel_multiplier > 1) {
  5073. dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  5074. }
  5075. dpll |= DPLL_DVO_HIGH_SPEED;
  5076. }
  5077. if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
  5078. dpll |= DPLL_DVO_HIGH_SPEED;
  5079. /* compute bitmask from p1 value */
  5080. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  5081. /* also FPA1 */
  5082. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  5083. switch (clock.p2) {
  5084. case 5:
  5085. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  5086. break;
  5087. case 7:
  5088. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  5089. break;
  5090. case 10:
  5091. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  5092. break;
  5093. case 14:
  5094. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  5095. break;
  5096. }
  5097. if (is_sdvo && is_tv)
  5098. dpll |= PLL_REF_INPUT_TVCLKINBC;
  5099. else if (is_tv)
  5100. /* XXX: just matching BIOS for now */
  5101. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  5102. dpll |= 3;
  5103. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  5104. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  5105. else
  5106. dpll |= PLL_REF_INPUT_DREFCLK;
  5107. /* setup pipeconf */
  5108. pipeconf = I915_READ(PIPECONF(pipe));
  5109. /* Set up the display plane register */
  5110. dspcntr = DISPPLANE_GAMMA_ENABLE;
  5111. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  5112. drm_mode_debug_printmodeline(mode);
  5113. /* PCH eDP needs FDI, but CPU eDP does not */
  5114. if (!intel_crtc->no_pll) {
  5115. if (!has_edp_encoder ||
  5116. intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  5117. I915_WRITE(PCH_FP0(pipe), fp);
  5118. I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  5119. POSTING_READ(PCH_DPLL(pipe));
  5120. udelay(150);
  5121. }
  5122. } else {
  5123. if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
  5124. fp == I915_READ(PCH_FP0(0))) {
  5125. intel_crtc->use_pll_a = true;
  5126. DRM_DEBUG_KMS("using pipe a dpll\n");
  5127. } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
  5128. fp == I915_READ(PCH_FP0(1))) {
  5129. intel_crtc->use_pll_a = false;
  5130. DRM_DEBUG_KMS("using pipe b dpll\n");
  5131. } else {
  5132. DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
  5133. return -EINVAL;
  5134. }
  5135. }
  5136. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  5137. * This is an exception to the general rule that mode_set doesn't turn
  5138. * things on.
  5139. */
  5140. if (is_lvds) {
  5141. temp = I915_READ(PCH_LVDS);
  5142. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  5143. if (HAS_PCH_CPT(dev)) {
  5144. temp &= ~PORT_TRANS_SEL_MASK;
  5145. temp |= PORT_TRANS_SEL_CPT(pipe);
  5146. } else {
  5147. if (pipe == 1)
  5148. temp |= LVDS_PIPEB_SELECT;
  5149. else
  5150. temp &= ~LVDS_PIPEB_SELECT;
  5151. }
  5152. /* set the corresponsding LVDS_BORDER bit */
  5153. temp |= dev_priv->lvds_border_bits;
  5154. /* Set the B0-B3 data pairs corresponding to whether we're going to
  5155. * set the DPLLs for dual-channel mode or not.
  5156. */
  5157. if (clock.p2 == 7)
  5158. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  5159. else
  5160. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  5161. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  5162. * appropriately here, but we need to look more thoroughly into how
  5163. * panels behave in the two modes.
  5164. */
  5165. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  5166. lvds_sync |= LVDS_HSYNC_POLARITY;
  5167. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  5168. lvds_sync |= LVDS_VSYNC_POLARITY;
  5169. if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
  5170. != lvds_sync) {
  5171. char flags[2] = "-+";
  5172. DRM_INFO("Changing LVDS panel from "
  5173. "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
  5174. flags[!(temp & LVDS_HSYNC_POLARITY)],
  5175. flags[!(temp & LVDS_VSYNC_POLARITY)],
  5176. flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
  5177. flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
  5178. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  5179. temp |= lvds_sync;
  5180. }
  5181. I915_WRITE(PCH_LVDS, temp);
  5182. }
  5183. pipeconf &= ~PIPECONF_DITHER_EN;
  5184. pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
  5185. if ((is_lvds && dev_priv->lvds_dither) || dither) {
  5186. pipeconf |= PIPECONF_DITHER_EN;
  5187. pipeconf |= PIPECONF_DITHER_TYPE_SP;
  5188. }
  5189. if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  5190. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  5191. } else {
  5192. /* For non-DP output, clear any trans DP clock recovery setting.*/
  5193. I915_WRITE(TRANSDATA_M1(pipe), 0);
  5194. I915_WRITE(TRANSDATA_N1(pipe), 0);
  5195. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  5196. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  5197. }
  5198. if (!intel_crtc->no_pll &&
  5199. (!has_edp_encoder ||
  5200. intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
  5201. I915_WRITE(PCH_DPLL(pipe), dpll);
  5202. /* Wait for the clocks to stabilize. */
  5203. POSTING_READ(PCH_DPLL(pipe));
  5204. udelay(150);
  5205. /* The pixel multiplier can only be updated once the
  5206. * DPLL is enabled and the clocks are stable.
  5207. *
  5208. * So write it again.
  5209. */
  5210. I915_WRITE(PCH_DPLL(pipe), dpll);
  5211. }
  5212. intel_crtc->lowfreq_avail = false;
  5213. if (!intel_crtc->no_pll) {
  5214. if (is_lvds && has_reduced_clock && i915_powersave) {
  5215. I915_WRITE(PCH_FP1(pipe), fp2);
  5216. intel_crtc->lowfreq_avail = true;
  5217. if (HAS_PIPE_CXSR(dev)) {
  5218. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  5219. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  5220. }
  5221. } else {
  5222. I915_WRITE(PCH_FP1(pipe), fp);
  5223. if (HAS_PIPE_CXSR(dev)) {
  5224. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  5225. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  5226. }
  5227. }
  5228. }
  5229. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  5230. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  5231. pipeconf |= PIPECONF_INTERLACED_ILK;
  5232. /* the chip adds 2 halflines automatically */
  5233. adjusted_mode->crtc_vtotal -= 1;
  5234. adjusted_mode->crtc_vblank_end -= 1;
  5235. I915_WRITE(VSYNCSHIFT(pipe),
  5236. adjusted_mode->crtc_hsync_start
  5237. - adjusted_mode->crtc_htotal/2);
  5238. } else {
  5239. pipeconf |= PIPECONF_PROGRESSIVE;
  5240. I915_WRITE(VSYNCSHIFT(pipe), 0);
  5241. }
  5242. I915_WRITE(HTOTAL(pipe),
  5243. (adjusted_mode->crtc_hdisplay - 1) |
  5244. ((adjusted_mode->crtc_htotal - 1) << 16));
  5245. I915_WRITE(HBLANK(pipe),
  5246. (adjusted_mode->crtc_hblank_start - 1) |
  5247. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  5248. I915_WRITE(HSYNC(pipe),
  5249. (adjusted_mode->crtc_hsync_start - 1) |
  5250. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  5251. I915_WRITE(VTOTAL(pipe),
  5252. (adjusted_mode->crtc_vdisplay - 1) |
  5253. ((adjusted_mode->crtc_vtotal - 1) << 16));
  5254. I915_WRITE(VBLANK(pipe),
  5255. (adjusted_mode->crtc_vblank_start - 1) |
  5256. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  5257. I915_WRITE(VSYNC(pipe),
  5258. (adjusted_mode->crtc_vsync_start - 1) |
  5259. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  5260. /* pipesrc controls the size that is scaled from, which should
  5261. * always be the user's requested size.
  5262. */
  5263. I915_WRITE(PIPESRC(pipe),
  5264. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  5265. I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  5266. I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
  5267. I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
  5268. I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
  5269. if (has_edp_encoder &&
  5270. !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  5271. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  5272. }
  5273. I915_WRITE(PIPECONF(pipe), pipeconf);
  5274. POSTING_READ(PIPECONF(pipe));
  5275. intel_wait_for_vblank(dev, pipe);
  5276. I915_WRITE(DSPCNTR(plane), dspcntr);
  5277. POSTING_READ(DSPCNTR(plane));
  5278. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  5279. intel_update_watermarks(dev);
  5280. return ret;
  5281. }
  5282. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5283. struct drm_display_mode *mode,
  5284. struct drm_display_mode *adjusted_mode,
  5285. int x, int y,
  5286. struct drm_framebuffer *old_fb)
  5287. {
  5288. struct drm_device *dev = crtc->dev;
  5289. struct drm_i915_private *dev_priv = dev->dev_private;
  5290. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5291. int pipe = intel_crtc->pipe;
  5292. int ret;
  5293. drm_vblank_pre_modeset(dev, pipe);
  5294. ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
  5295. x, y, old_fb);
  5296. drm_vblank_post_modeset(dev, pipe);
  5297. if (ret)
  5298. intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
  5299. else
  5300. intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
  5301. return ret;
  5302. }
  5303. static bool intel_eld_uptodate(struct drm_connector *connector,
  5304. int reg_eldv, uint32_t bits_eldv,
  5305. int reg_elda, uint32_t bits_elda,
  5306. int reg_edid)
  5307. {
  5308. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5309. uint8_t *eld = connector->eld;
  5310. uint32_t i;
  5311. i = I915_READ(reg_eldv);
  5312. i &= bits_eldv;
  5313. if (!eld[0])
  5314. return !i;
  5315. if (!i)
  5316. return false;
  5317. i = I915_READ(reg_elda);
  5318. i &= ~bits_elda;
  5319. I915_WRITE(reg_elda, i);
  5320. for (i = 0; i < eld[2]; i++)
  5321. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5322. return false;
  5323. return true;
  5324. }
  5325. static void g4x_write_eld(struct drm_connector *connector,
  5326. struct drm_crtc *crtc)
  5327. {
  5328. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5329. uint8_t *eld = connector->eld;
  5330. uint32_t eldv;
  5331. uint32_t len;
  5332. uint32_t i;
  5333. i = I915_READ(G4X_AUD_VID_DID);
  5334. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5335. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5336. else
  5337. eldv = G4X_ELDV_DEVCTG;
  5338. if (intel_eld_uptodate(connector,
  5339. G4X_AUD_CNTL_ST, eldv,
  5340. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5341. G4X_HDMIW_HDMIEDID))
  5342. return;
  5343. i = I915_READ(G4X_AUD_CNTL_ST);
  5344. i &= ~(eldv | G4X_ELD_ADDR);
  5345. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5346. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5347. if (!eld[0])
  5348. return;
  5349. len = min_t(uint8_t, eld[2], len);
  5350. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5351. for (i = 0; i < len; i++)
  5352. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5353. i = I915_READ(G4X_AUD_CNTL_ST);
  5354. i |= eldv;
  5355. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5356. }
  5357. static void ironlake_write_eld(struct drm_connector *connector,
  5358. struct drm_crtc *crtc)
  5359. {
  5360. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5361. uint8_t *eld = connector->eld;
  5362. uint32_t eldv;
  5363. uint32_t i;
  5364. int len;
  5365. int hdmiw_hdmiedid;
  5366. int aud_config;
  5367. int aud_cntl_st;
  5368. int aud_cntrl_st2;
  5369. if (HAS_PCH_IBX(connector->dev)) {
  5370. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
  5371. aud_config = IBX_AUD_CONFIG_A;
  5372. aud_cntl_st = IBX_AUD_CNTL_ST_A;
  5373. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5374. } else {
  5375. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
  5376. aud_config = CPT_AUD_CONFIG_A;
  5377. aud_cntl_st = CPT_AUD_CNTL_ST_A;
  5378. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5379. }
  5380. i = to_intel_crtc(crtc)->pipe;
  5381. hdmiw_hdmiedid += i * 0x100;
  5382. aud_cntl_st += i * 0x100;
  5383. aud_config += i * 0x100;
  5384. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
  5385. i = I915_READ(aud_cntl_st);
  5386. i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
  5387. if (!i) {
  5388. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5389. /* operate blindly on all ports */
  5390. eldv = IBX_ELD_VALIDB;
  5391. eldv |= IBX_ELD_VALIDB << 4;
  5392. eldv |= IBX_ELD_VALIDB << 8;
  5393. } else {
  5394. DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
  5395. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5396. }
  5397. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5398. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5399. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5400. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5401. } else
  5402. I915_WRITE(aud_config, 0);
  5403. if (intel_eld_uptodate(connector,
  5404. aud_cntrl_st2, eldv,
  5405. aud_cntl_st, IBX_ELD_ADDRESS,
  5406. hdmiw_hdmiedid))
  5407. return;
  5408. i = I915_READ(aud_cntrl_st2);
  5409. i &= ~eldv;
  5410. I915_WRITE(aud_cntrl_st2, i);
  5411. if (!eld[0])
  5412. return;
  5413. i = I915_READ(aud_cntl_st);
  5414. i &= ~IBX_ELD_ADDRESS;
  5415. I915_WRITE(aud_cntl_st, i);
  5416. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5417. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5418. for (i = 0; i < len; i++)
  5419. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5420. i = I915_READ(aud_cntrl_st2);
  5421. i |= eldv;
  5422. I915_WRITE(aud_cntrl_st2, i);
  5423. }
  5424. void intel_write_eld(struct drm_encoder *encoder,
  5425. struct drm_display_mode *mode)
  5426. {
  5427. struct drm_crtc *crtc = encoder->crtc;
  5428. struct drm_connector *connector;
  5429. struct drm_device *dev = encoder->dev;
  5430. struct drm_i915_private *dev_priv = dev->dev_private;
  5431. connector = drm_select_eld(encoder, mode);
  5432. if (!connector)
  5433. return;
  5434. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5435. connector->base.id,
  5436. drm_get_connector_name(connector),
  5437. connector->encoder->base.id,
  5438. drm_get_encoder_name(connector->encoder));
  5439. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5440. if (dev_priv->display.write_eld)
  5441. dev_priv->display.write_eld(connector, crtc);
  5442. }
  5443. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5444. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5445. {
  5446. struct drm_device *dev = crtc->dev;
  5447. struct drm_i915_private *dev_priv = dev->dev_private;
  5448. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5449. int palreg = PALETTE(intel_crtc->pipe);
  5450. int i;
  5451. /* The clocks have to be on to load the palette. */
  5452. if (!crtc->enabled || !intel_crtc->active)
  5453. return;
  5454. /* use legacy palette for Ironlake */
  5455. if (HAS_PCH_SPLIT(dev))
  5456. palreg = LGC_PALETTE(intel_crtc->pipe);
  5457. for (i = 0; i < 256; i++) {
  5458. I915_WRITE(palreg + 4 * i,
  5459. (intel_crtc->lut_r[i] << 16) |
  5460. (intel_crtc->lut_g[i] << 8) |
  5461. intel_crtc->lut_b[i]);
  5462. }
  5463. }
  5464. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5465. {
  5466. struct drm_device *dev = crtc->dev;
  5467. struct drm_i915_private *dev_priv = dev->dev_private;
  5468. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5469. bool visible = base != 0;
  5470. u32 cntl;
  5471. if (intel_crtc->cursor_visible == visible)
  5472. return;
  5473. cntl = I915_READ(_CURACNTR);
  5474. if (visible) {
  5475. /* On these chipsets we can only modify the base whilst
  5476. * the cursor is disabled.
  5477. */
  5478. I915_WRITE(_CURABASE, base);
  5479. cntl &= ~(CURSOR_FORMAT_MASK);
  5480. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5481. cntl |= CURSOR_ENABLE |
  5482. CURSOR_GAMMA_ENABLE |
  5483. CURSOR_FORMAT_ARGB;
  5484. } else
  5485. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5486. I915_WRITE(_CURACNTR, cntl);
  5487. intel_crtc->cursor_visible = visible;
  5488. }
  5489. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5490. {
  5491. struct drm_device *dev = crtc->dev;
  5492. struct drm_i915_private *dev_priv = dev->dev_private;
  5493. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5494. int pipe = intel_crtc->pipe;
  5495. bool visible = base != 0;
  5496. if (intel_crtc->cursor_visible != visible) {
  5497. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5498. if (base) {
  5499. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5500. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5501. cntl |= pipe << 28; /* Connect to correct pipe */
  5502. } else {
  5503. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5504. cntl |= CURSOR_MODE_DISABLE;
  5505. }
  5506. I915_WRITE(CURCNTR(pipe), cntl);
  5507. intel_crtc->cursor_visible = visible;
  5508. }
  5509. /* and commit changes on next vblank */
  5510. I915_WRITE(CURBASE(pipe), base);
  5511. }
  5512. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5513. {
  5514. struct drm_device *dev = crtc->dev;
  5515. struct drm_i915_private *dev_priv = dev->dev_private;
  5516. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5517. int pipe = intel_crtc->pipe;
  5518. bool visible = base != 0;
  5519. if (intel_crtc->cursor_visible != visible) {
  5520. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5521. if (base) {
  5522. cntl &= ~CURSOR_MODE;
  5523. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5524. } else {
  5525. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5526. cntl |= CURSOR_MODE_DISABLE;
  5527. }
  5528. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5529. intel_crtc->cursor_visible = visible;
  5530. }
  5531. /* and commit changes on next vblank */
  5532. I915_WRITE(CURBASE_IVB(pipe), base);
  5533. }
  5534. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5535. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5536. bool on)
  5537. {
  5538. struct drm_device *dev = crtc->dev;
  5539. struct drm_i915_private *dev_priv = dev->dev_private;
  5540. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5541. int pipe = intel_crtc->pipe;
  5542. int x = intel_crtc->cursor_x;
  5543. int y = intel_crtc->cursor_y;
  5544. u32 base, pos;
  5545. bool visible;
  5546. pos = 0;
  5547. if (on && crtc->enabled && crtc->fb) {
  5548. base = intel_crtc->cursor_addr;
  5549. if (x > (int) crtc->fb->width)
  5550. base = 0;
  5551. if (y > (int) crtc->fb->height)
  5552. base = 0;
  5553. } else
  5554. base = 0;
  5555. if (x < 0) {
  5556. if (x + intel_crtc->cursor_width < 0)
  5557. base = 0;
  5558. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5559. x = -x;
  5560. }
  5561. pos |= x << CURSOR_X_SHIFT;
  5562. if (y < 0) {
  5563. if (y + intel_crtc->cursor_height < 0)
  5564. base = 0;
  5565. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5566. y = -y;
  5567. }
  5568. pos |= y << CURSOR_Y_SHIFT;
  5569. visible = base != 0;
  5570. if (!visible && !intel_crtc->cursor_visible)
  5571. return;
  5572. if (IS_IVYBRIDGE(dev)) {
  5573. I915_WRITE(CURPOS_IVB(pipe), pos);
  5574. ivb_update_cursor(crtc, base);
  5575. } else {
  5576. I915_WRITE(CURPOS(pipe), pos);
  5577. if (IS_845G(dev) || IS_I865G(dev))
  5578. i845_update_cursor(crtc, base);
  5579. else
  5580. i9xx_update_cursor(crtc, base);
  5581. }
  5582. if (visible)
  5583. intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
  5584. }
  5585. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5586. struct drm_file *file,
  5587. uint32_t handle,
  5588. uint32_t width, uint32_t height)
  5589. {
  5590. struct drm_device *dev = crtc->dev;
  5591. struct drm_i915_private *dev_priv = dev->dev_private;
  5592. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5593. struct drm_i915_gem_object *obj;
  5594. uint32_t addr;
  5595. int ret;
  5596. DRM_DEBUG_KMS("\n");
  5597. /* if we want to turn off the cursor ignore width and height */
  5598. if (!handle) {
  5599. DRM_DEBUG_KMS("cursor off\n");
  5600. addr = 0;
  5601. obj = NULL;
  5602. mutex_lock(&dev->struct_mutex);
  5603. goto finish;
  5604. }
  5605. /* Currently we only support 64x64 cursors */
  5606. if (width != 64 || height != 64) {
  5607. DRM_ERROR("we currently only support 64x64 cursors\n");
  5608. return -EINVAL;
  5609. }
  5610. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5611. if (&obj->base == NULL)
  5612. return -ENOENT;
  5613. if (obj->base.size < width * height * 4) {
  5614. DRM_ERROR("buffer is to small\n");
  5615. ret = -ENOMEM;
  5616. goto fail;
  5617. }
  5618. /* we only need to pin inside GTT if cursor is non-phy */
  5619. mutex_lock(&dev->struct_mutex);
  5620. if (!dev_priv->info->cursor_needs_physical) {
  5621. if (obj->tiling_mode) {
  5622. DRM_ERROR("cursor cannot be tiled\n");
  5623. ret = -EINVAL;
  5624. goto fail_locked;
  5625. }
  5626. ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
  5627. if (ret) {
  5628. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5629. goto fail_locked;
  5630. }
  5631. ret = i915_gem_object_put_fence(obj);
  5632. if (ret) {
  5633. DRM_ERROR("failed to release fence for cursor");
  5634. goto fail_unpin;
  5635. }
  5636. addr = obj->gtt_offset;
  5637. } else {
  5638. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5639. ret = i915_gem_attach_phys_object(dev, obj,
  5640. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5641. align);
  5642. if (ret) {
  5643. DRM_ERROR("failed to attach phys object\n");
  5644. goto fail_locked;
  5645. }
  5646. addr = obj->phys_obj->handle->busaddr;
  5647. }
  5648. if (IS_GEN2(dev))
  5649. I915_WRITE(CURSIZE, (height << 12) | width);
  5650. finish:
  5651. if (intel_crtc->cursor_bo) {
  5652. if (dev_priv->info->cursor_needs_physical) {
  5653. if (intel_crtc->cursor_bo != obj)
  5654. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5655. } else
  5656. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5657. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5658. }
  5659. mutex_unlock(&dev->struct_mutex);
  5660. intel_crtc->cursor_addr = addr;
  5661. intel_crtc->cursor_bo = obj;
  5662. intel_crtc->cursor_width = width;
  5663. intel_crtc->cursor_height = height;
  5664. intel_crtc_update_cursor(crtc, true);
  5665. return 0;
  5666. fail_unpin:
  5667. i915_gem_object_unpin(obj);
  5668. fail_locked:
  5669. mutex_unlock(&dev->struct_mutex);
  5670. fail:
  5671. drm_gem_object_unreference_unlocked(&obj->base);
  5672. return ret;
  5673. }
  5674. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5675. {
  5676. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5677. intel_crtc->cursor_x = x;
  5678. intel_crtc->cursor_y = y;
  5679. intel_crtc_update_cursor(crtc, true);
  5680. return 0;
  5681. }
  5682. /** Sets the color ramps on behalf of RandR */
  5683. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5684. u16 blue, int regno)
  5685. {
  5686. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5687. intel_crtc->lut_r[regno] = red >> 8;
  5688. intel_crtc->lut_g[regno] = green >> 8;
  5689. intel_crtc->lut_b[regno] = blue >> 8;
  5690. }
  5691. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5692. u16 *blue, int regno)
  5693. {
  5694. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5695. *red = intel_crtc->lut_r[regno] << 8;
  5696. *green = intel_crtc->lut_g[regno] << 8;
  5697. *blue = intel_crtc->lut_b[regno] << 8;
  5698. }
  5699. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5700. u16 *blue, uint32_t start, uint32_t size)
  5701. {
  5702. int end = (start + size > 256) ? 256 : start + size, i;
  5703. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5704. for (i = start; i < end; i++) {
  5705. intel_crtc->lut_r[i] = red[i] >> 8;
  5706. intel_crtc->lut_g[i] = green[i] >> 8;
  5707. intel_crtc->lut_b[i] = blue[i] >> 8;
  5708. }
  5709. intel_crtc_load_lut(crtc);
  5710. }
  5711. /**
  5712. * Get a pipe with a simple mode set on it for doing load-based monitor
  5713. * detection.
  5714. *
  5715. * It will be up to the load-detect code to adjust the pipe as appropriate for
  5716. * its requirements. The pipe will be connected to no other encoders.
  5717. *
  5718. * Currently this code will only succeed if there is a pipe with no encoders
  5719. * configured for it. In the future, it could choose to temporarily disable
  5720. * some outputs to free up a pipe for its use.
  5721. *
  5722. * \return crtc, or NULL if no pipes are available.
  5723. */
  5724. /* VESA 640x480x72Hz mode to set on the pipe */
  5725. static struct drm_display_mode load_detect_mode = {
  5726. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5727. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5728. };
  5729. static struct drm_framebuffer *
  5730. intel_framebuffer_create(struct drm_device *dev,
  5731. struct drm_mode_fb_cmd2 *mode_cmd,
  5732. struct drm_i915_gem_object *obj)
  5733. {
  5734. struct intel_framebuffer *intel_fb;
  5735. int ret;
  5736. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5737. if (!intel_fb) {
  5738. drm_gem_object_unreference_unlocked(&obj->base);
  5739. return ERR_PTR(-ENOMEM);
  5740. }
  5741. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5742. if (ret) {
  5743. drm_gem_object_unreference_unlocked(&obj->base);
  5744. kfree(intel_fb);
  5745. return ERR_PTR(ret);
  5746. }
  5747. return &intel_fb->base;
  5748. }
  5749. static u32
  5750. intel_framebuffer_pitch_for_width(int width, int bpp)
  5751. {
  5752. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5753. return ALIGN(pitch, 64);
  5754. }
  5755. static u32
  5756. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5757. {
  5758. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5759. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5760. }
  5761. static struct drm_framebuffer *
  5762. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5763. struct drm_display_mode *mode,
  5764. int depth, int bpp)
  5765. {
  5766. struct drm_i915_gem_object *obj;
  5767. struct drm_mode_fb_cmd2 mode_cmd;
  5768. obj = i915_gem_alloc_object(dev,
  5769. intel_framebuffer_size_for_mode(mode, bpp));
  5770. if (obj == NULL)
  5771. return ERR_PTR(-ENOMEM);
  5772. mode_cmd.width = mode->hdisplay;
  5773. mode_cmd.height = mode->vdisplay;
  5774. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5775. bpp);
  5776. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5777. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5778. }
  5779. static struct drm_framebuffer *
  5780. mode_fits_in_fbdev(struct drm_device *dev,
  5781. struct drm_display_mode *mode)
  5782. {
  5783. struct drm_i915_private *dev_priv = dev->dev_private;
  5784. struct drm_i915_gem_object *obj;
  5785. struct drm_framebuffer *fb;
  5786. if (dev_priv->fbdev == NULL)
  5787. return NULL;
  5788. obj = dev_priv->fbdev->ifb.obj;
  5789. if (obj == NULL)
  5790. return NULL;
  5791. fb = &dev_priv->fbdev->ifb.base;
  5792. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5793. fb->bits_per_pixel))
  5794. return NULL;
  5795. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5796. return NULL;
  5797. return fb;
  5798. }
  5799. bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
  5800. struct drm_connector *connector,
  5801. struct drm_display_mode *mode,
  5802. struct intel_load_detect_pipe *old)
  5803. {
  5804. struct intel_crtc *intel_crtc;
  5805. struct drm_crtc *possible_crtc;
  5806. struct drm_encoder *encoder = &intel_encoder->base;
  5807. struct drm_crtc *crtc = NULL;
  5808. struct drm_device *dev = encoder->dev;
  5809. struct drm_framebuffer *old_fb;
  5810. int i = -1;
  5811. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5812. connector->base.id, drm_get_connector_name(connector),
  5813. encoder->base.id, drm_get_encoder_name(encoder));
  5814. /*
  5815. * Algorithm gets a little messy:
  5816. *
  5817. * - if the connector already has an assigned crtc, use it (but make
  5818. * sure it's on first)
  5819. *
  5820. * - try to find the first unused crtc that can drive this connector,
  5821. * and use that if we find one
  5822. */
  5823. /* See if we already have a CRTC for this connector */
  5824. if (encoder->crtc) {
  5825. crtc = encoder->crtc;
  5826. intel_crtc = to_intel_crtc(crtc);
  5827. old->dpms_mode = intel_crtc->dpms_mode;
  5828. old->load_detect_temp = false;
  5829. /* Make sure the crtc and connector are running */
  5830. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  5831. struct drm_encoder_helper_funcs *encoder_funcs;
  5832. struct drm_crtc_helper_funcs *crtc_funcs;
  5833. crtc_funcs = crtc->helper_private;
  5834. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  5835. encoder_funcs = encoder->helper_private;
  5836. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  5837. }
  5838. return true;
  5839. }
  5840. /* Find an unused one (if possible) */
  5841. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5842. i++;
  5843. if (!(encoder->possible_crtcs & (1 << i)))
  5844. continue;
  5845. if (!possible_crtc->enabled) {
  5846. crtc = possible_crtc;
  5847. break;
  5848. }
  5849. }
  5850. /*
  5851. * If we didn't find an unused CRTC, don't use any.
  5852. */
  5853. if (!crtc) {
  5854. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5855. return false;
  5856. }
  5857. encoder->crtc = crtc;
  5858. connector->encoder = encoder;
  5859. intel_crtc = to_intel_crtc(crtc);
  5860. old->dpms_mode = intel_crtc->dpms_mode;
  5861. old->load_detect_temp = true;
  5862. old->release_fb = NULL;
  5863. if (!mode)
  5864. mode = &load_detect_mode;
  5865. old_fb = crtc->fb;
  5866. /* We need a framebuffer large enough to accommodate all accesses
  5867. * that the plane may generate whilst we perform load detection.
  5868. * We can not rely on the fbcon either being present (we get called
  5869. * during its initialisation to detect all boot displays, or it may
  5870. * not even exist) or that it is large enough to satisfy the
  5871. * requested mode.
  5872. */
  5873. crtc->fb = mode_fits_in_fbdev(dev, mode);
  5874. if (crtc->fb == NULL) {
  5875. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5876. crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5877. old->release_fb = crtc->fb;
  5878. } else
  5879. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5880. if (IS_ERR(crtc->fb)) {
  5881. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5882. crtc->fb = old_fb;
  5883. return false;
  5884. }
  5885. if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
  5886. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5887. if (old->release_fb)
  5888. old->release_fb->funcs->destroy(old->release_fb);
  5889. crtc->fb = old_fb;
  5890. return false;
  5891. }
  5892. /* let the connector get through one full cycle before testing */
  5893. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5894. return true;
  5895. }
  5896. void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
  5897. struct drm_connector *connector,
  5898. struct intel_load_detect_pipe *old)
  5899. {
  5900. struct drm_encoder *encoder = &intel_encoder->base;
  5901. struct drm_device *dev = encoder->dev;
  5902. struct drm_crtc *crtc = encoder->crtc;
  5903. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  5904. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  5905. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5906. connector->base.id, drm_get_connector_name(connector),
  5907. encoder->base.id, drm_get_encoder_name(encoder));
  5908. if (old->load_detect_temp) {
  5909. connector->encoder = NULL;
  5910. drm_helper_disable_unused_functions(dev);
  5911. if (old->release_fb)
  5912. old->release_fb->funcs->destroy(old->release_fb);
  5913. return;
  5914. }
  5915. /* Switch crtc and encoder back off if necessary */
  5916. if (old->dpms_mode != DRM_MODE_DPMS_ON) {
  5917. encoder_funcs->dpms(encoder, old->dpms_mode);
  5918. crtc_funcs->dpms(crtc, old->dpms_mode);
  5919. }
  5920. }
  5921. /* Returns the clock of the currently programmed mode of the given pipe. */
  5922. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5923. {
  5924. struct drm_i915_private *dev_priv = dev->dev_private;
  5925. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5926. int pipe = intel_crtc->pipe;
  5927. u32 dpll = I915_READ(DPLL(pipe));
  5928. u32 fp;
  5929. intel_clock_t clock;
  5930. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5931. fp = I915_READ(FP0(pipe));
  5932. else
  5933. fp = I915_READ(FP1(pipe));
  5934. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5935. if (IS_PINEVIEW(dev)) {
  5936. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5937. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5938. } else {
  5939. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5940. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5941. }
  5942. if (!IS_GEN2(dev)) {
  5943. if (IS_PINEVIEW(dev))
  5944. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5945. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5946. else
  5947. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5948. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5949. switch (dpll & DPLL_MODE_MASK) {
  5950. case DPLLB_MODE_DAC_SERIAL:
  5951. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5952. 5 : 10;
  5953. break;
  5954. case DPLLB_MODE_LVDS:
  5955. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5956. 7 : 14;
  5957. break;
  5958. default:
  5959. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5960. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5961. return 0;
  5962. }
  5963. /* XXX: Handle the 100Mhz refclk */
  5964. intel_clock(dev, 96000, &clock);
  5965. } else {
  5966. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5967. if (is_lvds) {
  5968. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5969. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5970. clock.p2 = 14;
  5971. if ((dpll & PLL_REF_INPUT_MASK) ==
  5972. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5973. /* XXX: might not be 66MHz */
  5974. intel_clock(dev, 66000, &clock);
  5975. } else
  5976. intel_clock(dev, 48000, &clock);
  5977. } else {
  5978. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5979. clock.p1 = 2;
  5980. else {
  5981. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5982. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5983. }
  5984. if (dpll & PLL_P2_DIVIDE_BY_4)
  5985. clock.p2 = 4;
  5986. else
  5987. clock.p2 = 2;
  5988. intel_clock(dev, 48000, &clock);
  5989. }
  5990. }
  5991. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5992. * i830PllIsValid() because it relies on the xf86_config connector
  5993. * configuration being accurate, which it isn't necessarily.
  5994. */
  5995. return clock.dot;
  5996. }
  5997. /** Returns the currently programmed mode of the given pipe. */
  5998. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5999. struct drm_crtc *crtc)
  6000. {
  6001. struct drm_i915_private *dev_priv = dev->dev_private;
  6002. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6003. int pipe = intel_crtc->pipe;
  6004. struct drm_display_mode *mode;
  6005. int htot = I915_READ(HTOTAL(pipe));
  6006. int hsync = I915_READ(HSYNC(pipe));
  6007. int vtot = I915_READ(VTOTAL(pipe));
  6008. int vsync = I915_READ(VSYNC(pipe));
  6009. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  6010. if (!mode)
  6011. return NULL;
  6012. mode->clock = intel_crtc_clock_get(dev, crtc);
  6013. mode->hdisplay = (htot & 0xffff) + 1;
  6014. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  6015. mode->hsync_start = (hsync & 0xffff) + 1;
  6016. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  6017. mode->vdisplay = (vtot & 0xffff) + 1;
  6018. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  6019. mode->vsync_start = (vsync & 0xffff) + 1;
  6020. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  6021. drm_mode_set_name(mode);
  6022. drm_mode_set_crtcinfo(mode, 0);
  6023. return mode;
  6024. }
  6025. #define GPU_IDLE_TIMEOUT 500 /* ms */
  6026. /* When this timer fires, we've been idle for awhile */
  6027. static void intel_gpu_idle_timer(unsigned long arg)
  6028. {
  6029. struct drm_device *dev = (struct drm_device *)arg;
  6030. drm_i915_private_t *dev_priv = dev->dev_private;
  6031. if (!list_empty(&dev_priv->mm.active_list)) {
  6032. /* Still processing requests, so just re-arm the timer. */
  6033. mod_timer(&dev_priv->idle_timer, jiffies +
  6034. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  6035. return;
  6036. }
  6037. dev_priv->busy = false;
  6038. queue_work(dev_priv->wq, &dev_priv->idle_work);
  6039. }
  6040. #define CRTC_IDLE_TIMEOUT 1000 /* ms */
  6041. static void intel_crtc_idle_timer(unsigned long arg)
  6042. {
  6043. struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
  6044. struct drm_crtc *crtc = &intel_crtc->base;
  6045. drm_i915_private_t *dev_priv = crtc->dev->dev_private;
  6046. struct intel_framebuffer *intel_fb;
  6047. intel_fb = to_intel_framebuffer(crtc->fb);
  6048. if (intel_fb && intel_fb->obj->active) {
  6049. /* The framebuffer is still being accessed by the GPU. */
  6050. mod_timer(&intel_crtc->idle_timer, jiffies +
  6051. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  6052. return;
  6053. }
  6054. intel_crtc->busy = false;
  6055. queue_work(dev_priv->wq, &dev_priv->idle_work);
  6056. }
  6057. static void intel_increase_pllclock(struct drm_crtc *crtc)
  6058. {
  6059. struct drm_device *dev = crtc->dev;
  6060. drm_i915_private_t *dev_priv = dev->dev_private;
  6061. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6062. int pipe = intel_crtc->pipe;
  6063. int dpll_reg = DPLL(pipe);
  6064. int dpll;
  6065. if (HAS_PCH_SPLIT(dev))
  6066. return;
  6067. if (!dev_priv->lvds_downclock_avail)
  6068. return;
  6069. dpll = I915_READ(dpll_reg);
  6070. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  6071. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  6072. assert_panel_unlocked(dev_priv, pipe);
  6073. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  6074. I915_WRITE(dpll_reg, dpll);
  6075. intel_wait_for_vblank(dev, pipe);
  6076. dpll = I915_READ(dpll_reg);
  6077. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  6078. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  6079. }
  6080. /* Schedule downclock */
  6081. mod_timer(&intel_crtc->idle_timer, jiffies +
  6082. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  6083. }
  6084. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  6085. {
  6086. struct drm_device *dev = crtc->dev;
  6087. drm_i915_private_t *dev_priv = dev->dev_private;
  6088. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6089. int pipe = intel_crtc->pipe;
  6090. int dpll_reg = DPLL(pipe);
  6091. int dpll = I915_READ(dpll_reg);
  6092. if (HAS_PCH_SPLIT(dev))
  6093. return;
  6094. if (!dev_priv->lvds_downclock_avail)
  6095. return;
  6096. /*
  6097. * Since this is called by a timer, we should never get here in
  6098. * the manual case.
  6099. */
  6100. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  6101. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  6102. assert_panel_unlocked(dev_priv, pipe);
  6103. dpll |= DISPLAY_RATE_SELECT_FPA1;
  6104. I915_WRITE(dpll_reg, dpll);
  6105. intel_wait_for_vblank(dev, pipe);
  6106. dpll = I915_READ(dpll_reg);
  6107. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  6108. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  6109. }
  6110. }
  6111. /**
  6112. * intel_idle_update - adjust clocks for idleness
  6113. * @work: work struct
  6114. *
  6115. * Either the GPU or display (or both) went idle. Check the busy status
  6116. * here and adjust the CRTC and GPU clocks as necessary.
  6117. */
  6118. static void intel_idle_update(struct work_struct *work)
  6119. {
  6120. drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
  6121. idle_work);
  6122. struct drm_device *dev = dev_priv->dev;
  6123. struct drm_crtc *crtc;
  6124. struct intel_crtc *intel_crtc;
  6125. if (!i915_powersave)
  6126. return;
  6127. mutex_lock(&dev->struct_mutex);
  6128. i915_update_gfx_val(dev_priv);
  6129. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6130. /* Skip inactive CRTCs */
  6131. if (!crtc->fb)
  6132. continue;
  6133. intel_crtc = to_intel_crtc(crtc);
  6134. if (!intel_crtc->busy)
  6135. intel_decrease_pllclock(crtc);
  6136. }
  6137. mutex_unlock(&dev->struct_mutex);
  6138. }
  6139. /**
  6140. * intel_mark_busy - mark the GPU and possibly the display busy
  6141. * @dev: drm device
  6142. * @obj: object we're operating on
  6143. *
  6144. * Callers can use this function to indicate that the GPU is busy processing
  6145. * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
  6146. * buffer), we'll also mark the display as busy, so we know to increase its
  6147. * clock frequency.
  6148. */
  6149. void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
  6150. {
  6151. drm_i915_private_t *dev_priv = dev->dev_private;
  6152. struct drm_crtc *crtc = NULL;
  6153. struct intel_framebuffer *intel_fb;
  6154. struct intel_crtc *intel_crtc;
  6155. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  6156. return;
  6157. if (!dev_priv->busy)
  6158. dev_priv->busy = true;
  6159. else
  6160. mod_timer(&dev_priv->idle_timer, jiffies +
  6161. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  6162. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6163. if (!crtc->fb)
  6164. continue;
  6165. intel_crtc = to_intel_crtc(crtc);
  6166. intel_fb = to_intel_framebuffer(crtc->fb);
  6167. if (intel_fb->obj == obj) {
  6168. if (!intel_crtc->busy) {
  6169. /* Non-busy -> busy, upclock */
  6170. intel_increase_pllclock(crtc);
  6171. intel_crtc->busy = true;
  6172. } else {
  6173. /* Busy -> busy, put off timer */
  6174. mod_timer(&intel_crtc->idle_timer, jiffies +
  6175. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  6176. }
  6177. }
  6178. }
  6179. }
  6180. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6181. {
  6182. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6183. struct drm_device *dev = crtc->dev;
  6184. struct intel_unpin_work *work;
  6185. unsigned long flags;
  6186. spin_lock_irqsave(&dev->event_lock, flags);
  6187. work = intel_crtc->unpin_work;
  6188. intel_crtc->unpin_work = NULL;
  6189. spin_unlock_irqrestore(&dev->event_lock, flags);
  6190. if (work) {
  6191. cancel_work_sync(&work->work);
  6192. kfree(work);
  6193. }
  6194. drm_crtc_cleanup(crtc);
  6195. kfree(intel_crtc);
  6196. }
  6197. static void intel_unpin_work_fn(struct work_struct *__work)
  6198. {
  6199. struct intel_unpin_work *work =
  6200. container_of(__work, struct intel_unpin_work, work);
  6201. mutex_lock(&work->dev->struct_mutex);
  6202. intel_unpin_fb_obj(work->old_fb_obj);
  6203. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6204. drm_gem_object_unreference(&work->old_fb_obj->base);
  6205. intel_update_fbc(work->dev);
  6206. mutex_unlock(&work->dev->struct_mutex);
  6207. kfree(work);
  6208. }
  6209. static void do_intel_finish_page_flip(struct drm_device *dev,
  6210. struct drm_crtc *crtc)
  6211. {
  6212. drm_i915_private_t *dev_priv = dev->dev_private;
  6213. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6214. struct intel_unpin_work *work;
  6215. struct drm_i915_gem_object *obj;
  6216. struct drm_pending_vblank_event *e;
  6217. struct timeval tnow, tvbl;
  6218. unsigned long flags;
  6219. /* Ignore early vblank irqs */
  6220. if (intel_crtc == NULL)
  6221. return;
  6222. do_gettimeofday(&tnow);
  6223. spin_lock_irqsave(&dev->event_lock, flags);
  6224. work = intel_crtc->unpin_work;
  6225. if (work == NULL || !work->pending) {
  6226. spin_unlock_irqrestore(&dev->event_lock, flags);
  6227. return;
  6228. }
  6229. intel_crtc->unpin_work = NULL;
  6230. if (work->event) {
  6231. e = work->event;
  6232. e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
  6233. /* Called before vblank count and timestamps have
  6234. * been updated for the vblank interval of flip
  6235. * completion? Need to increment vblank count and
  6236. * add one videorefresh duration to returned timestamp
  6237. * to account for this. We assume this happened if we
  6238. * get called over 0.9 frame durations after the last
  6239. * timestamped vblank.
  6240. *
  6241. * This calculation can not be used with vrefresh rates
  6242. * below 5Hz (10Hz to be on the safe side) without
  6243. * promoting to 64 integers.
  6244. */
  6245. if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
  6246. 9 * crtc->framedur_ns) {
  6247. e->event.sequence++;
  6248. tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
  6249. crtc->framedur_ns);
  6250. }
  6251. e->event.tv_sec = tvbl.tv_sec;
  6252. e->event.tv_usec = tvbl.tv_usec;
  6253. list_add_tail(&e->base.link,
  6254. &e->base.file_priv->event_list);
  6255. wake_up_interruptible(&e->base.file_priv->event_wait);
  6256. }
  6257. drm_vblank_put(dev, intel_crtc->pipe);
  6258. spin_unlock_irqrestore(&dev->event_lock, flags);
  6259. obj = work->old_fb_obj;
  6260. atomic_clear_mask(1 << intel_crtc->plane,
  6261. &obj->pending_flip.counter);
  6262. if (atomic_read(&obj->pending_flip) == 0)
  6263. wake_up(&dev_priv->pending_flip_queue);
  6264. schedule_work(&work->work);
  6265. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6266. }
  6267. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6268. {
  6269. drm_i915_private_t *dev_priv = dev->dev_private;
  6270. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6271. do_intel_finish_page_flip(dev, crtc);
  6272. }
  6273. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6274. {
  6275. drm_i915_private_t *dev_priv = dev->dev_private;
  6276. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6277. do_intel_finish_page_flip(dev, crtc);
  6278. }
  6279. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6280. {
  6281. drm_i915_private_t *dev_priv = dev->dev_private;
  6282. struct intel_crtc *intel_crtc =
  6283. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6284. unsigned long flags;
  6285. spin_lock_irqsave(&dev->event_lock, flags);
  6286. if (intel_crtc->unpin_work) {
  6287. if ((++intel_crtc->unpin_work->pending) > 1)
  6288. DRM_ERROR("Prepared flip multiple times\n");
  6289. } else {
  6290. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  6291. }
  6292. spin_unlock_irqrestore(&dev->event_lock, flags);
  6293. }
  6294. static int intel_gen2_queue_flip(struct drm_device *dev,
  6295. struct drm_crtc *crtc,
  6296. struct drm_framebuffer *fb,
  6297. struct drm_i915_gem_object *obj)
  6298. {
  6299. struct drm_i915_private *dev_priv = dev->dev_private;
  6300. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6301. unsigned long offset;
  6302. u32 flip_mask;
  6303. int ret;
  6304. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6305. if (ret)
  6306. goto out;
  6307. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  6308. offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
  6309. ret = BEGIN_LP_RING(6);
  6310. if (ret)
  6311. goto out;
  6312. /* Can't queue multiple flips, so wait for the previous
  6313. * one to finish before executing the next.
  6314. */
  6315. if (intel_crtc->plane)
  6316. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6317. else
  6318. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6319. OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
  6320. OUT_RING(MI_NOOP);
  6321. OUT_RING(MI_DISPLAY_FLIP |
  6322. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6323. OUT_RING(fb->pitches[0]);
  6324. OUT_RING(obj->gtt_offset + offset);
  6325. OUT_RING(0); /* aux display base address, unused */
  6326. ADVANCE_LP_RING();
  6327. out:
  6328. return ret;
  6329. }
  6330. static int intel_gen3_queue_flip(struct drm_device *dev,
  6331. struct drm_crtc *crtc,
  6332. struct drm_framebuffer *fb,
  6333. struct drm_i915_gem_object *obj)
  6334. {
  6335. struct drm_i915_private *dev_priv = dev->dev_private;
  6336. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6337. unsigned long offset;
  6338. u32 flip_mask;
  6339. int ret;
  6340. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6341. if (ret)
  6342. goto out;
  6343. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  6344. offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
  6345. ret = BEGIN_LP_RING(6);
  6346. if (ret)
  6347. goto out;
  6348. if (intel_crtc->plane)
  6349. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6350. else
  6351. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6352. OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
  6353. OUT_RING(MI_NOOP);
  6354. OUT_RING(MI_DISPLAY_FLIP_I915 |
  6355. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6356. OUT_RING(fb->pitches[0]);
  6357. OUT_RING(obj->gtt_offset + offset);
  6358. OUT_RING(MI_NOOP);
  6359. ADVANCE_LP_RING();
  6360. out:
  6361. return ret;
  6362. }
  6363. static int intel_gen4_queue_flip(struct drm_device *dev,
  6364. struct drm_crtc *crtc,
  6365. struct drm_framebuffer *fb,
  6366. struct drm_i915_gem_object *obj)
  6367. {
  6368. struct drm_i915_private *dev_priv = dev->dev_private;
  6369. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6370. uint32_t pf, pipesrc;
  6371. int ret;
  6372. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6373. if (ret)
  6374. goto out;
  6375. ret = BEGIN_LP_RING(4);
  6376. if (ret)
  6377. goto out;
  6378. /* i965+ uses the linear or tiled offsets from the
  6379. * Display Registers (which do not change across a page-flip)
  6380. * so we need only reprogram the base address.
  6381. */
  6382. OUT_RING(MI_DISPLAY_FLIP |
  6383. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6384. OUT_RING(fb->pitches[0]);
  6385. OUT_RING(obj->gtt_offset | obj->tiling_mode);
  6386. /* XXX Enabling the panel-fitter across page-flip is so far
  6387. * untested on non-native modes, so ignore it for now.
  6388. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6389. */
  6390. pf = 0;
  6391. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6392. OUT_RING(pf | pipesrc);
  6393. ADVANCE_LP_RING();
  6394. out:
  6395. return ret;
  6396. }
  6397. static int intel_gen6_queue_flip(struct drm_device *dev,
  6398. struct drm_crtc *crtc,
  6399. struct drm_framebuffer *fb,
  6400. struct drm_i915_gem_object *obj)
  6401. {
  6402. struct drm_i915_private *dev_priv = dev->dev_private;
  6403. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6404. uint32_t pf, pipesrc;
  6405. int ret;
  6406. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6407. if (ret)
  6408. goto out;
  6409. ret = BEGIN_LP_RING(4);
  6410. if (ret)
  6411. goto out;
  6412. OUT_RING(MI_DISPLAY_FLIP |
  6413. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6414. OUT_RING(fb->pitches[0] | obj->tiling_mode);
  6415. OUT_RING(obj->gtt_offset);
  6416. pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6417. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6418. OUT_RING(pf | pipesrc);
  6419. ADVANCE_LP_RING();
  6420. out:
  6421. return ret;
  6422. }
  6423. /*
  6424. * On gen7 we currently use the blit ring because (in early silicon at least)
  6425. * the render ring doesn't give us interrpts for page flip completion, which
  6426. * means clients will hang after the first flip is queued. Fortunately the
  6427. * blit ring generates interrupts properly, so use it instead.
  6428. */
  6429. static int intel_gen7_queue_flip(struct drm_device *dev,
  6430. struct drm_crtc *crtc,
  6431. struct drm_framebuffer *fb,
  6432. struct drm_i915_gem_object *obj)
  6433. {
  6434. struct drm_i915_private *dev_priv = dev->dev_private;
  6435. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6436. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6437. int ret;
  6438. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6439. if (ret)
  6440. goto out;
  6441. ret = intel_ring_begin(ring, 4);
  6442. if (ret)
  6443. goto out;
  6444. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
  6445. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6446. intel_ring_emit(ring, (obj->gtt_offset));
  6447. intel_ring_emit(ring, (MI_NOOP));
  6448. intel_ring_advance(ring);
  6449. out:
  6450. return ret;
  6451. }
  6452. static int intel_default_queue_flip(struct drm_device *dev,
  6453. struct drm_crtc *crtc,
  6454. struct drm_framebuffer *fb,
  6455. struct drm_i915_gem_object *obj)
  6456. {
  6457. return -ENODEV;
  6458. }
  6459. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6460. struct drm_framebuffer *fb,
  6461. struct drm_pending_vblank_event *event)
  6462. {
  6463. struct drm_device *dev = crtc->dev;
  6464. struct drm_i915_private *dev_priv = dev->dev_private;
  6465. struct intel_framebuffer *intel_fb;
  6466. struct drm_i915_gem_object *obj;
  6467. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6468. struct intel_unpin_work *work;
  6469. unsigned long flags;
  6470. int ret;
  6471. work = kzalloc(sizeof *work, GFP_KERNEL);
  6472. if (work == NULL)
  6473. return -ENOMEM;
  6474. work->event = event;
  6475. work->dev = crtc->dev;
  6476. intel_fb = to_intel_framebuffer(crtc->fb);
  6477. work->old_fb_obj = intel_fb->obj;
  6478. INIT_WORK(&work->work, intel_unpin_work_fn);
  6479. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6480. if (ret)
  6481. goto free_work;
  6482. /* We borrow the event spin lock for protecting unpin_work */
  6483. spin_lock_irqsave(&dev->event_lock, flags);
  6484. if (intel_crtc->unpin_work) {
  6485. spin_unlock_irqrestore(&dev->event_lock, flags);
  6486. kfree(work);
  6487. drm_vblank_put(dev, intel_crtc->pipe);
  6488. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6489. return -EBUSY;
  6490. }
  6491. intel_crtc->unpin_work = work;
  6492. spin_unlock_irqrestore(&dev->event_lock, flags);
  6493. intel_fb = to_intel_framebuffer(fb);
  6494. obj = intel_fb->obj;
  6495. mutex_lock(&dev->struct_mutex);
  6496. /* Reference the objects for the scheduled work. */
  6497. drm_gem_object_reference(&work->old_fb_obj->base);
  6498. drm_gem_object_reference(&obj->base);
  6499. crtc->fb = fb;
  6500. work->pending_flip_obj = obj;
  6501. work->enable_stall_check = true;
  6502. /* Block clients from rendering to the new back buffer until
  6503. * the flip occurs and the object is no longer visible.
  6504. */
  6505. atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6506. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6507. if (ret)
  6508. goto cleanup_pending;
  6509. intel_disable_fbc(dev);
  6510. mutex_unlock(&dev->struct_mutex);
  6511. trace_i915_flip_request(intel_crtc->plane, obj);
  6512. return 0;
  6513. cleanup_pending:
  6514. atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6515. drm_gem_object_unreference(&work->old_fb_obj->base);
  6516. drm_gem_object_unreference(&obj->base);
  6517. mutex_unlock(&dev->struct_mutex);
  6518. spin_lock_irqsave(&dev->event_lock, flags);
  6519. intel_crtc->unpin_work = NULL;
  6520. spin_unlock_irqrestore(&dev->event_lock, flags);
  6521. drm_vblank_put(dev, intel_crtc->pipe);
  6522. free_work:
  6523. kfree(work);
  6524. return ret;
  6525. }
  6526. static void intel_sanitize_modesetting(struct drm_device *dev,
  6527. int pipe, int plane)
  6528. {
  6529. struct drm_i915_private *dev_priv = dev->dev_private;
  6530. u32 reg, val;
  6531. /* Clear any frame start delays used for debugging left by the BIOS */
  6532. for_each_pipe(pipe) {
  6533. reg = PIPECONF(pipe);
  6534. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  6535. }
  6536. if (HAS_PCH_SPLIT(dev))
  6537. return;
  6538. /* Who knows what state these registers were left in by the BIOS or
  6539. * grub?
  6540. *
  6541. * If we leave the registers in a conflicting state (e.g. with the
  6542. * display plane reading from the other pipe than the one we intend
  6543. * to use) then when we attempt to teardown the active mode, we will
  6544. * not disable the pipes and planes in the correct order -- leaving
  6545. * a plane reading from a disabled pipe and possibly leading to
  6546. * undefined behaviour.
  6547. */
  6548. reg = DSPCNTR(plane);
  6549. val = I915_READ(reg);
  6550. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  6551. return;
  6552. if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
  6553. return;
  6554. /* This display plane is active and attached to the other CPU pipe. */
  6555. pipe = !pipe;
  6556. /* Disable the plane and wait for it to stop reading from the pipe. */
  6557. intel_disable_plane(dev_priv, plane, pipe);
  6558. intel_disable_pipe(dev_priv, pipe);
  6559. }
  6560. static void intel_crtc_reset(struct drm_crtc *crtc)
  6561. {
  6562. struct drm_device *dev = crtc->dev;
  6563. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6564. /* Reset flags back to the 'unknown' status so that they
  6565. * will be correctly set on the initial modeset.
  6566. */
  6567. intel_crtc->dpms_mode = -1;
  6568. /* We need to fix up any BIOS configuration that conflicts with
  6569. * our expectations.
  6570. */
  6571. intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
  6572. }
  6573. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6574. .dpms = intel_crtc_dpms,
  6575. .mode_fixup = intel_crtc_mode_fixup,
  6576. .mode_set = intel_crtc_mode_set,
  6577. .mode_set_base = intel_pipe_set_base,
  6578. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6579. .load_lut = intel_crtc_load_lut,
  6580. .disable = intel_crtc_disable,
  6581. };
  6582. static const struct drm_crtc_funcs intel_crtc_funcs = {
  6583. .reset = intel_crtc_reset,
  6584. .cursor_set = intel_crtc_cursor_set,
  6585. .cursor_move = intel_crtc_cursor_move,
  6586. .gamma_set = intel_crtc_gamma_set,
  6587. .set_config = drm_crtc_helper_set_config,
  6588. .destroy = intel_crtc_destroy,
  6589. .page_flip = intel_crtc_page_flip,
  6590. };
  6591. static void intel_crtc_init(struct drm_device *dev, int pipe)
  6592. {
  6593. drm_i915_private_t *dev_priv = dev->dev_private;
  6594. struct intel_crtc *intel_crtc;
  6595. int i;
  6596. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  6597. if (intel_crtc == NULL)
  6598. return;
  6599. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  6600. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  6601. for (i = 0; i < 256; i++) {
  6602. intel_crtc->lut_r[i] = i;
  6603. intel_crtc->lut_g[i] = i;
  6604. intel_crtc->lut_b[i] = i;
  6605. }
  6606. /* Swap pipes & planes for FBC on pre-965 */
  6607. intel_crtc->pipe = pipe;
  6608. intel_crtc->plane = pipe;
  6609. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  6610. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  6611. intel_crtc->plane = !pipe;
  6612. }
  6613. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  6614. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  6615. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  6616. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  6617. intel_crtc_reset(&intel_crtc->base);
  6618. intel_crtc->active = true; /* force the pipe off on setup_init_config */
  6619. intel_crtc->bpp = 24; /* default for pre-Ironlake */
  6620. if (HAS_PCH_SPLIT(dev)) {
  6621. if (pipe == 2 && IS_IVYBRIDGE(dev))
  6622. intel_crtc->no_pll = true;
  6623. intel_helper_funcs.prepare = ironlake_crtc_prepare;
  6624. intel_helper_funcs.commit = ironlake_crtc_commit;
  6625. } else {
  6626. intel_helper_funcs.prepare = i9xx_crtc_prepare;
  6627. intel_helper_funcs.commit = i9xx_crtc_commit;
  6628. }
  6629. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  6630. intel_crtc->busy = false;
  6631. setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
  6632. (unsigned long)intel_crtc);
  6633. }
  6634. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  6635. struct drm_file *file)
  6636. {
  6637. drm_i915_private_t *dev_priv = dev->dev_private;
  6638. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  6639. struct drm_mode_object *drmmode_obj;
  6640. struct intel_crtc *crtc;
  6641. if (!dev_priv) {
  6642. DRM_ERROR("called with no initialization\n");
  6643. return -EINVAL;
  6644. }
  6645. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  6646. DRM_MODE_OBJECT_CRTC);
  6647. if (!drmmode_obj) {
  6648. DRM_ERROR("no such CRTC id\n");
  6649. return -EINVAL;
  6650. }
  6651. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  6652. pipe_from_crtc_id->pipe = crtc->pipe;
  6653. return 0;
  6654. }
  6655. static int intel_encoder_clones(struct drm_device *dev, int type_mask)
  6656. {
  6657. struct intel_encoder *encoder;
  6658. int index_mask = 0;
  6659. int entry = 0;
  6660. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6661. if (type_mask & encoder->clone_mask)
  6662. index_mask |= (1 << entry);
  6663. entry++;
  6664. }
  6665. return index_mask;
  6666. }
  6667. static bool has_edp_a(struct drm_device *dev)
  6668. {
  6669. struct drm_i915_private *dev_priv = dev->dev_private;
  6670. if (!IS_MOBILE(dev))
  6671. return false;
  6672. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  6673. return false;
  6674. if (IS_GEN5(dev) &&
  6675. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  6676. return false;
  6677. return true;
  6678. }
  6679. static void intel_setup_outputs(struct drm_device *dev)
  6680. {
  6681. struct drm_i915_private *dev_priv = dev->dev_private;
  6682. struct intel_encoder *encoder;
  6683. bool dpd_is_edp = false;
  6684. bool has_lvds;
  6685. has_lvds = intel_lvds_init(dev);
  6686. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  6687. /* disable the panel fitter on everything but LVDS */
  6688. I915_WRITE(PFIT_CONTROL, 0);
  6689. }
  6690. if (HAS_PCH_SPLIT(dev)) {
  6691. dpd_is_edp = intel_dpd_is_edp(dev);
  6692. if (has_edp_a(dev))
  6693. intel_dp_init(dev, DP_A);
  6694. if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6695. intel_dp_init(dev, PCH_DP_D);
  6696. }
  6697. intel_crt_init(dev);
  6698. if (HAS_PCH_SPLIT(dev)) {
  6699. int found;
  6700. if (I915_READ(HDMIB) & PORT_DETECTED) {
  6701. /* PCH SDVOB multiplex with HDMIB */
  6702. found = intel_sdvo_init(dev, PCH_SDVOB);
  6703. if (!found)
  6704. intel_hdmi_init(dev, HDMIB);
  6705. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  6706. intel_dp_init(dev, PCH_DP_B);
  6707. }
  6708. if (I915_READ(HDMIC) & PORT_DETECTED)
  6709. intel_hdmi_init(dev, HDMIC);
  6710. if (I915_READ(HDMID) & PORT_DETECTED)
  6711. intel_hdmi_init(dev, HDMID);
  6712. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  6713. intel_dp_init(dev, PCH_DP_C);
  6714. if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6715. intel_dp_init(dev, PCH_DP_D);
  6716. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  6717. bool found = false;
  6718. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6719. DRM_DEBUG_KMS("probing SDVOB\n");
  6720. found = intel_sdvo_init(dev, SDVOB);
  6721. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  6722. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  6723. intel_hdmi_init(dev, SDVOB);
  6724. }
  6725. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  6726. DRM_DEBUG_KMS("probing DP_B\n");
  6727. intel_dp_init(dev, DP_B);
  6728. }
  6729. }
  6730. /* Before G4X SDVOC doesn't have its own detect register */
  6731. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6732. DRM_DEBUG_KMS("probing SDVOC\n");
  6733. found = intel_sdvo_init(dev, SDVOC);
  6734. }
  6735. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  6736. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  6737. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  6738. intel_hdmi_init(dev, SDVOC);
  6739. }
  6740. if (SUPPORTS_INTEGRATED_DP(dev)) {
  6741. DRM_DEBUG_KMS("probing DP_C\n");
  6742. intel_dp_init(dev, DP_C);
  6743. }
  6744. }
  6745. if (SUPPORTS_INTEGRATED_DP(dev) &&
  6746. (I915_READ(DP_D) & DP_DETECTED)) {
  6747. DRM_DEBUG_KMS("probing DP_D\n");
  6748. intel_dp_init(dev, DP_D);
  6749. }
  6750. } else if (IS_GEN2(dev))
  6751. intel_dvo_init(dev);
  6752. if (SUPPORTS_TV(dev))
  6753. intel_tv_init(dev);
  6754. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6755. encoder->base.possible_crtcs = encoder->crtc_mask;
  6756. encoder->base.possible_clones =
  6757. intel_encoder_clones(dev, encoder->clone_mask);
  6758. }
  6759. /* disable all the possible outputs/crtcs before entering KMS mode */
  6760. drm_helper_disable_unused_functions(dev);
  6761. if (HAS_PCH_SPLIT(dev))
  6762. ironlake_init_pch_refclk(dev);
  6763. }
  6764. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  6765. {
  6766. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6767. drm_framebuffer_cleanup(fb);
  6768. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  6769. kfree(intel_fb);
  6770. }
  6771. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  6772. struct drm_file *file,
  6773. unsigned int *handle)
  6774. {
  6775. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6776. struct drm_i915_gem_object *obj = intel_fb->obj;
  6777. return drm_gem_handle_create(file, &obj->base, handle);
  6778. }
  6779. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  6780. .destroy = intel_user_framebuffer_destroy,
  6781. .create_handle = intel_user_framebuffer_create_handle,
  6782. };
  6783. int intel_framebuffer_init(struct drm_device *dev,
  6784. struct intel_framebuffer *intel_fb,
  6785. struct drm_mode_fb_cmd2 *mode_cmd,
  6786. struct drm_i915_gem_object *obj)
  6787. {
  6788. int ret;
  6789. if (obj->tiling_mode == I915_TILING_Y)
  6790. return -EINVAL;
  6791. if (mode_cmd->pitches[0] & 63)
  6792. return -EINVAL;
  6793. switch (mode_cmd->pixel_format) {
  6794. case DRM_FORMAT_RGB332:
  6795. case DRM_FORMAT_RGB565:
  6796. case DRM_FORMAT_XRGB8888:
  6797. case DRM_FORMAT_XBGR8888:
  6798. case DRM_FORMAT_ARGB8888:
  6799. case DRM_FORMAT_XRGB2101010:
  6800. case DRM_FORMAT_ARGB2101010:
  6801. /* RGB formats are common across chipsets */
  6802. break;
  6803. case DRM_FORMAT_YUYV:
  6804. case DRM_FORMAT_UYVY:
  6805. case DRM_FORMAT_YVYU:
  6806. case DRM_FORMAT_VYUY:
  6807. break;
  6808. default:
  6809. DRM_DEBUG_KMS("unsupported pixel format %u\n",
  6810. mode_cmd->pixel_format);
  6811. return -EINVAL;
  6812. }
  6813. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  6814. if (ret) {
  6815. DRM_ERROR("framebuffer init failed %d\n", ret);
  6816. return ret;
  6817. }
  6818. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  6819. intel_fb->obj = obj;
  6820. return 0;
  6821. }
  6822. static struct drm_framebuffer *
  6823. intel_user_framebuffer_create(struct drm_device *dev,
  6824. struct drm_file *filp,
  6825. struct drm_mode_fb_cmd2 *mode_cmd)
  6826. {
  6827. struct drm_i915_gem_object *obj;
  6828. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  6829. mode_cmd->handles[0]));
  6830. if (&obj->base == NULL)
  6831. return ERR_PTR(-ENOENT);
  6832. return intel_framebuffer_create(dev, mode_cmd, obj);
  6833. }
  6834. static const struct drm_mode_config_funcs intel_mode_funcs = {
  6835. .fb_create = intel_user_framebuffer_create,
  6836. .output_poll_changed = intel_fb_output_poll_changed,
  6837. };
  6838. static struct drm_i915_gem_object *
  6839. intel_alloc_context_page(struct drm_device *dev)
  6840. {
  6841. struct drm_i915_gem_object *ctx;
  6842. int ret;
  6843. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  6844. ctx = i915_gem_alloc_object(dev, 4096);
  6845. if (!ctx) {
  6846. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  6847. return NULL;
  6848. }
  6849. ret = i915_gem_object_pin(ctx, 4096, true);
  6850. if (ret) {
  6851. DRM_ERROR("failed to pin power context: %d\n", ret);
  6852. goto err_unref;
  6853. }
  6854. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  6855. if (ret) {
  6856. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  6857. goto err_unpin;
  6858. }
  6859. return ctx;
  6860. err_unpin:
  6861. i915_gem_object_unpin(ctx);
  6862. err_unref:
  6863. drm_gem_object_unreference(&ctx->base);
  6864. mutex_unlock(&dev->struct_mutex);
  6865. return NULL;
  6866. }
  6867. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  6868. {
  6869. struct drm_i915_private *dev_priv = dev->dev_private;
  6870. u16 rgvswctl;
  6871. rgvswctl = I915_READ16(MEMSWCTL);
  6872. if (rgvswctl & MEMCTL_CMD_STS) {
  6873. DRM_DEBUG("gpu busy, RCS change rejected\n");
  6874. return false; /* still busy with another command */
  6875. }
  6876. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  6877. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  6878. I915_WRITE16(MEMSWCTL, rgvswctl);
  6879. POSTING_READ16(MEMSWCTL);
  6880. rgvswctl |= MEMCTL_CMD_STS;
  6881. I915_WRITE16(MEMSWCTL, rgvswctl);
  6882. return true;
  6883. }
  6884. void ironlake_enable_drps(struct drm_device *dev)
  6885. {
  6886. struct drm_i915_private *dev_priv = dev->dev_private;
  6887. u32 rgvmodectl = I915_READ(MEMMODECTL);
  6888. u8 fmax, fmin, fstart, vstart;
  6889. /* Enable temp reporting */
  6890. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  6891. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  6892. /* 100ms RC evaluation intervals */
  6893. I915_WRITE(RCUPEI, 100000);
  6894. I915_WRITE(RCDNEI, 100000);
  6895. /* Set max/min thresholds to 90ms and 80ms respectively */
  6896. I915_WRITE(RCBMAXAVG, 90000);
  6897. I915_WRITE(RCBMINAVG, 80000);
  6898. I915_WRITE(MEMIHYST, 1);
  6899. /* Set up min, max, and cur for interrupt handling */
  6900. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  6901. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  6902. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  6903. MEMMODE_FSTART_SHIFT;
  6904. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  6905. PXVFREQ_PX_SHIFT;
  6906. dev_priv->fmax = fmax; /* IPS callback will increase this */
  6907. dev_priv->fstart = fstart;
  6908. dev_priv->max_delay = fstart;
  6909. dev_priv->min_delay = fmin;
  6910. dev_priv->cur_delay = fstart;
  6911. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  6912. fmax, fmin, fstart);
  6913. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  6914. /*
  6915. * Interrupts will be enabled in ironlake_irq_postinstall
  6916. */
  6917. I915_WRITE(VIDSTART, vstart);
  6918. POSTING_READ(VIDSTART);
  6919. rgvmodectl |= MEMMODE_SWMODE_EN;
  6920. I915_WRITE(MEMMODECTL, rgvmodectl);
  6921. if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  6922. DRM_ERROR("stuck trying to change perf mode\n");
  6923. msleep(1);
  6924. ironlake_set_drps(dev, fstart);
  6925. dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  6926. I915_READ(0x112e0);
  6927. dev_priv->last_time1 = jiffies_to_msecs(jiffies);
  6928. dev_priv->last_count2 = I915_READ(0x112f4);
  6929. getrawmonotonic(&dev_priv->last_time2);
  6930. }
  6931. void ironlake_disable_drps(struct drm_device *dev)
  6932. {
  6933. struct drm_i915_private *dev_priv = dev->dev_private;
  6934. u16 rgvswctl = I915_READ16(MEMSWCTL);
  6935. /* Ack interrupts, disable EFC interrupt */
  6936. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  6937. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  6938. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  6939. I915_WRITE(DEIIR, DE_PCU_EVENT);
  6940. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  6941. /* Go back to the starting frequency */
  6942. ironlake_set_drps(dev, dev_priv->fstart);
  6943. msleep(1);
  6944. rgvswctl |= MEMCTL_CMD_STS;
  6945. I915_WRITE(MEMSWCTL, rgvswctl);
  6946. msleep(1);
  6947. }
  6948. void gen6_set_rps(struct drm_device *dev, u8 val)
  6949. {
  6950. struct drm_i915_private *dev_priv = dev->dev_private;
  6951. u32 swreq;
  6952. swreq = (val & 0x3ff) << 25;
  6953. I915_WRITE(GEN6_RPNSWREQ, swreq);
  6954. }
  6955. void gen6_disable_rps(struct drm_device *dev)
  6956. {
  6957. struct drm_i915_private *dev_priv = dev->dev_private;
  6958. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  6959. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  6960. I915_WRITE(GEN6_PMIER, 0);
  6961. /* Complete PM interrupt masking here doesn't race with the rps work
  6962. * item again unmasking PM interrupts because that is using a different
  6963. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  6964. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  6965. spin_lock_irq(&dev_priv->rps_lock);
  6966. dev_priv->pm_iir = 0;
  6967. spin_unlock_irq(&dev_priv->rps_lock);
  6968. I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
  6969. }
  6970. static unsigned long intel_pxfreq(u32 vidfreq)
  6971. {
  6972. unsigned long freq;
  6973. int div = (vidfreq & 0x3f0000) >> 16;
  6974. int post = (vidfreq & 0x3000) >> 12;
  6975. int pre = (vidfreq & 0x7);
  6976. if (!pre)
  6977. return 0;
  6978. freq = ((div * 133333) / ((1<<post) * pre));
  6979. return freq;
  6980. }
  6981. void intel_init_emon(struct drm_device *dev)
  6982. {
  6983. struct drm_i915_private *dev_priv = dev->dev_private;
  6984. u32 lcfuse;
  6985. u8 pxw[16];
  6986. int i;
  6987. /* Disable to program */
  6988. I915_WRITE(ECR, 0);
  6989. POSTING_READ(ECR);
  6990. /* Program energy weights for various events */
  6991. I915_WRITE(SDEW, 0x15040d00);
  6992. I915_WRITE(CSIEW0, 0x007f0000);
  6993. I915_WRITE(CSIEW1, 0x1e220004);
  6994. I915_WRITE(CSIEW2, 0x04000004);
  6995. for (i = 0; i < 5; i++)
  6996. I915_WRITE(PEW + (i * 4), 0);
  6997. for (i = 0; i < 3; i++)
  6998. I915_WRITE(DEW + (i * 4), 0);
  6999. /* Program P-state weights to account for frequency power adjustment */
  7000. for (i = 0; i < 16; i++) {
  7001. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  7002. unsigned long freq = intel_pxfreq(pxvidfreq);
  7003. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  7004. PXVFREQ_PX_SHIFT;
  7005. unsigned long val;
  7006. val = vid * vid;
  7007. val *= (freq / 1000);
  7008. val *= 255;
  7009. val /= (127*127*900);
  7010. if (val > 0xff)
  7011. DRM_ERROR("bad pxval: %ld\n", val);
  7012. pxw[i] = val;
  7013. }
  7014. /* Render standby states get 0 weight */
  7015. pxw[14] = 0;
  7016. pxw[15] = 0;
  7017. for (i = 0; i < 4; i++) {
  7018. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  7019. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  7020. I915_WRITE(PXW + (i * 4), val);
  7021. }
  7022. /* Adjust magic regs to magic values (more experimental results) */
  7023. I915_WRITE(OGW0, 0);
  7024. I915_WRITE(OGW1, 0);
  7025. I915_WRITE(EG0, 0x00007f00);
  7026. I915_WRITE(EG1, 0x0000000e);
  7027. I915_WRITE(EG2, 0x000e0000);
  7028. I915_WRITE(EG3, 0x68000300);
  7029. I915_WRITE(EG4, 0x42000000);
  7030. I915_WRITE(EG5, 0x00140031);
  7031. I915_WRITE(EG6, 0);
  7032. I915_WRITE(EG7, 0);
  7033. for (i = 0; i < 8; i++)
  7034. I915_WRITE(PXWL + (i * 4), 0);
  7035. /* Enable PMON + select events */
  7036. I915_WRITE(ECR, 0x80000019);
  7037. lcfuse = I915_READ(LCFUSE02);
  7038. dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
  7039. }
  7040. static int intel_enable_rc6(struct drm_device *dev)
  7041. {
  7042. /*
  7043. * Respect the kernel parameter if it is set
  7044. */
  7045. if (i915_enable_rc6 >= 0)
  7046. return i915_enable_rc6;
  7047. /*
  7048. * Disable RC6 on Ironlake
  7049. */
  7050. if (INTEL_INFO(dev)->gen == 5)
  7051. return 0;
  7052. /*
  7053. * Disable rc6 on Sandybridge
  7054. */
  7055. if (INTEL_INFO(dev)->gen == 6) {
  7056. DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
  7057. return INTEL_RC6_ENABLE;
  7058. }
  7059. DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
  7060. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  7061. }
  7062. void gen6_enable_rps(struct drm_i915_private *dev_priv)
  7063. {
  7064. u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  7065. u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  7066. u32 pcu_mbox, rc6_mask = 0;
  7067. u32 gtfifodbg;
  7068. int cur_freq, min_freq, max_freq;
  7069. int rc6_mode;
  7070. int i;
  7071. /* Here begins a magic sequence of register writes to enable
  7072. * auto-downclocking.
  7073. *
  7074. * Perhaps there might be some value in exposing these to
  7075. * userspace...
  7076. */
  7077. I915_WRITE(GEN6_RC_STATE, 0);
  7078. mutex_lock(&dev_priv->dev->struct_mutex);
  7079. /* Clear the DBG now so we don't confuse earlier errors */
  7080. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  7081. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  7082. I915_WRITE(GTFIFODBG, gtfifodbg);
  7083. }
  7084. gen6_gt_force_wake_get(dev_priv);
  7085. /* disable the counters and set deterministic thresholds */
  7086. I915_WRITE(GEN6_RC_CONTROL, 0);
  7087. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  7088. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  7089. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  7090. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  7091. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  7092. for (i = 0; i < I915_NUM_RINGS; i++)
  7093. I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
  7094. I915_WRITE(GEN6_RC_SLEEP, 0);
  7095. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  7096. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  7097. I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
  7098. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  7099. rc6_mode = intel_enable_rc6(dev_priv->dev);
  7100. if (rc6_mode & INTEL_RC6_ENABLE)
  7101. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  7102. if (rc6_mode & INTEL_RC6p_ENABLE)
  7103. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  7104. if (rc6_mode & INTEL_RC6pp_ENABLE)
  7105. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  7106. DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  7107. (rc6_mode & INTEL_RC6_ENABLE) ? "on" : "off",
  7108. (rc6_mode & INTEL_RC6p_ENABLE) ? "on" : "off",
  7109. (rc6_mode & INTEL_RC6pp_ENABLE) ? "on" : "off");
  7110. I915_WRITE(GEN6_RC_CONTROL,
  7111. rc6_mask |
  7112. GEN6_RC_CTL_EI_MODE(1) |
  7113. GEN6_RC_CTL_HW_ENABLE);
  7114. I915_WRITE(GEN6_RPNSWREQ,
  7115. GEN6_FREQUENCY(10) |
  7116. GEN6_OFFSET(0) |
  7117. GEN6_AGGRESSIVE_TURBO);
  7118. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  7119. GEN6_FREQUENCY(12));
  7120. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  7121. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  7122. 18 << 24 |
  7123. 6 << 16);
  7124. I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
  7125. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
  7126. I915_WRITE(GEN6_RP_UP_EI, 100000);
  7127. I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
  7128. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  7129. I915_WRITE(GEN6_RP_CONTROL,
  7130. GEN6_RP_MEDIA_TURBO |
  7131. GEN6_RP_MEDIA_HW_MODE |
  7132. GEN6_RP_MEDIA_IS_GFX |
  7133. GEN6_RP_ENABLE |
  7134. GEN6_RP_UP_BUSY_AVG |
  7135. GEN6_RP_DOWN_IDLE_CONT);
  7136. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7137. 500))
  7138. DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
  7139. I915_WRITE(GEN6_PCODE_DATA, 0);
  7140. I915_WRITE(GEN6_PCODE_MAILBOX,
  7141. GEN6_PCODE_READY |
  7142. GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
  7143. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7144. 500))
  7145. DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
  7146. min_freq = (rp_state_cap & 0xff0000) >> 16;
  7147. max_freq = rp_state_cap & 0xff;
  7148. cur_freq = (gt_perf_status & 0xff00) >> 8;
  7149. /* Check for overclock support */
  7150. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7151. 500))
  7152. DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
  7153. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
  7154. pcu_mbox = I915_READ(GEN6_PCODE_DATA);
  7155. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7156. 500))
  7157. DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
  7158. if (pcu_mbox & (1<<31)) { /* OC supported */
  7159. max_freq = pcu_mbox & 0xff;
  7160. DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
  7161. }
  7162. /* In units of 100MHz */
  7163. dev_priv->max_delay = max_freq;
  7164. dev_priv->min_delay = min_freq;
  7165. dev_priv->cur_delay = cur_freq;
  7166. /* requires MSI enabled */
  7167. I915_WRITE(GEN6_PMIER,
  7168. GEN6_PM_MBOX_EVENT |
  7169. GEN6_PM_THERMAL_EVENT |
  7170. GEN6_PM_RP_DOWN_TIMEOUT |
  7171. GEN6_PM_RP_UP_THRESHOLD |
  7172. GEN6_PM_RP_DOWN_THRESHOLD |
  7173. GEN6_PM_RP_UP_EI_EXPIRED |
  7174. GEN6_PM_RP_DOWN_EI_EXPIRED);
  7175. spin_lock_irq(&dev_priv->rps_lock);
  7176. WARN_ON(dev_priv->pm_iir != 0);
  7177. I915_WRITE(GEN6_PMIMR, 0);
  7178. spin_unlock_irq(&dev_priv->rps_lock);
  7179. /* enable all PM interrupts */
  7180. I915_WRITE(GEN6_PMINTRMSK, 0);
  7181. gen6_gt_force_wake_put(dev_priv);
  7182. mutex_unlock(&dev_priv->dev->struct_mutex);
  7183. }
  7184. void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
  7185. {
  7186. int min_freq = 15;
  7187. int gpu_freq, ia_freq, max_ia_freq;
  7188. int scaling_factor = 180;
  7189. max_ia_freq = cpufreq_quick_get_max(0);
  7190. /*
  7191. * Default to measured freq if none found, PCU will ensure we don't go
  7192. * over
  7193. */
  7194. if (!max_ia_freq)
  7195. max_ia_freq = tsc_khz;
  7196. /* Convert from kHz to MHz */
  7197. max_ia_freq /= 1000;
  7198. mutex_lock(&dev_priv->dev->struct_mutex);
  7199. /*
  7200. * For each potential GPU frequency, load a ring frequency we'd like
  7201. * to use for memory access. We do this by specifying the IA frequency
  7202. * the PCU should use as a reference to determine the ring frequency.
  7203. */
  7204. for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
  7205. gpu_freq--) {
  7206. int diff = dev_priv->max_delay - gpu_freq;
  7207. /*
  7208. * For GPU frequencies less than 750MHz, just use the lowest
  7209. * ring freq.
  7210. */
  7211. if (gpu_freq < min_freq)
  7212. ia_freq = 800;
  7213. else
  7214. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  7215. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  7216. I915_WRITE(GEN6_PCODE_DATA,
  7217. (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
  7218. gpu_freq);
  7219. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
  7220. GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
  7221. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
  7222. GEN6_PCODE_READY) == 0, 10)) {
  7223. DRM_ERROR("pcode write of freq table timed out\n");
  7224. continue;
  7225. }
  7226. }
  7227. mutex_unlock(&dev_priv->dev->struct_mutex);
  7228. }
  7229. static void ironlake_init_clock_gating(struct drm_device *dev)
  7230. {
  7231. struct drm_i915_private *dev_priv = dev->dev_private;
  7232. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7233. /* Required for FBC */
  7234. dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
  7235. DPFCRUNIT_CLOCK_GATE_DISABLE |
  7236. DPFDUNIT_CLOCK_GATE_DISABLE;
  7237. /* Required for CxSR */
  7238. dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
  7239. I915_WRITE(PCH_3DCGDIS0,
  7240. MARIUNIT_CLOCK_GATE_DISABLE |
  7241. SVSMUNIT_CLOCK_GATE_DISABLE);
  7242. I915_WRITE(PCH_3DCGDIS1,
  7243. VFMUNIT_CLOCK_GATE_DISABLE);
  7244. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7245. /*
  7246. * According to the spec the following bits should be set in
  7247. * order to enable memory self-refresh
  7248. * The bit 22/21 of 0x42004
  7249. * The bit 5 of 0x42020
  7250. * The bit 15 of 0x45000
  7251. */
  7252. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7253. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  7254. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  7255. I915_WRITE(ILK_DSPCLK_GATE,
  7256. (I915_READ(ILK_DSPCLK_GATE) |
  7257. ILK_DPARB_CLK_GATE));
  7258. I915_WRITE(DISP_ARB_CTL,
  7259. (I915_READ(DISP_ARB_CTL) |
  7260. DISP_FBC_WM_DIS));
  7261. I915_WRITE(WM3_LP_ILK, 0);
  7262. I915_WRITE(WM2_LP_ILK, 0);
  7263. I915_WRITE(WM1_LP_ILK, 0);
  7264. /*
  7265. * Based on the document from hardware guys the following bits
  7266. * should be set unconditionally in order to enable FBC.
  7267. * The bit 22 of 0x42000
  7268. * The bit 22 of 0x42004
  7269. * The bit 7,8,9 of 0x42020.
  7270. */
  7271. if (IS_IRONLAKE_M(dev)) {
  7272. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  7273. I915_READ(ILK_DISPLAY_CHICKEN1) |
  7274. ILK_FBCQ_DIS);
  7275. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7276. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7277. ILK_DPARB_GATE);
  7278. I915_WRITE(ILK_DSPCLK_GATE,
  7279. I915_READ(ILK_DSPCLK_GATE) |
  7280. ILK_DPFC_DIS1 |
  7281. ILK_DPFC_DIS2 |
  7282. ILK_CLK_FBC);
  7283. }
  7284. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7285. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7286. ILK_ELPIN_409_SELECT);
  7287. I915_WRITE(_3D_CHICKEN2,
  7288. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  7289. _3D_CHICKEN2_WM_READ_PIPELINED);
  7290. }
  7291. static void gen6_init_clock_gating(struct drm_device *dev)
  7292. {
  7293. struct drm_i915_private *dev_priv = dev->dev_private;
  7294. int pipe;
  7295. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7296. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7297. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7298. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7299. ILK_ELPIN_409_SELECT);
  7300. I915_WRITE(WM3_LP_ILK, 0);
  7301. I915_WRITE(WM2_LP_ILK, 0);
  7302. I915_WRITE(WM1_LP_ILK, 0);
  7303. I915_WRITE(GEN6_UCGCTL1,
  7304. I915_READ(GEN6_UCGCTL1) |
  7305. GEN6_BLBUNIT_CLOCK_GATE_DISABLE);
  7306. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  7307. * gating disable must be set. Failure to set it results in
  7308. * flickering pixels due to Z write ordering failures after
  7309. * some amount of runtime in the Mesa "fire" demo, and Unigine
  7310. * Sanctuary and Tropics, and apparently anything else with
  7311. * alpha test or pixel discard.
  7312. *
  7313. * According to the spec, bit 11 (RCCUNIT) must also be set,
  7314. * but we didn't debug actual testcases to find it out.
  7315. */
  7316. I915_WRITE(GEN6_UCGCTL2,
  7317. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  7318. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  7319. /*
  7320. * According to the spec the following bits should be
  7321. * set in order to enable memory self-refresh and fbc:
  7322. * The bit21 and bit22 of 0x42000
  7323. * The bit21 and bit22 of 0x42004
  7324. * The bit5 and bit7 of 0x42020
  7325. * The bit14 of 0x70180
  7326. * The bit14 of 0x71180
  7327. */
  7328. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  7329. I915_READ(ILK_DISPLAY_CHICKEN1) |
  7330. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  7331. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7332. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7333. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  7334. I915_WRITE(ILK_DSPCLK_GATE,
  7335. I915_READ(ILK_DSPCLK_GATE) |
  7336. ILK_DPARB_CLK_GATE |
  7337. ILK_DPFD_CLK_GATE);
  7338. for_each_pipe(pipe) {
  7339. I915_WRITE(DSPCNTR(pipe),
  7340. I915_READ(DSPCNTR(pipe)) |
  7341. DISPPLANE_TRICKLE_FEED_DISABLE);
  7342. intel_flush_display_plane(dev_priv, pipe);
  7343. }
  7344. }
  7345. static void ivybridge_init_clock_gating(struct drm_device *dev)
  7346. {
  7347. struct drm_i915_private *dev_priv = dev->dev_private;
  7348. int pipe;
  7349. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7350. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7351. I915_WRITE(WM3_LP_ILK, 0);
  7352. I915_WRITE(WM2_LP_ILK, 0);
  7353. I915_WRITE(WM1_LP_ILK, 0);
  7354. /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  7355. * This implements the WaDisableRCZUnitClockGating workaround.
  7356. */
  7357. I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  7358. I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
  7359. I915_WRITE(IVB_CHICKEN3,
  7360. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  7361. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  7362. /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
  7363. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  7364. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  7365. /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
  7366. I915_WRITE(GEN7_L3CNTLREG1,
  7367. GEN7_WA_FOR_GEN7_L3_CONTROL);
  7368. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  7369. GEN7_WA_L3_CHICKEN_MODE);
  7370. /* This is required by WaCatErrorRejectionIssue */
  7371. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  7372. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  7373. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  7374. for_each_pipe(pipe) {
  7375. I915_WRITE(DSPCNTR(pipe),
  7376. I915_READ(DSPCNTR(pipe)) |
  7377. DISPPLANE_TRICKLE_FEED_DISABLE);
  7378. intel_flush_display_plane(dev_priv, pipe);
  7379. }
  7380. }
  7381. static void g4x_init_clock_gating(struct drm_device *dev)
  7382. {
  7383. struct drm_i915_private *dev_priv = dev->dev_private;
  7384. uint32_t dspclk_gate;
  7385. I915_WRITE(RENCLK_GATE_D1, 0);
  7386. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  7387. GS_UNIT_CLOCK_GATE_DISABLE |
  7388. CL_UNIT_CLOCK_GATE_DISABLE);
  7389. I915_WRITE(RAMCLK_GATE_D, 0);
  7390. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  7391. OVRUNIT_CLOCK_GATE_DISABLE |
  7392. OVCUNIT_CLOCK_GATE_DISABLE;
  7393. if (IS_GM45(dev))
  7394. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  7395. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  7396. }
  7397. static void crestline_init_clock_gating(struct drm_device *dev)
  7398. {
  7399. struct drm_i915_private *dev_priv = dev->dev_private;
  7400. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  7401. I915_WRITE(RENCLK_GATE_D2, 0);
  7402. I915_WRITE(DSPCLK_GATE_D, 0);
  7403. I915_WRITE(RAMCLK_GATE_D, 0);
  7404. I915_WRITE16(DEUC, 0);
  7405. }
  7406. static void broadwater_init_clock_gating(struct drm_device *dev)
  7407. {
  7408. struct drm_i915_private *dev_priv = dev->dev_private;
  7409. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  7410. I965_RCC_CLOCK_GATE_DISABLE |
  7411. I965_RCPB_CLOCK_GATE_DISABLE |
  7412. I965_ISC_CLOCK_GATE_DISABLE |
  7413. I965_FBC_CLOCK_GATE_DISABLE);
  7414. I915_WRITE(RENCLK_GATE_D2, 0);
  7415. }
  7416. static void gen3_init_clock_gating(struct drm_device *dev)
  7417. {
  7418. struct drm_i915_private *dev_priv = dev->dev_private;
  7419. u32 dstate = I915_READ(D_STATE);
  7420. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  7421. DSTATE_DOT_CLOCK_GATING;
  7422. I915_WRITE(D_STATE, dstate);
  7423. }
  7424. static void i85x_init_clock_gating(struct drm_device *dev)
  7425. {
  7426. struct drm_i915_private *dev_priv = dev->dev_private;
  7427. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  7428. }
  7429. static void i830_init_clock_gating(struct drm_device *dev)
  7430. {
  7431. struct drm_i915_private *dev_priv = dev->dev_private;
  7432. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  7433. }
  7434. static void ibx_init_clock_gating(struct drm_device *dev)
  7435. {
  7436. struct drm_i915_private *dev_priv = dev->dev_private;
  7437. /*
  7438. * On Ibex Peak and Cougar Point, we need to disable clock
  7439. * gating for the panel power sequencer or it will fail to
  7440. * start up when no ports are active.
  7441. */
  7442. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  7443. }
  7444. static void cpt_init_clock_gating(struct drm_device *dev)
  7445. {
  7446. struct drm_i915_private *dev_priv = dev->dev_private;
  7447. int pipe;
  7448. /*
  7449. * On Ibex Peak and Cougar Point, we need to disable clock
  7450. * gating for the panel power sequencer or it will fail to
  7451. * start up when no ports are active.
  7452. */
  7453. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  7454. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  7455. DPLS_EDP_PPS_FIX_DIS);
  7456. /* Without this, mode sets may fail silently on FDI */
  7457. for_each_pipe(pipe)
  7458. I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
  7459. }
  7460. static void ironlake_teardown_rc6(struct drm_device *dev)
  7461. {
  7462. struct drm_i915_private *dev_priv = dev->dev_private;
  7463. if (dev_priv->renderctx) {
  7464. i915_gem_object_unpin(dev_priv->renderctx);
  7465. drm_gem_object_unreference(&dev_priv->renderctx->base);
  7466. dev_priv->renderctx = NULL;
  7467. }
  7468. if (dev_priv->pwrctx) {
  7469. i915_gem_object_unpin(dev_priv->pwrctx);
  7470. drm_gem_object_unreference(&dev_priv->pwrctx->base);
  7471. dev_priv->pwrctx = NULL;
  7472. }
  7473. }
  7474. static void ironlake_disable_rc6(struct drm_device *dev)
  7475. {
  7476. struct drm_i915_private *dev_priv = dev->dev_private;
  7477. if (I915_READ(PWRCTXA)) {
  7478. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  7479. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  7480. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  7481. 50);
  7482. I915_WRITE(PWRCTXA, 0);
  7483. POSTING_READ(PWRCTXA);
  7484. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  7485. POSTING_READ(RSTDBYCTL);
  7486. }
  7487. ironlake_teardown_rc6(dev);
  7488. }
  7489. static int ironlake_setup_rc6(struct drm_device *dev)
  7490. {
  7491. struct drm_i915_private *dev_priv = dev->dev_private;
  7492. if (dev_priv->renderctx == NULL)
  7493. dev_priv->renderctx = intel_alloc_context_page(dev);
  7494. if (!dev_priv->renderctx)
  7495. return -ENOMEM;
  7496. if (dev_priv->pwrctx == NULL)
  7497. dev_priv->pwrctx = intel_alloc_context_page(dev);
  7498. if (!dev_priv->pwrctx) {
  7499. ironlake_teardown_rc6(dev);
  7500. return -ENOMEM;
  7501. }
  7502. return 0;
  7503. }
  7504. void ironlake_enable_rc6(struct drm_device *dev)
  7505. {
  7506. struct drm_i915_private *dev_priv = dev->dev_private;
  7507. int ret;
  7508. /* rc6 disabled by default due to repeated reports of hanging during
  7509. * boot and resume.
  7510. */
  7511. if (!intel_enable_rc6(dev))
  7512. return;
  7513. mutex_lock(&dev->struct_mutex);
  7514. ret = ironlake_setup_rc6(dev);
  7515. if (ret) {
  7516. mutex_unlock(&dev->struct_mutex);
  7517. return;
  7518. }
  7519. /*
  7520. * GPU can automatically power down the render unit if given a page
  7521. * to save state.
  7522. */
  7523. ret = BEGIN_LP_RING(6);
  7524. if (ret) {
  7525. ironlake_teardown_rc6(dev);
  7526. mutex_unlock(&dev->struct_mutex);
  7527. return;
  7528. }
  7529. OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  7530. OUT_RING(MI_SET_CONTEXT);
  7531. OUT_RING(dev_priv->renderctx->gtt_offset |
  7532. MI_MM_SPACE_GTT |
  7533. MI_SAVE_EXT_STATE_EN |
  7534. MI_RESTORE_EXT_STATE_EN |
  7535. MI_RESTORE_INHIBIT);
  7536. OUT_RING(MI_SUSPEND_FLUSH);
  7537. OUT_RING(MI_NOOP);
  7538. OUT_RING(MI_FLUSH);
  7539. ADVANCE_LP_RING();
  7540. /*
  7541. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  7542. * does an implicit flush, combined with MI_FLUSH above, it should be
  7543. * safe to assume that renderctx is valid
  7544. */
  7545. ret = intel_wait_ring_idle(LP_RING(dev_priv));
  7546. if (ret) {
  7547. DRM_ERROR("failed to enable ironlake power power savings\n");
  7548. ironlake_teardown_rc6(dev);
  7549. mutex_unlock(&dev->struct_mutex);
  7550. return;
  7551. }
  7552. I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
  7553. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  7554. mutex_unlock(&dev->struct_mutex);
  7555. }
  7556. void intel_init_clock_gating(struct drm_device *dev)
  7557. {
  7558. struct drm_i915_private *dev_priv = dev->dev_private;
  7559. dev_priv->display.init_clock_gating(dev);
  7560. if (dev_priv->display.init_pch_clock_gating)
  7561. dev_priv->display.init_pch_clock_gating(dev);
  7562. }
  7563. /* Set up chip specific display functions */
  7564. static void intel_init_display(struct drm_device *dev)
  7565. {
  7566. struct drm_i915_private *dev_priv = dev->dev_private;
  7567. /* We always want a DPMS function */
  7568. if (HAS_PCH_SPLIT(dev)) {
  7569. dev_priv->display.dpms = ironlake_crtc_dpms;
  7570. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7571. dev_priv->display.update_plane = ironlake_update_plane;
  7572. } else {
  7573. dev_priv->display.dpms = i9xx_crtc_dpms;
  7574. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7575. dev_priv->display.update_plane = i9xx_update_plane;
  7576. }
  7577. if (I915_HAS_FBC(dev)) {
  7578. if (HAS_PCH_SPLIT(dev)) {
  7579. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  7580. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  7581. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  7582. } else if (IS_GM45(dev)) {
  7583. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  7584. dev_priv->display.enable_fbc = g4x_enable_fbc;
  7585. dev_priv->display.disable_fbc = g4x_disable_fbc;
  7586. } else if (IS_CRESTLINE(dev)) {
  7587. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  7588. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  7589. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  7590. }
  7591. /* 855GM needs testing */
  7592. }
  7593. /* Returns the core display clock speed */
  7594. if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7595. dev_priv->display.get_display_clock_speed =
  7596. i945_get_display_clock_speed;
  7597. else if (IS_I915G(dev))
  7598. dev_priv->display.get_display_clock_speed =
  7599. i915_get_display_clock_speed;
  7600. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7601. dev_priv->display.get_display_clock_speed =
  7602. i9xx_misc_get_display_clock_speed;
  7603. else if (IS_I915GM(dev))
  7604. dev_priv->display.get_display_clock_speed =
  7605. i915gm_get_display_clock_speed;
  7606. else if (IS_I865G(dev))
  7607. dev_priv->display.get_display_clock_speed =
  7608. i865_get_display_clock_speed;
  7609. else if (IS_I85X(dev))
  7610. dev_priv->display.get_display_clock_speed =
  7611. i855_get_display_clock_speed;
  7612. else /* 852, 830 */
  7613. dev_priv->display.get_display_clock_speed =
  7614. i830_get_display_clock_speed;
  7615. /* For FIFO watermark updates */
  7616. if (HAS_PCH_SPLIT(dev)) {
  7617. dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
  7618. dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
  7619. /* IVB configs may use multi-threaded forcewake */
  7620. if (IS_IVYBRIDGE(dev)) {
  7621. u32 ecobus;
  7622. /* A small trick here - if the bios hasn't configured MT forcewake,
  7623. * and if the device is in RC6, then force_wake_mt_get will not wake
  7624. * the device and the ECOBUS read will return zero. Which will be
  7625. * (correctly) interpreted by the test below as MT forcewake being
  7626. * disabled.
  7627. */
  7628. mutex_lock(&dev->struct_mutex);
  7629. __gen6_gt_force_wake_mt_get(dev_priv);
  7630. ecobus = I915_READ_NOTRACE(ECOBUS);
  7631. __gen6_gt_force_wake_mt_put(dev_priv);
  7632. mutex_unlock(&dev->struct_mutex);
  7633. if (ecobus & FORCEWAKE_MT_ENABLE) {
  7634. DRM_DEBUG_KMS("Using MT version of forcewake\n");
  7635. dev_priv->display.force_wake_get =
  7636. __gen6_gt_force_wake_mt_get;
  7637. dev_priv->display.force_wake_put =
  7638. __gen6_gt_force_wake_mt_put;
  7639. }
  7640. }
  7641. if (HAS_PCH_IBX(dev))
  7642. dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
  7643. else if (HAS_PCH_CPT(dev))
  7644. dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
  7645. if (IS_GEN5(dev)) {
  7646. if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
  7647. dev_priv->display.update_wm = ironlake_update_wm;
  7648. else {
  7649. DRM_DEBUG_KMS("Failed to get proper latency. "
  7650. "Disable CxSR\n");
  7651. dev_priv->display.update_wm = NULL;
  7652. }
  7653. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7654. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  7655. dev_priv->display.write_eld = ironlake_write_eld;
  7656. } else if (IS_GEN6(dev)) {
  7657. if (SNB_READ_WM0_LATENCY()) {
  7658. dev_priv->display.update_wm = sandybridge_update_wm;
  7659. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  7660. } else {
  7661. DRM_DEBUG_KMS("Failed to read display plane latency. "
  7662. "Disable CxSR\n");
  7663. dev_priv->display.update_wm = NULL;
  7664. }
  7665. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7666. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  7667. dev_priv->display.write_eld = ironlake_write_eld;
  7668. } else if (IS_IVYBRIDGE(dev)) {
  7669. /* FIXME: detect B0+ stepping and use auto training */
  7670. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7671. if (SNB_READ_WM0_LATENCY()) {
  7672. dev_priv->display.update_wm = sandybridge_update_wm;
  7673. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  7674. } else {
  7675. DRM_DEBUG_KMS("Failed to read display plane latency. "
  7676. "Disable CxSR\n");
  7677. dev_priv->display.update_wm = NULL;
  7678. }
  7679. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  7680. dev_priv->display.write_eld = ironlake_write_eld;
  7681. } else
  7682. dev_priv->display.update_wm = NULL;
  7683. } else if (IS_PINEVIEW(dev)) {
  7684. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  7685. dev_priv->is_ddr3,
  7686. dev_priv->fsb_freq,
  7687. dev_priv->mem_freq)) {
  7688. DRM_INFO("failed to find known CxSR latency "
  7689. "(found ddr%s fsb freq %d, mem freq %d), "
  7690. "disabling CxSR\n",
  7691. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  7692. dev_priv->fsb_freq, dev_priv->mem_freq);
  7693. /* Disable CxSR and never update its watermark again */
  7694. pineview_disable_cxsr(dev);
  7695. dev_priv->display.update_wm = NULL;
  7696. } else
  7697. dev_priv->display.update_wm = pineview_update_wm;
  7698. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  7699. } else if (IS_G4X(dev)) {
  7700. dev_priv->display.write_eld = g4x_write_eld;
  7701. dev_priv->display.update_wm = g4x_update_wm;
  7702. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  7703. } else if (IS_GEN4(dev)) {
  7704. dev_priv->display.update_wm = i965_update_wm;
  7705. if (IS_CRESTLINE(dev))
  7706. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  7707. else if (IS_BROADWATER(dev))
  7708. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  7709. } else if (IS_GEN3(dev)) {
  7710. dev_priv->display.update_wm = i9xx_update_wm;
  7711. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  7712. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  7713. } else if (IS_I865G(dev)) {
  7714. dev_priv->display.update_wm = i830_update_wm;
  7715. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  7716. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  7717. } else if (IS_I85X(dev)) {
  7718. dev_priv->display.update_wm = i9xx_update_wm;
  7719. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  7720. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  7721. } else {
  7722. dev_priv->display.update_wm = i830_update_wm;
  7723. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  7724. if (IS_845G(dev))
  7725. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  7726. else
  7727. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  7728. }
  7729. /* Default just returns -ENODEV to indicate unsupported */
  7730. dev_priv->display.queue_flip = intel_default_queue_flip;
  7731. switch (INTEL_INFO(dev)->gen) {
  7732. case 2:
  7733. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7734. break;
  7735. case 3:
  7736. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7737. break;
  7738. case 4:
  7739. case 5:
  7740. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7741. break;
  7742. case 6:
  7743. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7744. break;
  7745. case 7:
  7746. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7747. break;
  7748. }
  7749. }
  7750. /*
  7751. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7752. * resume, or other times. This quirk makes sure that's the case for
  7753. * affected systems.
  7754. */
  7755. static void quirk_pipea_force(struct drm_device *dev)
  7756. {
  7757. struct drm_i915_private *dev_priv = dev->dev_private;
  7758. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7759. DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
  7760. }
  7761. /*
  7762. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7763. */
  7764. static void quirk_ssc_force_disable(struct drm_device *dev)
  7765. {
  7766. struct drm_i915_private *dev_priv = dev->dev_private;
  7767. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7768. }
  7769. struct intel_quirk {
  7770. int device;
  7771. int subsystem_vendor;
  7772. int subsystem_device;
  7773. void (*hook)(struct drm_device *dev);
  7774. };
  7775. struct intel_quirk intel_quirks[] = {
  7776. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7777. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7778. /* Thinkpad R31 needs pipe A force quirk */
  7779. { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
  7780. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7781. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7782. /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
  7783. { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
  7784. /* ThinkPad X40 needs pipe A force quirk */
  7785. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7786. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7787. /* 855 & before need to leave pipe A & dpll A up */
  7788. { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7789. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7790. /* Lenovo U160 cannot use SSC on LVDS */
  7791. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7792. /* Sony Vaio Y cannot use SSC on LVDS */
  7793. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7794. };
  7795. static void intel_init_quirks(struct drm_device *dev)
  7796. {
  7797. struct pci_dev *d = dev->pdev;
  7798. int i;
  7799. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7800. struct intel_quirk *q = &intel_quirks[i];
  7801. if (d->device == q->device &&
  7802. (d->subsystem_vendor == q->subsystem_vendor ||
  7803. q->subsystem_vendor == PCI_ANY_ID) &&
  7804. (d->subsystem_device == q->subsystem_device ||
  7805. q->subsystem_device == PCI_ANY_ID))
  7806. q->hook(dev);
  7807. }
  7808. }
  7809. /* Disable the VGA plane that we never use */
  7810. static void i915_disable_vga(struct drm_device *dev)
  7811. {
  7812. struct drm_i915_private *dev_priv = dev->dev_private;
  7813. u8 sr1;
  7814. u32 vga_reg;
  7815. if (HAS_PCH_SPLIT(dev))
  7816. vga_reg = CPU_VGACNTRL;
  7817. else
  7818. vga_reg = VGACNTRL;
  7819. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7820. outb(1, VGA_SR_INDEX);
  7821. sr1 = inb(VGA_SR_DATA);
  7822. outb(sr1 | 1<<5, VGA_SR_DATA);
  7823. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7824. udelay(300);
  7825. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7826. POSTING_READ(vga_reg);
  7827. }
  7828. void intel_modeset_init(struct drm_device *dev)
  7829. {
  7830. struct drm_i915_private *dev_priv = dev->dev_private;
  7831. int i, ret;
  7832. drm_mode_config_init(dev);
  7833. dev->mode_config.min_width = 0;
  7834. dev->mode_config.min_height = 0;
  7835. dev->mode_config.preferred_depth = 24;
  7836. dev->mode_config.prefer_shadow = 1;
  7837. dev->mode_config.funcs = (void *)&intel_mode_funcs;
  7838. intel_init_quirks(dev);
  7839. intel_init_display(dev);
  7840. if (IS_GEN2(dev)) {
  7841. dev->mode_config.max_width = 2048;
  7842. dev->mode_config.max_height = 2048;
  7843. } else if (IS_GEN3(dev)) {
  7844. dev->mode_config.max_width = 4096;
  7845. dev->mode_config.max_height = 4096;
  7846. } else {
  7847. dev->mode_config.max_width = 8192;
  7848. dev->mode_config.max_height = 8192;
  7849. }
  7850. dev->mode_config.fb_base = dev->agp->base;
  7851. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7852. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  7853. for (i = 0; i < dev_priv->num_pipe; i++) {
  7854. intel_crtc_init(dev, i);
  7855. ret = intel_plane_init(dev, i);
  7856. if (ret)
  7857. DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
  7858. }
  7859. /* Just disable it once at startup */
  7860. i915_disable_vga(dev);
  7861. intel_setup_outputs(dev);
  7862. intel_init_clock_gating(dev);
  7863. if (IS_IRONLAKE_M(dev)) {
  7864. ironlake_enable_drps(dev);
  7865. intel_init_emon(dev);
  7866. }
  7867. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  7868. gen6_enable_rps(dev_priv);
  7869. gen6_update_ring_freq(dev_priv);
  7870. }
  7871. INIT_WORK(&dev_priv->idle_work, intel_idle_update);
  7872. setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
  7873. (unsigned long)dev);
  7874. }
  7875. void intel_modeset_gem_init(struct drm_device *dev)
  7876. {
  7877. if (IS_IRONLAKE_M(dev))
  7878. ironlake_enable_rc6(dev);
  7879. intel_setup_overlay(dev);
  7880. }
  7881. void intel_modeset_cleanup(struct drm_device *dev)
  7882. {
  7883. struct drm_i915_private *dev_priv = dev->dev_private;
  7884. struct drm_crtc *crtc;
  7885. struct intel_crtc *intel_crtc;
  7886. drm_kms_helper_poll_fini(dev);
  7887. mutex_lock(&dev->struct_mutex);
  7888. intel_unregister_dsm_handler();
  7889. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7890. /* Skip inactive CRTCs */
  7891. if (!crtc->fb)
  7892. continue;
  7893. intel_crtc = to_intel_crtc(crtc);
  7894. intel_increase_pllclock(crtc);
  7895. }
  7896. intel_disable_fbc(dev);
  7897. if (IS_IRONLAKE_M(dev))
  7898. ironlake_disable_drps(dev);
  7899. if (IS_GEN6(dev) || IS_GEN7(dev))
  7900. gen6_disable_rps(dev);
  7901. if (IS_IRONLAKE_M(dev))
  7902. ironlake_disable_rc6(dev);
  7903. mutex_unlock(&dev->struct_mutex);
  7904. /* Disable the irq before mode object teardown, for the irq might
  7905. * enqueue unpin/hotplug work. */
  7906. drm_irq_uninstall(dev);
  7907. cancel_work_sync(&dev_priv->hotplug_work);
  7908. cancel_work_sync(&dev_priv->rps_work);
  7909. /* flush any delayed tasks or pending work */
  7910. flush_scheduled_work();
  7911. /* Shut off idle work before the crtcs get freed. */
  7912. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7913. intel_crtc = to_intel_crtc(crtc);
  7914. del_timer_sync(&intel_crtc->idle_timer);
  7915. }
  7916. del_timer_sync(&dev_priv->idle_timer);
  7917. cancel_work_sync(&dev_priv->idle_work);
  7918. drm_mode_config_cleanup(dev);
  7919. }
  7920. /*
  7921. * Return which encoder is currently attached for connector.
  7922. */
  7923. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  7924. {
  7925. return &intel_attached_encoder(connector)->base;
  7926. }
  7927. void intel_connector_attach_encoder(struct intel_connector *connector,
  7928. struct intel_encoder *encoder)
  7929. {
  7930. connector->encoder = encoder;
  7931. drm_mode_connector_attach_encoder(&connector->base,
  7932. &encoder->base);
  7933. }
  7934. /*
  7935. * set vga decode state - true == enable VGA decode
  7936. */
  7937. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  7938. {
  7939. struct drm_i915_private *dev_priv = dev->dev_private;
  7940. u16 gmch_ctrl;
  7941. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  7942. if (state)
  7943. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  7944. else
  7945. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  7946. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  7947. return 0;
  7948. }
  7949. #ifdef CONFIG_DEBUG_FS
  7950. #include <linux/seq_file.h>
  7951. struct intel_display_error_state {
  7952. struct intel_cursor_error_state {
  7953. u32 control;
  7954. u32 position;
  7955. u32 base;
  7956. u32 size;
  7957. } cursor[2];
  7958. struct intel_pipe_error_state {
  7959. u32 conf;
  7960. u32 source;
  7961. u32 htotal;
  7962. u32 hblank;
  7963. u32 hsync;
  7964. u32 vtotal;
  7965. u32 vblank;
  7966. u32 vsync;
  7967. } pipe[2];
  7968. struct intel_plane_error_state {
  7969. u32 control;
  7970. u32 stride;
  7971. u32 size;
  7972. u32 pos;
  7973. u32 addr;
  7974. u32 surface;
  7975. u32 tile_offset;
  7976. } plane[2];
  7977. };
  7978. struct intel_display_error_state *
  7979. intel_display_capture_error_state(struct drm_device *dev)
  7980. {
  7981. drm_i915_private_t *dev_priv = dev->dev_private;
  7982. struct intel_display_error_state *error;
  7983. int i;
  7984. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  7985. if (error == NULL)
  7986. return NULL;
  7987. for (i = 0; i < 2; i++) {
  7988. error->cursor[i].control = I915_READ(CURCNTR(i));
  7989. error->cursor[i].position = I915_READ(CURPOS(i));
  7990. error->cursor[i].base = I915_READ(CURBASE(i));
  7991. error->plane[i].control = I915_READ(DSPCNTR(i));
  7992. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  7993. error->plane[i].size = I915_READ(DSPSIZE(i));
  7994. error->plane[i].pos = I915_READ(DSPPOS(i));
  7995. error->plane[i].addr = I915_READ(DSPADDR(i));
  7996. if (INTEL_INFO(dev)->gen >= 4) {
  7997. error->plane[i].surface = I915_READ(DSPSURF(i));
  7998. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  7999. }
  8000. error->pipe[i].conf = I915_READ(PIPECONF(i));
  8001. error->pipe[i].source = I915_READ(PIPESRC(i));
  8002. error->pipe[i].htotal = I915_READ(HTOTAL(i));
  8003. error->pipe[i].hblank = I915_READ(HBLANK(i));
  8004. error->pipe[i].hsync = I915_READ(HSYNC(i));
  8005. error->pipe[i].vtotal = I915_READ(VTOTAL(i));
  8006. error->pipe[i].vblank = I915_READ(VBLANK(i));
  8007. error->pipe[i].vsync = I915_READ(VSYNC(i));
  8008. }
  8009. return error;
  8010. }
  8011. void
  8012. intel_display_print_error_state(struct seq_file *m,
  8013. struct drm_device *dev,
  8014. struct intel_display_error_state *error)
  8015. {
  8016. int i;
  8017. for (i = 0; i < 2; i++) {
  8018. seq_printf(m, "Pipe [%d]:\n", i);
  8019. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  8020. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8021. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  8022. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  8023. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  8024. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  8025. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  8026. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  8027. seq_printf(m, "Plane [%d]:\n", i);
  8028. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8029. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8030. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8031. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  8032. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8033. if (INTEL_INFO(dev)->gen >= 4) {
  8034. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8035. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8036. }
  8037. seq_printf(m, "Cursor [%d]:\n", i);
  8038. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8039. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  8040. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8041. }
  8042. }
  8043. #endif