kprobes.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692
  1. /*
  2. * Kernel Probes (KProbes)
  3. * arch/x86_64/kernel/kprobes.c
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18. *
  19. * Copyright (C) IBM Corporation, 2002, 2004
  20. *
  21. * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  22. * Probes initial implementation ( includes contributions from
  23. * Rusty Russell).
  24. * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  25. * interface to access function arguments.
  26. * 2004-Oct Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi
  27. * <prasanna@in.ibm.com> adapted for x86_64
  28. * 2005-Mar Roland McGrath <roland@redhat.com>
  29. * Fixed to handle %rip-relative addressing mode correctly.
  30. * 2005-May Rusty Lynch <rusty.lynch@intel.com>
  31. * Added function return probes functionality
  32. */
  33. #include <linux/config.h>
  34. #include <linux/kprobes.h>
  35. #include <linux/ptrace.h>
  36. #include <linux/string.h>
  37. #include <linux/slab.h>
  38. #include <linux/preempt.h>
  39. #include <asm/cacheflush.h>
  40. #include <asm/pgtable.h>
  41. #include <asm/kdebug.h>
  42. static DECLARE_MUTEX(kprobe_mutex);
  43. void jprobe_return_end(void);
  44. DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  45. DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  46. /*
  47. * returns non-zero if opcode modifies the interrupt flag.
  48. */
  49. static inline int is_IF_modifier(kprobe_opcode_t *insn)
  50. {
  51. switch (*insn) {
  52. case 0xfa: /* cli */
  53. case 0xfb: /* sti */
  54. case 0xcf: /* iret/iretd */
  55. case 0x9d: /* popf/popfd */
  56. return 1;
  57. }
  58. if (*insn >= 0x40 && *insn <= 0x4f && *++insn == 0xcf)
  59. return 1;
  60. return 0;
  61. }
  62. int __kprobes arch_prepare_kprobe(struct kprobe *p)
  63. {
  64. /* insn: must be on special executable page on x86_64. */
  65. down(&kprobe_mutex);
  66. p->ainsn.insn = get_insn_slot();
  67. up(&kprobe_mutex);
  68. if (!p->ainsn.insn) {
  69. return -ENOMEM;
  70. }
  71. return 0;
  72. }
  73. /*
  74. * Determine if the instruction uses the %rip-relative addressing mode.
  75. * If it does, return the address of the 32-bit displacement word.
  76. * If not, return null.
  77. */
  78. static inline s32 *is_riprel(u8 *insn)
  79. {
  80. #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
  81. (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
  82. (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
  83. (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
  84. (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
  85. << (row % 64))
  86. static const u64 onebyte_has_modrm[256 / 64] = {
  87. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  88. /* ------------------------------- */
  89. W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */
  90. W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */
  91. W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */
  92. W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */
  93. W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
  94. W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */
  95. W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */
  96. W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */
  97. W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
  98. W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */
  99. W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */
  100. W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */
  101. W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */
  102. W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */
  103. W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */
  104. W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1) /* f0 */
  105. /* ------------------------------- */
  106. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  107. };
  108. static const u64 twobyte_has_modrm[256 / 64] = {
  109. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  110. /* ------------------------------- */
  111. W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */
  112. W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */
  113. W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */
  114. W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */
  115. W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */
  116. W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */
  117. W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */
  118. W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */
  119. W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */
  120. W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */
  121. W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */
  122. W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */
  123. W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */
  124. W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */
  125. W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */
  126. W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) /* ff */
  127. /* ------------------------------- */
  128. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  129. };
  130. #undef W
  131. int need_modrm;
  132. /* Skip legacy instruction prefixes. */
  133. while (1) {
  134. switch (*insn) {
  135. case 0x66:
  136. case 0x67:
  137. case 0x2e:
  138. case 0x3e:
  139. case 0x26:
  140. case 0x64:
  141. case 0x65:
  142. case 0x36:
  143. case 0xf0:
  144. case 0xf3:
  145. case 0xf2:
  146. ++insn;
  147. continue;
  148. }
  149. break;
  150. }
  151. /* Skip REX instruction prefix. */
  152. if ((*insn & 0xf0) == 0x40)
  153. ++insn;
  154. if (*insn == 0x0f) { /* Two-byte opcode. */
  155. ++insn;
  156. need_modrm = test_bit(*insn, twobyte_has_modrm);
  157. } else { /* One-byte opcode. */
  158. need_modrm = test_bit(*insn, onebyte_has_modrm);
  159. }
  160. if (need_modrm) {
  161. u8 modrm = *++insn;
  162. if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */
  163. /* Displacement follows ModRM byte. */
  164. return (s32 *) ++insn;
  165. }
  166. }
  167. /* No %rip-relative addressing mode here. */
  168. return NULL;
  169. }
  170. void __kprobes arch_copy_kprobe(struct kprobe *p)
  171. {
  172. s32 *ripdisp;
  173. memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
  174. ripdisp = is_riprel(p->ainsn.insn);
  175. if (ripdisp) {
  176. /*
  177. * The copied instruction uses the %rip-relative
  178. * addressing mode. Adjust the displacement for the
  179. * difference between the original location of this
  180. * instruction and the location of the copy that will
  181. * actually be run. The tricky bit here is making sure
  182. * that the sign extension happens correctly in this
  183. * calculation, since we need a signed 32-bit result to
  184. * be sign-extended to 64 bits when it's added to the
  185. * %rip value and yield the same 64-bit result that the
  186. * sign-extension of the original signed 32-bit
  187. * displacement would have given.
  188. */
  189. s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn;
  190. BUG_ON((s64) (s32) disp != disp); /* Sanity check. */
  191. *ripdisp = disp;
  192. }
  193. p->opcode = *p->addr;
  194. }
  195. void __kprobes arch_arm_kprobe(struct kprobe *p)
  196. {
  197. *p->addr = BREAKPOINT_INSTRUCTION;
  198. flush_icache_range((unsigned long) p->addr,
  199. (unsigned long) p->addr + sizeof(kprobe_opcode_t));
  200. }
  201. void __kprobes arch_disarm_kprobe(struct kprobe *p)
  202. {
  203. *p->addr = p->opcode;
  204. flush_icache_range((unsigned long) p->addr,
  205. (unsigned long) p->addr + sizeof(kprobe_opcode_t));
  206. }
  207. void __kprobes arch_remove_kprobe(struct kprobe *p)
  208. {
  209. down(&kprobe_mutex);
  210. free_insn_slot(p->ainsn.insn);
  211. up(&kprobe_mutex);
  212. }
  213. static inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
  214. {
  215. kcb->prev_kprobe.kp = kprobe_running();
  216. kcb->prev_kprobe.status = kcb->kprobe_status;
  217. kcb->prev_kprobe.old_rflags = kcb->kprobe_old_rflags;
  218. kcb->prev_kprobe.saved_rflags = kcb->kprobe_saved_rflags;
  219. }
  220. static inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
  221. {
  222. __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
  223. kcb->kprobe_status = kcb->prev_kprobe.status;
  224. kcb->kprobe_old_rflags = kcb->prev_kprobe.old_rflags;
  225. kcb->kprobe_saved_rflags = kcb->prev_kprobe.saved_rflags;
  226. }
  227. static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
  228. struct kprobe_ctlblk *kcb)
  229. {
  230. __get_cpu_var(current_kprobe) = p;
  231. kcb->kprobe_saved_rflags = kcb->kprobe_old_rflags
  232. = (regs->eflags & (TF_MASK | IF_MASK));
  233. if (is_IF_modifier(p->ainsn.insn))
  234. kcb->kprobe_saved_rflags &= ~IF_MASK;
  235. }
  236. static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
  237. {
  238. regs->eflags |= TF_MASK;
  239. regs->eflags &= ~IF_MASK;
  240. /*single step inline if the instruction is an int3*/
  241. if (p->opcode == BREAKPOINT_INSTRUCTION)
  242. regs->rip = (unsigned long)p->addr;
  243. else
  244. regs->rip = (unsigned long)p->ainsn.insn;
  245. }
  246. /* Called with kretprobe_lock held */
  247. void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
  248. struct pt_regs *regs)
  249. {
  250. unsigned long *sara = (unsigned long *)regs->rsp;
  251. struct kretprobe_instance *ri;
  252. if ((ri = get_free_rp_inst(rp)) != NULL) {
  253. ri->rp = rp;
  254. ri->task = current;
  255. ri->ret_addr = (kprobe_opcode_t *) *sara;
  256. /* Replace the return addr with trampoline addr */
  257. *sara = (unsigned long) &kretprobe_trampoline;
  258. add_rp_inst(ri);
  259. } else {
  260. rp->nmissed++;
  261. }
  262. }
  263. int __kprobes kprobe_handler(struct pt_regs *regs)
  264. {
  265. struct kprobe *p;
  266. int ret = 0;
  267. kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->rip - sizeof(kprobe_opcode_t));
  268. struct kprobe_ctlblk *kcb;
  269. /*
  270. * We don't want to be preempted for the entire
  271. * duration of kprobe processing
  272. */
  273. preempt_disable();
  274. kcb = get_kprobe_ctlblk();
  275. /* Check we're not actually recursing */
  276. if (kprobe_running()) {
  277. p = get_kprobe(addr);
  278. if (p) {
  279. if (kcb->kprobe_status == KPROBE_HIT_SS &&
  280. *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
  281. regs->eflags &= ~TF_MASK;
  282. regs->eflags |= kcb->kprobe_saved_rflags;
  283. goto no_kprobe;
  284. } else if (kcb->kprobe_status == KPROBE_HIT_SSDONE) {
  285. /* TODO: Provide re-entrancy from
  286. * post_kprobes_handler() and avoid exception
  287. * stack corruption while single-stepping on
  288. * the instruction of the new probe.
  289. */
  290. arch_disarm_kprobe(p);
  291. regs->rip = (unsigned long)p->addr;
  292. reset_current_kprobe();
  293. ret = 1;
  294. } else {
  295. /* We have reentered the kprobe_handler(), since
  296. * another probe was hit while within the
  297. * handler. We here save the original kprobe
  298. * variables and just single step on instruction
  299. * of the new probe without calling any user
  300. * handlers.
  301. */
  302. save_previous_kprobe(kcb);
  303. set_current_kprobe(p, regs, kcb);
  304. kprobes_inc_nmissed_count(p);
  305. prepare_singlestep(p, regs);
  306. kcb->kprobe_status = KPROBE_REENTER;
  307. return 1;
  308. }
  309. } else {
  310. p = __get_cpu_var(current_kprobe);
  311. if (p->break_handler && p->break_handler(p, regs)) {
  312. goto ss_probe;
  313. }
  314. }
  315. goto no_kprobe;
  316. }
  317. p = get_kprobe(addr);
  318. if (!p) {
  319. if (*addr != BREAKPOINT_INSTRUCTION) {
  320. /*
  321. * The breakpoint instruction was removed right
  322. * after we hit it. Another cpu has removed
  323. * either a probepoint or a debugger breakpoint
  324. * at this address. In either case, no further
  325. * handling of this interrupt is appropriate.
  326. * Back up over the (now missing) int3 and run
  327. * the original instruction.
  328. */
  329. regs->rip = (unsigned long)addr;
  330. ret = 1;
  331. }
  332. /* Not one of ours: let kernel handle it */
  333. goto no_kprobe;
  334. }
  335. set_current_kprobe(p, regs, kcb);
  336. kcb->kprobe_status = KPROBE_HIT_ACTIVE;
  337. if (p->pre_handler && p->pre_handler(p, regs))
  338. /* handler has already set things up, so skip ss setup */
  339. return 1;
  340. ss_probe:
  341. prepare_singlestep(p, regs);
  342. kcb->kprobe_status = KPROBE_HIT_SS;
  343. return 1;
  344. no_kprobe:
  345. preempt_enable_no_resched();
  346. return ret;
  347. }
  348. /*
  349. * For function-return probes, init_kprobes() establishes a probepoint
  350. * here. When a retprobed function returns, this probe is hit and
  351. * trampoline_probe_handler() runs, calling the kretprobe's handler.
  352. */
  353. void kretprobe_trampoline_holder(void)
  354. {
  355. asm volatile ( ".global kretprobe_trampoline\n"
  356. "kretprobe_trampoline: \n"
  357. "nop\n");
  358. }
  359. /*
  360. * Called when we hit the probe point at kretprobe_trampoline
  361. */
  362. int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
  363. {
  364. struct kretprobe_instance *ri = NULL;
  365. struct hlist_head *head;
  366. struct hlist_node *node, *tmp;
  367. unsigned long flags, orig_ret_address = 0;
  368. unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
  369. spin_lock_irqsave(&kretprobe_lock, flags);
  370. head = kretprobe_inst_table_head(current);
  371. /*
  372. * It is possible to have multiple instances associated with a given
  373. * task either because an multiple functions in the call path
  374. * have a return probe installed on them, and/or more then one return
  375. * return probe was registered for a target function.
  376. *
  377. * We can handle this because:
  378. * - instances are always inserted at the head of the list
  379. * - when multiple return probes are registered for the same
  380. * function, the first instance's ret_addr will point to the
  381. * real return address, and all the rest will point to
  382. * kretprobe_trampoline
  383. */
  384. hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
  385. if (ri->task != current)
  386. /* another task is sharing our hash bucket */
  387. continue;
  388. if (ri->rp && ri->rp->handler)
  389. ri->rp->handler(ri, regs);
  390. orig_ret_address = (unsigned long)ri->ret_addr;
  391. recycle_rp_inst(ri);
  392. if (orig_ret_address != trampoline_address)
  393. /*
  394. * This is the real return address. Any other
  395. * instances associated with this task are for
  396. * other calls deeper on the call stack
  397. */
  398. break;
  399. }
  400. BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
  401. regs->rip = orig_ret_address;
  402. reset_current_kprobe();
  403. spin_unlock_irqrestore(&kretprobe_lock, flags);
  404. preempt_enable_no_resched();
  405. /*
  406. * By returning a non-zero value, we are telling
  407. * kprobe_handler() that we don't want the post_handler
  408. * to run (and have re-enabled preemption)
  409. */
  410. return 1;
  411. }
  412. /*
  413. * Called after single-stepping. p->addr is the address of the
  414. * instruction whose first byte has been replaced by the "int 3"
  415. * instruction. To avoid the SMP problems that can occur when we
  416. * temporarily put back the original opcode to single-step, we
  417. * single-stepped a copy of the instruction. The address of this
  418. * copy is p->ainsn.insn.
  419. *
  420. * This function prepares to return from the post-single-step
  421. * interrupt. We have to fix up the stack as follows:
  422. *
  423. * 0) Except in the case of absolute or indirect jump or call instructions,
  424. * the new rip is relative to the copied instruction. We need to make
  425. * it relative to the original instruction.
  426. *
  427. * 1) If the single-stepped instruction was pushfl, then the TF and IF
  428. * flags are set in the just-pushed eflags, and may need to be cleared.
  429. *
  430. * 2) If the single-stepped instruction was a call, the return address
  431. * that is atop the stack is the address following the copied instruction.
  432. * We need to make it the address following the original instruction.
  433. */
  434. static void __kprobes resume_execution(struct kprobe *p,
  435. struct pt_regs *regs, struct kprobe_ctlblk *kcb)
  436. {
  437. unsigned long *tos = (unsigned long *)regs->rsp;
  438. unsigned long next_rip = 0;
  439. unsigned long copy_rip = (unsigned long)p->ainsn.insn;
  440. unsigned long orig_rip = (unsigned long)p->addr;
  441. kprobe_opcode_t *insn = p->ainsn.insn;
  442. /*skip the REX prefix*/
  443. if (*insn >= 0x40 && *insn <= 0x4f)
  444. insn++;
  445. switch (*insn) {
  446. case 0x9c: /* pushfl */
  447. *tos &= ~(TF_MASK | IF_MASK);
  448. *tos |= kcb->kprobe_old_rflags;
  449. break;
  450. case 0xc3: /* ret/lret */
  451. case 0xcb:
  452. case 0xc2:
  453. case 0xca:
  454. regs->eflags &= ~TF_MASK;
  455. /* rip is already adjusted, no more changes required*/
  456. return;
  457. case 0xe8: /* call relative - Fix return addr */
  458. *tos = orig_rip + (*tos - copy_rip);
  459. break;
  460. case 0xff:
  461. if ((*insn & 0x30) == 0x10) {
  462. /* call absolute, indirect */
  463. /* Fix return addr; rip is correct. */
  464. next_rip = regs->rip;
  465. *tos = orig_rip + (*tos - copy_rip);
  466. } else if (((*insn & 0x31) == 0x20) || /* jmp near, absolute indirect */
  467. ((*insn & 0x31) == 0x21)) { /* jmp far, absolute indirect */
  468. /* rip is correct. */
  469. next_rip = regs->rip;
  470. }
  471. break;
  472. case 0xea: /* jmp absolute -- rip is correct */
  473. next_rip = regs->rip;
  474. break;
  475. default:
  476. break;
  477. }
  478. regs->eflags &= ~TF_MASK;
  479. if (next_rip) {
  480. regs->rip = next_rip;
  481. } else {
  482. regs->rip = orig_rip + (regs->rip - copy_rip);
  483. }
  484. }
  485. int __kprobes post_kprobe_handler(struct pt_regs *regs)
  486. {
  487. struct kprobe *cur = kprobe_running();
  488. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  489. if (!cur)
  490. return 0;
  491. if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
  492. kcb->kprobe_status = KPROBE_HIT_SSDONE;
  493. cur->post_handler(cur, regs, 0);
  494. }
  495. resume_execution(cur, regs, kcb);
  496. regs->eflags |= kcb->kprobe_saved_rflags;
  497. /* Restore the original saved kprobes variables and continue. */
  498. if (kcb->kprobe_status == KPROBE_REENTER) {
  499. restore_previous_kprobe(kcb);
  500. goto out;
  501. }
  502. reset_current_kprobe();
  503. out:
  504. preempt_enable_no_resched();
  505. /*
  506. * if somebody else is singlestepping across a probe point, eflags
  507. * will have TF set, in which case, continue the remaining processing
  508. * of do_debug, as if this is not a probe hit.
  509. */
  510. if (regs->eflags & TF_MASK)
  511. return 0;
  512. return 1;
  513. }
  514. int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
  515. {
  516. struct kprobe *cur = kprobe_running();
  517. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  518. if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
  519. return 1;
  520. if (kcb->kprobe_status & KPROBE_HIT_SS) {
  521. resume_execution(cur, regs, kcb);
  522. regs->eflags |= kcb->kprobe_old_rflags;
  523. reset_current_kprobe();
  524. preempt_enable_no_resched();
  525. }
  526. return 0;
  527. }
  528. /*
  529. * Wrapper routine for handling exceptions.
  530. */
  531. int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
  532. unsigned long val, void *data)
  533. {
  534. struct die_args *args = (struct die_args *)data;
  535. int ret = NOTIFY_DONE;
  536. switch (val) {
  537. case DIE_INT3:
  538. if (kprobe_handler(args->regs))
  539. ret = NOTIFY_STOP;
  540. break;
  541. case DIE_DEBUG:
  542. if (post_kprobe_handler(args->regs))
  543. ret = NOTIFY_STOP;
  544. break;
  545. case DIE_GPF:
  546. case DIE_PAGE_FAULT:
  547. /* kprobe_running() needs smp_processor_id() */
  548. preempt_disable();
  549. if (kprobe_running() &&
  550. kprobe_fault_handler(args->regs, args->trapnr))
  551. ret = NOTIFY_STOP;
  552. preempt_enable();
  553. break;
  554. default:
  555. break;
  556. }
  557. return ret;
  558. }
  559. int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
  560. {
  561. struct jprobe *jp = container_of(p, struct jprobe, kp);
  562. unsigned long addr;
  563. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  564. kcb->jprobe_saved_regs = *regs;
  565. kcb->jprobe_saved_rsp = (long *) regs->rsp;
  566. addr = (unsigned long)(kcb->jprobe_saved_rsp);
  567. /*
  568. * As Linus pointed out, gcc assumes that the callee
  569. * owns the argument space and could overwrite it, e.g.
  570. * tailcall optimization. So, to be absolutely safe
  571. * we also save and restore enough stack bytes to cover
  572. * the argument area.
  573. */
  574. memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
  575. MIN_STACK_SIZE(addr));
  576. regs->eflags &= ~IF_MASK;
  577. regs->rip = (unsigned long)(jp->entry);
  578. return 1;
  579. }
  580. void __kprobes jprobe_return(void)
  581. {
  582. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  583. asm volatile (" xchg %%rbx,%%rsp \n"
  584. " int3 \n"
  585. " .globl jprobe_return_end \n"
  586. " jprobe_return_end: \n"
  587. " nop \n"::"b"
  588. (kcb->jprobe_saved_rsp):"memory");
  589. }
  590. int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
  591. {
  592. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  593. u8 *addr = (u8 *) (regs->rip - 1);
  594. unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_rsp);
  595. struct jprobe *jp = container_of(p, struct jprobe, kp);
  596. if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
  597. if ((long *)regs->rsp != kcb->jprobe_saved_rsp) {
  598. struct pt_regs *saved_regs =
  599. container_of(kcb->jprobe_saved_rsp,
  600. struct pt_regs, rsp);
  601. printk("current rsp %p does not match saved rsp %p\n",
  602. (long *)regs->rsp, kcb->jprobe_saved_rsp);
  603. printk("Saved registers for jprobe %p\n", jp);
  604. show_registers(saved_regs);
  605. printk("Current registers\n");
  606. show_registers(regs);
  607. BUG();
  608. }
  609. *regs = kcb->jprobe_saved_regs;
  610. memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
  611. MIN_STACK_SIZE(stack_addr));
  612. preempt_enable_no_resched();
  613. return 1;
  614. }
  615. return 0;
  616. }
  617. static struct kprobe trampoline_p = {
  618. .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
  619. .pre_handler = trampoline_probe_handler
  620. };
  621. int __init arch_init_kprobes(void)
  622. {
  623. return register_kprobe(&trampoline_p);
  624. }