i915_gem.c 136 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/swap.h>
  34. #include <linux/pci.h>
  35. #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  36. static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
  37. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  38. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  39. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  40. int write);
  41. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  42. uint64_t offset,
  43. uint64_t size);
  44. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  45. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
  46. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  47. unsigned alignment);
  48. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  49. static int i915_gem_evict_something(struct drm_device *dev, int min_size);
  50. static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
  51. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  52. struct drm_i915_gem_pwrite *args,
  53. struct drm_file *file_priv);
  54. static LIST_HEAD(shrink_list);
  55. static DEFINE_SPINLOCK(shrink_list_lock);
  56. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  57. unsigned long end)
  58. {
  59. drm_i915_private_t *dev_priv = dev->dev_private;
  60. if (start >= end ||
  61. (start & (PAGE_SIZE - 1)) != 0 ||
  62. (end & (PAGE_SIZE - 1)) != 0) {
  63. return -EINVAL;
  64. }
  65. drm_mm_init(&dev_priv->mm.gtt_space, start,
  66. end - start);
  67. dev->gtt_total = (uint32_t) (end - start);
  68. return 0;
  69. }
  70. int
  71. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  72. struct drm_file *file_priv)
  73. {
  74. struct drm_i915_gem_init *args = data;
  75. int ret;
  76. mutex_lock(&dev->struct_mutex);
  77. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  78. mutex_unlock(&dev->struct_mutex);
  79. return ret;
  80. }
  81. int
  82. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  83. struct drm_file *file_priv)
  84. {
  85. struct drm_i915_gem_get_aperture *args = data;
  86. if (!(dev->driver->driver_features & DRIVER_GEM))
  87. return -ENODEV;
  88. args->aper_size = dev->gtt_total;
  89. args->aper_available_size = (args->aper_size -
  90. atomic_read(&dev->pin_memory));
  91. return 0;
  92. }
  93. /**
  94. * Creates a new mm object and returns a handle to it.
  95. */
  96. int
  97. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  98. struct drm_file *file_priv)
  99. {
  100. struct drm_i915_gem_create *args = data;
  101. struct drm_gem_object *obj;
  102. int ret;
  103. u32 handle;
  104. args->size = roundup(args->size, PAGE_SIZE);
  105. /* Allocate the new object */
  106. obj = drm_gem_object_alloc(dev, args->size);
  107. if (obj == NULL)
  108. return -ENOMEM;
  109. ret = drm_gem_handle_create(file_priv, obj, &handle);
  110. mutex_lock(&dev->struct_mutex);
  111. drm_gem_object_handle_unreference(obj);
  112. mutex_unlock(&dev->struct_mutex);
  113. if (ret)
  114. return ret;
  115. args->handle = handle;
  116. return 0;
  117. }
  118. static inline int
  119. fast_shmem_read(struct page **pages,
  120. loff_t page_base, int page_offset,
  121. char __user *data,
  122. int length)
  123. {
  124. char __iomem *vaddr;
  125. int unwritten;
  126. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  127. if (vaddr == NULL)
  128. return -ENOMEM;
  129. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  130. kunmap_atomic(vaddr, KM_USER0);
  131. if (unwritten)
  132. return -EFAULT;
  133. return 0;
  134. }
  135. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  136. {
  137. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  138. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  139. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  140. obj_priv->tiling_mode != I915_TILING_NONE;
  141. }
  142. static inline int
  143. slow_shmem_copy(struct page *dst_page,
  144. int dst_offset,
  145. struct page *src_page,
  146. int src_offset,
  147. int length)
  148. {
  149. char *dst_vaddr, *src_vaddr;
  150. dst_vaddr = kmap_atomic(dst_page, KM_USER0);
  151. if (dst_vaddr == NULL)
  152. return -ENOMEM;
  153. src_vaddr = kmap_atomic(src_page, KM_USER1);
  154. if (src_vaddr == NULL) {
  155. kunmap_atomic(dst_vaddr, KM_USER0);
  156. return -ENOMEM;
  157. }
  158. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  159. kunmap_atomic(src_vaddr, KM_USER1);
  160. kunmap_atomic(dst_vaddr, KM_USER0);
  161. return 0;
  162. }
  163. static inline int
  164. slow_shmem_bit17_copy(struct page *gpu_page,
  165. int gpu_offset,
  166. struct page *cpu_page,
  167. int cpu_offset,
  168. int length,
  169. int is_read)
  170. {
  171. char *gpu_vaddr, *cpu_vaddr;
  172. /* Use the unswizzled path if this page isn't affected. */
  173. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  174. if (is_read)
  175. return slow_shmem_copy(cpu_page, cpu_offset,
  176. gpu_page, gpu_offset, length);
  177. else
  178. return slow_shmem_copy(gpu_page, gpu_offset,
  179. cpu_page, cpu_offset, length);
  180. }
  181. gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
  182. if (gpu_vaddr == NULL)
  183. return -ENOMEM;
  184. cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
  185. if (cpu_vaddr == NULL) {
  186. kunmap_atomic(gpu_vaddr, KM_USER0);
  187. return -ENOMEM;
  188. }
  189. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  190. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  191. */
  192. while (length > 0) {
  193. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  194. int this_length = min(cacheline_end - gpu_offset, length);
  195. int swizzled_gpu_offset = gpu_offset ^ 64;
  196. if (is_read) {
  197. memcpy(cpu_vaddr + cpu_offset,
  198. gpu_vaddr + swizzled_gpu_offset,
  199. this_length);
  200. } else {
  201. memcpy(gpu_vaddr + swizzled_gpu_offset,
  202. cpu_vaddr + cpu_offset,
  203. this_length);
  204. }
  205. cpu_offset += this_length;
  206. gpu_offset += this_length;
  207. length -= this_length;
  208. }
  209. kunmap_atomic(cpu_vaddr, KM_USER1);
  210. kunmap_atomic(gpu_vaddr, KM_USER0);
  211. return 0;
  212. }
  213. /**
  214. * This is the fast shmem pread path, which attempts to copy_from_user directly
  215. * from the backing pages of the object to the user's address space. On a
  216. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  217. */
  218. static int
  219. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  220. struct drm_i915_gem_pread *args,
  221. struct drm_file *file_priv)
  222. {
  223. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  224. ssize_t remain;
  225. loff_t offset, page_base;
  226. char __user *user_data;
  227. int page_offset, page_length;
  228. int ret;
  229. user_data = (char __user *) (uintptr_t) args->data_ptr;
  230. remain = args->size;
  231. mutex_lock(&dev->struct_mutex);
  232. ret = i915_gem_object_get_pages(obj, 0);
  233. if (ret != 0)
  234. goto fail_unlock;
  235. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  236. args->size);
  237. if (ret != 0)
  238. goto fail_put_pages;
  239. obj_priv = obj->driver_private;
  240. offset = args->offset;
  241. while (remain > 0) {
  242. /* Operation in this page
  243. *
  244. * page_base = page offset within aperture
  245. * page_offset = offset within page
  246. * page_length = bytes to copy for this page
  247. */
  248. page_base = (offset & ~(PAGE_SIZE-1));
  249. page_offset = offset & (PAGE_SIZE-1);
  250. page_length = remain;
  251. if ((page_offset + remain) > PAGE_SIZE)
  252. page_length = PAGE_SIZE - page_offset;
  253. ret = fast_shmem_read(obj_priv->pages,
  254. page_base, page_offset,
  255. user_data, page_length);
  256. if (ret)
  257. goto fail_put_pages;
  258. remain -= page_length;
  259. user_data += page_length;
  260. offset += page_length;
  261. }
  262. fail_put_pages:
  263. i915_gem_object_put_pages(obj);
  264. fail_unlock:
  265. mutex_unlock(&dev->struct_mutex);
  266. return ret;
  267. }
  268. static int
  269. i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
  270. {
  271. int ret;
  272. ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
  273. /* If we've insufficient memory to map in the pages, attempt
  274. * to make some space by throwing out some old buffers.
  275. */
  276. if (ret == -ENOMEM) {
  277. struct drm_device *dev = obj->dev;
  278. ret = i915_gem_evict_something(dev, obj->size);
  279. if (ret)
  280. return ret;
  281. ret = i915_gem_object_get_pages(obj, 0);
  282. }
  283. return ret;
  284. }
  285. /**
  286. * This is the fallback shmem pread path, which allocates temporary storage
  287. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  288. * can copy out of the object's backing pages while holding the struct mutex
  289. * and not take page faults.
  290. */
  291. static int
  292. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  293. struct drm_i915_gem_pread *args,
  294. struct drm_file *file_priv)
  295. {
  296. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  297. struct mm_struct *mm = current->mm;
  298. struct page **user_pages;
  299. ssize_t remain;
  300. loff_t offset, pinned_pages, i;
  301. loff_t first_data_page, last_data_page, num_pages;
  302. int shmem_page_index, shmem_page_offset;
  303. int data_page_index, data_page_offset;
  304. int page_length;
  305. int ret;
  306. uint64_t data_ptr = args->data_ptr;
  307. int do_bit17_swizzling;
  308. remain = args->size;
  309. /* Pin the user pages containing the data. We can't fault while
  310. * holding the struct mutex, yet we want to hold it while
  311. * dereferencing the user data.
  312. */
  313. first_data_page = data_ptr / PAGE_SIZE;
  314. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  315. num_pages = last_data_page - first_data_page + 1;
  316. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  317. if (user_pages == NULL)
  318. return -ENOMEM;
  319. down_read(&mm->mmap_sem);
  320. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  321. num_pages, 1, 0, user_pages, NULL);
  322. up_read(&mm->mmap_sem);
  323. if (pinned_pages < num_pages) {
  324. ret = -EFAULT;
  325. goto fail_put_user_pages;
  326. }
  327. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  328. mutex_lock(&dev->struct_mutex);
  329. ret = i915_gem_object_get_pages_or_evict(obj);
  330. if (ret)
  331. goto fail_unlock;
  332. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  333. args->size);
  334. if (ret != 0)
  335. goto fail_put_pages;
  336. obj_priv = obj->driver_private;
  337. offset = args->offset;
  338. while (remain > 0) {
  339. /* Operation in this page
  340. *
  341. * shmem_page_index = page number within shmem file
  342. * shmem_page_offset = offset within page in shmem file
  343. * data_page_index = page number in get_user_pages return
  344. * data_page_offset = offset with data_page_index page.
  345. * page_length = bytes to copy for this page
  346. */
  347. shmem_page_index = offset / PAGE_SIZE;
  348. shmem_page_offset = offset & ~PAGE_MASK;
  349. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  350. data_page_offset = data_ptr & ~PAGE_MASK;
  351. page_length = remain;
  352. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  353. page_length = PAGE_SIZE - shmem_page_offset;
  354. if ((data_page_offset + page_length) > PAGE_SIZE)
  355. page_length = PAGE_SIZE - data_page_offset;
  356. if (do_bit17_swizzling) {
  357. ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  358. shmem_page_offset,
  359. user_pages[data_page_index],
  360. data_page_offset,
  361. page_length,
  362. 1);
  363. } else {
  364. ret = slow_shmem_copy(user_pages[data_page_index],
  365. data_page_offset,
  366. obj_priv->pages[shmem_page_index],
  367. shmem_page_offset,
  368. page_length);
  369. }
  370. if (ret)
  371. goto fail_put_pages;
  372. remain -= page_length;
  373. data_ptr += page_length;
  374. offset += page_length;
  375. }
  376. fail_put_pages:
  377. i915_gem_object_put_pages(obj);
  378. fail_unlock:
  379. mutex_unlock(&dev->struct_mutex);
  380. fail_put_user_pages:
  381. for (i = 0; i < pinned_pages; i++) {
  382. SetPageDirty(user_pages[i]);
  383. page_cache_release(user_pages[i]);
  384. }
  385. drm_free_large(user_pages);
  386. return ret;
  387. }
  388. /**
  389. * Reads data from the object referenced by handle.
  390. *
  391. * On error, the contents of *data are undefined.
  392. */
  393. int
  394. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  395. struct drm_file *file_priv)
  396. {
  397. struct drm_i915_gem_pread *args = data;
  398. struct drm_gem_object *obj;
  399. struct drm_i915_gem_object *obj_priv;
  400. int ret;
  401. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  402. if (obj == NULL)
  403. return -EBADF;
  404. obj_priv = obj->driver_private;
  405. /* Bounds check source.
  406. *
  407. * XXX: This could use review for overflow issues...
  408. */
  409. if (args->offset > obj->size || args->size > obj->size ||
  410. args->offset + args->size > obj->size) {
  411. drm_gem_object_unreference(obj);
  412. return -EINVAL;
  413. }
  414. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  415. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  416. } else {
  417. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  418. if (ret != 0)
  419. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  420. file_priv);
  421. }
  422. drm_gem_object_unreference(obj);
  423. return ret;
  424. }
  425. /* This is the fast write path which cannot handle
  426. * page faults in the source data
  427. */
  428. static inline int
  429. fast_user_write(struct io_mapping *mapping,
  430. loff_t page_base, int page_offset,
  431. char __user *user_data,
  432. int length)
  433. {
  434. char *vaddr_atomic;
  435. unsigned long unwritten;
  436. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  437. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  438. user_data, length);
  439. io_mapping_unmap_atomic(vaddr_atomic);
  440. if (unwritten)
  441. return -EFAULT;
  442. return 0;
  443. }
  444. /* Here's the write path which can sleep for
  445. * page faults
  446. */
  447. static inline int
  448. slow_kernel_write(struct io_mapping *mapping,
  449. loff_t gtt_base, int gtt_offset,
  450. struct page *user_page, int user_offset,
  451. int length)
  452. {
  453. char *src_vaddr, *dst_vaddr;
  454. unsigned long unwritten;
  455. dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
  456. src_vaddr = kmap_atomic(user_page, KM_USER1);
  457. unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
  458. src_vaddr + user_offset,
  459. length);
  460. kunmap_atomic(src_vaddr, KM_USER1);
  461. io_mapping_unmap_atomic(dst_vaddr);
  462. if (unwritten)
  463. return -EFAULT;
  464. return 0;
  465. }
  466. static inline int
  467. fast_shmem_write(struct page **pages,
  468. loff_t page_base, int page_offset,
  469. char __user *data,
  470. int length)
  471. {
  472. char __iomem *vaddr;
  473. unsigned long unwritten;
  474. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  475. if (vaddr == NULL)
  476. return -ENOMEM;
  477. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  478. kunmap_atomic(vaddr, KM_USER0);
  479. if (unwritten)
  480. return -EFAULT;
  481. return 0;
  482. }
  483. /**
  484. * This is the fast pwrite path, where we copy the data directly from the
  485. * user into the GTT, uncached.
  486. */
  487. static int
  488. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  489. struct drm_i915_gem_pwrite *args,
  490. struct drm_file *file_priv)
  491. {
  492. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  493. drm_i915_private_t *dev_priv = dev->dev_private;
  494. ssize_t remain;
  495. loff_t offset, page_base;
  496. char __user *user_data;
  497. int page_offset, page_length;
  498. int ret;
  499. user_data = (char __user *) (uintptr_t) args->data_ptr;
  500. remain = args->size;
  501. if (!access_ok(VERIFY_READ, user_data, remain))
  502. return -EFAULT;
  503. mutex_lock(&dev->struct_mutex);
  504. ret = i915_gem_object_pin(obj, 0);
  505. if (ret) {
  506. mutex_unlock(&dev->struct_mutex);
  507. return ret;
  508. }
  509. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  510. if (ret)
  511. goto fail;
  512. obj_priv = obj->driver_private;
  513. offset = obj_priv->gtt_offset + args->offset;
  514. while (remain > 0) {
  515. /* Operation in this page
  516. *
  517. * page_base = page offset within aperture
  518. * page_offset = offset within page
  519. * page_length = bytes to copy for this page
  520. */
  521. page_base = (offset & ~(PAGE_SIZE-1));
  522. page_offset = offset & (PAGE_SIZE-1);
  523. page_length = remain;
  524. if ((page_offset + remain) > PAGE_SIZE)
  525. page_length = PAGE_SIZE - page_offset;
  526. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  527. page_offset, user_data, page_length);
  528. /* If we get a fault while copying data, then (presumably) our
  529. * source page isn't available. Return the error and we'll
  530. * retry in the slow path.
  531. */
  532. if (ret)
  533. goto fail;
  534. remain -= page_length;
  535. user_data += page_length;
  536. offset += page_length;
  537. }
  538. fail:
  539. i915_gem_object_unpin(obj);
  540. mutex_unlock(&dev->struct_mutex);
  541. return ret;
  542. }
  543. /**
  544. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  545. * the memory and maps it using kmap_atomic for copying.
  546. *
  547. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  548. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  549. */
  550. static int
  551. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  552. struct drm_i915_gem_pwrite *args,
  553. struct drm_file *file_priv)
  554. {
  555. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  556. drm_i915_private_t *dev_priv = dev->dev_private;
  557. ssize_t remain;
  558. loff_t gtt_page_base, offset;
  559. loff_t first_data_page, last_data_page, num_pages;
  560. loff_t pinned_pages, i;
  561. struct page **user_pages;
  562. struct mm_struct *mm = current->mm;
  563. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  564. int ret;
  565. uint64_t data_ptr = args->data_ptr;
  566. remain = args->size;
  567. /* Pin the user pages containing the data. We can't fault while
  568. * holding the struct mutex, and all of the pwrite implementations
  569. * want to hold it while dereferencing the user data.
  570. */
  571. first_data_page = data_ptr / PAGE_SIZE;
  572. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  573. num_pages = last_data_page - first_data_page + 1;
  574. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  575. if (user_pages == NULL)
  576. return -ENOMEM;
  577. down_read(&mm->mmap_sem);
  578. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  579. num_pages, 0, 0, user_pages, NULL);
  580. up_read(&mm->mmap_sem);
  581. if (pinned_pages < num_pages) {
  582. ret = -EFAULT;
  583. goto out_unpin_pages;
  584. }
  585. mutex_lock(&dev->struct_mutex);
  586. ret = i915_gem_object_pin(obj, 0);
  587. if (ret)
  588. goto out_unlock;
  589. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  590. if (ret)
  591. goto out_unpin_object;
  592. obj_priv = obj->driver_private;
  593. offset = obj_priv->gtt_offset + args->offset;
  594. while (remain > 0) {
  595. /* Operation in this page
  596. *
  597. * gtt_page_base = page offset within aperture
  598. * gtt_page_offset = offset within page in aperture
  599. * data_page_index = page number in get_user_pages return
  600. * data_page_offset = offset with data_page_index page.
  601. * page_length = bytes to copy for this page
  602. */
  603. gtt_page_base = offset & PAGE_MASK;
  604. gtt_page_offset = offset & ~PAGE_MASK;
  605. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  606. data_page_offset = data_ptr & ~PAGE_MASK;
  607. page_length = remain;
  608. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  609. page_length = PAGE_SIZE - gtt_page_offset;
  610. if ((data_page_offset + page_length) > PAGE_SIZE)
  611. page_length = PAGE_SIZE - data_page_offset;
  612. ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
  613. gtt_page_base, gtt_page_offset,
  614. user_pages[data_page_index],
  615. data_page_offset,
  616. page_length);
  617. /* If we get a fault while copying data, then (presumably) our
  618. * source page isn't available. Return the error and we'll
  619. * retry in the slow path.
  620. */
  621. if (ret)
  622. goto out_unpin_object;
  623. remain -= page_length;
  624. offset += page_length;
  625. data_ptr += page_length;
  626. }
  627. out_unpin_object:
  628. i915_gem_object_unpin(obj);
  629. out_unlock:
  630. mutex_unlock(&dev->struct_mutex);
  631. out_unpin_pages:
  632. for (i = 0; i < pinned_pages; i++)
  633. page_cache_release(user_pages[i]);
  634. drm_free_large(user_pages);
  635. return ret;
  636. }
  637. /**
  638. * This is the fast shmem pwrite path, which attempts to directly
  639. * copy_from_user into the kmapped pages backing the object.
  640. */
  641. static int
  642. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  643. struct drm_i915_gem_pwrite *args,
  644. struct drm_file *file_priv)
  645. {
  646. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  647. ssize_t remain;
  648. loff_t offset, page_base;
  649. char __user *user_data;
  650. int page_offset, page_length;
  651. int ret;
  652. user_data = (char __user *) (uintptr_t) args->data_ptr;
  653. remain = args->size;
  654. mutex_lock(&dev->struct_mutex);
  655. ret = i915_gem_object_get_pages(obj, 0);
  656. if (ret != 0)
  657. goto fail_unlock;
  658. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  659. if (ret != 0)
  660. goto fail_put_pages;
  661. obj_priv = obj->driver_private;
  662. offset = args->offset;
  663. obj_priv->dirty = 1;
  664. while (remain > 0) {
  665. /* Operation in this page
  666. *
  667. * page_base = page offset within aperture
  668. * page_offset = offset within page
  669. * page_length = bytes to copy for this page
  670. */
  671. page_base = (offset & ~(PAGE_SIZE-1));
  672. page_offset = offset & (PAGE_SIZE-1);
  673. page_length = remain;
  674. if ((page_offset + remain) > PAGE_SIZE)
  675. page_length = PAGE_SIZE - page_offset;
  676. ret = fast_shmem_write(obj_priv->pages,
  677. page_base, page_offset,
  678. user_data, page_length);
  679. if (ret)
  680. goto fail_put_pages;
  681. remain -= page_length;
  682. user_data += page_length;
  683. offset += page_length;
  684. }
  685. fail_put_pages:
  686. i915_gem_object_put_pages(obj);
  687. fail_unlock:
  688. mutex_unlock(&dev->struct_mutex);
  689. return ret;
  690. }
  691. /**
  692. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  693. * the memory and maps it using kmap_atomic for copying.
  694. *
  695. * This avoids taking mmap_sem for faulting on the user's address while the
  696. * struct_mutex is held.
  697. */
  698. static int
  699. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  700. struct drm_i915_gem_pwrite *args,
  701. struct drm_file *file_priv)
  702. {
  703. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  704. struct mm_struct *mm = current->mm;
  705. struct page **user_pages;
  706. ssize_t remain;
  707. loff_t offset, pinned_pages, i;
  708. loff_t first_data_page, last_data_page, num_pages;
  709. int shmem_page_index, shmem_page_offset;
  710. int data_page_index, data_page_offset;
  711. int page_length;
  712. int ret;
  713. uint64_t data_ptr = args->data_ptr;
  714. int do_bit17_swizzling;
  715. remain = args->size;
  716. /* Pin the user pages containing the data. We can't fault while
  717. * holding the struct mutex, and all of the pwrite implementations
  718. * want to hold it while dereferencing the user data.
  719. */
  720. first_data_page = data_ptr / PAGE_SIZE;
  721. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  722. num_pages = last_data_page - first_data_page + 1;
  723. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  724. if (user_pages == NULL)
  725. return -ENOMEM;
  726. down_read(&mm->mmap_sem);
  727. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  728. num_pages, 0, 0, user_pages, NULL);
  729. up_read(&mm->mmap_sem);
  730. if (pinned_pages < num_pages) {
  731. ret = -EFAULT;
  732. goto fail_put_user_pages;
  733. }
  734. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  735. mutex_lock(&dev->struct_mutex);
  736. ret = i915_gem_object_get_pages_or_evict(obj);
  737. if (ret)
  738. goto fail_unlock;
  739. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  740. if (ret != 0)
  741. goto fail_put_pages;
  742. obj_priv = obj->driver_private;
  743. offset = args->offset;
  744. obj_priv->dirty = 1;
  745. while (remain > 0) {
  746. /* Operation in this page
  747. *
  748. * shmem_page_index = page number within shmem file
  749. * shmem_page_offset = offset within page in shmem file
  750. * data_page_index = page number in get_user_pages return
  751. * data_page_offset = offset with data_page_index page.
  752. * page_length = bytes to copy for this page
  753. */
  754. shmem_page_index = offset / PAGE_SIZE;
  755. shmem_page_offset = offset & ~PAGE_MASK;
  756. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  757. data_page_offset = data_ptr & ~PAGE_MASK;
  758. page_length = remain;
  759. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  760. page_length = PAGE_SIZE - shmem_page_offset;
  761. if ((data_page_offset + page_length) > PAGE_SIZE)
  762. page_length = PAGE_SIZE - data_page_offset;
  763. if (do_bit17_swizzling) {
  764. ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  765. shmem_page_offset,
  766. user_pages[data_page_index],
  767. data_page_offset,
  768. page_length,
  769. 0);
  770. } else {
  771. ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
  772. shmem_page_offset,
  773. user_pages[data_page_index],
  774. data_page_offset,
  775. page_length);
  776. }
  777. if (ret)
  778. goto fail_put_pages;
  779. remain -= page_length;
  780. data_ptr += page_length;
  781. offset += page_length;
  782. }
  783. fail_put_pages:
  784. i915_gem_object_put_pages(obj);
  785. fail_unlock:
  786. mutex_unlock(&dev->struct_mutex);
  787. fail_put_user_pages:
  788. for (i = 0; i < pinned_pages; i++)
  789. page_cache_release(user_pages[i]);
  790. drm_free_large(user_pages);
  791. return ret;
  792. }
  793. /**
  794. * Writes data to the object referenced by handle.
  795. *
  796. * On error, the contents of the buffer that were to be modified are undefined.
  797. */
  798. int
  799. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  800. struct drm_file *file_priv)
  801. {
  802. struct drm_i915_gem_pwrite *args = data;
  803. struct drm_gem_object *obj;
  804. struct drm_i915_gem_object *obj_priv;
  805. int ret = 0;
  806. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  807. if (obj == NULL)
  808. return -EBADF;
  809. obj_priv = obj->driver_private;
  810. /* Bounds check destination.
  811. *
  812. * XXX: This could use review for overflow issues...
  813. */
  814. if (args->offset > obj->size || args->size > obj->size ||
  815. args->offset + args->size > obj->size) {
  816. drm_gem_object_unreference(obj);
  817. return -EINVAL;
  818. }
  819. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  820. * it would end up going through the fenced access, and we'll get
  821. * different detiling behavior between reading and writing.
  822. * pread/pwrite currently are reading and writing from the CPU
  823. * perspective, requiring manual detiling by the client.
  824. */
  825. if (obj_priv->phys_obj)
  826. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  827. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  828. dev->gtt_total != 0) {
  829. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  830. if (ret == -EFAULT) {
  831. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  832. file_priv);
  833. }
  834. } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
  835. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
  836. } else {
  837. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  838. if (ret == -EFAULT) {
  839. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  840. file_priv);
  841. }
  842. }
  843. #if WATCH_PWRITE
  844. if (ret)
  845. DRM_INFO("pwrite failed %d\n", ret);
  846. #endif
  847. drm_gem_object_unreference(obj);
  848. return ret;
  849. }
  850. /**
  851. * Called when user space prepares to use an object with the CPU, either
  852. * through the mmap ioctl's mapping or a GTT mapping.
  853. */
  854. int
  855. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  856. struct drm_file *file_priv)
  857. {
  858. struct drm_i915_private *dev_priv = dev->dev_private;
  859. struct drm_i915_gem_set_domain *args = data;
  860. struct drm_gem_object *obj;
  861. struct drm_i915_gem_object *obj_priv;
  862. uint32_t read_domains = args->read_domains;
  863. uint32_t write_domain = args->write_domain;
  864. int ret;
  865. if (!(dev->driver->driver_features & DRIVER_GEM))
  866. return -ENODEV;
  867. /* Only handle setting domains to types used by the CPU. */
  868. if (write_domain & I915_GEM_GPU_DOMAINS)
  869. return -EINVAL;
  870. if (read_domains & I915_GEM_GPU_DOMAINS)
  871. return -EINVAL;
  872. /* Having something in the write domain implies it's in the read
  873. * domain, and only that read domain. Enforce that in the request.
  874. */
  875. if (write_domain != 0 && read_domains != write_domain)
  876. return -EINVAL;
  877. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  878. if (obj == NULL)
  879. return -EBADF;
  880. obj_priv = obj->driver_private;
  881. mutex_lock(&dev->struct_mutex);
  882. intel_mark_busy(dev, obj);
  883. #if WATCH_BUF
  884. DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
  885. obj, obj->size, read_domains, write_domain);
  886. #endif
  887. if (read_domains & I915_GEM_DOMAIN_GTT) {
  888. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  889. /* Update the LRU on the fence for the CPU access that's
  890. * about to occur.
  891. */
  892. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  893. list_move_tail(&obj_priv->fence_list,
  894. &dev_priv->mm.fence_list);
  895. }
  896. /* Silently promote "you're not bound, there was nothing to do"
  897. * to success, since the client was just asking us to
  898. * make sure everything was done.
  899. */
  900. if (ret == -EINVAL)
  901. ret = 0;
  902. } else {
  903. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  904. }
  905. drm_gem_object_unreference(obj);
  906. mutex_unlock(&dev->struct_mutex);
  907. return ret;
  908. }
  909. /**
  910. * Called when user space has done writes to this buffer
  911. */
  912. int
  913. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  914. struct drm_file *file_priv)
  915. {
  916. struct drm_i915_gem_sw_finish *args = data;
  917. struct drm_gem_object *obj;
  918. struct drm_i915_gem_object *obj_priv;
  919. int ret = 0;
  920. if (!(dev->driver->driver_features & DRIVER_GEM))
  921. return -ENODEV;
  922. mutex_lock(&dev->struct_mutex);
  923. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  924. if (obj == NULL) {
  925. mutex_unlock(&dev->struct_mutex);
  926. return -EBADF;
  927. }
  928. #if WATCH_BUF
  929. DRM_INFO("%s: sw_finish %d (%p %zd)\n",
  930. __func__, args->handle, obj, obj->size);
  931. #endif
  932. obj_priv = obj->driver_private;
  933. /* Pinned buffers may be scanout, so flush the cache */
  934. if (obj_priv->pin_count)
  935. i915_gem_object_flush_cpu_write_domain(obj);
  936. drm_gem_object_unreference(obj);
  937. mutex_unlock(&dev->struct_mutex);
  938. return ret;
  939. }
  940. /**
  941. * Maps the contents of an object, returning the address it is mapped
  942. * into.
  943. *
  944. * While the mapping holds a reference on the contents of the object, it doesn't
  945. * imply a ref on the object itself.
  946. */
  947. int
  948. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  949. struct drm_file *file_priv)
  950. {
  951. struct drm_i915_gem_mmap *args = data;
  952. struct drm_gem_object *obj;
  953. loff_t offset;
  954. unsigned long addr;
  955. if (!(dev->driver->driver_features & DRIVER_GEM))
  956. return -ENODEV;
  957. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  958. if (obj == NULL)
  959. return -EBADF;
  960. offset = args->offset;
  961. down_write(&current->mm->mmap_sem);
  962. addr = do_mmap(obj->filp, 0, args->size,
  963. PROT_READ | PROT_WRITE, MAP_SHARED,
  964. args->offset);
  965. up_write(&current->mm->mmap_sem);
  966. mutex_lock(&dev->struct_mutex);
  967. drm_gem_object_unreference(obj);
  968. mutex_unlock(&dev->struct_mutex);
  969. if (IS_ERR((void *)addr))
  970. return addr;
  971. args->addr_ptr = (uint64_t) addr;
  972. return 0;
  973. }
  974. /**
  975. * i915_gem_fault - fault a page into the GTT
  976. * vma: VMA in question
  977. * vmf: fault info
  978. *
  979. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  980. * from userspace. The fault handler takes care of binding the object to
  981. * the GTT (if needed), allocating and programming a fence register (again,
  982. * only if needed based on whether the old reg is still valid or the object
  983. * is tiled) and inserting a new PTE into the faulting process.
  984. *
  985. * Note that the faulting process may involve evicting existing objects
  986. * from the GTT and/or fence registers to make room. So performance may
  987. * suffer if the GTT working set is large or there are few fence registers
  988. * left.
  989. */
  990. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  991. {
  992. struct drm_gem_object *obj = vma->vm_private_data;
  993. struct drm_device *dev = obj->dev;
  994. struct drm_i915_private *dev_priv = dev->dev_private;
  995. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  996. pgoff_t page_offset;
  997. unsigned long pfn;
  998. int ret = 0;
  999. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1000. /* We don't use vmf->pgoff since that has the fake offset */
  1001. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1002. PAGE_SHIFT;
  1003. /* Now bind it into the GTT if needed */
  1004. mutex_lock(&dev->struct_mutex);
  1005. if (!obj_priv->gtt_space) {
  1006. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1007. if (ret)
  1008. goto unlock;
  1009. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1010. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1011. if (ret)
  1012. goto unlock;
  1013. }
  1014. /* Need a new fence register? */
  1015. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1016. ret = i915_gem_object_get_fence_reg(obj);
  1017. if (ret)
  1018. goto unlock;
  1019. }
  1020. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1021. page_offset;
  1022. /* Finally, remap it using the new GTT offset */
  1023. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1024. unlock:
  1025. mutex_unlock(&dev->struct_mutex);
  1026. switch (ret) {
  1027. case 0:
  1028. case -ERESTARTSYS:
  1029. return VM_FAULT_NOPAGE;
  1030. case -ENOMEM:
  1031. case -EAGAIN:
  1032. return VM_FAULT_OOM;
  1033. default:
  1034. return VM_FAULT_SIGBUS;
  1035. }
  1036. }
  1037. /**
  1038. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1039. * @obj: obj in question
  1040. *
  1041. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1042. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1043. * up the object based on the offset and sets up the various memory mapping
  1044. * structures.
  1045. *
  1046. * This routine allocates and attaches a fake offset for @obj.
  1047. */
  1048. static int
  1049. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1050. {
  1051. struct drm_device *dev = obj->dev;
  1052. struct drm_gem_mm *mm = dev->mm_private;
  1053. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1054. struct drm_map_list *list;
  1055. struct drm_local_map *map;
  1056. int ret = 0;
  1057. /* Set the object up for mmap'ing */
  1058. list = &obj->map_list;
  1059. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1060. if (!list->map)
  1061. return -ENOMEM;
  1062. map = list->map;
  1063. map->type = _DRM_GEM;
  1064. map->size = obj->size;
  1065. map->handle = obj;
  1066. /* Get a DRM GEM mmap offset allocated... */
  1067. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1068. obj->size / PAGE_SIZE, 0, 0);
  1069. if (!list->file_offset_node) {
  1070. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1071. ret = -ENOMEM;
  1072. goto out_free_list;
  1073. }
  1074. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1075. obj->size / PAGE_SIZE, 0);
  1076. if (!list->file_offset_node) {
  1077. ret = -ENOMEM;
  1078. goto out_free_list;
  1079. }
  1080. list->hash.key = list->file_offset_node->start;
  1081. if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
  1082. DRM_ERROR("failed to add to map hash\n");
  1083. ret = -ENOMEM;
  1084. goto out_free_mm;
  1085. }
  1086. /* By now we should be all set, any drm_mmap request on the offset
  1087. * below will get to our mmap & fault handler */
  1088. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1089. return 0;
  1090. out_free_mm:
  1091. drm_mm_put_block(list->file_offset_node);
  1092. out_free_list:
  1093. kfree(list->map);
  1094. return ret;
  1095. }
  1096. /**
  1097. * i915_gem_release_mmap - remove physical page mappings
  1098. * @obj: obj in question
  1099. *
  1100. * Preserve the reservation of the mmapping with the DRM core code, but
  1101. * relinquish ownership of the pages back to the system.
  1102. *
  1103. * It is vital that we remove the page mapping if we have mapped a tiled
  1104. * object through the GTT and then lose the fence register due to
  1105. * resource pressure. Similarly if the object has been moved out of the
  1106. * aperture, than pages mapped into userspace must be revoked. Removing the
  1107. * mapping will then trigger a page fault on the next user access, allowing
  1108. * fixup by i915_gem_fault().
  1109. */
  1110. void
  1111. i915_gem_release_mmap(struct drm_gem_object *obj)
  1112. {
  1113. struct drm_device *dev = obj->dev;
  1114. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1115. if (dev->dev_mapping)
  1116. unmap_mapping_range(dev->dev_mapping,
  1117. obj_priv->mmap_offset, obj->size, 1);
  1118. }
  1119. static void
  1120. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1121. {
  1122. struct drm_device *dev = obj->dev;
  1123. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1124. struct drm_gem_mm *mm = dev->mm_private;
  1125. struct drm_map_list *list;
  1126. list = &obj->map_list;
  1127. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1128. if (list->file_offset_node) {
  1129. drm_mm_put_block(list->file_offset_node);
  1130. list->file_offset_node = NULL;
  1131. }
  1132. if (list->map) {
  1133. kfree(list->map);
  1134. list->map = NULL;
  1135. }
  1136. obj_priv->mmap_offset = 0;
  1137. }
  1138. /**
  1139. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1140. * @obj: object to check
  1141. *
  1142. * Return the required GTT alignment for an object, taking into account
  1143. * potential fence register mapping if needed.
  1144. */
  1145. static uint32_t
  1146. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1147. {
  1148. struct drm_device *dev = obj->dev;
  1149. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1150. int start, i;
  1151. /*
  1152. * Minimum alignment is 4k (GTT page size), but might be greater
  1153. * if a fence register is needed for the object.
  1154. */
  1155. if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
  1156. return 4096;
  1157. /*
  1158. * Previous chips need to be aligned to the size of the smallest
  1159. * fence register that can contain the object.
  1160. */
  1161. if (IS_I9XX(dev))
  1162. start = 1024*1024;
  1163. else
  1164. start = 512*1024;
  1165. for (i = start; i < obj->size; i <<= 1)
  1166. ;
  1167. return i;
  1168. }
  1169. /**
  1170. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1171. * @dev: DRM device
  1172. * @data: GTT mapping ioctl data
  1173. * @file_priv: GEM object info
  1174. *
  1175. * Simply returns the fake offset to userspace so it can mmap it.
  1176. * The mmap call will end up in drm_gem_mmap(), which will set things
  1177. * up so we can get faults in the handler above.
  1178. *
  1179. * The fault handler will take care of binding the object into the GTT
  1180. * (since it may have been evicted to make room for something), allocating
  1181. * a fence register, and mapping the appropriate aperture address into
  1182. * userspace.
  1183. */
  1184. int
  1185. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1186. struct drm_file *file_priv)
  1187. {
  1188. struct drm_i915_gem_mmap_gtt *args = data;
  1189. struct drm_i915_private *dev_priv = dev->dev_private;
  1190. struct drm_gem_object *obj;
  1191. struct drm_i915_gem_object *obj_priv;
  1192. int ret;
  1193. if (!(dev->driver->driver_features & DRIVER_GEM))
  1194. return -ENODEV;
  1195. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1196. if (obj == NULL)
  1197. return -EBADF;
  1198. mutex_lock(&dev->struct_mutex);
  1199. obj_priv = obj->driver_private;
  1200. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1201. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1202. drm_gem_object_unreference(obj);
  1203. mutex_unlock(&dev->struct_mutex);
  1204. return -EINVAL;
  1205. }
  1206. if (!obj_priv->mmap_offset) {
  1207. ret = i915_gem_create_mmap_offset(obj);
  1208. if (ret) {
  1209. drm_gem_object_unreference(obj);
  1210. mutex_unlock(&dev->struct_mutex);
  1211. return ret;
  1212. }
  1213. }
  1214. args->offset = obj_priv->mmap_offset;
  1215. /*
  1216. * Pull it into the GTT so that we have a page list (makes the
  1217. * initial fault faster and any subsequent flushing possible).
  1218. */
  1219. if (!obj_priv->agp_mem) {
  1220. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1221. if (ret) {
  1222. drm_gem_object_unreference(obj);
  1223. mutex_unlock(&dev->struct_mutex);
  1224. return ret;
  1225. }
  1226. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1227. }
  1228. drm_gem_object_unreference(obj);
  1229. mutex_unlock(&dev->struct_mutex);
  1230. return 0;
  1231. }
  1232. void
  1233. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1234. {
  1235. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1236. int page_count = obj->size / PAGE_SIZE;
  1237. int i;
  1238. BUG_ON(obj_priv->pages_refcount == 0);
  1239. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1240. if (--obj_priv->pages_refcount != 0)
  1241. return;
  1242. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1243. i915_gem_object_save_bit_17_swizzle(obj);
  1244. if (obj_priv->madv == I915_MADV_DONTNEED)
  1245. obj_priv->dirty = 0;
  1246. for (i = 0; i < page_count; i++) {
  1247. if (obj_priv->pages[i] == NULL)
  1248. break;
  1249. if (obj_priv->dirty)
  1250. set_page_dirty(obj_priv->pages[i]);
  1251. if (obj_priv->madv == I915_MADV_WILLNEED)
  1252. mark_page_accessed(obj_priv->pages[i]);
  1253. page_cache_release(obj_priv->pages[i]);
  1254. }
  1255. obj_priv->dirty = 0;
  1256. drm_free_large(obj_priv->pages);
  1257. obj_priv->pages = NULL;
  1258. }
  1259. static void
  1260. i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
  1261. {
  1262. struct drm_device *dev = obj->dev;
  1263. drm_i915_private_t *dev_priv = dev->dev_private;
  1264. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1265. /* Add a reference if we're newly entering the active list. */
  1266. if (!obj_priv->active) {
  1267. drm_gem_object_reference(obj);
  1268. obj_priv->active = 1;
  1269. }
  1270. /* Move from whatever list we were on to the tail of execution. */
  1271. spin_lock(&dev_priv->mm.active_list_lock);
  1272. list_move_tail(&obj_priv->list,
  1273. &dev_priv->mm.active_list);
  1274. spin_unlock(&dev_priv->mm.active_list_lock);
  1275. obj_priv->last_rendering_seqno = seqno;
  1276. }
  1277. static void
  1278. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1279. {
  1280. struct drm_device *dev = obj->dev;
  1281. drm_i915_private_t *dev_priv = dev->dev_private;
  1282. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1283. BUG_ON(!obj_priv->active);
  1284. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1285. obj_priv->last_rendering_seqno = 0;
  1286. }
  1287. /* Immediately discard the backing storage */
  1288. static void
  1289. i915_gem_object_truncate(struct drm_gem_object *obj)
  1290. {
  1291. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1292. struct inode *inode;
  1293. inode = obj->filp->f_path.dentry->d_inode;
  1294. if (inode->i_op->truncate)
  1295. inode->i_op->truncate (inode);
  1296. obj_priv->madv = __I915_MADV_PURGED;
  1297. }
  1298. static inline int
  1299. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1300. {
  1301. return obj_priv->madv == I915_MADV_DONTNEED;
  1302. }
  1303. static void
  1304. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1305. {
  1306. struct drm_device *dev = obj->dev;
  1307. drm_i915_private_t *dev_priv = dev->dev_private;
  1308. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1309. i915_verify_inactive(dev, __FILE__, __LINE__);
  1310. if (obj_priv->pin_count != 0)
  1311. list_del_init(&obj_priv->list);
  1312. else
  1313. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1314. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1315. obj_priv->last_rendering_seqno = 0;
  1316. if (obj_priv->active) {
  1317. obj_priv->active = 0;
  1318. drm_gem_object_unreference(obj);
  1319. }
  1320. i915_verify_inactive(dev, __FILE__, __LINE__);
  1321. }
  1322. /**
  1323. * Creates a new sequence number, emitting a write of it to the status page
  1324. * plus an interrupt, which will trigger i915_user_interrupt_handler.
  1325. *
  1326. * Must be called with struct_lock held.
  1327. *
  1328. * Returned sequence numbers are nonzero on success.
  1329. */
  1330. uint32_t
  1331. i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
  1332. uint32_t flush_domains)
  1333. {
  1334. drm_i915_private_t *dev_priv = dev->dev_private;
  1335. struct drm_i915_file_private *i915_file_priv = NULL;
  1336. struct drm_i915_gem_request *request;
  1337. uint32_t seqno;
  1338. int was_empty;
  1339. RING_LOCALS;
  1340. if (file_priv != NULL)
  1341. i915_file_priv = file_priv->driver_priv;
  1342. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1343. if (request == NULL)
  1344. return 0;
  1345. /* Grab the seqno we're going to make this request be, and bump the
  1346. * next (skipping 0 so it can be the reserved no-seqno value).
  1347. */
  1348. seqno = dev_priv->mm.next_gem_seqno;
  1349. dev_priv->mm.next_gem_seqno++;
  1350. if (dev_priv->mm.next_gem_seqno == 0)
  1351. dev_priv->mm.next_gem_seqno++;
  1352. BEGIN_LP_RING(4);
  1353. OUT_RING(MI_STORE_DWORD_INDEX);
  1354. OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1355. OUT_RING(seqno);
  1356. OUT_RING(MI_USER_INTERRUPT);
  1357. ADVANCE_LP_RING();
  1358. DRM_DEBUG_DRIVER("%d\n", seqno);
  1359. request->seqno = seqno;
  1360. request->emitted_jiffies = jiffies;
  1361. was_empty = list_empty(&dev_priv->mm.request_list);
  1362. list_add_tail(&request->list, &dev_priv->mm.request_list);
  1363. if (i915_file_priv) {
  1364. list_add_tail(&request->client_list,
  1365. &i915_file_priv->mm.request_list);
  1366. } else {
  1367. INIT_LIST_HEAD(&request->client_list);
  1368. }
  1369. /* Associate any objects on the flushing list matching the write
  1370. * domain we're flushing with our flush.
  1371. */
  1372. if (flush_domains != 0) {
  1373. struct drm_i915_gem_object *obj_priv, *next;
  1374. list_for_each_entry_safe(obj_priv, next,
  1375. &dev_priv->mm.gpu_write_list,
  1376. gpu_write_list) {
  1377. struct drm_gem_object *obj = obj_priv->obj;
  1378. if ((obj->write_domain & flush_domains) ==
  1379. obj->write_domain) {
  1380. uint32_t old_write_domain = obj->write_domain;
  1381. obj->write_domain = 0;
  1382. list_del_init(&obj_priv->gpu_write_list);
  1383. i915_gem_object_move_to_active(obj, seqno);
  1384. trace_i915_gem_object_change_domain(obj,
  1385. obj->read_domains,
  1386. old_write_domain);
  1387. }
  1388. }
  1389. }
  1390. if (!dev_priv->mm.suspended) {
  1391. mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
  1392. if (was_empty)
  1393. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1394. }
  1395. return seqno;
  1396. }
  1397. /**
  1398. * Command execution barrier
  1399. *
  1400. * Ensures that all commands in the ring are finished
  1401. * before signalling the CPU
  1402. */
  1403. static uint32_t
  1404. i915_retire_commands(struct drm_device *dev)
  1405. {
  1406. drm_i915_private_t *dev_priv = dev->dev_private;
  1407. uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1408. uint32_t flush_domains = 0;
  1409. RING_LOCALS;
  1410. /* The sampler always gets flushed on i965 (sigh) */
  1411. if (IS_I965G(dev))
  1412. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1413. BEGIN_LP_RING(2);
  1414. OUT_RING(cmd);
  1415. OUT_RING(0); /* noop */
  1416. ADVANCE_LP_RING();
  1417. return flush_domains;
  1418. }
  1419. /**
  1420. * Moves buffers associated only with the given active seqno from the active
  1421. * to inactive list, potentially freeing them.
  1422. */
  1423. static void
  1424. i915_gem_retire_request(struct drm_device *dev,
  1425. struct drm_i915_gem_request *request)
  1426. {
  1427. drm_i915_private_t *dev_priv = dev->dev_private;
  1428. trace_i915_gem_request_retire(dev, request->seqno);
  1429. /* Move any buffers on the active list that are no longer referenced
  1430. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1431. */
  1432. spin_lock(&dev_priv->mm.active_list_lock);
  1433. while (!list_empty(&dev_priv->mm.active_list)) {
  1434. struct drm_gem_object *obj;
  1435. struct drm_i915_gem_object *obj_priv;
  1436. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  1437. struct drm_i915_gem_object,
  1438. list);
  1439. obj = obj_priv->obj;
  1440. /* If the seqno being retired doesn't match the oldest in the
  1441. * list, then the oldest in the list must still be newer than
  1442. * this seqno.
  1443. */
  1444. if (obj_priv->last_rendering_seqno != request->seqno)
  1445. goto out;
  1446. #if WATCH_LRU
  1447. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1448. __func__, request->seqno, obj);
  1449. #endif
  1450. if (obj->write_domain != 0)
  1451. i915_gem_object_move_to_flushing(obj);
  1452. else {
  1453. /* Take a reference on the object so it won't be
  1454. * freed while the spinlock is held. The list
  1455. * protection for this spinlock is safe when breaking
  1456. * the lock like this since the next thing we do
  1457. * is just get the head of the list again.
  1458. */
  1459. drm_gem_object_reference(obj);
  1460. i915_gem_object_move_to_inactive(obj);
  1461. spin_unlock(&dev_priv->mm.active_list_lock);
  1462. drm_gem_object_unreference(obj);
  1463. spin_lock(&dev_priv->mm.active_list_lock);
  1464. }
  1465. }
  1466. out:
  1467. spin_unlock(&dev_priv->mm.active_list_lock);
  1468. }
  1469. /**
  1470. * Returns true if seq1 is later than seq2.
  1471. */
  1472. bool
  1473. i915_seqno_passed(uint32_t seq1, uint32_t seq2)
  1474. {
  1475. return (int32_t)(seq1 - seq2) >= 0;
  1476. }
  1477. uint32_t
  1478. i915_get_gem_seqno(struct drm_device *dev)
  1479. {
  1480. drm_i915_private_t *dev_priv = dev->dev_private;
  1481. return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
  1482. }
  1483. /**
  1484. * This function clears the request list as sequence numbers are passed.
  1485. */
  1486. void
  1487. i915_gem_retire_requests(struct drm_device *dev)
  1488. {
  1489. drm_i915_private_t *dev_priv = dev->dev_private;
  1490. uint32_t seqno;
  1491. if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
  1492. return;
  1493. seqno = i915_get_gem_seqno(dev);
  1494. while (!list_empty(&dev_priv->mm.request_list)) {
  1495. struct drm_i915_gem_request *request;
  1496. uint32_t retiring_seqno;
  1497. request = list_first_entry(&dev_priv->mm.request_list,
  1498. struct drm_i915_gem_request,
  1499. list);
  1500. retiring_seqno = request->seqno;
  1501. if (i915_seqno_passed(seqno, retiring_seqno) ||
  1502. atomic_read(&dev_priv->mm.wedged)) {
  1503. i915_gem_retire_request(dev, request);
  1504. list_del(&request->list);
  1505. list_del(&request->client_list);
  1506. kfree(request);
  1507. } else
  1508. break;
  1509. }
  1510. if (unlikely (dev_priv->trace_irq_seqno &&
  1511. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1512. i915_user_irq_put(dev);
  1513. dev_priv->trace_irq_seqno = 0;
  1514. }
  1515. }
  1516. void
  1517. i915_gem_retire_work_handler(struct work_struct *work)
  1518. {
  1519. drm_i915_private_t *dev_priv;
  1520. struct drm_device *dev;
  1521. dev_priv = container_of(work, drm_i915_private_t,
  1522. mm.retire_work.work);
  1523. dev = dev_priv->dev;
  1524. mutex_lock(&dev->struct_mutex);
  1525. i915_gem_retire_requests(dev);
  1526. if (!dev_priv->mm.suspended &&
  1527. !list_empty(&dev_priv->mm.request_list))
  1528. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1529. mutex_unlock(&dev->struct_mutex);
  1530. }
  1531. int
  1532. i915_do_wait_request(struct drm_device *dev, uint32_t seqno, int interruptible)
  1533. {
  1534. drm_i915_private_t *dev_priv = dev->dev_private;
  1535. u32 ier;
  1536. int ret = 0;
  1537. BUG_ON(seqno == 0);
  1538. if (atomic_read(&dev_priv->mm.wedged))
  1539. return -EIO;
  1540. if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
  1541. if (IS_IRONLAKE(dev))
  1542. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1543. else
  1544. ier = I915_READ(IER);
  1545. if (!ier) {
  1546. DRM_ERROR("something (likely vbetool) disabled "
  1547. "interrupts, re-enabling\n");
  1548. i915_driver_irq_preinstall(dev);
  1549. i915_driver_irq_postinstall(dev);
  1550. }
  1551. trace_i915_gem_request_wait_begin(dev, seqno);
  1552. dev_priv->mm.waiting_gem_seqno = seqno;
  1553. i915_user_irq_get(dev);
  1554. if (interruptible)
  1555. ret = wait_event_interruptible(dev_priv->irq_queue,
  1556. i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
  1557. atomic_read(&dev_priv->mm.wedged));
  1558. else
  1559. wait_event(dev_priv->irq_queue,
  1560. i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
  1561. atomic_read(&dev_priv->mm.wedged));
  1562. i915_user_irq_put(dev);
  1563. dev_priv->mm.waiting_gem_seqno = 0;
  1564. trace_i915_gem_request_wait_end(dev, seqno);
  1565. }
  1566. if (atomic_read(&dev_priv->mm.wedged))
  1567. ret = -EIO;
  1568. if (ret && ret != -ERESTARTSYS)
  1569. DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
  1570. __func__, ret, seqno, i915_get_gem_seqno(dev));
  1571. /* Directly dispatch request retiring. While we have the work queue
  1572. * to handle this, the waiter on a request often wants an associated
  1573. * buffer to have made it to the inactive list, and we would need
  1574. * a separate wait queue to handle that.
  1575. */
  1576. if (ret == 0)
  1577. i915_gem_retire_requests(dev);
  1578. return ret;
  1579. }
  1580. /**
  1581. * Waits for a sequence number to be signaled, and cleans up the
  1582. * request and object lists appropriately for that event.
  1583. */
  1584. static int
  1585. i915_wait_request(struct drm_device *dev, uint32_t seqno)
  1586. {
  1587. return i915_do_wait_request(dev, seqno, 1);
  1588. }
  1589. static void
  1590. i915_gem_flush(struct drm_device *dev,
  1591. uint32_t invalidate_domains,
  1592. uint32_t flush_domains)
  1593. {
  1594. drm_i915_private_t *dev_priv = dev->dev_private;
  1595. uint32_t cmd;
  1596. RING_LOCALS;
  1597. #if WATCH_EXEC
  1598. DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
  1599. invalidate_domains, flush_domains);
  1600. #endif
  1601. trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
  1602. invalidate_domains, flush_domains);
  1603. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1604. drm_agp_chipset_flush(dev);
  1605. if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
  1606. /*
  1607. * read/write caches:
  1608. *
  1609. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  1610. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  1611. * also flushed at 2d versus 3d pipeline switches.
  1612. *
  1613. * read-only caches:
  1614. *
  1615. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  1616. * MI_READ_FLUSH is set, and is always flushed on 965.
  1617. *
  1618. * I915_GEM_DOMAIN_COMMAND may not exist?
  1619. *
  1620. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  1621. * invalidated when MI_EXE_FLUSH is set.
  1622. *
  1623. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  1624. * invalidated with every MI_FLUSH.
  1625. *
  1626. * TLBs:
  1627. *
  1628. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  1629. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  1630. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  1631. * are flushed at any MI_FLUSH.
  1632. */
  1633. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1634. if ((invalidate_domains|flush_domains) &
  1635. I915_GEM_DOMAIN_RENDER)
  1636. cmd &= ~MI_NO_WRITE_FLUSH;
  1637. if (!IS_I965G(dev)) {
  1638. /*
  1639. * On the 965, the sampler cache always gets flushed
  1640. * and this bit is reserved.
  1641. */
  1642. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  1643. cmd |= MI_READ_FLUSH;
  1644. }
  1645. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  1646. cmd |= MI_EXE_FLUSH;
  1647. #if WATCH_EXEC
  1648. DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
  1649. #endif
  1650. BEGIN_LP_RING(2);
  1651. OUT_RING(cmd);
  1652. OUT_RING(MI_NOOP);
  1653. ADVANCE_LP_RING();
  1654. }
  1655. }
  1656. /**
  1657. * Ensures that all rendering to the object has completed and the object is
  1658. * safe to unbind from the GTT or access from the CPU.
  1659. */
  1660. static int
  1661. i915_gem_object_wait_rendering(struct drm_gem_object *obj)
  1662. {
  1663. struct drm_device *dev = obj->dev;
  1664. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1665. int ret;
  1666. /* This function only exists to support waiting for existing rendering,
  1667. * not for emitting required flushes.
  1668. */
  1669. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1670. /* If there is rendering queued on the buffer being evicted, wait for
  1671. * it.
  1672. */
  1673. if (obj_priv->active) {
  1674. #if WATCH_BUF
  1675. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1676. __func__, obj, obj_priv->last_rendering_seqno);
  1677. #endif
  1678. ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
  1679. if (ret != 0)
  1680. return ret;
  1681. }
  1682. return 0;
  1683. }
  1684. /**
  1685. * Unbinds an object from the GTT aperture.
  1686. */
  1687. int
  1688. i915_gem_object_unbind(struct drm_gem_object *obj)
  1689. {
  1690. struct drm_device *dev = obj->dev;
  1691. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1692. int ret = 0;
  1693. #if WATCH_BUF
  1694. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1695. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1696. #endif
  1697. if (obj_priv->gtt_space == NULL)
  1698. return 0;
  1699. if (obj_priv->pin_count != 0) {
  1700. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1701. return -EINVAL;
  1702. }
  1703. /* blow away mappings if mapped through GTT */
  1704. i915_gem_release_mmap(obj);
  1705. /* Move the object to the CPU domain to ensure that
  1706. * any possible CPU writes while it's not in the GTT
  1707. * are flushed when we go to remap it. This will
  1708. * also ensure that all pending GPU writes are finished
  1709. * before we unbind.
  1710. */
  1711. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1712. if (ret) {
  1713. if (ret != -ERESTARTSYS)
  1714. DRM_ERROR("set_domain failed: %d\n", ret);
  1715. return ret;
  1716. }
  1717. BUG_ON(obj_priv->active);
  1718. /* release the fence reg _after_ flushing */
  1719. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1720. i915_gem_clear_fence_reg(obj);
  1721. if (obj_priv->agp_mem != NULL) {
  1722. drm_unbind_agp(obj_priv->agp_mem);
  1723. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1724. obj_priv->agp_mem = NULL;
  1725. }
  1726. i915_gem_object_put_pages(obj);
  1727. BUG_ON(obj_priv->pages_refcount);
  1728. if (obj_priv->gtt_space) {
  1729. atomic_dec(&dev->gtt_count);
  1730. atomic_sub(obj->size, &dev->gtt_memory);
  1731. drm_mm_put_block(obj_priv->gtt_space);
  1732. obj_priv->gtt_space = NULL;
  1733. }
  1734. /* Remove ourselves from the LRU list if present. */
  1735. if (!list_empty(&obj_priv->list))
  1736. list_del_init(&obj_priv->list);
  1737. if (i915_gem_object_is_purgeable(obj_priv))
  1738. i915_gem_object_truncate(obj);
  1739. trace_i915_gem_object_unbind(obj);
  1740. return 0;
  1741. }
  1742. static struct drm_gem_object *
  1743. i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
  1744. {
  1745. drm_i915_private_t *dev_priv = dev->dev_private;
  1746. struct drm_i915_gem_object *obj_priv;
  1747. struct drm_gem_object *best = NULL;
  1748. struct drm_gem_object *first = NULL;
  1749. /* Try to find the smallest clean object */
  1750. list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
  1751. struct drm_gem_object *obj = obj_priv->obj;
  1752. if (obj->size >= min_size) {
  1753. if ((!obj_priv->dirty ||
  1754. i915_gem_object_is_purgeable(obj_priv)) &&
  1755. (!best || obj->size < best->size)) {
  1756. best = obj;
  1757. if (best->size == min_size)
  1758. return best;
  1759. }
  1760. if (!first)
  1761. first = obj;
  1762. }
  1763. }
  1764. return best ? best : first;
  1765. }
  1766. static int
  1767. i915_gem_evict_everything(struct drm_device *dev)
  1768. {
  1769. drm_i915_private_t *dev_priv = dev->dev_private;
  1770. int ret;
  1771. uint32_t seqno;
  1772. bool lists_empty;
  1773. spin_lock(&dev_priv->mm.active_list_lock);
  1774. lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
  1775. list_empty(&dev_priv->mm.flushing_list) &&
  1776. list_empty(&dev_priv->mm.active_list));
  1777. spin_unlock(&dev_priv->mm.active_list_lock);
  1778. if (lists_empty)
  1779. return -ENOSPC;
  1780. /* Flush everything (on to the inactive lists) and evict */
  1781. i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1782. seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
  1783. if (seqno == 0)
  1784. return -ENOMEM;
  1785. ret = i915_wait_request(dev, seqno);
  1786. if (ret)
  1787. return ret;
  1788. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  1789. ret = i915_gem_evict_from_inactive_list(dev);
  1790. if (ret)
  1791. return ret;
  1792. spin_lock(&dev_priv->mm.active_list_lock);
  1793. lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
  1794. list_empty(&dev_priv->mm.flushing_list) &&
  1795. list_empty(&dev_priv->mm.active_list));
  1796. spin_unlock(&dev_priv->mm.active_list_lock);
  1797. BUG_ON(!lists_empty);
  1798. return 0;
  1799. }
  1800. static int
  1801. i915_gem_evict_something(struct drm_device *dev, int min_size)
  1802. {
  1803. drm_i915_private_t *dev_priv = dev->dev_private;
  1804. struct drm_gem_object *obj;
  1805. int ret;
  1806. for (;;) {
  1807. i915_gem_retire_requests(dev);
  1808. /* If there's an inactive buffer available now, grab it
  1809. * and be done.
  1810. */
  1811. obj = i915_gem_find_inactive_object(dev, min_size);
  1812. if (obj) {
  1813. struct drm_i915_gem_object *obj_priv;
  1814. #if WATCH_LRU
  1815. DRM_INFO("%s: evicting %p\n", __func__, obj);
  1816. #endif
  1817. obj_priv = obj->driver_private;
  1818. BUG_ON(obj_priv->pin_count != 0);
  1819. BUG_ON(obj_priv->active);
  1820. /* Wait on the rendering and unbind the buffer. */
  1821. return i915_gem_object_unbind(obj);
  1822. }
  1823. /* If we didn't get anything, but the ring is still processing
  1824. * things, wait for the next to finish and hopefully leave us
  1825. * a buffer to evict.
  1826. */
  1827. if (!list_empty(&dev_priv->mm.request_list)) {
  1828. struct drm_i915_gem_request *request;
  1829. request = list_first_entry(&dev_priv->mm.request_list,
  1830. struct drm_i915_gem_request,
  1831. list);
  1832. ret = i915_wait_request(dev, request->seqno);
  1833. if (ret)
  1834. return ret;
  1835. continue;
  1836. }
  1837. /* If we didn't have anything on the request list but there
  1838. * are buffers awaiting a flush, emit one and try again.
  1839. * When we wait on it, those buffers waiting for that flush
  1840. * will get moved to inactive.
  1841. */
  1842. if (!list_empty(&dev_priv->mm.flushing_list)) {
  1843. struct drm_i915_gem_object *obj_priv;
  1844. /* Find an object that we can immediately reuse */
  1845. list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
  1846. obj = obj_priv->obj;
  1847. if (obj->size >= min_size)
  1848. break;
  1849. obj = NULL;
  1850. }
  1851. if (obj != NULL) {
  1852. uint32_t seqno;
  1853. i915_gem_flush(dev,
  1854. obj->write_domain,
  1855. obj->write_domain);
  1856. seqno = i915_add_request(dev, NULL, obj->write_domain);
  1857. if (seqno == 0)
  1858. return -ENOMEM;
  1859. ret = i915_wait_request(dev, seqno);
  1860. if (ret)
  1861. return ret;
  1862. continue;
  1863. }
  1864. }
  1865. /* If we didn't do any of the above, there's no single buffer
  1866. * large enough to swap out for the new one, so just evict
  1867. * everything and start again. (This should be rare.)
  1868. */
  1869. if (!list_empty (&dev_priv->mm.inactive_list))
  1870. return i915_gem_evict_from_inactive_list(dev);
  1871. else
  1872. return i915_gem_evict_everything(dev);
  1873. }
  1874. }
  1875. int
  1876. i915_gem_object_get_pages(struct drm_gem_object *obj,
  1877. gfp_t gfpmask)
  1878. {
  1879. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1880. int page_count, i;
  1881. struct address_space *mapping;
  1882. struct inode *inode;
  1883. struct page *page;
  1884. int ret;
  1885. if (obj_priv->pages_refcount++ != 0)
  1886. return 0;
  1887. /* Get the list of pages out of our struct file. They'll be pinned
  1888. * at this point until we release them.
  1889. */
  1890. page_count = obj->size / PAGE_SIZE;
  1891. BUG_ON(obj_priv->pages != NULL);
  1892. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1893. if (obj_priv->pages == NULL) {
  1894. obj_priv->pages_refcount--;
  1895. return -ENOMEM;
  1896. }
  1897. inode = obj->filp->f_path.dentry->d_inode;
  1898. mapping = inode->i_mapping;
  1899. for (i = 0; i < page_count; i++) {
  1900. page = read_cache_page_gfp(mapping, i,
  1901. mapping_gfp_mask (mapping) |
  1902. __GFP_COLD |
  1903. gfpmask);
  1904. if (IS_ERR(page)) {
  1905. ret = PTR_ERR(page);
  1906. i915_gem_object_put_pages(obj);
  1907. return ret;
  1908. }
  1909. obj_priv->pages[i] = page;
  1910. }
  1911. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1912. i915_gem_object_do_bit_17_swizzle(obj);
  1913. return 0;
  1914. }
  1915. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1916. {
  1917. struct drm_gem_object *obj = reg->obj;
  1918. struct drm_device *dev = obj->dev;
  1919. drm_i915_private_t *dev_priv = dev->dev_private;
  1920. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1921. int regnum = obj_priv->fence_reg;
  1922. uint64_t val;
  1923. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1924. 0xfffff000) << 32;
  1925. val |= obj_priv->gtt_offset & 0xfffff000;
  1926. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1927. if (obj_priv->tiling_mode == I915_TILING_Y)
  1928. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1929. val |= I965_FENCE_REG_VALID;
  1930. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1931. }
  1932. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1933. {
  1934. struct drm_gem_object *obj = reg->obj;
  1935. struct drm_device *dev = obj->dev;
  1936. drm_i915_private_t *dev_priv = dev->dev_private;
  1937. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1938. int regnum = obj_priv->fence_reg;
  1939. int tile_width;
  1940. uint32_t fence_reg, val;
  1941. uint32_t pitch_val;
  1942. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1943. (obj_priv->gtt_offset & (obj->size - 1))) {
  1944. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1945. __func__, obj_priv->gtt_offset, obj->size);
  1946. return;
  1947. }
  1948. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1949. HAS_128_BYTE_Y_TILING(dev))
  1950. tile_width = 128;
  1951. else
  1952. tile_width = 512;
  1953. /* Note: pitch better be a power of two tile widths */
  1954. pitch_val = obj_priv->stride / tile_width;
  1955. pitch_val = ffs(pitch_val) - 1;
  1956. val = obj_priv->gtt_offset;
  1957. if (obj_priv->tiling_mode == I915_TILING_Y)
  1958. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1959. val |= I915_FENCE_SIZE_BITS(obj->size);
  1960. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1961. val |= I830_FENCE_REG_VALID;
  1962. if (regnum < 8)
  1963. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1964. else
  1965. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1966. I915_WRITE(fence_reg, val);
  1967. }
  1968. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1969. {
  1970. struct drm_gem_object *obj = reg->obj;
  1971. struct drm_device *dev = obj->dev;
  1972. drm_i915_private_t *dev_priv = dev->dev_private;
  1973. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1974. int regnum = obj_priv->fence_reg;
  1975. uint32_t val;
  1976. uint32_t pitch_val;
  1977. uint32_t fence_size_bits;
  1978. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1979. (obj_priv->gtt_offset & (obj->size - 1))) {
  1980. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1981. __func__, obj_priv->gtt_offset);
  1982. return;
  1983. }
  1984. pitch_val = obj_priv->stride / 128;
  1985. pitch_val = ffs(pitch_val) - 1;
  1986. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1987. val = obj_priv->gtt_offset;
  1988. if (obj_priv->tiling_mode == I915_TILING_Y)
  1989. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1990. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1991. WARN_ON(fence_size_bits & ~0x00000f00);
  1992. val |= fence_size_bits;
  1993. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1994. val |= I830_FENCE_REG_VALID;
  1995. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1996. }
  1997. /**
  1998. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  1999. * @obj: object to map through a fence reg
  2000. *
  2001. * When mapping objects through the GTT, userspace wants to be able to write
  2002. * to them without having to worry about swizzling if the object is tiled.
  2003. *
  2004. * This function walks the fence regs looking for a free one for @obj,
  2005. * stealing one if it can't find any.
  2006. *
  2007. * It then sets up the reg based on the object's properties: address, pitch
  2008. * and tiling format.
  2009. */
  2010. int
  2011. i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
  2012. {
  2013. struct drm_device *dev = obj->dev;
  2014. struct drm_i915_private *dev_priv = dev->dev_private;
  2015. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2016. struct drm_i915_fence_reg *reg = NULL;
  2017. struct drm_i915_gem_object *old_obj_priv = NULL;
  2018. int i, ret, avail;
  2019. /* Just update our place in the LRU if our fence is getting used. */
  2020. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  2021. list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
  2022. return 0;
  2023. }
  2024. switch (obj_priv->tiling_mode) {
  2025. case I915_TILING_NONE:
  2026. WARN(1, "allocating a fence for non-tiled object?\n");
  2027. break;
  2028. case I915_TILING_X:
  2029. if (!obj_priv->stride)
  2030. return -EINVAL;
  2031. WARN((obj_priv->stride & (512 - 1)),
  2032. "object 0x%08x is X tiled but has non-512B pitch\n",
  2033. obj_priv->gtt_offset);
  2034. break;
  2035. case I915_TILING_Y:
  2036. if (!obj_priv->stride)
  2037. return -EINVAL;
  2038. WARN((obj_priv->stride & (128 - 1)),
  2039. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2040. obj_priv->gtt_offset);
  2041. break;
  2042. }
  2043. /* First try to find a free reg */
  2044. avail = 0;
  2045. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2046. reg = &dev_priv->fence_regs[i];
  2047. if (!reg->obj)
  2048. break;
  2049. old_obj_priv = reg->obj->driver_private;
  2050. if (!old_obj_priv->pin_count)
  2051. avail++;
  2052. }
  2053. /* None available, try to steal one or wait for a user to finish */
  2054. if (i == dev_priv->num_fence_regs) {
  2055. struct drm_gem_object *old_obj = NULL;
  2056. if (avail == 0)
  2057. return -ENOSPC;
  2058. list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
  2059. fence_list) {
  2060. old_obj = old_obj_priv->obj;
  2061. if (old_obj_priv->pin_count)
  2062. continue;
  2063. /* Take a reference, as otherwise the wait_rendering
  2064. * below may cause the object to get freed out from
  2065. * under us.
  2066. */
  2067. drm_gem_object_reference(old_obj);
  2068. /* i915 uses fences for GPU access to tiled buffers */
  2069. if (IS_I965G(dev) || !old_obj_priv->active)
  2070. break;
  2071. /* This brings the object to the head of the LRU if it
  2072. * had been written to. The only way this should
  2073. * result in us waiting longer than the expected
  2074. * optimal amount of time is if there was a
  2075. * fence-using buffer later that was read-only.
  2076. */
  2077. i915_gem_object_flush_gpu_write_domain(old_obj);
  2078. ret = i915_gem_object_wait_rendering(old_obj);
  2079. if (ret != 0) {
  2080. drm_gem_object_unreference(old_obj);
  2081. return ret;
  2082. }
  2083. break;
  2084. }
  2085. /*
  2086. * Zap this virtual mapping so we can set up a fence again
  2087. * for this object next time we need it.
  2088. */
  2089. i915_gem_release_mmap(old_obj);
  2090. i = old_obj_priv->fence_reg;
  2091. reg = &dev_priv->fence_regs[i];
  2092. old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2093. list_del_init(&old_obj_priv->fence_list);
  2094. drm_gem_object_unreference(old_obj);
  2095. }
  2096. obj_priv->fence_reg = i;
  2097. list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
  2098. reg->obj = obj;
  2099. if (IS_I965G(dev))
  2100. i965_write_fence_reg(reg);
  2101. else if (IS_I9XX(dev))
  2102. i915_write_fence_reg(reg);
  2103. else
  2104. i830_write_fence_reg(reg);
  2105. trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);
  2106. return 0;
  2107. }
  2108. /**
  2109. * i915_gem_clear_fence_reg - clear out fence register info
  2110. * @obj: object to clear
  2111. *
  2112. * Zeroes out the fence register itself and clears out the associated
  2113. * data structures in dev_priv and obj_priv.
  2114. */
  2115. static void
  2116. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2117. {
  2118. struct drm_device *dev = obj->dev;
  2119. drm_i915_private_t *dev_priv = dev->dev_private;
  2120. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2121. if (IS_I965G(dev))
  2122. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2123. else {
  2124. uint32_t fence_reg;
  2125. if (obj_priv->fence_reg < 8)
  2126. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2127. else
  2128. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
  2129. 8) * 4;
  2130. I915_WRITE(fence_reg, 0);
  2131. }
  2132. dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
  2133. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2134. list_del_init(&obj_priv->fence_list);
  2135. }
  2136. /**
  2137. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2138. * to the buffer to finish, and then resets the fence register.
  2139. * @obj: tiled object holding a fence register.
  2140. *
  2141. * Zeroes out the fence register itself and clears out the associated
  2142. * data structures in dev_priv and obj_priv.
  2143. */
  2144. int
  2145. i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
  2146. {
  2147. struct drm_device *dev = obj->dev;
  2148. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2149. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2150. return 0;
  2151. /* On the i915, GPU access to tiled buffers is via a fence,
  2152. * therefore we must wait for any outstanding access to complete
  2153. * before clearing the fence.
  2154. */
  2155. if (!IS_I965G(dev)) {
  2156. int ret;
  2157. i915_gem_object_flush_gpu_write_domain(obj);
  2158. i915_gem_object_flush_gtt_write_domain(obj);
  2159. ret = i915_gem_object_wait_rendering(obj);
  2160. if (ret != 0)
  2161. return ret;
  2162. }
  2163. i915_gem_clear_fence_reg (obj);
  2164. return 0;
  2165. }
  2166. /**
  2167. * Finds free space in the GTT aperture and binds the object there.
  2168. */
  2169. static int
  2170. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2171. {
  2172. struct drm_device *dev = obj->dev;
  2173. drm_i915_private_t *dev_priv = dev->dev_private;
  2174. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2175. struct drm_mm_node *free_space;
  2176. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2177. int ret;
  2178. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2179. DRM_ERROR("Attempting to bind a purgeable object\n");
  2180. return -EINVAL;
  2181. }
  2182. if (alignment == 0)
  2183. alignment = i915_gem_get_gtt_alignment(obj);
  2184. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2185. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2186. return -EINVAL;
  2187. }
  2188. search_free:
  2189. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2190. obj->size, alignment, 0);
  2191. if (free_space != NULL) {
  2192. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2193. alignment);
  2194. if (obj_priv->gtt_space != NULL) {
  2195. obj_priv->gtt_space->private = obj;
  2196. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2197. }
  2198. }
  2199. if (obj_priv->gtt_space == NULL) {
  2200. /* If the gtt is empty and we're still having trouble
  2201. * fitting our object in, we're out of memory.
  2202. */
  2203. #if WATCH_LRU
  2204. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  2205. #endif
  2206. ret = i915_gem_evict_something(dev, obj->size);
  2207. if (ret)
  2208. return ret;
  2209. goto search_free;
  2210. }
  2211. #if WATCH_BUF
  2212. DRM_INFO("Binding object of size %zd at 0x%08x\n",
  2213. obj->size, obj_priv->gtt_offset);
  2214. #endif
  2215. ret = i915_gem_object_get_pages(obj, gfpmask);
  2216. if (ret) {
  2217. drm_mm_put_block(obj_priv->gtt_space);
  2218. obj_priv->gtt_space = NULL;
  2219. if (ret == -ENOMEM) {
  2220. /* first try to clear up some space from the GTT */
  2221. ret = i915_gem_evict_something(dev, obj->size);
  2222. if (ret) {
  2223. /* now try to shrink everyone else */
  2224. if (gfpmask) {
  2225. gfpmask = 0;
  2226. goto search_free;
  2227. }
  2228. return ret;
  2229. }
  2230. goto search_free;
  2231. }
  2232. return ret;
  2233. }
  2234. /* Create an AGP memory structure pointing at our pages, and bind it
  2235. * into the GTT.
  2236. */
  2237. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2238. obj_priv->pages,
  2239. obj->size >> PAGE_SHIFT,
  2240. obj_priv->gtt_offset,
  2241. obj_priv->agp_type);
  2242. if (obj_priv->agp_mem == NULL) {
  2243. i915_gem_object_put_pages(obj);
  2244. drm_mm_put_block(obj_priv->gtt_space);
  2245. obj_priv->gtt_space = NULL;
  2246. ret = i915_gem_evict_something(dev, obj->size);
  2247. if (ret)
  2248. return ret;
  2249. goto search_free;
  2250. }
  2251. atomic_inc(&dev->gtt_count);
  2252. atomic_add(obj->size, &dev->gtt_memory);
  2253. /* Assert that the object is not currently in any GPU domain. As it
  2254. * wasn't in the GTT, there shouldn't be any way it could have been in
  2255. * a GPU cache
  2256. */
  2257. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2258. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2259. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
  2260. return 0;
  2261. }
  2262. void
  2263. i915_gem_clflush_object(struct drm_gem_object *obj)
  2264. {
  2265. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2266. /* If we don't have a page list set up, then we're not pinned
  2267. * to GPU, and we can ignore the cache flush because it'll happen
  2268. * again at bind time.
  2269. */
  2270. if (obj_priv->pages == NULL)
  2271. return;
  2272. trace_i915_gem_object_clflush(obj);
  2273. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2274. }
  2275. /** Flushes any GPU write domain for the object if it's dirty. */
  2276. static void
  2277. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
  2278. {
  2279. struct drm_device *dev = obj->dev;
  2280. uint32_t seqno;
  2281. uint32_t old_write_domain;
  2282. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2283. return;
  2284. /* Queue the GPU write cache flushing we need. */
  2285. old_write_domain = obj->write_domain;
  2286. i915_gem_flush(dev, 0, obj->write_domain);
  2287. seqno = i915_add_request(dev, NULL, obj->write_domain);
  2288. BUG_ON(obj->write_domain);
  2289. i915_gem_object_move_to_active(obj, seqno);
  2290. trace_i915_gem_object_change_domain(obj,
  2291. obj->read_domains,
  2292. old_write_domain);
  2293. }
  2294. /** Flushes the GTT write domain for the object if it's dirty. */
  2295. static void
  2296. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2297. {
  2298. uint32_t old_write_domain;
  2299. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2300. return;
  2301. /* No actual flushing is required for the GTT write domain. Writes
  2302. * to it immediately go to main memory as far as we know, so there's
  2303. * no chipset flush. It also doesn't land in render cache.
  2304. */
  2305. old_write_domain = obj->write_domain;
  2306. obj->write_domain = 0;
  2307. trace_i915_gem_object_change_domain(obj,
  2308. obj->read_domains,
  2309. old_write_domain);
  2310. }
  2311. /** Flushes the CPU write domain for the object if it's dirty. */
  2312. static void
  2313. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2314. {
  2315. struct drm_device *dev = obj->dev;
  2316. uint32_t old_write_domain;
  2317. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2318. return;
  2319. i915_gem_clflush_object(obj);
  2320. drm_agp_chipset_flush(dev);
  2321. old_write_domain = obj->write_domain;
  2322. obj->write_domain = 0;
  2323. trace_i915_gem_object_change_domain(obj,
  2324. obj->read_domains,
  2325. old_write_domain);
  2326. }
  2327. void
  2328. i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
  2329. {
  2330. switch (obj->write_domain) {
  2331. case I915_GEM_DOMAIN_GTT:
  2332. i915_gem_object_flush_gtt_write_domain(obj);
  2333. break;
  2334. case I915_GEM_DOMAIN_CPU:
  2335. i915_gem_object_flush_cpu_write_domain(obj);
  2336. break;
  2337. default:
  2338. i915_gem_object_flush_gpu_write_domain(obj);
  2339. break;
  2340. }
  2341. }
  2342. /**
  2343. * Moves a single object to the GTT read, and possibly write domain.
  2344. *
  2345. * This function returns when the move is complete, including waiting on
  2346. * flushes to occur.
  2347. */
  2348. int
  2349. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2350. {
  2351. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2352. uint32_t old_write_domain, old_read_domains;
  2353. int ret;
  2354. /* Not valid to be called on unbound objects. */
  2355. if (obj_priv->gtt_space == NULL)
  2356. return -EINVAL;
  2357. i915_gem_object_flush_gpu_write_domain(obj);
  2358. /* Wait on any GPU rendering and flushing to occur. */
  2359. ret = i915_gem_object_wait_rendering(obj);
  2360. if (ret != 0)
  2361. return ret;
  2362. old_write_domain = obj->write_domain;
  2363. old_read_domains = obj->read_domains;
  2364. /* If we're writing through the GTT domain, then CPU and GPU caches
  2365. * will need to be invalidated at next use.
  2366. */
  2367. if (write)
  2368. obj->read_domains &= I915_GEM_DOMAIN_GTT;
  2369. i915_gem_object_flush_cpu_write_domain(obj);
  2370. /* It should now be out of any other write domains, and we can update
  2371. * the domain values for our changes.
  2372. */
  2373. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2374. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2375. if (write) {
  2376. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2377. obj_priv->dirty = 1;
  2378. }
  2379. trace_i915_gem_object_change_domain(obj,
  2380. old_read_domains,
  2381. old_write_domain);
  2382. return 0;
  2383. }
  2384. /*
  2385. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2386. * wait, as in modesetting process we're not supposed to be interrupted.
  2387. */
  2388. int
  2389. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
  2390. {
  2391. struct drm_device *dev = obj->dev;
  2392. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2393. uint32_t old_write_domain, old_read_domains;
  2394. int ret;
  2395. /* Not valid to be called on unbound objects. */
  2396. if (obj_priv->gtt_space == NULL)
  2397. return -EINVAL;
  2398. i915_gem_object_flush_gpu_write_domain(obj);
  2399. /* Wait on any GPU rendering and flushing to occur. */
  2400. if (obj_priv->active) {
  2401. #if WATCH_BUF
  2402. DRM_INFO("%s: object %p wait for seqno %08x\n",
  2403. __func__, obj, obj_priv->last_rendering_seqno);
  2404. #endif
  2405. ret = i915_do_wait_request(dev, obj_priv->last_rendering_seqno, 0);
  2406. if (ret != 0)
  2407. return ret;
  2408. }
  2409. old_write_domain = obj->write_domain;
  2410. old_read_domains = obj->read_domains;
  2411. obj->read_domains &= I915_GEM_DOMAIN_GTT;
  2412. i915_gem_object_flush_cpu_write_domain(obj);
  2413. /* It should now be out of any other write domains, and we can update
  2414. * the domain values for our changes.
  2415. */
  2416. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2417. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2418. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2419. obj_priv->dirty = 1;
  2420. trace_i915_gem_object_change_domain(obj,
  2421. old_read_domains,
  2422. old_write_domain);
  2423. return 0;
  2424. }
  2425. /**
  2426. * Moves a single object to the CPU read, and possibly write domain.
  2427. *
  2428. * This function returns when the move is complete, including waiting on
  2429. * flushes to occur.
  2430. */
  2431. static int
  2432. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2433. {
  2434. uint32_t old_write_domain, old_read_domains;
  2435. int ret;
  2436. i915_gem_object_flush_gpu_write_domain(obj);
  2437. /* Wait on any GPU rendering and flushing to occur. */
  2438. ret = i915_gem_object_wait_rendering(obj);
  2439. if (ret != 0)
  2440. return ret;
  2441. i915_gem_object_flush_gtt_write_domain(obj);
  2442. /* If we have a partially-valid cache of the object in the CPU,
  2443. * finish invalidating it and free the per-page flags.
  2444. */
  2445. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2446. old_write_domain = obj->write_domain;
  2447. old_read_domains = obj->read_domains;
  2448. /* Flush the CPU cache if it's still invalid. */
  2449. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2450. i915_gem_clflush_object(obj);
  2451. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2452. }
  2453. /* It should now be out of any other write domains, and we can update
  2454. * the domain values for our changes.
  2455. */
  2456. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2457. /* If we're writing through the CPU, then the GPU read domains will
  2458. * need to be invalidated at next use.
  2459. */
  2460. if (write) {
  2461. obj->read_domains &= I915_GEM_DOMAIN_CPU;
  2462. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2463. }
  2464. trace_i915_gem_object_change_domain(obj,
  2465. old_read_domains,
  2466. old_write_domain);
  2467. return 0;
  2468. }
  2469. /*
  2470. * Set the next domain for the specified object. This
  2471. * may not actually perform the necessary flushing/invaliding though,
  2472. * as that may want to be batched with other set_domain operations
  2473. *
  2474. * This is (we hope) the only really tricky part of gem. The goal
  2475. * is fairly simple -- track which caches hold bits of the object
  2476. * and make sure they remain coherent. A few concrete examples may
  2477. * help to explain how it works. For shorthand, we use the notation
  2478. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2479. * a pair of read and write domain masks.
  2480. *
  2481. * Case 1: the batch buffer
  2482. *
  2483. * 1. Allocated
  2484. * 2. Written by CPU
  2485. * 3. Mapped to GTT
  2486. * 4. Read by GPU
  2487. * 5. Unmapped from GTT
  2488. * 6. Freed
  2489. *
  2490. * Let's take these a step at a time
  2491. *
  2492. * 1. Allocated
  2493. * Pages allocated from the kernel may still have
  2494. * cache contents, so we set them to (CPU, CPU) always.
  2495. * 2. Written by CPU (using pwrite)
  2496. * The pwrite function calls set_domain (CPU, CPU) and
  2497. * this function does nothing (as nothing changes)
  2498. * 3. Mapped by GTT
  2499. * This function asserts that the object is not
  2500. * currently in any GPU-based read or write domains
  2501. * 4. Read by GPU
  2502. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2503. * As write_domain is zero, this function adds in the
  2504. * current read domains (CPU+COMMAND, 0).
  2505. * flush_domains is set to CPU.
  2506. * invalidate_domains is set to COMMAND
  2507. * clflush is run to get data out of the CPU caches
  2508. * then i915_dev_set_domain calls i915_gem_flush to
  2509. * emit an MI_FLUSH and drm_agp_chipset_flush
  2510. * 5. Unmapped from GTT
  2511. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2512. * flush_domains and invalidate_domains end up both zero
  2513. * so no flushing/invalidating happens
  2514. * 6. Freed
  2515. * yay, done
  2516. *
  2517. * Case 2: The shared render buffer
  2518. *
  2519. * 1. Allocated
  2520. * 2. Mapped to GTT
  2521. * 3. Read/written by GPU
  2522. * 4. set_domain to (CPU,CPU)
  2523. * 5. Read/written by CPU
  2524. * 6. Read/written by GPU
  2525. *
  2526. * 1. Allocated
  2527. * Same as last example, (CPU, CPU)
  2528. * 2. Mapped to GTT
  2529. * Nothing changes (assertions find that it is not in the GPU)
  2530. * 3. Read/written by GPU
  2531. * execbuffer calls set_domain (RENDER, RENDER)
  2532. * flush_domains gets CPU
  2533. * invalidate_domains gets GPU
  2534. * clflush (obj)
  2535. * MI_FLUSH and drm_agp_chipset_flush
  2536. * 4. set_domain (CPU, CPU)
  2537. * flush_domains gets GPU
  2538. * invalidate_domains gets CPU
  2539. * wait_rendering (obj) to make sure all drawing is complete.
  2540. * This will include an MI_FLUSH to get the data from GPU
  2541. * to memory
  2542. * clflush (obj) to invalidate the CPU cache
  2543. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2544. * 5. Read/written by CPU
  2545. * cache lines are loaded and dirtied
  2546. * 6. Read written by GPU
  2547. * Same as last GPU access
  2548. *
  2549. * Case 3: The constant buffer
  2550. *
  2551. * 1. Allocated
  2552. * 2. Written by CPU
  2553. * 3. Read by GPU
  2554. * 4. Updated (written) by CPU again
  2555. * 5. Read by GPU
  2556. *
  2557. * 1. Allocated
  2558. * (CPU, CPU)
  2559. * 2. Written by CPU
  2560. * (CPU, CPU)
  2561. * 3. Read by GPU
  2562. * (CPU+RENDER, 0)
  2563. * flush_domains = CPU
  2564. * invalidate_domains = RENDER
  2565. * clflush (obj)
  2566. * MI_FLUSH
  2567. * drm_agp_chipset_flush
  2568. * 4. Updated (written) by CPU again
  2569. * (CPU, CPU)
  2570. * flush_domains = 0 (no previous write domain)
  2571. * invalidate_domains = 0 (no new read domains)
  2572. * 5. Read by GPU
  2573. * (CPU+RENDER, 0)
  2574. * flush_domains = CPU
  2575. * invalidate_domains = RENDER
  2576. * clflush (obj)
  2577. * MI_FLUSH
  2578. * drm_agp_chipset_flush
  2579. */
  2580. static void
  2581. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2582. {
  2583. struct drm_device *dev = obj->dev;
  2584. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2585. uint32_t invalidate_domains = 0;
  2586. uint32_t flush_domains = 0;
  2587. uint32_t old_read_domains;
  2588. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2589. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2590. intel_mark_busy(dev, obj);
  2591. #if WATCH_BUF
  2592. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2593. __func__, obj,
  2594. obj->read_domains, obj->pending_read_domains,
  2595. obj->write_domain, obj->pending_write_domain);
  2596. #endif
  2597. /*
  2598. * If the object isn't moving to a new write domain,
  2599. * let the object stay in multiple read domains
  2600. */
  2601. if (obj->pending_write_domain == 0)
  2602. obj->pending_read_domains |= obj->read_domains;
  2603. else
  2604. obj_priv->dirty = 1;
  2605. /*
  2606. * Flush the current write domain if
  2607. * the new read domains don't match. Invalidate
  2608. * any read domains which differ from the old
  2609. * write domain
  2610. */
  2611. if (obj->write_domain &&
  2612. obj->write_domain != obj->pending_read_domains) {
  2613. flush_domains |= obj->write_domain;
  2614. invalidate_domains |=
  2615. obj->pending_read_domains & ~obj->write_domain;
  2616. }
  2617. /*
  2618. * Invalidate any read caches which may have
  2619. * stale data. That is, any new read domains.
  2620. */
  2621. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2622. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2623. #if WATCH_BUF
  2624. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2625. __func__, flush_domains, invalidate_domains);
  2626. #endif
  2627. i915_gem_clflush_object(obj);
  2628. }
  2629. old_read_domains = obj->read_domains;
  2630. /* The actual obj->write_domain will be updated with
  2631. * pending_write_domain after we emit the accumulated flush for all
  2632. * of our domain changes in execbuffers (which clears objects'
  2633. * write_domains). So if we have a current write domain that we
  2634. * aren't changing, set pending_write_domain to that.
  2635. */
  2636. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2637. obj->pending_write_domain = obj->write_domain;
  2638. obj->read_domains = obj->pending_read_domains;
  2639. dev->invalidate_domains |= invalidate_domains;
  2640. dev->flush_domains |= flush_domains;
  2641. #if WATCH_BUF
  2642. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2643. __func__,
  2644. obj->read_domains, obj->write_domain,
  2645. dev->invalidate_domains, dev->flush_domains);
  2646. #endif
  2647. trace_i915_gem_object_change_domain(obj,
  2648. old_read_domains,
  2649. obj->write_domain);
  2650. }
  2651. /**
  2652. * Moves the object from a partially CPU read to a full one.
  2653. *
  2654. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2655. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2656. */
  2657. static void
  2658. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2659. {
  2660. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2661. if (!obj_priv->page_cpu_valid)
  2662. return;
  2663. /* If we're partially in the CPU read domain, finish moving it in.
  2664. */
  2665. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2666. int i;
  2667. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2668. if (obj_priv->page_cpu_valid[i])
  2669. continue;
  2670. drm_clflush_pages(obj_priv->pages + i, 1);
  2671. }
  2672. }
  2673. /* Free the page_cpu_valid mappings which are now stale, whether
  2674. * or not we've got I915_GEM_DOMAIN_CPU.
  2675. */
  2676. kfree(obj_priv->page_cpu_valid);
  2677. obj_priv->page_cpu_valid = NULL;
  2678. }
  2679. /**
  2680. * Set the CPU read domain on a range of the object.
  2681. *
  2682. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2683. * not entirely valid. The page_cpu_valid member of the object flags which
  2684. * pages have been flushed, and will be respected by
  2685. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2686. * of the whole object.
  2687. *
  2688. * This function returns when the move is complete, including waiting on
  2689. * flushes to occur.
  2690. */
  2691. static int
  2692. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2693. uint64_t offset, uint64_t size)
  2694. {
  2695. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2696. uint32_t old_read_domains;
  2697. int i, ret;
  2698. if (offset == 0 && size == obj->size)
  2699. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2700. i915_gem_object_flush_gpu_write_domain(obj);
  2701. /* Wait on any GPU rendering and flushing to occur. */
  2702. ret = i915_gem_object_wait_rendering(obj);
  2703. if (ret != 0)
  2704. return ret;
  2705. i915_gem_object_flush_gtt_write_domain(obj);
  2706. /* If we're already fully in the CPU read domain, we're done. */
  2707. if (obj_priv->page_cpu_valid == NULL &&
  2708. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2709. return 0;
  2710. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2711. * newly adding I915_GEM_DOMAIN_CPU
  2712. */
  2713. if (obj_priv->page_cpu_valid == NULL) {
  2714. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2715. GFP_KERNEL);
  2716. if (obj_priv->page_cpu_valid == NULL)
  2717. return -ENOMEM;
  2718. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2719. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2720. /* Flush the cache on any pages that are still invalid from the CPU's
  2721. * perspective.
  2722. */
  2723. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2724. i++) {
  2725. if (obj_priv->page_cpu_valid[i])
  2726. continue;
  2727. drm_clflush_pages(obj_priv->pages + i, 1);
  2728. obj_priv->page_cpu_valid[i] = 1;
  2729. }
  2730. /* It should now be out of any other write domains, and we can update
  2731. * the domain values for our changes.
  2732. */
  2733. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2734. old_read_domains = obj->read_domains;
  2735. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2736. trace_i915_gem_object_change_domain(obj,
  2737. old_read_domains,
  2738. obj->write_domain);
  2739. return 0;
  2740. }
  2741. /**
  2742. * Pin an object to the GTT and evaluate the relocations landing in it.
  2743. */
  2744. static int
  2745. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2746. struct drm_file *file_priv,
  2747. struct drm_i915_gem_exec_object2 *entry,
  2748. struct drm_i915_gem_relocation_entry *relocs)
  2749. {
  2750. struct drm_device *dev = obj->dev;
  2751. drm_i915_private_t *dev_priv = dev->dev_private;
  2752. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2753. int i, ret;
  2754. void __iomem *reloc_page;
  2755. bool need_fence;
  2756. need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  2757. obj_priv->tiling_mode != I915_TILING_NONE;
  2758. /* Check fence reg constraints and rebind if necessary */
  2759. if (need_fence && !i915_obj_fenceable(dev, obj))
  2760. i915_gem_object_unbind(obj);
  2761. /* Choose the GTT offset for our buffer and put it there. */
  2762. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2763. if (ret)
  2764. return ret;
  2765. /*
  2766. * Pre-965 chips need a fence register set up in order to
  2767. * properly handle blits to/from tiled surfaces.
  2768. */
  2769. if (need_fence) {
  2770. ret = i915_gem_object_get_fence_reg(obj);
  2771. if (ret != 0) {
  2772. if (ret != -EBUSY && ret != -ERESTARTSYS)
  2773. DRM_ERROR("Failure to install fence: %d\n",
  2774. ret);
  2775. i915_gem_object_unpin(obj);
  2776. return ret;
  2777. }
  2778. }
  2779. entry->offset = obj_priv->gtt_offset;
  2780. /* Apply the relocations, using the GTT aperture to avoid cache
  2781. * flushing requirements.
  2782. */
  2783. for (i = 0; i < entry->relocation_count; i++) {
  2784. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2785. struct drm_gem_object *target_obj;
  2786. struct drm_i915_gem_object *target_obj_priv;
  2787. uint32_t reloc_val, reloc_offset;
  2788. uint32_t __iomem *reloc_entry;
  2789. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2790. reloc->target_handle);
  2791. if (target_obj == NULL) {
  2792. i915_gem_object_unpin(obj);
  2793. return -EBADF;
  2794. }
  2795. target_obj_priv = target_obj->driver_private;
  2796. #if WATCH_RELOC
  2797. DRM_INFO("%s: obj %p offset %08x target %d "
  2798. "read %08x write %08x gtt %08x "
  2799. "presumed %08x delta %08x\n",
  2800. __func__,
  2801. obj,
  2802. (int) reloc->offset,
  2803. (int) reloc->target_handle,
  2804. (int) reloc->read_domains,
  2805. (int) reloc->write_domain,
  2806. (int) target_obj_priv->gtt_offset,
  2807. (int) reloc->presumed_offset,
  2808. reloc->delta);
  2809. #endif
  2810. /* The target buffer should have appeared before us in the
  2811. * exec_object list, so it should have a GTT space bound by now.
  2812. */
  2813. if (target_obj_priv->gtt_space == NULL) {
  2814. DRM_ERROR("No GTT space found for object %d\n",
  2815. reloc->target_handle);
  2816. drm_gem_object_unreference(target_obj);
  2817. i915_gem_object_unpin(obj);
  2818. return -EINVAL;
  2819. }
  2820. /* Validate that the target is in a valid r/w GPU domain */
  2821. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2822. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2823. DRM_ERROR("reloc with read/write CPU domains: "
  2824. "obj %p target %d offset %d "
  2825. "read %08x write %08x",
  2826. obj, reloc->target_handle,
  2827. (int) reloc->offset,
  2828. reloc->read_domains,
  2829. reloc->write_domain);
  2830. drm_gem_object_unreference(target_obj);
  2831. i915_gem_object_unpin(obj);
  2832. return -EINVAL;
  2833. }
  2834. if (reloc->write_domain && target_obj->pending_write_domain &&
  2835. reloc->write_domain != target_obj->pending_write_domain) {
  2836. DRM_ERROR("Write domain conflict: "
  2837. "obj %p target %d offset %d "
  2838. "new %08x old %08x\n",
  2839. obj, reloc->target_handle,
  2840. (int) reloc->offset,
  2841. reloc->write_domain,
  2842. target_obj->pending_write_domain);
  2843. drm_gem_object_unreference(target_obj);
  2844. i915_gem_object_unpin(obj);
  2845. return -EINVAL;
  2846. }
  2847. target_obj->pending_read_domains |= reloc->read_domains;
  2848. target_obj->pending_write_domain |= reloc->write_domain;
  2849. /* If the relocation already has the right value in it, no
  2850. * more work needs to be done.
  2851. */
  2852. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2853. drm_gem_object_unreference(target_obj);
  2854. continue;
  2855. }
  2856. /* Check that the relocation address is valid... */
  2857. if (reloc->offset > obj->size - 4) {
  2858. DRM_ERROR("Relocation beyond object bounds: "
  2859. "obj %p target %d offset %d size %d.\n",
  2860. obj, reloc->target_handle,
  2861. (int) reloc->offset, (int) obj->size);
  2862. drm_gem_object_unreference(target_obj);
  2863. i915_gem_object_unpin(obj);
  2864. return -EINVAL;
  2865. }
  2866. if (reloc->offset & 3) {
  2867. DRM_ERROR("Relocation not 4-byte aligned: "
  2868. "obj %p target %d offset %d.\n",
  2869. obj, reloc->target_handle,
  2870. (int) reloc->offset);
  2871. drm_gem_object_unreference(target_obj);
  2872. i915_gem_object_unpin(obj);
  2873. return -EINVAL;
  2874. }
  2875. /* and points to somewhere within the target object. */
  2876. if (reloc->delta >= target_obj->size) {
  2877. DRM_ERROR("Relocation beyond target object bounds: "
  2878. "obj %p target %d delta %d size %d.\n",
  2879. obj, reloc->target_handle,
  2880. (int) reloc->delta, (int) target_obj->size);
  2881. drm_gem_object_unreference(target_obj);
  2882. i915_gem_object_unpin(obj);
  2883. return -EINVAL;
  2884. }
  2885. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2886. if (ret != 0) {
  2887. drm_gem_object_unreference(target_obj);
  2888. i915_gem_object_unpin(obj);
  2889. return -EINVAL;
  2890. }
  2891. /* Map the page containing the relocation we're going to
  2892. * perform.
  2893. */
  2894. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2895. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2896. (reloc_offset &
  2897. ~(PAGE_SIZE - 1)));
  2898. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2899. (reloc_offset & (PAGE_SIZE - 1)));
  2900. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2901. #if WATCH_BUF
  2902. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2903. obj, (unsigned int) reloc->offset,
  2904. readl(reloc_entry), reloc_val);
  2905. #endif
  2906. writel(reloc_val, reloc_entry);
  2907. io_mapping_unmap_atomic(reloc_page);
  2908. /* The updated presumed offset for this entry will be
  2909. * copied back out to the user.
  2910. */
  2911. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2912. drm_gem_object_unreference(target_obj);
  2913. }
  2914. #if WATCH_BUF
  2915. if (0)
  2916. i915_gem_dump_object(obj, 128, __func__, ~0);
  2917. #endif
  2918. return 0;
  2919. }
  2920. /** Dispatch a batchbuffer to the ring
  2921. */
  2922. static int
  2923. i915_dispatch_gem_execbuffer(struct drm_device *dev,
  2924. struct drm_i915_gem_execbuffer2 *exec,
  2925. struct drm_clip_rect *cliprects,
  2926. uint64_t exec_offset)
  2927. {
  2928. drm_i915_private_t *dev_priv = dev->dev_private;
  2929. int nbox = exec->num_cliprects;
  2930. int i = 0, count;
  2931. uint32_t exec_start, exec_len;
  2932. RING_LOCALS;
  2933. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2934. exec_len = (uint32_t) exec->batch_len;
  2935. trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
  2936. count = nbox ? nbox : 1;
  2937. for (i = 0; i < count; i++) {
  2938. if (i < nbox) {
  2939. int ret = i915_emit_box(dev, cliprects, i,
  2940. exec->DR1, exec->DR4);
  2941. if (ret)
  2942. return ret;
  2943. }
  2944. if (IS_I830(dev) || IS_845G(dev)) {
  2945. BEGIN_LP_RING(4);
  2946. OUT_RING(MI_BATCH_BUFFER);
  2947. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2948. OUT_RING(exec_start + exec_len - 4);
  2949. OUT_RING(0);
  2950. ADVANCE_LP_RING();
  2951. } else {
  2952. BEGIN_LP_RING(2);
  2953. if (IS_I965G(dev)) {
  2954. OUT_RING(MI_BATCH_BUFFER_START |
  2955. (2 << 6) |
  2956. MI_BATCH_NON_SECURE_I965);
  2957. OUT_RING(exec_start);
  2958. } else {
  2959. OUT_RING(MI_BATCH_BUFFER_START |
  2960. (2 << 6));
  2961. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2962. }
  2963. ADVANCE_LP_RING();
  2964. }
  2965. }
  2966. /* XXX breadcrumb */
  2967. return 0;
  2968. }
  2969. /* Throttle our rendering by waiting until the ring has completed our requests
  2970. * emitted over 20 msec ago.
  2971. *
  2972. * Note that if we were to use the current jiffies each time around the loop,
  2973. * we wouldn't escape the function with any frames outstanding if the time to
  2974. * render a frame was over 20ms.
  2975. *
  2976. * This should get us reasonable parallelism between CPU and GPU but also
  2977. * relatively low latency when blocking on a particular request to finish.
  2978. */
  2979. static int
  2980. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
  2981. {
  2982. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2983. int ret = 0;
  2984. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2985. mutex_lock(&dev->struct_mutex);
  2986. while (!list_empty(&i915_file_priv->mm.request_list)) {
  2987. struct drm_i915_gem_request *request;
  2988. request = list_first_entry(&i915_file_priv->mm.request_list,
  2989. struct drm_i915_gem_request,
  2990. client_list);
  2991. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2992. break;
  2993. ret = i915_wait_request(dev, request->seqno);
  2994. if (ret != 0)
  2995. break;
  2996. }
  2997. mutex_unlock(&dev->struct_mutex);
  2998. return ret;
  2999. }
  3000. static int
  3001. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
  3002. uint32_t buffer_count,
  3003. struct drm_i915_gem_relocation_entry **relocs)
  3004. {
  3005. uint32_t reloc_count = 0, reloc_index = 0, i;
  3006. int ret;
  3007. *relocs = NULL;
  3008. for (i = 0; i < buffer_count; i++) {
  3009. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  3010. return -EINVAL;
  3011. reloc_count += exec_list[i].relocation_count;
  3012. }
  3013. *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
  3014. if (*relocs == NULL) {
  3015. DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
  3016. return -ENOMEM;
  3017. }
  3018. for (i = 0; i < buffer_count; i++) {
  3019. struct drm_i915_gem_relocation_entry __user *user_relocs;
  3020. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  3021. ret = copy_from_user(&(*relocs)[reloc_index],
  3022. user_relocs,
  3023. exec_list[i].relocation_count *
  3024. sizeof(**relocs));
  3025. if (ret != 0) {
  3026. drm_free_large(*relocs);
  3027. *relocs = NULL;
  3028. return -EFAULT;
  3029. }
  3030. reloc_index += exec_list[i].relocation_count;
  3031. }
  3032. return 0;
  3033. }
  3034. static int
  3035. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
  3036. uint32_t buffer_count,
  3037. struct drm_i915_gem_relocation_entry *relocs)
  3038. {
  3039. uint32_t reloc_count = 0, i;
  3040. int ret = 0;
  3041. if (relocs == NULL)
  3042. return 0;
  3043. for (i = 0; i < buffer_count; i++) {
  3044. struct drm_i915_gem_relocation_entry __user *user_relocs;
  3045. int unwritten;
  3046. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  3047. unwritten = copy_to_user(user_relocs,
  3048. &relocs[reloc_count],
  3049. exec_list[i].relocation_count *
  3050. sizeof(*relocs));
  3051. if (unwritten) {
  3052. ret = -EFAULT;
  3053. goto err;
  3054. }
  3055. reloc_count += exec_list[i].relocation_count;
  3056. }
  3057. err:
  3058. drm_free_large(relocs);
  3059. return ret;
  3060. }
  3061. static int
  3062. i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
  3063. uint64_t exec_offset)
  3064. {
  3065. uint32_t exec_start, exec_len;
  3066. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  3067. exec_len = (uint32_t) exec->batch_len;
  3068. if ((exec_start | exec_len) & 0x7)
  3069. return -EINVAL;
  3070. if (!exec_start)
  3071. return -EINVAL;
  3072. return 0;
  3073. }
  3074. static int
  3075. i915_gem_wait_for_pending_flip(struct drm_device *dev,
  3076. struct drm_gem_object **object_list,
  3077. int count)
  3078. {
  3079. drm_i915_private_t *dev_priv = dev->dev_private;
  3080. struct drm_i915_gem_object *obj_priv;
  3081. DEFINE_WAIT(wait);
  3082. int i, ret = 0;
  3083. for (;;) {
  3084. prepare_to_wait(&dev_priv->pending_flip_queue,
  3085. &wait, TASK_INTERRUPTIBLE);
  3086. for (i = 0; i < count; i++) {
  3087. obj_priv = object_list[i]->driver_private;
  3088. if (atomic_read(&obj_priv->pending_flip) > 0)
  3089. break;
  3090. }
  3091. if (i == count)
  3092. break;
  3093. if (!signal_pending(current)) {
  3094. mutex_unlock(&dev->struct_mutex);
  3095. schedule();
  3096. mutex_lock(&dev->struct_mutex);
  3097. continue;
  3098. }
  3099. ret = -ERESTARTSYS;
  3100. break;
  3101. }
  3102. finish_wait(&dev_priv->pending_flip_queue, &wait);
  3103. return ret;
  3104. }
  3105. int
  3106. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3107. struct drm_file *file_priv,
  3108. struct drm_i915_gem_execbuffer2 *args,
  3109. struct drm_i915_gem_exec_object2 *exec_list)
  3110. {
  3111. drm_i915_private_t *dev_priv = dev->dev_private;
  3112. struct drm_gem_object **object_list = NULL;
  3113. struct drm_gem_object *batch_obj;
  3114. struct drm_i915_gem_object *obj_priv;
  3115. struct drm_clip_rect *cliprects = NULL;
  3116. struct drm_i915_gem_relocation_entry *relocs = NULL;
  3117. int ret = 0, ret2, i, pinned = 0;
  3118. uint64_t exec_offset;
  3119. uint32_t seqno, flush_domains, reloc_index;
  3120. int pin_tries, flips;
  3121. #if WATCH_EXEC
  3122. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3123. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3124. #endif
  3125. if (args->buffer_count < 1) {
  3126. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3127. return -EINVAL;
  3128. }
  3129. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3130. if (object_list == NULL) {
  3131. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3132. args->buffer_count);
  3133. ret = -ENOMEM;
  3134. goto pre_mutex_err;
  3135. }
  3136. if (args->num_cliprects != 0) {
  3137. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3138. GFP_KERNEL);
  3139. if (cliprects == NULL) {
  3140. ret = -ENOMEM;
  3141. goto pre_mutex_err;
  3142. }
  3143. ret = copy_from_user(cliprects,
  3144. (struct drm_clip_rect __user *)
  3145. (uintptr_t) args->cliprects_ptr,
  3146. sizeof(*cliprects) * args->num_cliprects);
  3147. if (ret != 0) {
  3148. DRM_ERROR("copy %d cliprects failed: %d\n",
  3149. args->num_cliprects, ret);
  3150. goto pre_mutex_err;
  3151. }
  3152. }
  3153. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  3154. &relocs);
  3155. if (ret != 0)
  3156. goto pre_mutex_err;
  3157. mutex_lock(&dev->struct_mutex);
  3158. i915_verify_inactive(dev, __FILE__, __LINE__);
  3159. if (atomic_read(&dev_priv->mm.wedged)) {
  3160. mutex_unlock(&dev->struct_mutex);
  3161. ret = -EIO;
  3162. goto pre_mutex_err;
  3163. }
  3164. if (dev_priv->mm.suspended) {
  3165. mutex_unlock(&dev->struct_mutex);
  3166. ret = -EBUSY;
  3167. goto pre_mutex_err;
  3168. }
  3169. /* Look up object handles */
  3170. flips = 0;
  3171. for (i = 0; i < args->buffer_count; i++) {
  3172. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  3173. exec_list[i].handle);
  3174. if (object_list[i] == NULL) {
  3175. DRM_ERROR("Invalid object handle %d at index %d\n",
  3176. exec_list[i].handle, i);
  3177. /* prevent error path from reading uninitialized data */
  3178. args->buffer_count = i + 1;
  3179. ret = -EBADF;
  3180. goto err;
  3181. }
  3182. obj_priv = object_list[i]->driver_private;
  3183. if (obj_priv->in_execbuffer) {
  3184. DRM_ERROR("Object %p appears more than once in object list\n",
  3185. object_list[i]);
  3186. /* prevent error path from reading uninitialized data */
  3187. args->buffer_count = i + 1;
  3188. ret = -EBADF;
  3189. goto err;
  3190. }
  3191. obj_priv->in_execbuffer = true;
  3192. flips += atomic_read(&obj_priv->pending_flip);
  3193. }
  3194. if (flips > 0) {
  3195. ret = i915_gem_wait_for_pending_flip(dev, object_list,
  3196. args->buffer_count);
  3197. if (ret)
  3198. goto err;
  3199. }
  3200. /* Pin and relocate */
  3201. for (pin_tries = 0; ; pin_tries++) {
  3202. ret = 0;
  3203. reloc_index = 0;
  3204. for (i = 0; i < args->buffer_count; i++) {
  3205. object_list[i]->pending_read_domains = 0;
  3206. object_list[i]->pending_write_domain = 0;
  3207. ret = i915_gem_object_pin_and_relocate(object_list[i],
  3208. file_priv,
  3209. &exec_list[i],
  3210. &relocs[reloc_index]);
  3211. if (ret)
  3212. break;
  3213. pinned = i + 1;
  3214. reloc_index += exec_list[i].relocation_count;
  3215. }
  3216. /* success */
  3217. if (ret == 0)
  3218. break;
  3219. /* error other than GTT full, or we've already tried again */
  3220. if (ret != -ENOSPC || pin_tries >= 1) {
  3221. if (ret != -ERESTARTSYS) {
  3222. unsigned long long total_size = 0;
  3223. for (i = 0; i < args->buffer_count; i++)
  3224. total_size += object_list[i]->size;
  3225. DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
  3226. pinned+1, args->buffer_count,
  3227. total_size, ret);
  3228. DRM_ERROR("%d objects [%d pinned], "
  3229. "%d object bytes [%d pinned], "
  3230. "%d/%d gtt bytes\n",
  3231. atomic_read(&dev->object_count),
  3232. atomic_read(&dev->pin_count),
  3233. atomic_read(&dev->object_memory),
  3234. atomic_read(&dev->pin_memory),
  3235. atomic_read(&dev->gtt_memory),
  3236. dev->gtt_total);
  3237. }
  3238. goto err;
  3239. }
  3240. /* unpin all of our buffers */
  3241. for (i = 0; i < pinned; i++)
  3242. i915_gem_object_unpin(object_list[i]);
  3243. pinned = 0;
  3244. /* evict everyone we can from the aperture */
  3245. ret = i915_gem_evict_everything(dev);
  3246. if (ret && ret != -ENOSPC)
  3247. goto err;
  3248. }
  3249. /* Set the pending read domains for the batch buffer to COMMAND */
  3250. batch_obj = object_list[args->buffer_count-1];
  3251. if (batch_obj->pending_write_domain) {
  3252. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3253. ret = -EINVAL;
  3254. goto err;
  3255. }
  3256. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3257. /* Sanity check the batch buffer, prior to moving objects */
  3258. exec_offset = exec_list[args->buffer_count - 1].offset;
  3259. ret = i915_gem_check_execbuffer (args, exec_offset);
  3260. if (ret != 0) {
  3261. DRM_ERROR("execbuf with invalid offset/length\n");
  3262. goto err;
  3263. }
  3264. i915_verify_inactive(dev, __FILE__, __LINE__);
  3265. /* Zero the global flush/invalidate flags. These
  3266. * will be modified as new domains are computed
  3267. * for each object
  3268. */
  3269. dev->invalidate_domains = 0;
  3270. dev->flush_domains = 0;
  3271. for (i = 0; i < args->buffer_count; i++) {
  3272. struct drm_gem_object *obj = object_list[i];
  3273. /* Compute new gpu domains and update invalidate/flush */
  3274. i915_gem_object_set_to_gpu_domain(obj);
  3275. }
  3276. i915_verify_inactive(dev, __FILE__, __LINE__);
  3277. if (dev->invalidate_domains | dev->flush_domains) {
  3278. #if WATCH_EXEC
  3279. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3280. __func__,
  3281. dev->invalidate_domains,
  3282. dev->flush_domains);
  3283. #endif
  3284. i915_gem_flush(dev,
  3285. dev->invalidate_domains,
  3286. dev->flush_domains);
  3287. if (dev->flush_domains & I915_GEM_GPU_DOMAINS)
  3288. (void)i915_add_request(dev, file_priv,
  3289. dev->flush_domains);
  3290. }
  3291. for (i = 0; i < args->buffer_count; i++) {
  3292. struct drm_gem_object *obj = object_list[i];
  3293. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3294. uint32_t old_write_domain = obj->write_domain;
  3295. obj->write_domain = obj->pending_write_domain;
  3296. if (obj->write_domain)
  3297. list_move_tail(&obj_priv->gpu_write_list,
  3298. &dev_priv->mm.gpu_write_list);
  3299. else
  3300. list_del_init(&obj_priv->gpu_write_list);
  3301. trace_i915_gem_object_change_domain(obj,
  3302. obj->read_domains,
  3303. old_write_domain);
  3304. }
  3305. i915_verify_inactive(dev, __FILE__, __LINE__);
  3306. #if WATCH_COHERENCY
  3307. for (i = 0; i < args->buffer_count; i++) {
  3308. i915_gem_object_check_coherency(object_list[i],
  3309. exec_list[i].handle);
  3310. }
  3311. #endif
  3312. #if WATCH_EXEC
  3313. i915_gem_dump_object(batch_obj,
  3314. args->batch_len,
  3315. __func__,
  3316. ~0);
  3317. #endif
  3318. /* Exec the batchbuffer */
  3319. ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
  3320. if (ret) {
  3321. DRM_ERROR("dispatch failed %d\n", ret);
  3322. goto err;
  3323. }
  3324. /*
  3325. * Ensure that the commands in the batch buffer are
  3326. * finished before the interrupt fires
  3327. */
  3328. flush_domains = i915_retire_commands(dev);
  3329. i915_verify_inactive(dev, __FILE__, __LINE__);
  3330. /*
  3331. * Get a seqno representing the execution of the current buffer,
  3332. * which we can wait on. We would like to mitigate these interrupts,
  3333. * likely by only creating seqnos occasionally (so that we have
  3334. * *some* interrupts representing completion of buffers that we can
  3335. * wait on when trying to clear up gtt space).
  3336. */
  3337. seqno = i915_add_request(dev, file_priv, flush_domains);
  3338. BUG_ON(seqno == 0);
  3339. for (i = 0; i < args->buffer_count; i++) {
  3340. struct drm_gem_object *obj = object_list[i];
  3341. i915_gem_object_move_to_active(obj, seqno);
  3342. #if WATCH_LRU
  3343. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  3344. #endif
  3345. }
  3346. #if WATCH_LRU
  3347. i915_dump_lru(dev, __func__);
  3348. #endif
  3349. i915_verify_inactive(dev, __FILE__, __LINE__);
  3350. err:
  3351. for (i = 0; i < pinned; i++)
  3352. i915_gem_object_unpin(object_list[i]);
  3353. for (i = 0; i < args->buffer_count; i++) {
  3354. if (object_list[i]) {
  3355. obj_priv = object_list[i]->driver_private;
  3356. obj_priv->in_execbuffer = false;
  3357. }
  3358. drm_gem_object_unreference(object_list[i]);
  3359. }
  3360. mutex_unlock(&dev->struct_mutex);
  3361. pre_mutex_err:
  3362. /* Copy the updated relocations out regardless of current error
  3363. * state. Failure to update the relocs would mean that the next
  3364. * time userland calls execbuf, it would do so with presumed offset
  3365. * state that didn't match the actual object state.
  3366. */
  3367. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  3368. relocs);
  3369. if (ret2 != 0) {
  3370. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  3371. if (ret == 0)
  3372. ret = ret2;
  3373. }
  3374. drm_free_large(object_list);
  3375. kfree(cliprects);
  3376. return ret;
  3377. }
  3378. /*
  3379. * Legacy execbuffer just creates an exec2 list from the original exec object
  3380. * list array and passes it to the real function.
  3381. */
  3382. int
  3383. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3384. struct drm_file *file_priv)
  3385. {
  3386. struct drm_i915_gem_execbuffer *args = data;
  3387. struct drm_i915_gem_execbuffer2 exec2;
  3388. struct drm_i915_gem_exec_object *exec_list = NULL;
  3389. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3390. int ret, i;
  3391. #if WATCH_EXEC
  3392. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3393. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3394. #endif
  3395. if (args->buffer_count < 1) {
  3396. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3397. return -EINVAL;
  3398. }
  3399. /* Copy in the exec list from userland */
  3400. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3401. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3402. if (exec_list == NULL || exec2_list == NULL) {
  3403. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3404. args->buffer_count);
  3405. drm_free_large(exec_list);
  3406. drm_free_large(exec2_list);
  3407. return -ENOMEM;
  3408. }
  3409. ret = copy_from_user(exec_list,
  3410. (struct drm_i915_relocation_entry __user *)
  3411. (uintptr_t) args->buffers_ptr,
  3412. sizeof(*exec_list) * args->buffer_count);
  3413. if (ret != 0) {
  3414. DRM_ERROR("copy %d exec entries failed %d\n",
  3415. args->buffer_count, ret);
  3416. drm_free_large(exec_list);
  3417. drm_free_large(exec2_list);
  3418. return -EFAULT;
  3419. }
  3420. for (i = 0; i < args->buffer_count; i++) {
  3421. exec2_list[i].handle = exec_list[i].handle;
  3422. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3423. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3424. exec2_list[i].alignment = exec_list[i].alignment;
  3425. exec2_list[i].offset = exec_list[i].offset;
  3426. if (!IS_I965G(dev))
  3427. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3428. else
  3429. exec2_list[i].flags = 0;
  3430. }
  3431. exec2.buffers_ptr = args->buffers_ptr;
  3432. exec2.buffer_count = args->buffer_count;
  3433. exec2.batch_start_offset = args->batch_start_offset;
  3434. exec2.batch_len = args->batch_len;
  3435. exec2.DR1 = args->DR1;
  3436. exec2.DR4 = args->DR4;
  3437. exec2.num_cliprects = args->num_cliprects;
  3438. exec2.cliprects_ptr = args->cliprects_ptr;
  3439. exec2.flags = 0;
  3440. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3441. if (!ret) {
  3442. /* Copy the new buffer offsets back to the user's exec list. */
  3443. for (i = 0; i < args->buffer_count; i++)
  3444. exec_list[i].offset = exec2_list[i].offset;
  3445. /* ... and back out to userspace */
  3446. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3447. (uintptr_t) args->buffers_ptr,
  3448. exec_list,
  3449. sizeof(*exec_list) * args->buffer_count);
  3450. if (ret) {
  3451. ret = -EFAULT;
  3452. DRM_ERROR("failed to copy %d exec entries "
  3453. "back to user (%d)\n",
  3454. args->buffer_count, ret);
  3455. }
  3456. }
  3457. drm_free_large(exec_list);
  3458. drm_free_large(exec2_list);
  3459. return ret;
  3460. }
  3461. int
  3462. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3463. struct drm_file *file_priv)
  3464. {
  3465. struct drm_i915_gem_execbuffer2 *args = data;
  3466. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3467. int ret;
  3468. #if WATCH_EXEC
  3469. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3470. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3471. #endif
  3472. if (args->buffer_count < 1) {
  3473. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3474. return -EINVAL;
  3475. }
  3476. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3477. if (exec2_list == NULL) {
  3478. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3479. args->buffer_count);
  3480. return -ENOMEM;
  3481. }
  3482. ret = copy_from_user(exec2_list,
  3483. (struct drm_i915_relocation_entry __user *)
  3484. (uintptr_t) args->buffers_ptr,
  3485. sizeof(*exec2_list) * args->buffer_count);
  3486. if (ret != 0) {
  3487. DRM_ERROR("copy %d exec entries failed %d\n",
  3488. args->buffer_count, ret);
  3489. drm_free_large(exec2_list);
  3490. return -EFAULT;
  3491. }
  3492. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3493. if (!ret) {
  3494. /* Copy the new buffer offsets back to the user's exec list. */
  3495. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3496. (uintptr_t) args->buffers_ptr,
  3497. exec2_list,
  3498. sizeof(*exec2_list) * args->buffer_count);
  3499. if (ret) {
  3500. ret = -EFAULT;
  3501. DRM_ERROR("failed to copy %d exec entries "
  3502. "back to user (%d)\n",
  3503. args->buffer_count, ret);
  3504. }
  3505. }
  3506. drm_free_large(exec2_list);
  3507. return ret;
  3508. }
  3509. int
  3510. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3511. {
  3512. struct drm_device *dev = obj->dev;
  3513. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3514. int ret;
  3515. i915_verify_inactive(dev, __FILE__, __LINE__);
  3516. if (obj_priv->gtt_space == NULL) {
  3517. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3518. if (ret)
  3519. return ret;
  3520. }
  3521. obj_priv->pin_count++;
  3522. /* If the object is not active and not pending a flush,
  3523. * remove it from the inactive list
  3524. */
  3525. if (obj_priv->pin_count == 1) {
  3526. atomic_inc(&dev->pin_count);
  3527. atomic_add(obj->size, &dev->pin_memory);
  3528. if (!obj_priv->active &&
  3529. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
  3530. !list_empty(&obj_priv->list))
  3531. list_del_init(&obj_priv->list);
  3532. }
  3533. i915_verify_inactive(dev, __FILE__, __LINE__);
  3534. return 0;
  3535. }
  3536. void
  3537. i915_gem_object_unpin(struct drm_gem_object *obj)
  3538. {
  3539. struct drm_device *dev = obj->dev;
  3540. drm_i915_private_t *dev_priv = dev->dev_private;
  3541. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3542. i915_verify_inactive(dev, __FILE__, __LINE__);
  3543. obj_priv->pin_count--;
  3544. BUG_ON(obj_priv->pin_count < 0);
  3545. BUG_ON(obj_priv->gtt_space == NULL);
  3546. /* If the object is no longer pinned, and is
  3547. * neither active nor being flushed, then stick it on
  3548. * the inactive list
  3549. */
  3550. if (obj_priv->pin_count == 0) {
  3551. if (!obj_priv->active &&
  3552. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  3553. list_move_tail(&obj_priv->list,
  3554. &dev_priv->mm.inactive_list);
  3555. atomic_dec(&dev->pin_count);
  3556. atomic_sub(obj->size, &dev->pin_memory);
  3557. }
  3558. i915_verify_inactive(dev, __FILE__, __LINE__);
  3559. }
  3560. int
  3561. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3562. struct drm_file *file_priv)
  3563. {
  3564. struct drm_i915_gem_pin *args = data;
  3565. struct drm_gem_object *obj;
  3566. struct drm_i915_gem_object *obj_priv;
  3567. int ret;
  3568. mutex_lock(&dev->struct_mutex);
  3569. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3570. if (obj == NULL) {
  3571. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3572. args->handle);
  3573. mutex_unlock(&dev->struct_mutex);
  3574. return -EBADF;
  3575. }
  3576. obj_priv = obj->driver_private;
  3577. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3578. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3579. drm_gem_object_unreference(obj);
  3580. mutex_unlock(&dev->struct_mutex);
  3581. return -EINVAL;
  3582. }
  3583. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3584. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3585. args->handle);
  3586. drm_gem_object_unreference(obj);
  3587. mutex_unlock(&dev->struct_mutex);
  3588. return -EINVAL;
  3589. }
  3590. obj_priv->user_pin_count++;
  3591. obj_priv->pin_filp = file_priv;
  3592. if (obj_priv->user_pin_count == 1) {
  3593. ret = i915_gem_object_pin(obj, args->alignment);
  3594. if (ret != 0) {
  3595. drm_gem_object_unreference(obj);
  3596. mutex_unlock(&dev->struct_mutex);
  3597. return ret;
  3598. }
  3599. }
  3600. /* XXX - flush the CPU caches for pinned objects
  3601. * as the X server doesn't manage domains yet
  3602. */
  3603. i915_gem_object_flush_cpu_write_domain(obj);
  3604. args->offset = obj_priv->gtt_offset;
  3605. drm_gem_object_unreference(obj);
  3606. mutex_unlock(&dev->struct_mutex);
  3607. return 0;
  3608. }
  3609. int
  3610. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3611. struct drm_file *file_priv)
  3612. {
  3613. struct drm_i915_gem_pin *args = data;
  3614. struct drm_gem_object *obj;
  3615. struct drm_i915_gem_object *obj_priv;
  3616. mutex_lock(&dev->struct_mutex);
  3617. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3618. if (obj == NULL) {
  3619. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3620. args->handle);
  3621. mutex_unlock(&dev->struct_mutex);
  3622. return -EBADF;
  3623. }
  3624. obj_priv = obj->driver_private;
  3625. if (obj_priv->pin_filp != file_priv) {
  3626. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3627. args->handle);
  3628. drm_gem_object_unreference(obj);
  3629. mutex_unlock(&dev->struct_mutex);
  3630. return -EINVAL;
  3631. }
  3632. obj_priv->user_pin_count--;
  3633. if (obj_priv->user_pin_count == 0) {
  3634. obj_priv->pin_filp = NULL;
  3635. i915_gem_object_unpin(obj);
  3636. }
  3637. drm_gem_object_unreference(obj);
  3638. mutex_unlock(&dev->struct_mutex);
  3639. return 0;
  3640. }
  3641. int
  3642. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3643. struct drm_file *file_priv)
  3644. {
  3645. struct drm_i915_gem_busy *args = data;
  3646. struct drm_gem_object *obj;
  3647. struct drm_i915_gem_object *obj_priv;
  3648. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3649. if (obj == NULL) {
  3650. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3651. args->handle);
  3652. return -EBADF;
  3653. }
  3654. mutex_lock(&dev->struct_mutex);
  3655. /* Update the active list for the hardware's current position.
  3656. * Otherwise this only updates on a delayed timer or when irqs are
  3657. * actually unmasked, and our working set ends up being larger than
  3658. * required.
  3659. */
  3660. i915_gem_retire_requests(dev);
  3661. obj_priv = obj->driver_private;
  3662. /* Don't count being on the flushing list against the object being
  3663. * done. Otherwise, a buffer left on the flushing list but not getting
  3664. * flushed (because nobody's flushing that domain) won't ever return
  3665. * unbusy and get reused by libdrm's bo cache. The other expected
  3666. * consumer of this interface, OpenGL's occlusion queries, also specs
  3667. * that the objects get unbusy "eventually" without any interference.
  3668. */
  3669. args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
  3670. drm_gem_object_unreference(obj);
  3671. mutex_unlock(&dev->struct_mutex);
  3672. return 0;
  3673. }
  3674. int
  3675. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3676. struct drm_file *file_priv)
  3677. {
  3678. return i915_gem_ring_throttle(dev, file_priv);
  3679. }
  3680. int
  3681. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3682. struct drm_file *file_priv)
  3683. {
  3684. struct drm_i915_gem_madvise *args = data;
  3685. struct drm_gem_object *obj;
  3686. struct drm_i915_gem_object *obj_priv;
  3687. switch (args->madv) {
  3688. case I915_MADV_DONTNEED:
  3689. case I915_MADV_WILLNEED:
  3690. break;
  3691. default:
  3692. return -EINVAL;
  3693. }
  3694. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3695. if (obj == NULL) {
  3696. DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
  3697. args->handle);
  3698. return -EBADF;
  3699. }
  3700. mutex_lock(&dev->struct_mutex);
  3701. obj_priv = obj->driver_private;
  3702. if (obj_priv->pin_count) {
  3703. drm_gem_object_unreference(obj);
  3704. mutex_unlock(&dev->struct_mutex);
  3705. DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
  3706. return -EINVAL;
  3707. }
  3708. if (obj_priv->madv != __I915_MADV_PURGED)
  3709. obj_priv->madv = args->madv;
  3710. /* if the object is no longer bound, discard its backing storage */
  3711. if (i915_gem_object_is_purgeable(obj_priv) &&
  3712. obj_priv->gtt_space == NULL)
  3713. i915_gem_object_truncate(obj);
  3714. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3715. drm_gem_object_unreference(obj);
  3716. mutex_unlock(&dev->struct_mutex);
  3717. return 0;
  3718. }
  3719. int i915_gem_init_object(struct drm_gem_object *obj)
  3720. {
  3721. struct drm_i915_gem_object *obj_priv;
  3722. obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
  3723. if (obj_priv == NULL)
  3724. return -ENOMEM;
  3725. /*
  3726. * We've just allocated pages from the kernel,
  3727. * so they've just been written by the CPU with
  3728. * zeros. They'll need to be clflushed before we
  3729. * use them with the GPU.
  3730. */
  3731. obj->write_domain = I915_GEM_DOMAIN_CPU;
  3732. obj->read_domains = I915_GEM_DOMAIN_CPU;
  3733. obj_priv->agp_type = AGP_USER_MEMORY;
  3734. obj->driver_private = obj_priv;
  3735. obj_priv->obj = obj;
  3736. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  3737. INIT_LIST_HEAD(&obj_priv->list);
  3738. INIT_LIST_HEAD(&obj_priv->gpu_write_list);
  3739. INIT_LIST_HEAD(&obj_priv->fence_list);
  3740. obj_priv->madv = I915_MADV_WILLNEED;
  3741. trace_i915_gem_object_create(obj);
  3742. return 0;
  3743. }
  3744. void i915_gem_free_object(struct drm_gem_object *obj)
  3745. {
  3746. struct drm_device *dev = obj->dev;
  3747. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3748. trace_i915_gem_object_destroy(obj);
  3749. while (obj_priv->pin_count > 0)
  3750. i915_gem_object_unpin(obj);
  3751. if (obj_priv->phys_obj)
  3752. i915_gem_detach_phys_object(dev, obj);
  3753. i915_gem_object_unbind(obj);
  3754. if (obj_priv->mmap_offset)
  3755. i915_gem_free_mmap_offset(obj);
  3756. kfree(obj_priv->page_cpu_valid);
  3757. kfree(obj_priv->bit_17);
  3758. kfree(obj->driver_private);
  3759. }
  3760. /** Unbinds all inactive objects. */
  3761. static int
  3762. i915_gem_evict_from_inactive_list(struct drm_device *dev)
  3763. {
  3764. drm_i915_private_t *dev_priv = dev->dev_private;
  3765. while (!list_empty(&dev_priv->mm.inactive_list)) {
  3766. struct drm_gem_object *obj;
  3767. int ret;
  3768. obj = list_first_entry(&dev_priv->mm.inactive_list,
  3769. struct drm_i915_gem_object,
  3770. list)->obj;
  3771. ret = i915_gem_object_unbind(obj);
  3772. if (ret != 0) {
  3773. DRM_ERROR("Error unbinding object: %d\n", ret);
  3774. return ret;
  3775. }
  3776. }
  3777. return 0;
  3778. }
  3779. int
  3780. i915_gem_idle(struct drm_device *dev)
  3781. {
  3782. drm_i915_private_t *dev_priv = dev->dev_private;
  3783. uint32_t seqno, cur_seqno, last_seqno;
  3784. int stuck, ret;
  3785. mutex_lock(&dev->struct_mutex);
  3786. if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
  3787. mutex_unlock(&dev->struct_mutex);
  3788. return 0;
  3789. }
  3790. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3791. * We need to replace this with a semaphore, or something.
  3792. */
  3793. dev_priv->mm.suspended = 1;
  3794. del_timer(&dev_priv->hangcheck_timer);
  3795. /* Cancel the retire work handler, wait for it to finish if running
  3796. */
  3797. mutex_unlock(&dev->struct_mutex);
  3798. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3799. mutex_lock(&dev->struct_mutex);
  3800. i915_kernel_lost_context(dev);
  3801. /* Flush the GPU along with all non-CPU write domains
  3802. */
  3803. i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  3804. seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
  3805. if (seqno == 0) {
  3806. mutex_unlock(&dev->struct_mutex);
  3807. return -ENOMEM;
  3808. }
  3809. dev_priv->mm.waiting_gem_seqno = seqno;
  3810. last_seqno = 0;
  3811. stuck = 0;
  3812. for (;;) {
  3813. cur_seqno = i915_get_gem_seqno(dev);
  3814. if (i915_seqno_passed(cur_seqno, seqno))
  3815. break;
  3816. if (last_seqno == cur_seqno) {
  3817. if (stuck++ > 100) {
  3818. DRM_ERROR("hardware wedged\n");
  3819. atomic_set(&dev_priv->mm.wedged, 1);
  3820. DRM_WAKEUP(&dev_priv->irq_queue);
  3821. break;
  3822. }
  3823. }
  3824. msleep(10);
  3825. last_seqno = cur_seqno;
  3826. }
  3827. dev_priv->mm.waiting_gem_seqno = 0;
  3828. i915_gem_retire_requests(dev);
  3829. spin_lock(&dev_priv->mm.active_list_lock);
  3830. if (!atomic_read(&dev_priv->mm.wedged)) {
  3831. /* Active and flushing should now be empty as we've
  3832. * waited for a sequence higher than any pending execbuffer
  3833. */
  3834. WARN_ON(!list_empty(&dev_priv->mm.active_list));
  3835. WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
  3836. /* Request should now be empty as we've also waited
  3837. * for the last request in the list
  3838. */
  3839. WARN_ON(!list_empty(&dev_priv->mm.request_list));
  3840. }
  3841. /* Empty the active and flushing lists to inactive. If there's
  3842. * anything left at this point, it means that we're wedged and
  3843. * nothing good's going to happen by leaving them there. So strip
  3844. * the GPU domains and just stuff them onto inactive.
  3845. */
  3846. while (!list_empty(&dev_priv->mm.active_list)) {
  3847. struct drm_gem_object *obj;
  3848. uint32_t old_write_domain;
  3849. obj = list_first_entry(&dev_priv->mm.active_list,
  3850. struct drm_i915_gem_object,
  3851. list)->obj;
  3852. old_write_domain = obj->write_domain;
  3853. obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3854. i915_gem_object_move_to_inactive(obj);
  3855. trace_i915_gem_object_change_domain(obj,
  3856. obj->read_domains,
  3857. old_write_domain);
  3858. }
  3859. spin_unlock(&dev_priv->mm.active_list_lock);
  3860. while (!list_empty(&dev_priv->mm.flushing_list)) {
  3861. struct drm_gem_object *obj;
  3862. uint32_t old_write_domain;
  3863. obj = list_first_entry(&dev_priv->mm.flushing_list,
  3864. struct drm_i915_gem_object,
  3865. list)->obj;
  3866. old_write_domain = obj->write_domain;
  3867. obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3868. i915_gem_object_move_to_inactive(obj);
  3869. trace_i915_gem_object_change_domain(obj,
  3870. obj->read_domains,
  3871. old_write_domain);
  3872. }
  3873. /* Move all inactive buffers out of the GTT. */
  3874. ret = i915_gem_evict_from_inactive_list(dev);
  3875. WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
  3876. if (ret) {
  3877. mutex_unlock(&dev->struct_mutex);
  3878. return ret;
  3879. }
  3880. i915_gem_cleanup_ringbuffer(dev);
  3881. mutex_unlock(&dev->struct_mutex);
  3882. return 0;
  3883. }
  3884. static int
  3885. i915_gem_init_hws(struct drm_device *dev)
  3886. {
  3887. drm_i915_private_t *dev_priv = dev->dev_private;
  3888. struct drm_gem_object *obj;
  3889. struct drm_i915_gem_object *obj_priv;
  3890. int ret;
  3891. /* If we need a physical address for the status page, it's already
  3892. * initialized at driver load time.
  3893. */
  3894. if (!I915_NEED_GFX_HWS(dev))
  3895. return 0;
  3896. obj = drm_gem_object_alloc(dev, 4096);
  3897. if (obj == NULL) {
  3898. DRM_ERROR("Failed to allocate status page\n");
  3899. return -ENOMEM;
  3900. }
  3901. obj_priv = obj->driver_private;
  3902. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3903. ret = i915_gem_object_pin(obj, 4096);
  3904. if (ret != 0) {
  3905. drm_gem_object_unreference(obj);
  3906. return ret;
  3907. }
  3908. dev_priv->status_gfx_addr = obj_priv->gtt_offset;
  3909. dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
  3910. if (dev_priv->hw_status_page == NULL) {
  3911. DRM_ERROR("Failed to map status page.\n");
  3912. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3913. i915_gem_object_unpin(obj);
  3914. drm_gem_object_unreference(obj);
  3915. return -EINVAL;
  3916. }
  3917. dev_priv->hws_obj = obj;
  3918. memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
  3919. I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
  3920. I915_READ(HWS_PGA); /* posting read */
  3921. DRM_DEBUG_DRIVER("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
  3922. return 0;
  3923. }
  3924. static void
  3925. i915_gem_cleanup_hws(struct drm_device *dev)
  3926. {
  3927. drm_i915_private_t *dev_priv = dev->dev_private;
  3928. struct drm_gem_object *obj;
  3929. struct drm_i915_gem_object *obj_priv;
  3930. if (dev_priv->hws_obj == NULL)
  3931. return;
  3932. obj = dev_priv->hws_obj;
  3933. obj_priv = obj->driver_private;
  3934. kunmap(obj_priv->pages[0]);
  3935. i915_gem_object_unpin(obj);
  3936. drm_gem_object_unreference(obj);
  3937. dev_priv->hws_obj = NULL;
  3938. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3939. dev_priv->hw_status_page = NULL;
  3940. /* Write high address into HWS_PGA when disabling. */
  3941. I915_WRITE(HWS_PGA, 0x1ffff000);
  3942. }
  3943. int
  3944. i915_gem_init_ringbuffer(struct drm_device *dev)
  3945. {
  3946. drm_i915_private_t *dev_priv = dev->dev_private;
  3947. struct drm_gem_object *obj;
  3948. struct drm_i915_gem_object *obj_priv;
  3949. drm_i915_ring_buffer_t *ring = &dev_priv->ring;
  3950. int ret;
  3951. u32 head;
  3952. ret = i915_gem_init_hws(dev);
  3953. if (ret != 0)
  3954. return ret;
  3955. obj = drm_gem_object_alloc(dev, 128 * 1024);
  3956. if (obj == NULL) {
  3957. DRM_ERROR("Failed to allocate ringbuffer\n");
  3958. i915_gem_cleanup_hws(dev);
  3959. return -ENOMEM;
  3960. }
  3961. obj_priv = obj->driver_private;
  3962. ret = i915_gem_object_pin(obj, 4096);
  3963. if (ret != 0) {
  3964. drm_gem_object_unreference(obj);
  3965. i915_gem_cleanup_hws(dev);
  3966. return ret;
  3967. }
  3968. /* Set up the kernel mapping for the ring. */
  3969. ring->Size = obj->size;
  3970. ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
  3971. ring->map.size = obj->size;
  3972. ring->map.type = 0;
  3973. ring->map.flags = 0;
  3974. ring->map.mtrr = 0;
  3975. drm_core_ioremap_wc(&ring->map, dev);
  3976. if (ring->map.handle == NULL) {
  3977. DRM_ERROR("Failed to map ringbuffer.\n");
  3978. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3979. i915_gem_object_unpin(obj);
  3980. drm_gem_object_unreference(obj);
  3981. i915_gem_cleanup_hws(dev);
  3982. return -EINVAL;
  3983. }
  3984. ring->ring_obj = obj;
  3985. ring->virtual_start = ring->map.handle;
  3986. /* Stop the ring if it's running. */
  3987. I915_WRITE(PRB0_CTL, 0);
  3988. I915_WRITE(PRB0_TAIL, 0);
  3989. I915_WRITE(PRB0_HEAD, 0);
  3990. /* Initialize the ring. */
  3991. I915_WRITE(PRB0_START, obj_priv->gtt_offset);
  3992. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3993. /* G45 ring initialization fails to reset head to zero */
  3994. if (head != 0) {
  3995. DRM_ERROR("Ring head not reset to zero "
  3996. "ctl %08x head %08x tail %08x start %08x\n",
  3997. I915_READ(PRB0_CTL),
  3998. I915_READ(PRB0_HEAD),
  3999. I915_READ(PRB0_TAIL),
  4000. I915_READ(PRB0_START));
  4001. I915_WRITE(PRB0_HEAD, 0);
  4002. DRM_ERROR("Ring head forced to zero "
  4003. "ctl %08x head %08x tail %08x start %08x\n",
  4004. I915_READ(PRB0_CTL),
  4005. I915_READ(PRB0_HEAD),
  4006. I915_READ(PRB0_TAIL),
  4007. I915_READ(PRB0_START));
  4008. }
  4009. I915_WRITE(PRB0_CTL,
  4010. ((obj->size - 4096) & RING_NR_PAGES) |
  4011. RING_NO_REPORT |
  4012. RING_VALID);
  4013. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  4014. /* If the head is still not zero, the ring is dead */
  4015. if (head != 0) {
  4016. DRM_ERROR("Ring initialization failed "
  4017. "ctl %08x head %08x tail %08x start %08x\n",
  4018. I915_READ(PRB0_CTL),
  4019. I915_READ(PRB0_HEAD),
  4020. I915_READ(PRB0_TAIL),
  4021. I915_READ(PRB0_START));
  4022. return -EIO;
  4023. }
  4024. /* Update our cache of the ring state */
  4025. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  4026. i915_kernel_lost_context(dev);
  4027. else {
  4028. ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  4029. ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
  4030. ring->space = ring->head - (ring->tail + 8);
  4031. if (ring->space < 0)
  4032. ring->space += ring->Size;
  4033. }
  4034. return 0;
  4035. }
  4036. void
  4037. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  4038. {
  4039. drm_i915_private_t *dev_priv = dev->dev_private;
  4040. if (dev_priv->ring.ring_obj == NULL)
  4041. return;
  4042. drm_core_ioremapfree(&dev_priv->ring.map, dev);
  4043. i915_gem_object_unpin(dev_priv->ring.ring_obj);
  4044. drm_gem_object_unreference(dev_priv->ring.ring_obj);
  4045. dev_priv->ring.ring_obj = NULL;
  4046. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  4047. i915_gem_cleanup_hws(dev);
  4048. }
  4049. int
  4050. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  4051. struct drm_file *file_priv)
  4052. {
  4053. drm_i915_private_t *dev_priv = dev->dev_private;
  4054. int ret;
  4055. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4056. return 0;
  4057. if (atomic_read(&dev_priv->mm.wedged)) {
  4058. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  4059. atomic_set(&dev_priv->mm.wedged, 0);
  4060. }
  4061. mutex_lock(&dev->struct_mutex);
  4062. dev_priv->mm.suspended = 0;
  4063. ret = i915_gem_init_ringbuffer(dev);
  4064. if (ret != 0) {
  4065. mutex_unlock(&dev->struct_mutex);
  4066. return ret;
  4067. }
  4068. spin_lock(&dev_priv->mm.active_list_lock);
  4069. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  4070. spin_unlock(&dev_priv->mm.active_list_lock);
  4071. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  4072. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  4073. BUG_ON(!list_empty(&dev_priv->mm.request_list));
  4074. mutex_unlock(&dev->struct_mutex);
  4075. drm_irq_install(dev);
  4076. return 0;
  4077. }
  4078. int
  4079. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  4080. struct drm_file *file_priv)
  4081. {
  4082. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4083. return 0;
  4084. drm_irq_uninstall(dev);
  4085. return i915_gem_idle(dev);
  4086. }
  4087. void
  4088. i915_gem_lastclose(struct drm_device *dev)
  4089. {
  4090. int ret;
  4091. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4092. return;
  4093. ret = i915_gem_idle(dev);
  4094. if (ret)
  4095. DRM_ERROR("failed to idle hardware: %d\n", ret);
  4096. }
  4097. void
  4098. i915_gem_load(struct drm_device *dev)
  4099. {
  4100. int i;
  4101. drm_i915_private_t *dev_priv = dev->dev_private;
  4102. spin_lock_init(&dev_priv->mm.active_list_lock);
  4103. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  4104. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  4105. INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
  4106. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  4107. INIT_LIST_HEAD(&dev_priv->mm.request_list);
  4108. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  4109. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  4110. i915_gem_retire_work_handler);
  4111. dev_priv->mm.next_gem_seqno = 1;
  4112. spin_lock(&shrink_list_lock);
  4113. list_add(&dev_priv->mm.shrink_list, &shrink_list);
  4114. spin_unlock(&shrink_list_lock);
  4115. /* Old X drivers will take 0-2 for front, back, depth buffers */
  4116. dev_priv->fence_reg_start = 3;
  4117. if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4118. dev_priv->num_fence_regs = 16;
  4119. else
  4120. dev_priv->num_fence_regs = 8;
  4121. /* Initialize fence registers to zero */
  4122. if (IS_I965G(dev)) {
  4123. for (i = 0; i < 16; i++)
  4124. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  4125. } else {
  4126. for (i = 0; i < 8; i++)
  4127. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  4128. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4129. for (i = 0; i < 8; i++)
  4130. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  4131. }
  4132. i915_gem_detect_bit_6_swizzle(dev);
  4133. init_waitqueue_head(&dev_priv->pending_flip_queue);
  4134. }
  4135. /*
  4136. * Create a physically contiguous memory object for this object
  4137. * e.g. for cursor + overlay regs
  4138. */
  4139. int i915_gem_init_phys_object(struct drm_device *dev,
  4140. int id, int size)
  4141. {
  4142. drm_i915_private_t *dev_priv = dev->dev_private;
  4143. struct drm_i915_gem_phys_object *phys_obj;
  4144. int ret;
  4145. if (dev_priv->mm.phys_objs[id - 1] || !size)
  4146. return 0;
  4147. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  4148. if (!phys_obj)
  4149. return -ENOMEM;
  4150. phys_obj->id = id;
  4151. phys_obj->handle = drm_pci_alloc(dev, size, 0);
  4152. if (!phys_obj->handle) {
  4153. ret = -ENOMEM;
  4154. goto kfree_obj;
  4155. }
  4156. #ifdef CONFIG_X86
  4157. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4158. #endif
  4159. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4160. return 0;
  4161. kfree_obj:
  4162. kfree(phys_obj);
  4163. return ret;
  4164. }
  4165. void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4166. {
  4167. drm_i915_private_t *dev_priv = dev->dev_private;
  4168. struct drm_i915_gem_phys_object *phys_obj;
  4169. if (!dev_priv->mm.phys_objs[id - 1])
  4170. return;
  4171. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4172. if (phys_obj->cur_obj) {
  4173. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4174. }
  4175. #ifdef CONFIG_X86
  4176. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4177. #endif
  4178. drm_pci_free(dev, phys_obj->handle);
  4179. kfree(phys_obj);
  4180. dev_priv->mm.phys_objs[id - 1] = NULL;
  4181. }
  4182. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4183. {
  4184. int i;
  4185. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4186. i915_gem_free_phys_object(dev, i);
  4187. }
  4188. void i915_gem_detach_phys_object(struct drm_device *dev,
  4189. struct drm_gem_object *obj)
  4190. {
  4191. struct drm_i915_gem_object *obj_priv;
  4192. int i;
  4193. int ret;
  4194. int page_count;
  4195. obj_priv = obj->driver_private;
  4196. if (!obj_priv->phys_obj)
  4197. return;
  4198. ret = i915_gem_object_get_pages(obj, 0);
  4199. if (ret)
  4200. goto out;
  4201. page_count = obj->size / PAGE_SIZE;
  4202. for (i = 0; i < page_count; i++) {
  4203. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4204. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4205. memcpy(dst, src, PAGE_SIZE);
  4206. kunmap_atomic(dst, KM_USER0);
  4207. }
  4208. drm_clflush_pages(obj_priv->pages, page_count);
  4209. drm_agp_chipset_flush(dev);
  4210. i915_gem_object_put_pages(obj);
  4211. out:
  4212. obj_priv->phys_obj->cur_obj = NULL;
  4213. obj_priv->phys_obj = NULL;
  4214. }
  4215. int
  4216. i915_gem_attach_phys_object(struct drm_device *dev,
  4217. struct drm_gem_object *obj, int id)
  4218. {
  4219. drm_i915_private_t *dev_priv = dev->dev_private;
  4220. struct drm_i915_gem_object *obj_priv;
  4221. int ret = 0;
  4222. int page_count;
  4223. int i;
  4224. if (id > I915_MAX_PHYS_OBJECT)
  4225. return -EINVAL;
  4226. obj_priv = obj->driver_private;
  4227. if (obj_priv->phys_obj) {
  4228. if (obj_priv->phys_obj->id == id)
  4229. return 0;
  4230. i915_gem_detach_phys_object(dev, obj);
  4231. }
  4232. /* create a new object */
  4233. if (!dev_priv->mm.phys_objs[id - 1]) {
  4234. ret = i915_gem_init_phys_object(dev, id,
  4235. obj->size);
  4236. if (ret) {
  4237. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4238. goto out;
  4239. }
  4240. }
  4241. /* bind to the object */
  4242. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4243. obj_priv->phys_obj->cur_obj = obj;
  4244. ret = i915_gem_object_get_pages(obj, 0);
  4245. if (ret) {
  4246. DRM_ERROR("failed to get page list\n");
  4247. goto out;
  4248. }
  4249. page_count = obj->size / PAGE_SIZE;
  4250. for (i = 0; i < page_count; i++) {
  4251. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4252. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4253. memcpy(dst, src, PAGE_SIZE);
  4254. kunmap_atomic(src, KM_USER0);
  4255. }
  4256. i915_gem_object_put_pages(obj);
  4257. return 0;
  4258. out:
  4259. return ret;
  4260. }
  4261. static int
  4262. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4263. struct drm_i915_gem_pwrite *args,
  4264. struct drm_file *file_priv)
  4265. {
  4266. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  4267. void *obj_addr;
  4268. int ret;
  4269. char __user *user_data;
  4270. user_data = (char __user *) (uintptr_t) args->data_ptr;
  4271. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4272. DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
  4273. ret = copy_from_user(obj_addr, user_data, args->size);
  4274. if (ret)
  4275. return -EFAULT;
  4276. drm_agp_chipset_flush(dev);
  4277. return 0;
  4278. }
  4279. void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
  4280. {
  4281. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  4282. /* Clean up our request list when the client is going away, so that
  4283. * later retire_requests won't dereference our soon-to-be-gone
  4284. * file_priv.
  4285. */
  4286. mutex_lock(&dev->struct_mutex);
  4287. while (!list_empty(&i915_file_priv->mm.request_list))
  4288. list_del_init(i915_file_priv->mm.request_list.next);
  4289. mutex_unlock(&dev->struct_mutex);
  4290. }
  4291. static int
  4292. i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
  4293. {
  4294. drm_i915_private_t *dev_priv, *next_dev;
  4295. struct drm_i915_gem_object *obj_priv, *next_obj;
  4296. int cnt = 0;
  4297. int would_deadlock = 1;
  4298. /* "fast-path" to count number of available objects */
  4299. if (nr_to_scan == 0) {
  4300. spin_lock(&shrink_list_lock);
  4301. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4302. struct drm_device *dev = dev_priv->dev;
  4303. if (mutex_trylock(&dev->struct_mutex)) {
  4304. list_for_each_entry(obj_priv,
  4305. &dev_priv->mm.inactive_list,
  4306. list)
  4307. cnt++;
  4308. mutex_unlock(&dev->struct_mutex);
  4309. }
  4310. }
  4311. spin_unlock(&shrink_list_lock);
  4312. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4313. }
  4314. spin_lock(&shrink_list_lock);
  4315. /* first scan for clean buffers */
  4316. list_for_each_entry_safe(dev_priv, next_dev,
  4317. &shrink_list, mm.shrink_list) {
  4318. struct drm_device *dev = dev_priv->dev;
  4319. if (! mutex_trylock(&dev->struct_mutex))
  4320. continue;
  4321. spin_unlock(&shrink_list_lock);
  4322. i915_gem_retire_requests(dev);
  4323. list_for_each_entry_safe(obj_priv, next_obj,
  4324. &dev_priv->mm.inactive_list,
  4325. list) {
  4326. if (i915_gem_object_is_purgeable(obj_priv)) {
  4327. i915_gem_object_unbind(obj_priv->obj);
  4328. if (--nr_to_scan <= 0)
  4329. break;
  4330. }
  4331. }
  4332. spin_lock(&shrink_list_lock);
  4333. mutex_unlock(&dev->struct_mutex);
  4334. would_deadlock = 0;
  4335. if (nr_to_scan <= 0)
  4336. break;
  4337. }
  4338. /* second pass, evict/count anything still on the inactive list */
  4339. list_for_each_entry_safe(dev_priv, next_dev,
  4340. &shrink_list, mm.shrink_list) {
  4341. struct drm_device *dev = dev_priv->dev;
  4342. if (! mutex_trylock(&dev->struct_mutex))
  4343. continue;
  4344. spin_unlock(&shrink_list_lock);
  4345. list_for_each_entry_safe(obj_priv, next_obj,
  4346. &dev_priv->mm.inactive_list,
  4347. list) {
  4348. if (nr_to_scan > 0) {
  4349. i915_gem_object_unbind(obj_priv->obj);
  4350. nr_to_scan--;
  4351. } else
  4352. cnt++;
  4353. }
  4354. spin_lock(&shrink_list_lock);
  4355. mutex_unlock(&dev->struct_mutex);
  4356. would_deadlock = 0;
  4357. }
  4358. spin_unlock(&shrink_list_lock);
  4359. if (would_deadlock)
  4360. return -1;
  4361. else if (cnt > 0)
  4362. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4363. else
  4364. return 0;
  4365. }
  4366. static struct shrinker shrinker = {
  4367. .shrink = i915_gem_shrink,
  4368. .seeks = DEFAULT_SEEKS,
  4369. };
  4370. __init void
  4371. i915_gem_shrinker_init(void)
  4372. {
  4373. register_shrinker(&shrinker);
  4374. }
  4375. __exit void
  4376. i915_gem_shrinker_exit(void)
  4377. {
  4378. unregister_shrinker(&shrinker);
  4379. }