system.h 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460
  1. #ifndef _ASM_X86_SYSTEM_H
  2. #define _ASM_X86_SYSTEM_H
  3. #include <asm/asm.h>
  4. #include <asm/segment.h>
  5. #include <asm/cpufeature.h>
  6. #include <asm/cmpxchg.h>
  7. #include <asm/nops.h>
  8. #include <linux/kernel.h>
  9. #include <linux/irqflags.h>
  10. /* entries in ARCH_DLINFO: */
  11. #if defined(CONFIG_IA32_EMULATION) || !defined(CONFIG_X86_64)
  12. # define AT_VECTOR_SIZE_ARCH 2
  13. #else /* else it's non-compat x86-64 */
  14. # define AT_VECTOR_SIZE_ARCH 1
  15. #endif
  16. struct task_struct; /* one of the stranger aspects of C forward declarations */
  17. struct task_struct *__switch_to(struct task_struct *prev,
  18. struct task_struct *next);
  19. struct tss_struct;
  20. void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  21. struct tss_struct *tss);
  22. extern void show_regs_common(void);
  23. #ifdef CONFIG_X86_32
  24. #ifdef CONFIG_CC_STACKPROTECTOR
  25. #define __switch_canary \
  26. "movl %P[task_canary](%[next]), %%ebx\n\t" \
  27. "movl %%ebx, "__percpu_arg([stack_canary])"\n\t"
  28. #define __switch_canary_oparam \
  29. , [stack_canary] "=m" (per_cpu_var(stack_canary.canary))
  30. #define __switch_canary_iparam \
  31. , [task_canary] "i" (offsetof(struct task_struct, stack_canary))
  32. #else /* CC_STACKPROTECTOR */
  33. #define __switch_canary
  34. #define __switch_canary_oparam
  35. #define __switch_canary_iparam
  36. #endif /* CC_STACKPROTECTOR */
  37. /*
  38. * Saving eflags is important. It switches not only IOPL between tasks,
  39. * it also protects other tasks from NT leaking through sysenter etc.
  40. */
  41. #define switch_to(prev, next, last) \
  42. do { \
  43. /* \
  44. * Context-switching clobbers all registers, so we clobber \
  45. * them explicitly, via unused output variables. \
  46. * (EAX and EBP is not listed because EBP is saved/restored \
  47. * explicitly for wchan access and EAX is the return value of \
  48. * __switch_to()) \
  49. */ \
  50. unsigned long ebx, ecx, edx, esi, edi; \
  51. \
  52. asm volatile("pushfl\n\t" /* save flags */ \
  53. "pushl %%ebp\n\t" /* save EBP */ \
  54. "movl %%esp,%[prev_sp]\n\t" /* save ESP */ \
  55. "movl %[next_sp],%%esp\n\t" /* restore ESP */ \
  56. "movl $1f,%[prev_ip]\n\t" /* save EIP */ \
  57. "pushl %[next_ip]\n\t" /* restore EIP */ \
  58. __switch_canary \
  59. "jmp __switch_to\n" /* regparm call */ \
  60. "1:\t" \
  61. "popl %%ebp\n\t" /* restore EBP */ \
  62. "popfl\n" /* restore flags */ \
  63. \
  64. /* output parameters */ \
  65. : [prev_sp] "=m" (prev->thread.sp), \
  66. [prev_ip] "=m" (prev->thread.ip), \
  67. "=a" (last), \
  68. \
  69. /* clobbered output registers: */ \
  70. "=b" (ebx), "=c" (ecx), "=d" (edx), \
  71. "=S" (esi), "=D" (edi) \
  72. \
  73. __switch_canary_oparam \
  74. \
  75. /* input parameters: */ \
  76. : [next_sp] "m" (next->thread.sp), \
  77. [next_ip] "m" (next->thread.ip), \
  78. \
  79. /* regparm parameters for __switch_to(): */ \
  80. [prev] "a" (prev), \
  81. [next] "d" (next) \
  82. \
  83. __switch_canary_iparam \
  84. \
  85. : /* reloaded segment registers */ \
  86. "memory"); \
  87. } while (0)
  88. /*
  89. * disable hlt during certain critical i/o operations
  90. */
  91. #define HAVE_DISABLE_HLT
  92. #else
  93. #define __SAVE(reg, offset) "movq %%" #reg ",(14-" #offset ")*8(%%rsp)\n\t"
  94. #define __RESTORE(reg, offset) "movq (14-" #offset ")*8(%%rsp),%%" #reg "\n\t"
  95. /* frame pointer must be last for get_wchan */
  96. #define SAVE_CONTEXT "pushf ; pushq %%rbp ; movq %%rsi,%%rbp\n\t"
  97. #define RESTORE_CONTEXT "movq %%rbp,%%rsi ; popq %%rbp ; popf\t"
  98. #define __EXTRA_CLOBBER \
  99. , "rcx", "rbx", "rdx", "r8", "r9", "r10", "r11", \
  100. "r12", "r13", "r14", "r15"
  101. #ifdef CONFIG_CC_STACKPROTECTOR
  102. #define __switch_canary \
  103. "movq %P[task_canary](%%rsi),%%r8\n\t" \
  104. "movq %%r8,"__percpu_arg([gs_canary])"\n\t"
  105. #define __switch_canary_oparam \
  106. , [gs_canary] "=m" (per_cpu_var(irq_stack_union.stack_canary))
  107. #define __switch_canary_iparam \
  108. , [task_canary] "i" (offsetof(struct task_struct, stack_canary))
  109. #else /* CC_STACKPROTECTOR */
  110. #define __switch_canary
  111. #define __switch_canary_oparam
  112. #define __switch_canary_iparam
  113. #endif /* CC_STACKPROTECTOR */
  114. /* Save restore flags to clear handle leaking NT */
  115. #define switch_to(prev, next, last) \
  116. asm volatile(SAVE_CONTEXT \
  117. "movq %%rsp,%P[threadrsp](%[prev])\n\t" /* save RSP */ \
  118. "movq %P[threadrsp](%[next]),%%rsp\n\t" /* restore RSP */ \
  119. "call __switch_to\n\t" \
  120. "movq "__percpu_arg([current_task])",%%rsi\n\t" \
  121. __switch_canary \
  122. "movq %P[thread_info](%%rsi),%%r8\n\t" \
  123. "movq %%rax,%%rdi\n\t" \
  124. "testl %[_tif_fork],%P[ti_flags](%%r8)\n\t" \
  125. "jnz ret_from_fork\n\t" \
  126. RESTORE_CONTEXT \
  127. : "=a" (last) \
  128. __switch_canary_oparam \
  129. : [next] "S" (next), [prev] "D" (prev), \
  130. [threadrsp] "i" (offsetof(struct task_struct, thread.sp)), \
  131. [ti_flags] "i" (offsetof(struct thread_info, flags)), \
  132. [_tif_fork] "i" (_TIF_FORK), \
  133. [thread_info] "i" (offsetof(struct task_struct, stack)), \
  134. [current_task] "m" (per_cpu_var(current_task)) \
  135. __switch_canary_iparam \
  136. : "memory", "cc" __EXTRA_CLOBBER)
  137. #endif
  138. #ifdef __KERNEL__
  139. extern void native_load_gs_index(unsigned);
  140. /*
  141. * Load a segment. Fall back on loading the zero
  142. * segment if something goes wrong..
  143. */
  144. #define loadsegment(seg, value) \
  145. do { \
  146. unsigned short __val = (value); \
  147. \
  148. asm volatile(" \n" \
  149. "1: movl %k0,%%" #seg " \n" \
  150. \
  151. ".section .fixup,\"ax\" \n" \
  152. "2: xorl %k0,%k0 \n" \
  153. " jmp 1b \n" \
  154. ".previous \n" \
  155. \
  156. _ASM_EXTABLE(1b, 2b) \
  157. \
  158. : "+r" (__val) : : "memory"); \
  159. } while (0)
  160. /*
  161. * Save a segment register away
  162. */
  163. #define savesegment(seg, value) \
  164. asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
  165. /*
  166. * x86_32 user gs accessors.
  167. */
  168. #ifdef CONFIG_X86_32
  169. #ifdef CONFIG_X86_32_LAZY_GS
  170. #define get_user_gs(regs) (u16)({unsigned long v; savesegment(gs, v); v;})
  171. #define set_user_gs(regs, v) loadsegment(gs, (unsigned long)(v))
  172. #define task_user_gs(tsk) ((tsk)->thread.gs)
  173. #define lazy_save_gs(v) savesegment(gs, (v))
  174. #define lazy_load_gs(v) loadsegment(gs, (v))
  175. #else /* X86_32_LAZY_GS */
  176. #define get_user_gs(regs) (u16)((regs)->gs)
  177. #define set_user_gs(regs, v) do { (regs)->gs = (v); } while (0)
  178. #define task_user_gs(tsk) (task_pt_regs(tsk)->gs)
  179. #define lazy_save_gs(v) do { } while (0)
  180. #define lazy_load_gs(v) do { } while (0)
  181. #endif /* X86_32_LAZY_GS */
  182. #endif /* X86_32 */
  183. static inline unsigned long get_limit(unsigned long segment)
  184. {
  185. unsigned long __limit;
  186. asm("lsll %1,%0" : "=r" (__limit) : "r" (segment));
  187. return __limit + 1;
  188. }
  189. static inline void native_clts(void)
  190. {
  191. asm volatile("clts");
  192. }
  193. /*
  194. * Volatile isn't enough to prevent the compiler from reordering the
  195. * read/write functions for the control registers and messing everything up.
  196. * A memory clobber would solve the problem, but would prevent reordering of
  197. * all loads stores around it, which can hurt performance. Solution is to
  198. * use a variable and mimic reads and writes to it to enforce serialization
  199. */
  200. static unsigned long __force_order;
  201. static inline unsigned long native_read_cr0(void)
  202. {
  203. unsigned long val;
  204. asm volatile("mov %%cr0,%0\n\t" : "=r" (val), "=m" (__force_order));
  205. return val;
  206. }
  207. static inline void native_write_cr0(unsigned long val)
  208. {
  209. asm volatile("mov %0,%%cr0": : "r" (val), "m" (__force_order));
  210. }
  211. static inline unsigned long native_read_cr2(void)
  212. {
  213. unsigned long val;
  214. asm volatile("mov %%cr2,%0\n\t" : "=r" (val), "=m" (__force_order));
  215. return val;
  216. }
  217. static inline void native_write_cr2(unsigned long val)
  218. {
  219. asm volatile("mov %0,%%cr2": : "r" (val), "m" (__force_order));
  220. }
  221. static inline unsigned long native_read_cr3(void)
  222. {
  223. unsigned long val;
  224. asm volatile("mov %%cr3,%0\n\t" : "=r" (val), "=m" (__force_order));
  225. return val;
  226. }
  227. static inline void native_write_cr3(unsigned long val)
  228. {
  229. asm volatile("mov %0,%%cr3": : "r" (val), "m" (__force_order));
  230. }
  231. static inline unsigned long native_read_cr4(void)
  232. {
  233. unsigned long val;
  234. asm volatile("mov %%cr4,%0\n\t" : "=r" (val), "=m" (__force_order));
  235. return val;
  236. }
  237. static inline unsigned long native_read_cr4_safe(void)
  238. {
  239. unsigned long val;
  240. /* This could fault if %cr4 does not exist. In x86_64, a cr4 always
  241. * exists, so it will never fail. */
  242. #ifdef CONFIG_X86_32
  243. asm volatile("1: mov %%cr4, %0\n"
  244. "2:\n"
  245. _ASM_EXTABLE(1b, 2b)
  246. : "=r" (val), "=m" (__force_order) : "0" (0));
  247. #else
  248. val = native_read_cr4();
  249. #endif
  250. return val;
  251. }
  252. static inline void native_write_cr4(unsigned long val)
  253. {
  254. asm volatile("mov %0,%%cr4": : "r" (val), "m" (__force_order));
  255. }
  256. #ifdef CONFIG_X86_64
  257. static inline unsigned long native_read_cr8(void)
  258. {
  259. unsigned long cr8;
  260. asm volatile("movq %%cr8,%0" : "=r" (cr8));
  261. return cr8;
  262. }
  263. static inline void native_write_cr8(unsigned long val)
  264. {
  265. asm volatile("movq %0,%%cr8" :: "r" (val) : "memory");
  266. }
  267. #endif
  268. static inline void native_wbinvd(void)
  269. {
  270. asm volatile("wbinvd": : :"memory");
  271. }
  272. #ifdef CONFIG_PARAVIRT
  273. #include <asm/paravirt.h>
  274. #else
  275. #define read_cr0() (native_read_cr0())
  276. #define write_cr0(x) (native_write_cr0(x))
  277. #define read_cr2() (native_read_cr2())
  278. #define write_cr2(x) (native_write_cr2(x))
  279. #define read_cr3() (native_read_cr3())
  280. #define write_cr3(x) (native_write_cr3(x))
  281. #define read_cr4() (native_read_cr4())
  282. #define read_cr4_safe() (native_read_cr4_safe())
  283. #define write_cr4(x) (native_write_cr4(x))
  284. #define wbinvd() (native_wbinvd())
  285. #ifdef CONFIG_X86_64
  286. #define read_cr8() (native_read_cr8())
  287. #define write_cr8(x) (native_write_cr8(x))
  288. #define load_gs_index native_load_gs_index
  289. #endif
  290. /* Clear the 'TS' bit */
  291. #define clts() (native_clts())
  292. #endif/* CONFIG_PARAVIRT */
  293. #define stts() write_cr0(read_cr0() | X86_CR0_TS)
  294. #endif /* __KERNEL__ */
  295. static inline void clflush(volatile void *__p)
  296. {
  297. asm volatile("clflush %0" : "+m" (*(volatile char __force *)__p));
  298. }
  299. #define nop() asm volatile ("nop")
  300. void disable_hlt(void);
  301. void enable_hlt(void);
  302. void cpu_idle_wait(void);
  303. extern unsigned long arch_align_stack(unsigned long sp);
  304. extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
  305. void default_idle(void);
  306. void stop_this_cpu(void *dummy);
  307. /*
  308. * Force strict CPU ordering.
  309. * And yes, this is required on UP too when we're talking
  310. * to devices.
  311. */
  312. #ifdef CONFIG_X86_32
  313. /*
  314. * Some non-Intel clones support out of order store. wmb() ceases to be a
  315. * nop for these.
  316. */
  317. #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
  318. #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
  319. #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
  320. #else
  321. #define mb() asm volatile("mfence":::"memory")
  322. #define rmb() asm volatile("lfence":::"memory")
  323. #define wmb() asm volatile("sfence" ::: "memory")
  324. #endif
  325. /**
  326. * read_barrier_depends - Flush all pending reads that subsequents reads
  327. * depend on.
  328. *
  329. * No data-dependent reads from memory-like regions are ever reordered
  330. * over this barrier. All reads preceding this primitive are guaranteed
  331. * to access memory (but not necessarily other CPUs' caches) before any
  332. * reads following this primitive that depend on the data return by
  333. * any of the preceding reads. This primitive is much lighter weight than
  334. * rmb() on most CPUs, and is never heavier weight than is
  335. * rmb().
  336. *
  337. * These ordering constraints are respected by both the local CPU
  338. * and the compiler.
  339. *
  340. * Ordering is not guaranteed by anything other than these primitives,
  341. * not even by data dependencies. See the documentation for
  342. * memory_barrier() for examples and URLs to more information.
  343. *
  344. * For example, the following code would force ordering (the initial
  345. * value of "a" is zero, "b" is one, and "p" is "&a"):
  346. *
  347. * <programlisting>
  348. * CPU 0 CPU 1
  349. *
  350. * b = 2;
  351. * memory_barrier();
  352. * p = &b; q = p;
  353. * read_barrier_depends();
  354. * d = *q;
  355. * </programlisting>
  356. *
  357. * because the read of "*q" depends on the read of "p" and these
  358. * two reads are separated by a read_barrier_depends(). However,
  359. * the following code, with the same initial values for "a" and "b":
  360. *
  361. * <programlisting>
  362. * CPU 0 CPU 1
  363. *
  364. * a = 2;
  365. * memory_barrier();
  366. * b = 3; y = b;
  367. * read_barrier_depends();
  368. * x = a;
  369. * </programlisting>
  370. *
  371. * does not enforce ordering, since there is no data dependency between
  372. * the read of "a" and the read of "b". Therefore, on some CPUs, such
  373. * as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
  374. * in cases like this where there are no data dependencies.
  375. **/
  376. #define read_barrier_depends() do { } while (0)
  377. #ifdef CONFIG_SMP
  378. #define smp_mb() mb()
  379. #ifdef CONFIG_X86_PPRO_FENCE
  380. # define smp_rmb() rmb()
  381. #else
  382. # define smp_rmb() barrier()
  383. #endif
  384. #ifdef CONFIG_X86_OOSTORE
  385. # define smp_wmb() wmb()
  386. #else
  387. # define smp_wmb() barrier()
  388. #endif
  389. #define smp_read_barrier_depends() read_barrier_depends()
  390. #define set_mb(var, value) do { (void)xchg(&var, value); } while (0)
  391. #else
  392. #define smp_mb() barrier()
  393. #define smp_rmb() barrier()
  394. #define smp_wmb() barrier()
  395. #define smp_read_barrier_depends() do { } while (0)
  396. #define set_mb(var, value) do { var = value; barrier(); } while (0)
  397. #endif
  398. /*
  399. * Stop RDTSC speculation. This is needed when you need to use RDTSC
  400. * (or get_cycles or vread that possibly accesses the TSC) in a defined
  401. * code region.
  402. *
  403. * (Could use an alternative three way for this if there was one.)
  404. */
  405. static inline void rdtsc_barrier(void)
  406. {
  407. alternative(ASM_NOP3, "mfence", X86_FEATURE_MFENCE_RDTSC);
  408. alternative(ASM_NOP3, "lfence", X86_FEATURE_LFENCE_RDTSC);
  409. }
  410. #endif /* _ASM_X86_SYSTEM_H */