kvm_main.c 78 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "x86_emulate.h"
  20. #include "segment_descriptor.h"
  21. #include "irq.h"
  22. #include <linux/kvm.h>
  23. #include <linux/module.h>
  24. #include <linux/errno.h>
  25. #include <linux/percpu.h>
  26. #include <linux/gfp.h>
  27. #include <linux/mm.h>
  28. #include <linux/miscdevice.h>
  29. #include <linux/vmalloc.h>
  30. #include <linux/reboot.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/highmem.h>
  33. #include <linux/file.h>
  34. #include <linux/sysdev.h>
  35. #include <linux/cpu.h>
  36. #include <linux/sched.h>
  37. #include <linux/cpumask.h>
  38. #include <linux/smp.h>
  39. #include <linux/anon_inodes.h>
  40. #include <linux/profile.h>
  41. #include <linux/kvm_para.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/mman.h>
  44. #include <asm/processor.h>
  45. #include <asm/msr.h>
  46. #include <asm/io.h>
  47. #include <asm/uaccess.h>
  48. #include <asm/desc.h>
  49. MODULE_AUTHOR("Qumranet");
  50. MODULE_LICENSE("GPL");
  51. static DEFINE_SPINLOCK(kvm_lock);
  52. static LIST_HEAD(vm_list);
  53. static cpumask_t cpus_hardware_enabled;
  54. struct kvm_x86_ops *kvm_x86_ops;
  55. struct kmem_cache *kvm_vcpu_cache;
  56. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  57. static __read_mostly struct preempt_ops kvm_preempt_ops;
  58. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  59. static struct kvm_stats_debugfs_item {
  60. const char *name;
  61. int offset;
  62. struct dentry *dentry;
  63. } debugfs_entries[] = {
  64. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  65. { "pf_guest", STAT_OFFSET(pf_guest) },
  66. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  67. { "invlpg", STAT_OFFSET(invlpg) },
  68. { "exits", STAT_OFFSET(exits) },
  69. { "io_exits", STAT_OFFSET(io_exits) },
  70. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  71. { "signal_exits", STAT_OFFSET(signal_exits) },
  72. { "irq_window", STAT_OFFSET(irq_window_exits) },
  73. { "halt_exits", STAT_OFFSET(halt_exits) },
  74. { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
  75. { "request_irq", STAT_OFFSET(request_irq_exits) },
  76. { "irq_exits", STAT_OFFSET(irq_exits) },
  77. { "light_exits", STAT_OFFSET(light_exits) },
  78. { "efer_reload", STAT_OFFSET(efer_reload) },
  79. { NULL }
  80. };
  81. static struct dentry *debugfs_dir;
  82. #define CR0_RESERVED_BITS \
  83. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  84. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  85. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  86. #define CR4_RESERVED_BITS \
  87. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  88. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  89. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  90. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  91. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  92. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  93. #ifdef CONFIG_X86_64
  94. /* LDT or TSS descriptor in the GDT. 16 bytes. */
  95. struct segment_descriptor_64 {
  96. struct segment_descriptor s;
  97. u32 base_higher;
  98. u32 pad_zero;
  99. };
  100. #endif
  101. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  102. unsigned long arg);
  103. unsigned long segment_base(u16 selector)
  104. {
  105. struct descriptor_table gdt;
  106. struct segment_descriptor *d;
  107. unsigned long table_base;
  108. unsigned long v;
  109. if (selector == 0)
  110. return 0;
  111. asm("sgdt %0" : "=m"(gdt));
  112. table_base = gdt.base;
  113. if (selector & 4) { /* from ldt */
  114. u16 ldt_selector;
  115. asm("sldt %0" : "=g"(ldt_selector));
  116. table_base = segment_base(ldt_selector);
  117. }
  118. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  119. v = d->base_low | ((unsigned long)d->base_mid << 16) |
  120. ((unsigned long)d->base_high << 24);
  121. #ifdef CONFIG_X86_64
  122. if (d->system == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  123. v |= ((unsigned long) \
  124. ((struct segment_descriptor_64 *)d)->base_higher) << 32;
  125. #endif
  126. return v;
  127. }
  128. EXPORT_SYMBOL_GPL(segment_base);
  129. static inline int valid_vcpu(int n)
  130. {
  131. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  132. }
  133. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  134. {
  135. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  136. return;
  137. vcpu->guest_fpu_loaded = 1;
  138. fx_save(&vcpu->host_fx_image);
  139. fx_restore(&vcpu->guest_fx_image);
  140. }
  141. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  142. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  143. {
  144. if (!vcpu->guest_fpu_loaded)
  145. return;
  146. vcpu->guest_fpu_loaded = 0;
  147. fx_save(&vcpu->guest_fx_image);
  148. fx_restore(&vcpu->host_fx_image);
  149. }
  150. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  151. /*
  152. * Switches to specified vcpu, until a matching vcpu_put()
  153. */
  154. void vcpu_load(struct kvm_vcpu *vcpu)
  155. {
  156. int cpu;
  157. mutex_lock(&vcpu->mutex);
  158. cpu = get_cpu();
  159. preempt_notifier_register(&vcpu->preempt_notifier);
  160. kvm_arch_vcpu_load(vcpu, cpu);
  161. put_cpu();
  162. }
  163. void vcpu_put(struct kvm_vcpu *vcpu)
  164. {
  165. preempt_disable();
  166. kvm_arch_vcpu_put(vcpu);
  167. preempt_notifier_unregister(&vcpu->preempt_notifier);
  168. preempt_enable();
  169. mutex_unlock(&vcpu->mutex);
  170. }
  171. static void ack_flush(void *_completed)
  172. {
  173. }
  174. void kvm_flush_remote_tlbs(struct kvm *kvm)
  175. {
  176. int i, cpu;
  177. cpumask_t cpus;
  178. struct kvm_vcpu *vcpu;
  179. cpus_clear(cpus);
  180. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  181. vcpu = kvm->vcpus[i];
  182. if (!vcpu)
  183. continue;
  184. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  185. continue;
  186. cpu = vcpu->cpu;
  187. if (cpu != -1 && cpu != raw_smp_processor_id())
  188. cpu_set(cpu, cpus);
  189. }
  190. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  191. }
  192. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  193. {
  194. struct page *page;
  195. int r;
  196. mutex_init(&vcpu->mutex);
  197. vcpu->cpu = -1;
  198. vcpu->mmu.root_hpa = INVALID_PAGE;
  199. vcpu->kvm = kvm;
  200. vcpu->vcpu_id = id;
  201. if (!irqchip_in_kernel(kvm) || id == 0)
  202. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  203. else
  204. vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
  205. init_waitqueue_head(&vcpu->wq);
  206. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  207. if (!page) {
  208. r = -ENOMEM;
  209. goto fail;
  210. }
  211. vcpu->run = page_address(page);
  212. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  213. if (!page) {
  214. r = -ENOMEM;
  215. goto fail_free_run;
  216. }
  217. vcpu->pio_data = page_address(page);
  218. r = kvm_mmu_create(vcpu);
  219. if (r < 0)
  220. goto fail_free_pio_data;
  221. if (irqchip_in_kernel(kvm)) {
  222. r = kvm_create_lapic(vcpu);
  223. if (r < 0)
  224. goto fail_mmu_destroy;
  225. }
  226. return 0;
  227. fail_mmu_destroy:
  228. kvm_mmu_destroy(vcpu);
  229. fail_free_pio_data:
  230. free_page((unsigned long)vcpu->pio_data);
  231. fail_free_run:
  232. free_page((unsigned long)vcpu->run);
  233. fail:
  234. return r;
  235. }
  236. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  237. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  238. {
  239. kvm_free_lapic(vcpu);
  240. kvm_mmu_destroy(vcpu);
  241. free_page((unsigned long)vcpu->pio_data);
  242. free_page((unsigned long)vcpu->run);
  243. }
  244. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  245. static struct kvm *kvm_create_vm(void)
  246. {
  247. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  248. if (!kvm)
  249. return ERR_PTR(-ENOMEM);
  250. kvm_io_bus_init(&kvm->pio_bus);
  251. mutex_init(&kvm->lock);
  252. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  253. kvm_io_bus_init(&kvm->mmio_bus);
  254. spin_lock(&kvm_lock);
  255. list_add(&kvm->vm_list, &vm_list);
  256. spin_unlock(&kvm_lock);
  257. return kvm;
  258. }
  259. /*
  260. * Free any memory in @free but not in @dont.
  261. */
  262. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  263. struct kvm_memory_slot *dont)
  264. {
  265. if (!dont || free->rmap != dont->rmap)
  266. vfree(free->rmap);
  267. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  268. vfree(free->dirty_bitmap);
  269. free->npages = 0;
  270. free->dirty_bitmap = NULL;
  271. free->rmap = NULL;
  272. }
  273. static void kvm_free_physmem(struct kvm *kvm)
  274. {
  275. int i;
  276. for (i = 0; i < kvm->nmemslots; ++i)
  277. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  278. }
  279. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  280. {
  281. int i;
  282. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  283. if (vcpu->pio.guest_pages[i]) {
  284. kvm_release_page(vcpu->pio.guest_pages[i]);
  285. vcpu->pio.guest_pages[i] = NULL;
  286. }
  287. }
  288. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  289. {
  290. vcpu_load(vcpu);
  291. kvm_mmu_unload(vcpu);
  292. vcpu_put(vcpu);
  293. }
  294. static void kvm_free_vcpus(struct kvm *kvm)
  295. {
  296. unsigned int i;
  297. /*
  298. * Unpin any mmu pages first.
  299. */
  300. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  301. if (kvm->vcpus[i])
  302. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  303. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  304. if (kvm->vcpus[i]) {
  305. kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
  306. kvm->vcpus[i] = NULL;
  307. }
  308. }
  309. }
  310. static void kvm_destroy_vm(struct kvm *kvm)
  311. {
  312. spin_lock(&kvm_lock);
  313. list_del(&kvm->vm_list);
  314. spin_unlock(&kvm_lock);
  315. kvm_io_bus_destroy(&kvm->pio_bus);
  316. kvm_io_bus_destroy(&kvm->mmio_bus);
  317. kfree(kvm->vpic);
  318. kfree(kvm->vioapic);
  319. kvm_free_vcpus(kvm);
  320. kvm_free_physmem(kvm);
  321. kfree(kvm);
  322. }
  323. static int kvm_vm_release(struct inode *inode, struct file *filp)
  324. {
  325. struct kvm *kvm = filp->private_data;
  326. kvm_destroy_vm(kvm);
  327. return 0;
  328. }
  329. static void inject_gp(struct kvm_vcpu *vcpu)
  330. {
  331. kvm_x86_ops->inject_gp(vcpu, 0);
  332. }
  333. /*
  334. * Load the pae pdptrs. Return true is they are all valid.
  335. */
  336. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  337. {
  338. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  339. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  340. int i;
  341. int ret;
  342. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  343. mutex_lock(&vcpu->kvm->lock);
  344. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  345. offset * sizeof(u64), sizeof(pdpte));
  346. if (ret < 0) {
  347. ret = 0;
  348. goto out;
  349. }
  350. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  351. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  352. ret = 0;
  353. goto out;
  354. }
  355. }
  356. ret = 1;
  357. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  358. out:
  359. mutex_unlock(&vcpu->kvm->lock);
  360. return ret;
  361. }
  362. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  363. {
  364. if (cr0 & CR0_RESERVED_BITS) {
  365. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  366. cr0, vcpu->cr0);
  367. inject_gp(vcpu);
  368. return;
  369. }
  370. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  371. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  372. inject_gp(vcpu);
  373. return;
  374. }
  375. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  376. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  377. "and a clear PE flag\n");
  378. inject_gp(vcpu);
  379. return;
  380. }
  381. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  382. #ifdef CONFIG_X86_64
  383. if ((vcpu->shadow_efer & EFER_LME)) {
  384. int cs_db, cs_l;
  385. if (!is_pae(vcpu)) {
  386. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  387. "in long mode while PAE is disabled\n");
  388. inject_gp(vcpu);
  389. return;
  390. }
  391. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  392. if (cs_l) {
  393. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  394. "in long mode while CS.L == 1\n");
  395. inject_gp(vcpu);
  396. return;
  397. }
  398. } else
  399. #endif
  400. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  401. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  402. "reserved bits\n");
  403. inject_gp(vcpu);
  404. return;
  405. }
  406. }
  407. kvm_x86_ops->set_cr0(vcpu, cr0);
  408. vcpu->cr0 = cr0;
  409. mutex_lock(&vcpu->kvm->lock);
  410. kvm_mmu_reset_context(vcpu);
  411. mutex_unlock(&vcpu->kvm->lock);
  412. return;
  413. }
  414. EXPORT_SYMBOL_GPL(set_cr0);
  415. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  416. {
  417. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  418. }
  419. EXPORT_SYMBOL_GPL(lmsw);
  420. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  421. {
  422. if (cr4 & CR4_RESERVED_BITS) {
  423. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  424. inject_gp(vcpu);
  425. return;
  426. }
  427. if (is_long_mode(vcpu)) {
  428. if (!(cr4 & X86_CR4_PAE)) {
  429. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  430. "in long mode\n");
  431. inject_gp(vcpu);
  432. return;
  433. }
  434. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  435. && !load_pdptrs(vcpu, vcpu->cr3)) {
  436. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  437. inject_gp(vcpu);
  438. return;
  439. }
  440. if (cr4 & X86_CR4_VMXE) {
  441. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  442. inject_gp(vcpu);
  443. return;
  444. }
  445. kvm_x86_ops->set_cr4(vcpu, cr4);
  446. vcpu->cr4 = cr4;
  447. mutex_lock(&vcpu->kvm->lock);
  448. kvm_mmu_reset_context(vcpu);
  449. mutex_unlock(&vcpu->kvm->lock);
  450. }
  451. EXPORT_SYMBOL_GPL(set_cr4);
  452. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  453. {
  454. if (is_long_mode(vcpu)) {
  455. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  456. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  457. inject_gp(vcpu);
  458. return;
  459. }
  460. } else {
  461. if (is_pae(vcpu)) {
  462. if (cr3 & CR3_PAE_RESERVED_BITS) {
  463. printk(KERN_DEBUG
  464. "set_cr3: #GP, reserved bits\n");
  465. inject_gp(vcpu);
  466. return;
  467. }
  468. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  469. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  470. "reserved bits\n");
  471. inject_gp(vcpu);
  472. return;
  473. }
  474. }
  475. /*
  476. * We don't check reserved bits in nonpae mode, because
  477. * this isn't enforced, and VMware depends on this.
  478. */
  479. }
  480. mutex_lock(&vcpu->kvm->lock);
  481. /*
  482. * Does the new cr3 value map to physical memory? (Note, we
  483. * catch an invalid cr3 even in real-mode, because it would
  484. * cause trouble later on when we turn on paging anyway.)
  485. *
  486. * A real CPU would silently accept an invalid cr3 and would
  487. * attempt to use it - with largely undefined (and often hard
  488. * to debug) behavior on the guest side.
  489. */
  490. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  491. inject_gp(vcpu);
  492. else {
  493. vcpu->cr3 = cr3;
  494. vcpu->mmu.new_cr3(vcpu);
  495. }
  496. mutex_unlock(&vcpu->kvm->lock);
  497. }
  498. EXPORT_SYMBOL_GPL(set_cr3);
  499. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  500. {
  501. if (cr8 & CR8_RESERVED_BITS) {
  502. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  503. inject_gp(vcpu);
  504. return;
  505. }
  506. if (irqchip_in_kernel(vcpu->kvm))
  507. kvm_lapic_set_tpr(vcpu, cr8);
  508. else
  509. vcpu->cr8 = cr8;
  510. }
  511. EXPORT_SYMBOL_GPL(set_cr8);
  512. unsigned long get_cr8(struct kvm_vcpu *vcpu)
  513. {
  514. if (irqchip_in_kernel(vcpu->kvm))
  515. return kvm_lapic_get_cr8(vcpu);
  516. else
  517. return vcpu->cr8;
  518. }
  519. EXPORT_SYMBOL_GPL(get_cr8);
  520. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  521. {
  522. if (irqchip_in_kernel(vcpu->kvm))
  523. return vcpu->apic_base;
  524. else
  525. return vcpu->apic_base;
  526. }
  527. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  528. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  529. {
  530. /* TODO: reserve bits check */
  531. if (irqchip_in_kernel(vcpu->kvm))
  532. kvm_lapic_set_base(vcpu, data);
  533. else
  534. vcpu->apic_base = data;
  535. }
  536. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  537. void fx_init(struct kvm_vcpu *vcpu)
  538. {
  539. unsigned after_mxcsr_mask;
  540. /* Initialize guest FPU by resetting ours and saving into guest's */
  541. preempt_disable();
  542. fx_save(&vcpu->host_fx_image);
  543. fpu_init();
  544. fx_save(&vcpu->guest_fx_image);
  545. fx_restore(&vcpu->host_fx_image);
  546. preempt_enable();
  547. vcpu->cr0 |= X86_CR0_ET;
  548. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  549. vcpu->guest_fx_image.mxcsr = 0x1f80;
  550. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  551. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  552. }
  553. EXPORT_SYMBOL_GPL(fx_init);
  554. /*
  555. * Allocate some memory and give it an address in the guest physical address
  556. * space.
  557. *
  558. * Discontiguous memory is allowed, mostly for framebuffers.
  559. */
  560. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  561. struct
  562. kvm_userspace_memory_region *mem,
  563. int user_alloc)
  564. {
  565. int r;
  566. gfn_t base_gfn;
  567. unsigned long npages;
  568. unsigned long i;
  569. struct kvm_memory_slot *memslot;
  570. struct kvm_memory_slot old, new;
  571. r = -EINVAL;
  572. /* General sanity checks */
  573. if (mem->memory_size & (PAGE_SIZE - 1))
  574. goto out;
  575. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  576. goto out;
  577. if (mem->slot >= KVM_MEMORY_SLOTS)
  578. goto out;
  579. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  580. goto out;
  581. memslot = &kvm->memslots[mem->slot];
  582. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  583. npages = mem->memory_size >> PAGE_SHIFT;
  584. if (!npages)
  585. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  586. mutex_lock(&kvm->lock);
  587. new = old = *memslot;
  588. new.base_gfn = base_gfn;
  589. new.npages = npages;
  590. new.flags = mem->flags;
  591. /* Disallow changing a memory slot's size. */
  592. r = -EINVAL;
  593. if (npages && old.npages && npages != old.npages)
  594. goto out_unlock;
  595. /* Check for overlaps */
  596. r = -EEXIST;
  597. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  598. struct kvm_memory_slot *s = &kvm->memslots[i];
  599. if (s == memslot)
  600. continue;
  601. if (!((base_gfn + npages <= s->base_gfn) ||
  602. (base_gfn >= s->base_gfn + s->npages)))
  603. goto out_unlock;
  604. }
  605. /* Free page dirty bitmap if unneeded */
  606. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  607. new.dirty_bitmap = NULL;
  608. r = -ENOMEM;
  609. /* Allocate if a slot is being created */
  610. if (npages && !new.rmap) {
  611. new.rmap = vmalloc(npages * sizeof(struct page *));
  612. if (!new.rmap)
  613. goto out_unlock;
  614. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  615. new.user_alloc = user_alloc;
  616. if (user_alloc)
  617. new.userspace_addr = mem->userspace_addr;
  618. else {
  619. down_write(&current->mm->mmap_sem);
  620. new.userspace_addr = do_mmap(NULL, 0,
  621. npages * PAGE_SIZE,
  622. PROT_READ | PROT_WRITE,
  623. MAP_SHARED | MAP_ANONYMOUS,
  624. 0);
  625. up_write(&current->mm->mmap_sem);
  626. if (IS_ERR((void *)new.userspace_addr))
  627. goto out_unlock;
  628. }
  629. } else {
  630. if (!old.user_alloc && old.rmap) {
  631. int ret;
  632. down_write(&current->mm->mmap_sem);
  633. ret = do_munmap(current->mm, old.userspace_addr,
  634. old.npages * PAGE_SIZE);
  635. up_write(&current->mm->mmap_sem);
  636. if (ret < 0)
  637. printk(KERN_WARNING
  638. "kvm_vm_ioctl_set_memory_region: "
  639. "failed to munmap memory\n");
  640. }
  641. }
  642. /* Allocate page dirty bitmap if needed */
  643. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  644. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  645. new.dirty_bitmap = vmalloc(dirty_bytes);
  646. if (!new.dirty_bitmap)
  647. goto out_unlock;
  648. memset(new.dirty_bitmap, 0, dirty_bytes);
  649. }
  650. if (mem->slot >= kvm->nmemslots)
  651. kvm->nmemslots = mem->slot + 1;
  652. if (!kvm->n_requested_mmu_pages) {
  653. unsigned int n_pages;
  654. if (npages) {
  655. n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
  656. kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
  657. n_pages);
  658. } else {
  659. unsigned int nr_mmu_pages;
  660. n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
  661. nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
  662. nr_mmu_pages = max(nr_mmu_pages,
  663. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  664. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  665. }
  666. }
  667. *memslot = new;
  668. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  669. kvm_flush_remote_tlbs(kvm);
  670. mutex_unlock(&kvm->lock);
  671. kvm_free_physmem_slot(&old, &new);
  672. return 0;
  673. out_unlock:
  674. mutex_unlock(&kvm->lock);
  675. kvm_free_physmem_slot(&new, &old);
  676. out:
  677. return r;
  678. }
  679. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  680. u32 kvm_nr_mmu_pages)
  681. {
  682. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  683. return -EINVAL;
  684. mutex_lock(&kvm->lock);
  685. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  686. kvm->n_requested_mmu_pages = kvm_nr_mmu_pages;
  687. mutex_unlock(&kvm->lock);
  688. return 0;
  689. }
  690. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  691. {
  692. return kvm->n_alloc_mmu_pages;
  693. }
  694. /*
  695. * Get (and clear) the dirty memory log for a memory slot.
  696. */
  697. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  698. struct kvm_dirty_log *log)
  699. {
  700. struct kvm_memory_slot *memslot;
  701. int r, i;
  702. int n;
  703. unsigned long any = 0;
  704. mutex_lock(&kvm->lock);
  705. r = -EINVAL;
  706. if (log->slot >= KVM_MEMORY_SLOTS)
  707. goto out;
  708. memslot = &kvm->memslots[log->slot];
  709. r = -ENOENT;
  710. if (!memslot->dirty_bitmap)
  711. goto out;
  712. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  713. for (i = 0; !any && i < n/sizeof(long); ++i)
  714. any = memslot->dirty_bitmap[i];
  715. r = -EFAULT;
  716. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  717. goto out;
  718. /* If nothing is dirty, don't bother messing with page tables. */
  719. if (any) {
  720. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  721. kvm_flush_remote_tlbs(kvm);
  722. memset(memslot->dirty_bitmap, 0, n);
  723. }
  724. r = 0;
  725. out:
  726. mutex_unlock(&kvm->lock);
  727. return r;
  728. }
  729. /*
  730. * Set a new alias region. Aliases map a portion of physical memory into
  731. * another portion. This is useful for memory windows, for example the PC
  732. * VGA region.
  733. */
  734. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  735. struct kvm_memory_alias *alias)
  736. {
  737. int r, n;
  738. struct kvm_mem_alias *p;
  739. r = -EINVAL;
  740. /* General sanity checks */
  741. if (alias->memory_size & (PAGE_SIZE - 1))
  742. goto out;
  743. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  744. goto out;
  745. if (alias->slot >= KVM_ALIAS_SLOTS)
  746. goto out;
  747. if (alias->guest_phys_addr + alias->memory_size
  748. < alias->guest_phys_addr)
  749. goto out;
  750. if (alias->target_phys_addr + alias->memory_size
  751. < alias->target_phys_addr)
  752. goto out;
  753. mutex_lock(&kvm->lock);
  754. p = &kvm->aliases[alias->slot];
  755. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  756. p->npages = alias->memory_size >> PAGE_SHIFT;
  757. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  758. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  759. if (kvm->aliases[n - 1].npages)
  760. break;
  761. kvm->naliases = n;
  762. kvm_mmu_zap_all(kvm);
  763. mutex_unlock(&kvm->lock);
  764. return 0;
  765. out:
  766. return r;
  767. }
  768. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  769. {
  770. int r;
  771. r = 0;
  772. switch (chip->chip_id) {
  773. case KVM_IRQCHIP_PIC_MASTER:
  774. memcpy(&chip->chip.pic,
  775. &pic_irqchip(kvm)->pics[0],
  776. sizeof(struct kvm_pic_state));
  777. break;
  778. case KVM_IRQCHIP_PIC_SLAVE:
  779. memcpy(&chip->chip.pic,
  780. &pic_irqchip(kvm)->pics[1],
  781. sizeof(struct kvm_pic_state));
  782. break;
  783. case KVM_IRQCHIP_IOAPIC:
  784. memcpy(&chip->chip.ioapic,
  785. ioapic_irqchip(kvm),
  786. sizeof(struct kvm_ioapic_state));
  787. break;
  788. default:
  789. r = -EINVAL;
  790. break;
  791. }
  792. return r;
  793. }
  794. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  795. {
  796. int r;
  797. r = 0;
  798. switch (chip->chip_id) {
  799. case KVM_IRQCHIP_PIC_MASTER:
  800. memcpy(&pic_irqchip(kvm)->pics[0],
  801. &chip->chip.pic,
  802. sizeof(struct kvm_pic_state));
  803. break;
  804. case KVM_IRQCHIP_PIC_SLAVE:
  805. memcpy(&pic_irqchip(kvm)->pics[1],
  806. &chip->chip.pic,
  807. sizeof(struct kvm_pic_state));
  808. break;
  809. case KVM_IRQCHIP_IOAPIC:
  810. memcpy(ioapic_irqchip(kvm),
  811. &chip->chip.ioapic,
  812. sizeof(struct kvm_ioapic_state));
  813. break;
  814. default:
  815. r = -EINVAL;
  816. break;
  817. }
  818. kvm_pic_update_irq(pic_irqchip(kvm));
  819. return r;
  820. }
  821. int is_error_page(struct page *page)
  822. {
  823. return page == bad_page;
  824. }
  825. EXPORT_SYMBOL_GPL(is_error_page);
  826. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  827. {
  828. int i;
  829. struct kvm_mem_alias *alias;
  830. for (i = 0; i < kvm->naliases; ++i) {
  831. alias = &kvm->aliases[i];
  832. if (gfn >= alias->base_gfn
  833. && gfn < alias->base_gfn + alias->npages)
  834. return alias->target_gfn + gfn - alias->base_gfn;
  835. }
  836. return gfn;
  837. }
  838. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  839. {
  840. int i;
  841. for (i = 0; i < kvm->nmemslots; ++i) {
  842. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  843. if (gfn >= memslot->base_gfn
  844. && gfn < memslot->base_gfn + memslot->npages)
  845. return memslot;
  846. }
  847. return NULL;
  848. }
  849. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  850. {
  851. gfn = unalias_gfn(kvm, gfn);
  852. return __gfn_to_memslot(kvm, gfn);
  853. }
  854. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  855. {
  856. struct kvm_memory_slot *slot;
  857. struct page *page[1];
  858. int npages;
  859. might_sleep();
  860. gfn = unalias_gfn(kvm, gfn);
  861. slot = __gfn_to_memslot(kvm, gfn);
  862. if (!slot) {
  863. get_page(bad_page);
  864. return bad_page;
  865. }
  866. down_read(&current->mm->mmap_sem);
  867. npages = get_user_pages(current, current->mm,
  868. slot->userspace_addr
  869. + (gfn - slot->base_gfn) * PAGE_SIZE, 1,
  870. 1, 1, page, NULL);
  871. up_read(&current->mm->mmap_sem);
  872. if (npages != 1) {
  873. get_page(bad_page);
  874. return bad_page;
  875. }
  876. return page[0];
  877. }
  878. EXPORT_SYMBOL_GPL(gfn_to_page);
  879. void kvm_release_page(struct page *page)
  880. {
  881. if (!PageReserved(page))
  882. SetPageDirty(page);
  883. put_page(page);
  884. }
  885. EXPORT_SYMBOL_GPL(kvm_release_page);
  886. static int next_segment(unsigned long len, int offset)
  887. {
  888. if (len > PAGE_SIZE - offset)
  889. return PAGE_SIZE - offset;
  890. else
  891. return len;
  892. }
  893. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  894. int len)
  895. {
  896. void *page_virt;
  897. struct page *page;
  898. page = gfn_to_page(kvm, gfn);
  899. if (is_error_page(page)) {
  900. kvm_release_page(page);
  901. return -EFAULT;
  902. }
  903. page_virt = kmap_atomic(page, KM_USER0);
  904. memcpy(data, page_virt + offset, len);
  905. kunmap_atomic(page_virt, KM_USER0);
  906. kvm_release_page(page);
  907. return 0;
  908. }
  909. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  910. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  911. {
  912. gfn_t gfn = gpa >> PAGE_SHIFT;
  913. int seg;
  914. int offset = offset_in_page(gpa);
  915. int ret;
  916. while ((seg = next_segment(len, offset)) != 0) {
  917. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  918. if (ret < 0)
  919. return ret;
  920. offset = 0;
  921. len -= seg;
  922. data += seg;
  923. ++gfn;
  924. }
  925. return 0;
  926. }
  927. EXPORT_SYMBOL_GPL(kvm_read_guest);
  928. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  929. int offset, int len)
  930. {
  931. void *page_virt;
  932. struct page *page;
  933. page = gfn_to_page(kvm, gfn);
  934. if (is_error_page(page)) {
  935. kvm_release_page(page);
  936. return -EFAULT;
  937. }
  938. page_virt = kmap_atomic(page, KM_USER0);
  939. memcpy(page_virt + offset, data, len);
  940. kunmap_atomic(page_virt, KM_USER0);
  941. mark_page_dirty(kvm, gfn);
  942. kvm_release_page(page);
  943. return 0;
  944. }
  945. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  946. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  947. unsigned long len)
  948. {
  949. gfn_t gfn = gpa >> PAGE_SHIFT;
  950. int seg;
  951. int offset = offset_in_page(gpa);
  952. int ret;
  953. while ((seg = next_segment(len, offset)) != 0) {
  954. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  955. if (ret < 0)
  956. return ret;
  957. offset = 0;
  958. len -= seg;
  959. data += seg;
  960. ++gfn;
  961. }
  962. return 0;
  963. }
  964. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  965. {
  966. void *page_virt;
  967. struct page *page;
  968. page = gfn_to_page(kvm, gfn);
  969. if (is_error_page(page)) {
  970. kvm_release_page(page);
  971. return -EFAULT;
  972. }
  973. page_virt = kmap_atomic(page, KM_USER0);
  974. memset(page_virt + offset, 0, len);
  975. kunmap_atomic(page_virt, KM_USER0);
  976. kvm_release_page(page);
  977. return 0;
  978. }
  979. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  980. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  981. {
  982. gfn_t gfn = gpa >> PAGE_SHIFT;
  983. int seg;
  984. int offset = offset_in_page(gpa);
  985. int ret;
  986. while ((seg = next_segment(len, offset)) != 0) {
  987. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  988. if (ret < 0)
  989. return ret;
  990. offset = 0;
  991. len -= seg;
  992. ++gfn;
  993. }
  994. return 0;
  995. }
  996. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  997. /* WARNING: Does not work on aliased pages. */
  998. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  999. {
  1000. struct kvm_memory_slot *memslot;
  1001. memslot = __gfn_to_memslot(kvm, gfn);
  1002. if (memslot && memslot->dirty_bitmap) {
  1003. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1004. /* avoid RMW */
  1005. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  1006. set_bit(rel_gfn, memslot->dirty_bitmap);
  1007. }
  1008. }
  1009. int emulator_read_std(unsigned long addr,
  1010. void *val,
  1011. unsigned int bytes,
  1012. struct kvm_vcpu *vcpu)
  1013. {
  1014. void *data = val;
  1015. while (bytes) {
  1016. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1017. unsigned offset = addr & (PAGE_SIZE-1);
  1018. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1019. int ret;
  1020. if (gpa == UNMAPPED_GVA)
  1021. return X86EMUL_PROPAGATE_FAULT;
  1022. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1023. if (ret < 0)
  1024. return X86EMUL_UNHANDLEABLE;
  1025. bytes -= tocopy;
  1026. data += tocopy;
  1027. addr += tocopy;
  1028. }
  1029. return X86EMUL_CONTINUE;
  1030. }
  1031. EXPORT_SYMBOL_GPL(emulator_read_std);
  1032. static int emulator_write_std(unsigned long addr,
  1033. const void *val,
  1034. unsigned int bytes,
  1035. struct kvm_vcpu *vcpu)
  1036. {
  1037. pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
  1038. return X86EMUL_UNHANDLEABLE;
  1039. }
  1040. /*
  1041. * Only apic need an MMIO device hook, so shortcut now..
  1042. */
  1043. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1044. gpa_t addr)
  1045. {
  1046. struct kvm_io_device *dev;
  1047. if (vcpu->apic) {
  1048. dev = &vcpu->apic->dev;
  1049. if (dev->in_range(dev, addr))
  1050. return dev;
  1051. }
  1052. return NULL;
  1053. }
  1054. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1055. gpa_t addr)
  1056. {
  1057. struct kvm_io_device *dev;
  1058. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  1059. if (dev == NULL)
  1060. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  1061. return dev;
  1062. }
  1063. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  1064. gpa_t addr)
  1065. {
  1066. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  1067. }
  1068. static int emulator_read_emulated(unsigned long addr,
  1069. void *val,
  1070. unsigned int bytes,
  1071. struct kvm_vcpu *vcpu)
  1072. {
  1073. struct kvm_io_device *mmio_dev;
  1074. gpa_t gpa;
  1075. if (vcpu->mmio_read_completed) {
  1076. memcpy(val, vcpu->mmio_data, bytes);
  1077. vcpu->mmio_read_completed = 0;
  1078. return X86EMUL_CONTINUE;
  1079. } else if (emulator_read_std(addr, val, bytes, vcpu)
  1080. == X86EMUL_CONTINUE)
  1081. return X86EMUL_CONTINUE;
  1082. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1083. if (gpa == UNMAPPED_GVA)
  1084. return X86EMUL_PROPAGATE_FAULT;
  1085. /*
  1086. * Is this MMIO handled locally?
  1087. */
  1088. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1089. if (mmio_dev) {
  1090. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1091. return X86EMUL_CONTINUE;
  1092. }
  1093. vcpu->mmio_needed = 1;
  1094. vcpu->mmio_phys_addr = gpa;
  1095. vcpu->mmio_size = bytes;
  1096. vcpu->mmio_is_write = 0;
  1097. return X86EMUL_UNHANDLEABLE;
  1098. }
  1099. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1100. const void *val, int bytes)
  1101. {
  1102. int ret;
  1103. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1104. if (ret < 0)
  1105. return 0;
  1106. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  1107. return 1;
  1108. }
  1109. static int emulator_write_emulated_onepage(unsigned long addr,
  1110. const void *val,
  1111. unsigned int bytes,
  1112. struct kvm_vcpu *vcpu)
  1113. {
  1114. struct kvm_io_device *mmio_dev;
  1115. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1116. if (gpa == UNMAPPED_GVA) {
  1117. kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
  1118. return X86EMUL_PROPAGATE_FAULT;
  1119. }
  1120. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1121. return X86EMUL_CONTINUE;
  1122. /*
  1123. * Is this MMIO handled locally?
  1124. */
  1125. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1126. if (mmio_dev) {
  1127. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1128. return X86EMUL_CONTINUE;
  1129. }
  1130. vcpu->mmio_needed = 1;
  1131. vcpu->mmio_phys_addr = gpa;
  1132. vcpu->mmio_size = bytes;
  1133. vcpu->mmio_is_write = 1;
  1134. memcpy(vcpu->mmio_data, val, bytes);
  1135. return X86EMUL_CONTINUE;
  1136. }
  1137. int emulator_write_emulated(unsigned long addr,
  1138. const void *val,
  1139. unsigned int bytes,
  1140. struct kvm_vcpu *vcpu)
  1141. {
  1142. /* Crossing a page boundary? */
  1143. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1144. int rc, now;
  1145. now = -addr & ~PAGE_MASK;
  1146. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1147. if (rc != X86EMUL_CONTINUE)
  1148. return rc;
  1149. addr += now;
  1150. val += now;
  1151. bytes -= now;
  1152. }
  1153. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1154. }
  1155. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1156. static int emulator_cmpxchg_emulated(unsigned long addr,
  1157. const void *old,
  1158. const void *new,
  1159. unsigned int bytes,
  1160. struct kvm_vcpu *vcpu)
  1161. {
  1162. static int reported;
  1163. if (!reported) {
  1164. reported = 1;
  1165. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1166. }
  1167. return emulator_write_emulated(addr, new, bytes, vcpu);
  1168. }
  1169. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1170. {
  1171. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1172. }
  1173. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1174. {
  1175. return X86EMUL_CONTINUE;
  1176. }
  1177. int emulate_clts(struct kvm_vcpu *vcpu)
  1178. {
  1179. kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
  1180. return X86EMUL_CONTINUE;
  1181. }
  1182. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1183. {
  1184. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1185. switch (dr) {
  1186. case 0 ... 3:
  1187. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1188. return X86EMUL_CONTINUE;
  1189. default:
  1190. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  1191. return X86EMUL_UNHANDLEABLE;
  1192. }
  1193. }
  1194. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1195. {
  1196. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1197. int exception;
  1198. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1199. if (exception) {
  1200. /* FIXME: better handling */
  1201. return X86EMUL_UNHANDLEABLE;
  1202. }
  1203. return X86EMUL_CONTINUE;
  1204. }
  1205. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1206. {
  1207. static int reported;
  1208. u8 opcodes[4];
  1209. unsigned long rip = vcpu->rip;
  1210. unsigned long rip_linear;
  1211. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1212. if (reported)
  1213. return;
  1214. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1215. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1216. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1217. reported = 1;
  1218. }
  1219. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1220. struct x86_emulate_ops emulate_ops = {
  1221. .read_std = emulator_read_std,
  1222. .write_std = emulator_write_std,
  1223. .read_emulated = emulator_read_emulated,
  1224. .write_emulated = emulator_write_emulated,
  1225. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1226. };
  1227. int emulate_instruction(struct kvm_vcpu *vcpu,
  1228. struct kvm_run *run,
  1229. unsigned long cr2,
  1230. u16 error_code,
  1231. int no_decode)
  1232. {
  1233. int r;
  1234. vcpu->mmio_fault_cr2 = cr2;
  1235. kvm_x86_ops->cache_regs(vcpu);
  1236. vcpu->mmio_is_write = 0;
  1237. vcpu->pio.string = 0;
  1238. if (!no_decode) {
  1239. int cs_db, cs_l;
  1240. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1241. vcpu->emulate_ctxt.vcpu = vcpu;
  1242. vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1243. vcpu->emulate_ctxt.cr2 = cr2;
  1244. vcpu->emulate_ctxt.mode =
  1245. (vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM)
  1246. ? X86EMUL_MODE_REAL : cs_l
  1247. ? X86EMUL_MODE_PROT64 : cs_db
  1248. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1249. if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1250. vcpu->emulate_ctxt.cs_base = 0;
  1251. vcpu->emulate_ctxt.ds_base = 0;
  1252. vcpu->emulate_ctxt.es_base = 0;
  1253. vcpu->emulate_ctxt.ss_base = 0;
  1254. } else {
  1255. vcpu->emulate_ctxt.cs_base =
  1256. get_segment_base(vcpu, VCPU_SREG_CS);
  1257. vcpu->emulate_ctxt.ds_base =
  1258. get_segment_base(vcpu, VCPU_SREG_DS);
  1259. vcpu->emulate_ctxt.es_base =
  1260. get_segment_base(vcpu, VCPU_SREG_ES);
  1261. vcpu->emulate_ctxt.ss_base =
  1262. get_segment_base(vcpu, VCPU_SREG_SS);
  1263. }
  1264. vcpu->emulate_ctxt.gs_base =
  1265. get_segment_base(vcpu, VCPU_SREG_GS);
  1266. vcpu->emulate_ctxt.fs_base =
  1267. get_segment_base(vcpu, VCPU_SREG_FS);
  1268. r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1269. if (r) {
  1270. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1271. return EMULATE_DONE;
  1272. return EMULATE_FAIL;
  1273. }
  1274. }
  1275. r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1276. if (vcpu->pio.string)
  1277. return EMULATE_DO_MMIO;
  1278. if ((r || vcpu->mmio_is_write) && run) {
  1279. run->exit_reason = KVM_EXIT_MMIO;
  1280. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1281. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1282. run->mmio.len = vcpu->mmio_size;
  1283. run->mmio.is_write = vcpu->mmio_is_write;
  1284. }
  1285. if (r) {
  1286. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1287. return EMULATE_DONE;
  1288. if (!vcpu->mmio_needed) {
  1289. kvm_report_emulation_failure(vcpu, "mmio");
  1290. return EMULATE_FAIL;
  1291. }
  1292. return EMULATE_DO_MMIO;
  1293. }
  1294. kvm_x86_ops->decache_regs(vcpu);
  1295. kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags);
  1296. if (vcpu->mmio_is_write) {
  1297. vcpu->mmio_needed = 0;
  1298. return EMULATE_DO_MMIO;
  1299. }
  1300. return EMULATE_DONE;
  1301. }
  1302. EXPORT_SYMBOL_GPL(emulate_instruction);
  1303. /*
  1304. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1305. */
  1306. static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1307. {
  1308. DECLARE_WAITQUEUE(wait, current);
  1309. add_wait_queue(&vcpu->wq, &wait);
  1310. /*
  1311. * We will block until either an interrupt or a signal wakes us up
  1312. */
  1313. while (!kvm_cpu_has_interrupt(vcpu)
  1314. && !signal_pending(current)
  1315. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  1316. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  1317. set_current_state(TASK_INTERRUPTIBLE);
  1318. vcpu_put(vcpu);
  1319. schedule();
  1320. vcpu_load(vcpu);
  1321. }
  1322. __set_current_state(TASK_RUNNING);
  1323. remove_wait_queue(&vcpu->wq, &wait);
  1324. }
  1325. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1326. {
  1327. ++vcpu->stat.halt_exits;
  1328. if (irqchip_in_kernel(vcpu->kvm)) {
  1329. vcpu->mp_state = VCPU_MP_STATE_HALTED;
  1330. kvm_vcpu_block(vcpu);
  1331. if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
  1332. return -EINTR;
  1333. return 1;
  1334. } else {
  1335. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1336. return 0;
  1337. }
  1338. }
  1339. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1340. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  1341. {
  1342. unsigned long nr, a0, a1, a2, a3, ret;
  1343. kvm_x86_ops->cache_regs(vcpu);
  1344. nr = vcpu->regs[VCPU_REGS_RAX];
  1345. a0 = vcpu->regs[VCPU_REGS_RBX];
  1346. a1 = vcpu->regs[VCPU_REGS_RCX];
  1347. a2 = vcpu->regs[VCPU_REGS_RDX];
  1348. a3 = vcpu->regs[VCPU_REGS_RSI];
  1349. if (!is_long_mode(vcpu)) {
  1350. nr &= 0xFFFFFFFF;
  1351. a0 &= 0xFFFFFFFF;
  1352. a1 &= 0xFFFFFFFF;
  1353. a2 &= 0xFFFFFFFF;
  1354. a3 &= 0xFFFFFFFF;
  1355. }
  1356. switch (nr) {
  1357. default:
  1358. ret = -KVM_ENOSYS;
  1359. break;
  1360. }
  1361. vcpu->regs[VCPU_REGS_RAX] = ret;
  1362. kvm_x86_ops->decache_regs(vcpu);
  1363. return 0;
  1364. }
  1365. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  1366. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  1367. {
  1368. char instruction[3];
  1369. int ret = 0;
  1370. mutex_lock(&vcpu->kvm->lock);
  1371. /*
  1372. * Blow out the MMU to ensure that no other VCPU has an active mapping
  1373. * to ensure that the updated hypercall appears atomically across all
  1374. * VCPUs.
  1375. */
  1376. kvm_mmu_zap_all(vcpu->kvm);
  1377. kvm_x86_ops->cache_regs(vcpu);
  1378. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  1379. if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
  1380. != X86EMUL_CONTINUE)
  1381. ret = -EFAULT;
  1382. mutex_unlock(&vcpu->kvm->lock);
  1383. return ret;
  1384. }
  1385. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1386. {
  1387. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1388. }
  1389. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1390. {
  1391. struct descriptor_table dt = { limit, base };
  1392. kvm_x86_ops->set_gdt(vcpu, &dt);
  1393. }
  1394. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1395. {
  1396. struct descriptor_table dt = { limit, base };
  1397. kvm_x86_ops->set_idt(vcpu, &dt);
  1398. }
  1399. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1400. unsigned long *rflags)
  1401. {
  1402. lmsw(vcpu, msw);
  1403. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1404. }
  1405. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1406. {
  1407. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1408. switch (cr) {
  1409. case 0:
  1410. return vcpu->cr0;
  1411. case 2:
  1412. return vcpu->cr2;
  1413. case 3:
  1414. return vcpu->cr3;
  1415. case 4:
  1416. return vcpu->cr4;
  1417. default:
  1418. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1419. return 0;
  1420. }
  1421. }
  1422. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1423. unsigned long *rflags)
  1424. {
  1425. switch (cr) {
  1426. case 0:
  1427. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1428. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1429. break;
  1430. case 2:
  1431. vcpu->cr2 = val;
  1432. break;
  1433. case 3:
  1434. set_cr3(vcpu, val);
  1435. break;
  1436. case 4:
  1437. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1438. break;
  1439. default:
  1440. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1441. }
  1442. }
  1443. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1444. {
  1445. u64 data;
  1446. switch (msr) {
  1447. case 0xc0010010: /* SYSCFG */
  1448. case 0xc0010015: /* HWCR */
  1449. case MSR_IA32_PLATFORM_ID:
  1450. case MSR_IA32_P5_MC_ADDR:
  1451. case MSR_IA32_P5_MC_TYPE:
  1452. case MSR_IA32_MC0_CTL:
  1453. case MSR_IA32_MCG_STATUS:
  1454. case MSR_IA32_MCG_CAP:
  1455. case MSR_IA32_MC0_MISC:
  1456. case MSR_IA32_MC0_MISC+4:
  1457. case MSR_IA32_MC0_MISC+8:
  1458. case MSR_IA32_MC0_MISC+12:
  1459. case MSR_IA32_MC0_MISC+16:
  1460. case MSR_IA32_UCODE_REV:
  1461. case MSR_IA32_PERF_STATUS:
  1462. case MSR_IA32_EBL_CR_POWERON:
  1463. /* MTRR registers */
  1464. case 0xfe:
  1465. case 0x200 ... 0x2ff:
  1466. data = 0;
  1467. break;
  1468. case 0xcd: /* fsb frequency */
  1469. data = 3;
  1470. break;
  1471. case MSR_IA32_APICBASE:
  1472. data = kvm_get_apic_base(vcpu);
  1473. break;
  1474. case MSR_IA32_MISC_ENABLE:
  1475. data = vcpu->ia32_misc_enable_msr;
  1476. break;
  1477. #ifdef CONFIG_X86_64
  1478. case MSR_EFER:
  1479. data = vcpu->shadow_efer;
  1480. break;
  1481. #endif
  1482. default:
  1483. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1484. return 1;
  1485. }
  1486. *pdata = data;
  1487. return 0;
  1488. }
  1489. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1490. /*
  1491. * Reads an msr value (of 'msr_index') into 'pdata'.
  1492. * Returns 0 on success, non-0 otherwise.
  1493. * Assumes vcpu_load() was already called.
  1494. */
  1495. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1496. {
  1497. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1498. }
  1499. #ifdef CONFIG_X86_64
  1500. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1501. {
  1502. if (efer & EFER_RESERVED_BITS) {
  1503. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1504. efer);
  1505. inject_gp(vcpu);
  1506. return;
  1507. }
  1508. if (is_paging(vcpu)
  1509. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1510. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1511. inject_gp(vcpu);
  1512. return;
  1513. }
  1514. kvm_x86_ops->set_efer(vcpu, efer);
  1515. efer &= ~EFER_LMA;
  1516. efer |= vcpu->shadow_efer & EFER_LMA;
  1517. vcpu->shadow_efer = efer;
  1518. }
  1519. #endif
  1520. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1521. {
  1522. switch (msr) {
  1523. #ifdef CONFIG_X86_64
  1524. case MSR_EFER:
  1525. set_efer(vcpu, data);
  1526. break;
  1527. #endif
  1528. case MSR_IA32_MC0_STATUS:
  1529. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1530. __FUNCTION__, data);
  1531. break;
  1532. case MSR_IA32_MCG_STATUS:
  1533. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1534. __FUNCTION__, data);
  1535. break;
  1536. case MSR_IA32_UCODE_REV:
  1537. case MSR_IA32_UCODE_WRITE:
  1538. case 0x200 ... 0x2ff: /* MTRRs */
  1539. break;
  1540. case MSR_IA32_APICBASE:
  1541. kvm_set_apic_base(vcpu, data);
  1542. break;
  1543. case MSR_IA32_MISC_ENABLE:
  1544. vcpu->ia32_misc_enable_msr = data;
  1545. break;
  1546. default:
  1547. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
  1548. return 1;
  1549. }
  1550. return 0;
  1551. }
  1552. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1553. /*
  1554. * Writes msr value into into the appropriate "register".
  1555. * Returns 0 on success, non-0 otherwise.
  1556. * Assumes vcpu_load() was already called.
  1557. */
  1558. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1559. {
  1560. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  1561. }
  1562. void kvm_resched(struct kvm_vcpu *vcpu)
  1563. {
  1564. if (!need_resched())
  1565. return;
  1566. cond_resched();
  1567. }
  1568. EXPORT_SYMBOL_GPL(kvm_resched);
  1569. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1570. {
  1571. int i;
  1572. u32 function;
  1573. struct kvm_cpuid_entry *e, *best;
  1574. kvm_x86_ops->cache_regs(vcpu);
  1575. function = vcpu->regs[VCPU_REGS_RAX];
  1576. vcpu->regs[VCPU_REGS_RAX] = 0;
  1577. vcpu->regs[VCPU_REGS_RBX] = 0;
  1578. vcpu->regs[VCPU_REGS_RCX] = 0;
  1579. vcpu->regs[VCPU_REGS_RDX] = 0;
  1580. best = NULL;
  1581. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1582. e = &vcpu->cpuid_entries[i];
  1583. if (e->function == function) {
  1584. best = e;
  1585. break;
  1586. }
  1587. /*
  1588. * Both basic or both extended?
  1589. */
  1590. if (((e->function ^ function) & 0x80000000) == 0)
  1591. if (!best || e->function > best->function)
  1592. best = e;
  1593. }
  1594. if (best) {
  1595. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1596. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1597. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1598. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1599. }
  1600. kvm_x86_ops->decache_regs(vcpu);
  1601. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1602. }
  1603. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1604. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1605. {
  1606. void *p = vcpu->pio_data;
  1607. void *q;
  1608. unsigned bytes;
  1609. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1610. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1611. PAGE_KERNEL);
  1612. if (!q) {
  1613. free_pio_guest_pages(vcpu);
  1614. return -ENOMEM;
  1615. }
  1616. q += vcpu->pio.guest_page_offset;
  1617. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1618. if (vcpu->pio.in)
  1619. memcpy(q, p, bytes);
  1620. else
  1621. memcpy(p, q, bytes);
  1622. q -= vcpu->pio.guest_page_offset;
  1623. vunmap(q);
  1624. free_pio_guest_pages(vcpu);
  1625. return 0;
  1626. }
  1627. static int complete_pio(struct kvm_vcpu *vcpu)
  1628. {
  1629. struct kvm_pio_request *io = &vcpu->pio;
  1630. long delta;
  1631. int r;
  1632. kvm_x86_ops->cache_regs(vcpu);
  1633. if (!io->string) {
  1634. if (io->in)
  1635. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1636. io->size);
  1637. } else {
  1638. if (io->in) {
  1639. r = pio_copy_data(vcpu);
  1640. if (r) {
  1641. kvm_x86_ops->cache_regs(vcpu);
  1642. return r;
  1643. }
  1644. }
  1645. delta = 1;
  1646. if (io->rep) {
  1647. delta *= io->cur_count;
  1648. /*
  1649. * The size of the register should really depend on
  1650. * current address size.
  1651. */
  1652. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1653. }
  1654. if (io->down)
  1655. delta = -delta;
  1656. delta *= io->size;
  1657. if (io->in)
  1658. vcpu->regs[VCPU_REGS_RDI] += delta;
  1659. else
  1660. vcpu->regs[VCPU_REGS_RSI] += delta;
  1661. }
  1662. kvm_x86_ops->decache_regs(vcpu);
  1663. io->count -= io->cur_count;
  1664. io->cur_count = 0;
  1665. return 0;
  1666. }
  1667. static void kernel_pio(struct kvm_io_device *pio_dev,
  1668. struct kvm_vcpu *vcpu,
  1669. void *pd)
  1670. {
  1671. /* TODO: String I/O for in kernel device */
  1672. mutex_lock(&vcpu->kvm->lock);
  1673. if (vcpu->pio.in)
  1674. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1675. vcpu->pio.size,
  1676. pd);
  1677. else
  1678. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1679. vcpu->pio.size,
  1680. pd);
  1681. mutex_unlock(&vcpu->kvm->lock);
  1682. }
  1683. static void pio_string_write(struct kvm_io_device *pio_dev,
  1684. struct kvm_vcpu *vcpu)
  1685. {
  1686. struct kvm_pio_request *io = &vcpu->pio;
  1687. void *pd = vcpu->pio_data;
  1688. int i;
  1689. mutex_lock(&vcpu->kvm->lock);
  1690. for (i = 0; i < io->cur_count; i++) {
  1691. kvm_iodevice_write(pio_dev, io->port,
  1692. io->size,
  1693. pd);
  1694. pd += io->size;
  1695. }
  1696. mutex_unlock(&vcpu->kvm->lock);
  1697. }
  1698. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1699. int size, unsigned port)
  1700. {
  1701. struct kvm_io_device *pio_dev;
  1702. vcpu->run->exit_reason = KVM_EXIT_IO;
  1703. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1704. vcpu->run->io.size = vcpu->pio.size = size;
  1705. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1706. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
  1707. vcpu->run->io.port = vcpu->pio.port = port;
  1708. vcpu->pio.in = in;
  1709. vcpu->pio.string = 0;
  1710. vcpu->pio.down = 0;
  1711. vcpu->pio.guest_page_offset = 0;
  1712. vcpu->pio.rep = 0;
  1713. kvm_x86_ops->cache_regs(vcpu);
  1714. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1715. kvm_x86_ops->decache_regs(vcpu);
  1716. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1717. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1718. if (pio_dev) {
  1719. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1720. complete_pio(vcpu);
  1721. return 1;
  1722. }
  1723. return 0;
  1724. }
  1725. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1726. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1727. int size, unsigned long count, int down,
  1728. gva_t address, int rep, unsigned port)
  1729. {
  1730. unsigned now, in_page;
  1731. int i, ret = 0;
  1732. int nr_pages = 1;
  1733. struct page *page;
  1734. struct kvm_io_device *pio_dev;
  1735. vcpu->run->exit_reason = KVM_EXIT_IO;
  1736. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1737. vcpu->run->io.size = vcpu->pio.size = size;
  1738. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1739. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
  1740. vcpu->run->io.port = vcpu->pio.port = port;
  1741. vcpu->pio.in = in;
  1742. vcpu->pio.string = 1;
  1743. vcpu->pio.down = down;
  1744. vcpu->pio.guest_page_offset = offset_in_page(address);
  1745. vcpu->pio.rep = rep;
  1746. if (!count) {
  1747. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1748. return 1;
  1749. }
  1750. if (!down)
  1751. in_page = PAGE_SIZE - offset_in_page(address);
  1752. else
  1753. in_page = offset_in_page(address) + size;
  1754. now = min(count, (unsigned long)in_page / size);
  1755. if (!now) {
  1756. /*
  1757. * String I/O straddles page boundary. Pin two guest pages
  1758. * so that we satisfy atomicity constraints. Do just one
  1759. * transaction to avoid complexity.
  1760. */
  1761. nr_pages = 2;
  1762. now = 1;
  1763. }
  1764. if (down) {
  1765. /*
  1766. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1767. */
  1768. pr_unimpl(vcpu, "guest string pio down\n");
  1769. inject_gp(vcpu);
  1770. return 1;
  1771. }
  1772. vcpu->run->io.count = now;
  1773. vcpu->pio.cur_count = now;
  1774. if (vcpu->pio.cur_count == vcpu->pio.count)
  1775. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1776. for (i = 0; i < nr_pages; ++i) {
  1777. mutex_lock(&vcpu->kvm->lock);
  1778. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1779. vcpu->pio.guest_pages[i] = page;
  1780. mutex_unlock(&vcpu->kvm->lock);
  1781. if (!page) {
  1782. inject_gp(vcpu);
  1783. free_pio_guest_pages(vcpu);
  1784. return 1;
  1785. }
  1786. }
  1787. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1788. if (!vcpu->pio.in) {
  1789. /* string PIO write */
  1790. ret = pio_copy_data(vcpu);
  1791. if (ret >= 0 && pio_dev) {
  1792. pio_string_write(pio_dev, vcpu);
  1793. complete_pio(vcpu);
  1794. if (vcpu->pio.count == 0)
  1795. ret = 1;
  1796. }
  1797. } else if (pio_dev)
  1798. pr_unimpl(vcpu, "no string pio read support yet, "
  1799. "port %x size %d count %ld\n",
  1800. port, size, count);
  1801. return ret;
  1802. }
  1803. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  1804. /*
  1805. * Check if userspace requested an interrupt window, and that the
  1806. * interrupt window is open.
  1807. *
  1808. * No need to exit to userspace if we already have an interrupt queued.
  1809. */
  1810. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1811. struct kvm_run *kvm_run)
  1812. {
  1813. return (!vcpu->irq_summary &&
  1814. kvm_run->request_interrupt_window &&
  1815. vcpu->interrupt_window_open &&
  1816. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  1817. }
  1818. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1819. struct kvm_run *kvm_run)
  1820. {
  1821. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  1822. kvm_run->cr8 = get_cr8(vcpu);
  1823. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  1824. if (irqchip_in_kernel(vcpu->kvm))
  1825. kvm_run->ready_for_interrupt_injection = 1;
  1826. else
  1827. kvm_run->ready_for_interrupt_injection =
  1828. (vcpu->interrupt_window_open &&
  1829. vcpu->irq_summary == 0);
  1830. }
  1831. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1832. {
  1833. int r;
  1834. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  1835. pr_debug("vcpu %d received sipi with vector # %x\n",
  1836. vcpu->vcpu_id, vcpu->sipi_vector);
  1837. kvm_lapic_reset(vcpu);
  1838. r = kvm_x86_ops->vcpu_reset(vcpu);
  1839. if (r)
  1840. return r;
  1841. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  1842. }
  1843. preempted:
  1844. if (vcpu->guest_debug.enabled)
  1845. kvm_x86_ops->guest_debug_pre(vcpu);
  1846. again:
  1847. r = kvm_mmu_reload(vcpu);
  1848. if (unlikely(r))
  1849. goto out;
  1850. kvm_inject_pending_timer_irqs(vcpu);
  1851. preempt_disable();
  1852. kvm_x86_ops->prepare_guest_switch(vcpu);
  1853. kvm_load_guest_fpu(vcpu);
  1854. local_irq_disable();
  1855. if (signal_pending(current)) {
  1856. local_irq_enable();
  1857. preempt_enable();
  1858. r = -EINTR;
  1859. kvm_run->exit_reason = KVM_EXIT_INTR;
  1860. ++vcpu->stat.signal_exits;
  1861. goto out;
  1862. }
  1863. if (irqchip_in_kernel(vcpu->kvm))
  1864. kvm_x86_ops->inject_pending_irq(vcpu);
  1865. else if (!vcpu->mmio_read_completed)
  1866. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  1867. vcpu->guest_mode = 1;
  1868. kvm_guest_enter();
  1869. if (vcpu->requests)
  1870. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  1871. kvm_x86_ops->tlb_flush(vcpu);
  1872. kvm_x86_ops->run(vcpu, kvm_run);
  1873. vcpu->guest_mode = 0;
  1874. local_irq_enable();
  1875. ++vcpu->stat.exits;
  1876. /*
  1877. * We must have an instruction between local_irq_enable() and
  1878. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  1879. * the interrupt shadow. The stat.exits increment will do nicely.
  1880. * But we need to prevent reordering, hence this barrier():
  1881. */
  1882. barrier();
  1883. kvm_guest_exit();
  1884. preempt_enable();
  1885. /*
  1886. * Profile KVM exit RIPs:
  1887. */
  1888. if (unlikely(prof_on == KVM_PROFILING)) {
  1889. kvm_x86_ops->cache_regs(vcpu);
  1890. profile_hit(KVM_PROFILING, (void *)vcpu->rip);
  1891. }
  1892. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  1893. if (r > 0) {
  1894. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1895. r = -EINTR;
  1896. kvm_run->exit_reason = KVM_EXIT_INTR;
  1897. ++vcpu->stat.request_irq_exits;
  1898. goto out;
  1899. }
  1900. if (!need_resched()) {
  1901. ++vcpu->stat.light_exits;
  1902. goto again;
  1903. }
  1904. }
  1905. out:
  1906. if (r > 0) {
  1907. kvm_resched(vcpu);
  1908. goto preempted;
  1909. }
  1910. post_kvm_run_save(vcpu, kvm_run);
  1911. return r;
  1912. }
  1913. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1914. {
  1915. int r;
  1916. sigset_t sigsaved;
  1917. vcpu_load(vcpu);
  1918. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  1919. kvm_vcpu_block(vcpu);
  1920. vcpu_put(vcpu);
  1921. return -EAGAIN;
  1922. }
  1923. if (vcpu->sigset_active)
  1924. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1925. /* re-sync apic's tpr */
  1926. if (!irqchip_in_kernel(vcpu->kvm))
  1927. set_cr8(vcpu, kvm_run->cr8);
  1928. if (vcpu->pio.cur_count) {
  1929. r = complete_pio(vcpu);
  1930. if (r)
  1931. goto out;
  1932. }
  1933. #if CONFIG_HAS_IOMEM
  1934. if (vcpu->mmio_needed) {
  1935. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1936. vcpu->mmio_read_completed = 1;
  1937. vcpu->mmio_needed = 0;
  1938. r = emulate_instruction(vcpu, kvm_run,
  1939. vcpu->mmio_fault_cr2, 0, 1);
  1940. if (r == EMULATE_DO_MMIO) {
  1941. /*
  1942. * Read-modify-write. Back to userspace.
  1943. */
  1944. r = 0;
  1945. goto out;
  1946. }
  1947. }
  1948. #endif
  1949. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1950. kvm_x86_ops->cache_regs(vcpu);
  1951. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1952. kvm_x86_ops->decache_regs(vcpu);
  1953. }
  1954. r = __vcpu_run(vcpu, kvm_run);
  1955. out:
  1956. if (vcpu->sigset_active)
  1957. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1958. vcpu_put(vcpu);
  1959. return r;
  1960. }
  1961. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1962. struct kvm_regs *regs)
  1963. {
  1964. vcpu_load(vcpu);
  1965. kvm_x86_ops->cache_regs(vcpu);
  1966. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1967. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1968. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1969. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1970. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1971. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1972. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1973. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1974. #ifdef CONFIG_X86_64
  1975. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1976. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1977. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1978. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1979. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1980. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1981. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1982. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1983. #endif
  1984. regs->rip = vcpu->rip;
  1985. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  1986. /*
  1987. * Don't leak debug flags in case they were set for guest debugging
  1988. */
  1989. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1990. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1991. vcpu_put(vcpu);
  1992. return 0;
  1993. }
  1994. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1995. struct kvm_regs *regs)
  1996. {
  1997. vcpu_load(vcpu);
  1998. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1999. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  2000. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  2001. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  2002. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  2003. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  2004. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  2005. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  2006. #ifdef CONFIG_X86_64
  2007. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  2008. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  2009. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  2010. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  2011. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  2012. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  2013. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  2014. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  2015. #endif
  2016. vcpu->rip = regs->rip;
  2017. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  2018. kvm_x86_ops->decache_regs(vcpu);
  2019. vcpu_put(vcpu);
  2020. return 0;
  2021. }
  2022. static void get_segment(struct kvm_vcpu *vcpu,
  2023. struct kvm_segment *var, int seg)
  2024. {
  2025. return kvm_x86_ops->get_segment(vcpu, var, seg);
  2026. }
  2027. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  2028. struct kvm_sregs *sregs)
  2029. {
  2030. struct descriptor_table dt;
  2031. int pending_vec;
  2032. vcpu_load(vcpu);
  2033. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2034. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2035. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2036. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2037. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2038. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2039. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2040. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2041. kvm_x86_ops->get_idt(vcpu, &dt);
  2042. sregs->idt.limit = dt.limit;
  2043. sregs->idt.base = dt.base;
  2044. kvm_x86_ops->get_gdt(vcpu, &dt);
  2045. sregs->gdt.limit = dt.limit;
  2046. sregs->gdt.base = dt.base;
  2047. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2048. sregs->cr0 = vcpu->cr0;
  2049. sregs->cr2 = vcpu->cr2;
  2050. sregs->cr3 = vcpu->cr3;
  2051. sregs->cr4 = vcpu->cr4;
  2052. sregs->cr8 = get_cr8(vcpu);
  2053. sregs->efer = vcpu->shadow_efer;
  2054. sregs->apic_base = kvm_get_apic_base(vcpu);
  2055. if (irqchip_in_kernel(vcpu->kvm)) {
  2056. memset(sregs->interrupt_bitmap, 0,
  2057. sizeof sregs->interrupt_bitmap);
  2058. pending_vec = kvm_x86_ops->get_irq(vcpu);
  2059. if (pending_vec >= 0)
  2060. set_bit(pending_vec,
  2061. (unsigned long *)sregs->interrupt_bitmap);
  2062. } else
  2063. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  2064. sizeof sregs->interrupt_bitmap);
  2065. vcpu_put(vcpu);
  2066. return 0;
  2067. }
  2068. static void set_segment(struct kvm_vcpu *vcpu,
  2069. struct kvm_segment *var, int seg)
  2070. {
  2071. return kvm_x86_ops->set_segment(vcpu, var, seg);
  2072. }
  2073. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  2074. struct kvm_sregs *sregs)
  2075. {
  2076. int mmu_reset_needed = 0;
  2077. int i, pending_vec, max_bits;
  2078. struct descriptor_table dt;
  2079. vcpu_load(vcpu);
  2080. dt.limit = sregs->idt.limit;
  2081. dt.base = sregs->idt.base;
  2082. kvm_x86_ops->set_idt(vcpu, &dt);
  2083. dt.limit = sregs->gdt.limit;
  2084. dt.base = sregs->gdt.base;
  2085. kvm_x86_ops->set_gdt(vcpu, &dt);
  2086. vcpu->cr2 = sregs->cr2;
  2087. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  2088. vcpu->cr3 = sregs->cr3;
  2089. set_cr8(vcpu, sregs->cr8);
  2090. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  2091. #ifdef CONFIG_X86_64
  2092. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  2093. #endif
  2094. kvm_set_apic_base(vcpu, sregs->apic_base);
  2095. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2096. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  2097. vcpu->cr0 = sregs->cr0;
  2098. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  2099. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  2100. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  2101. if (!is_long_mode(vcpu) && is_pae(vcpu))
  2102. load_pdptrs(vcpu, vcpu->cr3);
  2103. if (mmu_reset_needed)
  2104. kvm_mmu_reset_context(vcpu);
  2105. if (!irqchip_in_kernel(vcpu->kvm)) {
  2106. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  2107. sizeof vcpu->irq_pending);
  2108. vcpu->irq_summary = 0;
  2109. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  2110. if (vcpu->irq_pending[i])
  2111. __set_bit(i, &vcpu->irq_summary);
  2112. } else {
  2113. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  2114. pending_vec = find_first_bit(
  2115. (const unsigned long *)sregs->interrupt_bitmap,
  2116. max_bits);
  2117. /* Only pending external irq is handled here */
  2118. if (pending_vec < max_bits) {
  2119. kvm_x86_ops->set_irq(vcpu, pending_vec);
  2120. pr_debug("Set back pending irq %d\n",
  2121. pending_vec);
  2122. }
  2123. }
  2124. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2125. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2126. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2127. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2128. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2129. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2130. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2131. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2132. vcpu_put(vcpu);
  2133. return 0;
  2134. }
  2135. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2136. {
  2137. struct kvm_segment cs;
  2138. get_segment(vcpu, &cs, VCPU_SREG_CS);
  2139. *db = cs.db;
  2140. *l = cs.l;
  2141. }
  2142. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2143. /*
  2144. * Translate a guest virtual address to a guest physical address.
  2145. */
  2146. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  2147. struct kvm_translation *tr)
  2148. {
  2149. unsigned long vaddr = tr->linear_address;
  2150. gpa_t gpa;
  2151. vcpu_load(vcpu);
  2152. mutex_lock(&vcpu->kvm->lock);
  2153. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  2154. tr->physical_address = gpa;
  2155. tr->valid = gpa != UNMAPPED_GVA;
  2156. tr->writeable = 1;
  2157. tr->usermode = 0;
  2158. mutex_unlock(&vcpu->kvm->lock);
  2159. vcpu_put(vcpu);
  2160. return 0;
  2161. }
  2162. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2163. struct kvm_interrupt *irq)
  2164. {
  2165. if (irq->irq < 0 || irq->irq >= 256)
  2166. return -EINVAL;
  2167. if (irqchip_in_kernel(vcpu->kvm))
  2168. return -ENXIO;
  2169. vcpu_load(vcpu);
  2170. set_bit(irq->irq, vcpu->irq_pending);
  2171. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  2172. vcpu_put(vcpu);
  2173. return 0;
  2174. }
  2175. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  2176. struct kvm_debug_guest *dbg)
  2177. {
  2178. int r;
  2179. vcpu_load(vcpu);
  2180. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  2181. vcpu_put(vcpu);
  2182. return r;
  2183. }
  2184. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  2185. unsigned long address,
  2186. int *type)
  2187. {
  2188. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  2189. unsigned long pgoff;
  2190. struct page *page;
  2191. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2192. if (pgoff == 0)
  2193. page = virt_to_page(vcpu->run);
  2194. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  2195. page = virt_to_page(vcpu->pio_data);
  2196. else
  2197. return NOPAGE_SIGBUS;
  2198. get_page(page);
  2199. if (type != NULL)
  2200. *type = VM_FAULT_MINOR;
  2201. return page;
  2202. }
  2203. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  2204. .nopage = kvm_vcpu_nopage,
  2205. };
  2206. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  2207. {
  2208. vma->vm_ops = &kvm_vcpu_vm_ops;
  2209. return 0;
  2210. }
  2211. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  2212. {
  2213. struct kvm_vcpu *vcpu = filp->private_data;
  2214. fput(vcpu->kvm->filp);
  2215. return 0;
  2216. }
  2217. static struct file_operations kvm_vcpu_fops = {
  2218. .release = kvm_vcpu_release,
  2219. .unlocked_ioctl = kvm_vcpu_ioctl,
  2220. .compat_ioctl = kvm_vcpu_ioctl,
  2221. .mmap = kvm_vcpu_mmap,
  2222. };
  2223. /*
  2224. * Allocates an inode for the vcpu.
  2225. */
  2226. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  2227. {
  2228. int fd, r;
  2229. struct inode *inode;
  2230. struct file *file;
  2231. r = anon_inode_getfd(&fd, &inode, &file,
  2232. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  2233. if (r)
  2234. return r;
  2235. atomic_inc(&vcpu->kvm->filp->f_count);
  2236. return fd;
  2237. }
  2238. /*
  2239. * Creates some virtual cpus. Good luck creating more than one.
  2240. */
  2241. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  2242. {
  2243. int r;
  2244. struct kvm_vcpu *vcpu;
  2245. if (!valid_vcpu(n))
  2246. return -EINVAL;
  2247. vcpu = kvm_x86_ops->vcpu_create(kvm, n);
  2248. if (IS_ERR(vcpu))
  2249. return PTR_ERR(vcpu);
  2250. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  2251. /* We do fxsave: this must be aligned. */
  2252. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  2253. vcpu_load(vcpu);
  2254. r = kvm_x86_ops->vcpu_reset(vcpu);
  2255. if (r == 0)
  2256. r = kvm_mmu_setup(vcpu);
  2257. vcpu_put(vcpu);
  2258. if (r < 0)
  2259. goto free_vcpu;
  2260. mutex_lock(&kvm->lock);
  2261. if (kvm->vcpus[n]) {
  2262. r = -EEXIST;
  2263. mutex_unlock(&kvm->lock);
  2264. goto mmu_unload;
  2265. }
  2266. kvm->vcpus[n] = vcpu;
  2267. mutex_unlock(&kvm->lock);
  2268. /* Now it's all set up, let userspace reach it */
  2269. r = create_vcpu_fd(vcpu);
  2270. if (r < 0)
  2271. goto unlink;
  2272. return r;
  2273. unlink:
  2274. mutex_lock(&kvm->lock);
  2275. kvm->vcpus[n] = NULL;
  2276. mutex_unlock(&kvm->lock);
  2277. mmu_unload:
  2278. vcpu_load(vcpu);
  2279. kvm_mmu_unload(vcpu);
  2280. vcpu_put(vcpu);
  2281. free_vcpu:
  2282. kvm_x86_ops->vcpu_free(vcpu);
  2283. return r;
  2284. }
  2285. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2286. {
  2287. if (sigset) {
  2288. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2289. vcpu->sigset_active = 1;
  2290. vcpu->sigset = *sigset;
  2291. } else
  2292. vcpu->sigset_active = 0;
  2293. return 0;
  2294. }
  2295. /*
  2296. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2297. * we have asm/x86/processor.h
  2298. */
  2299. struct fxsave {
  2300. u16 cwd;
  2301. u16 swd;
  2302. u16 twd;
  2303. u16 fop;
  2304. u64 rip;
  2305. u64 rdp;
  2306. u32 mxcsr;
  2307. u32 mxcsr_mask;
  2308. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2309. #ifdef CONFIG_X86_64
  2310. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2311. #else
  2312. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2313. #endif
  2314. };
  2315. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2316. {
  2317. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2318. vcpu_load(vcpu);
  2319. memcpy(fpu->fpr, fxsave->st_space, 128);
  2320. fpu->fcw = fxsave->cwd;
  2321. fpu->fsw = fxsave->swd;
  2322. fpu->ftwx = fxsave->twd;
  2323. fpu->last_opcode = fxsave->fop;
  2324. fpu->last_ip = fxsave->rip;
  2325. fpu->last_dp = fxsave->rdp;
  2326. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2327. vcpu_put(vcpu);
  2328. return 0;
  2329. }
  2330. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2331. {
  2332. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2333. vcpu_load(vcpu);
  2334. memcpy(fxsave->st_space, fpu->fpr, 128);
  2335. fxsave->cwd = fpu->fcw;
  2336. fxsave->swd = fpu->fsw;
  2337. fxsave->twd = fpu->ftwx;
  2338. fxsave->fop = fpu->last_opcode;
  2339. fxsave->rip = fpu->last_ip;
  2340. fxsave->rdp = fpu->last_dp;
  2341. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2342. vcpu_put(vcpu);
  2343. return 0;
  2344. }
  2345. static long kvm_vcpu_ioctl(struct file *filp,
  2346. unsigned int ioctl, unsigned long arg)
  2347. {
  2348. struct kvm_vcpu *vcpu = filp->private_data;
  2349. void __user *argp = (void __user *)arg;
  2350. int r;
  2351. switch (ioctl) {
  2352. case KVM_RUN:
  2353. r = -EINVAL;
  2354. if (arg)
  2355. goto out;
  2356. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2357. break;
  2358. case KVM_GET_REGS: {
  2359. struct kvm_regs kvm_regs;
  2360. memset(&kvm_regs, 0, sizeof kvm_regs);
  2361. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2362. if (r)
  2363. goto out;
  2364. r = -EFAULT;
  2365. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2366. goto out;
  2367. r = 0;
  2368. break;
  2369. }
  2370. case KVM_SET_REGS: {
  2371. struct kvm_regs kvm_regs;
  2372. r = -EFAULT;
  2373. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2374. goto out;
  2375. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2376. if (r)
  2377. goto out;
  2378. r = 0;
  2379. break;
  2380. }
  2381. case KVM_GET_SREGS: {
  2382. struct kvm_sregs kvm_sregs;
  2383. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2384. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2385. if (r)
  2386. goto out;
  2387. r = -EFAULT;
  2388. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2389. goto out;
  2390. r = 0;
  2391. break;
  2392. }
  2393. case KVM_SET_SREGS: {
  2394. struct kvm_sregs kvm_sregs;
  2395. r = -EFAULT;
  2396. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2397. goto out;
  2398. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2399. if (r)
  2400. goto out;
  2401. r = 0;
  2402. break;
  2403. }
  2404. case KVM_TRANSLATE: {
  2405. struct kvm_translation tr;
  2406. r = -EFAULT;
  2407. if (copy_from_user(&tr, argp, sizeof tr))
  2408. goto out;
  2409. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2410. if (r)
  2411. goto out;
  2412. r = -EFAULT;
  2413. if (copy_to_user(argp, &tr, sizeof tr))
  2414. goto out;
  2415. r = 0;
  2416. break;
  2417. }
  2418. case KVM_INTERRUPT: {
  2419. struct kvm_interrupt irq;
  2420. r = -EFAULT;
  2421. if (copy_from_user(&irq, argp, sizeof irq))
  2422. goto out;
  2423. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2424. if (r)
  2425. goto out;
  2426. r = 0;
  2427. break;
  2428. }
  2429. case KVM_DEBUG_GUEST: {
  2430. struct kvm_debug_guest dbg;
  2431. r = -EFAULT;
  2432. if (copy_from_user(&dbg, argp, sizeof dbg))
  2433. goto out;
  2434. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2435. if (r)
  2436. goto out;
  2437. r = 0;
  2438. break;
  2439. }
  2440. case KVM_SET_SIGNAL_MASK: {
  2441. struct kvm_signal_mask __user *sigmask_arg = argp;
  2442. struct kvm_signal_mask kvm_sigmask;
  2443. sigset_t sigset, *p;
  2444. p = NULL;
  2445. if (argp) {
  2446. r = -EFAULT;
  2447. if (copy_from_user(&kvm_sigmask, argp,
  2448. sizeof kvm_sigmask))
  2449. goto out;
  2450. r = -EINVAL;
  2451. if (kvm_sigmask.len != sizeof sigset)
  2452. goto out;
  2453. r = -EFAULT;
  2454. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2455. sizeof sigset))
  2456. goto out;
  2457. p = &sigset;
  2458. }
  2459. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2460. break;
  2461. }
  2462. case KVM_GET_FPU: {
  2463. struct kvm_fpu fpu;
  2464. memset(&fpu, 0, sizeof fpu);
  2465. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2466. if (r)
  2467. goto out;
  2468. r = -EFAULT;
  2469. if (copy_to_user(argp, &fpu, sizeof fpu))
  2470. goto out;
  2471. r = 0;
  2472. break;
  2473. }
  2474. case KVM_SET_FPU: {
  2475. struct kvm_fpu fpu;
  2476. r = -EFAULT;
  2477. if (copy_from_user(&fpu, argp, sizeof fpu))
  2478. goto out;
  2479. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2480. if (r)
  2481. goto out;
  2482. r = 0;
  2483. break;
  2484. }
  2485. default:
  2486. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  2487. }
  2488. out:
  2489. return r;
  2490. }
  2491. static long kvm_vm_ioctl(struct file *filp,
  2492. unsigned int ioctl, unsigned long arg)
  2493. {
  2494. struct kvm *kvm = filp->private_data;
  2495. void __user *argp = (void __user *)arg;
  2496. int r = -EINVAL;
  2497. switch (ioctl) {
  2498. case KVM_CREATE_VCPU:
  2499. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2500. if (r < 0)
  2501. goto out;
  2502. break;
  2503. case KVM_SET_MEMORY_REGION: {
  2504. struct kvm_memory_region kvm_mem;
  2505. struct kvm_userspace_memory_region kvm_userspace_mem;
  2506. r = -EFAULT;
  2507. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2508. goto out;
  2509. kvm_userspace_mem.slot = kvm_mem.slot;
  2510. kvm_userspace_mem.flags = kvm_mem.flags;
  2511. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  2512. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  2513. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2514. if (r)
  2515. goto out;
  2516. break;
  2517. }
  2518. case KVM_SET_USER_MEMORY_REGION: {
  2519. struct kvm_userspace_memory_region kvm_userspace_mem;
  2520. r = -EFAULT;
  2521. if (copy_from_user(&kvm_userspace_mem, argp,
  2522. sizeof kvm_userspace_mem))
  2523. goto out;
  2524. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  2525. if (r)
  2526. goto out;
  2527. break;
  2528. }
  2529. case KVM_SET_NR_MMU_PAGES:
  2530. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2531. if (r)
  2532. goto out;
  2533. break;
  2534. case KVM_GET_NR_MMU_PAGES:
  2535. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2536. break;
  2537. case KVM_GET_DIRTY_LOG: {
  2538. struct kvm_dirty_log log;
  2539. r = -EFAULT;
  2540. if (copy_from_user(&log, argp, sizeof log))
  2541. goto out;
  2542. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2543. if (r)
  2544. goto out;
  2545. break;
  2546. }
  2547. case KVM_SET_MEMORY_ALIAS: {
  2548. struct kvm_memory_alias alias;
  2549. r = -EFAULT;
  2550. if (copy_from_user(&alias, argp, sizeof alias))
  2551. goto out;
  2552. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2553. if (r)
  2554. goto out;
  2555. break;
  2556. }
  2557. case KVM_CREATE_IRQCHIP:
  2558. r = -ENOMEM;
  2559. kvm->vpic = kvm_create_pic(kvm);
  2560. if (kvm->vpic) {
  2561. r = kvm_ioapic_init(kvm);
  2562. if (r) {
  2563. kfree(kvm->vpic);
  2564. kvm->vpic = NULL;
  2565. goto out;
  2566. }
  2567. } else
  2568. goto out;
  2569. break;
  2570. case KVM_IRQ_LINE: {
  2571. struct kvm_irq_level irq_event;
  2572. r = -EFAULT;
  2573. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2574. goto out;
  2575. if (irqchip_in_kernel(kvm)) {
  2576. mutex_lock(&kvm->lock);
  2577. if (irq_event.irq < 16)
  2578. kvm_pic_set_irq(pic_irqchip(kvm),
  2579. irq_event.irq,
  2580. irq_event.level);
  2581. kvm_ioapic_set_irq(kvm->vioapic,
  2582. irq_event.irq,
  2583. irq_event.level);
  2584. mutex_unlock(&kvm->lock);
  2585. r = 0;
  2586. }
  2587. break;
  2588. }
  2589. case KVM_GET_IRQCHIP: {
  2590. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2591. struct kvm_irqchip chip;
  2592. r = -EFAULT;
  2593. if (copy_from_user(&chip, argp, sizeof chip))
  2594. goto out;
  2595. r = -ENXIO;
  2596. if (!irqchip_in_kernel(kvm))
  2597. goto out;
  2598. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  2599. if (r)
  2600. goto out;
  2601. r = -EFAULT;
  2602. if (copy_to_user(argp, &chip, sizeof chip))
  2603. goto out;
  2604. r = 0;
  2605. break;
  2606. }
  2607. case KVM_SET_IRQCHIP: {
  2608. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2609. struct kvm_irqchip chip;
  2610. r = -EFAULT;
  2611. if (copy_from_user(&chip, argp, sizeof chip))
  2612. goto out;
  2613. r = -ENXIO;
  2614. if (!irqchip_in_kernel(kvm))
  2615. goto out;
  2616. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  2617. if (r)
  2618. goto out;
  2619. r = 0;
  2620. break;
  2621. }
  2622. default:
  2623. ;
  2624. }
  2625. out:
  2626. return r;
  2627. }
  2628. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2629. unsigned long address,
  2630. int *type)
  2631. {
  2632. struct kvm *kvm = vma->vm_file->private_data;
  2633. unsigned long pgoff;
  2634. struct page *page;
  2635. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2636. page = gfn_to_page(kvm, pgoff);
  2637. if (is_error_page(page)) {
  2638. kvm_release_page(page);
  2639. return NOPAGE_SIGBUS;
  2640. }
  2641. if (type != NULL)
  2642. *type = VM_FAULT_MINOR;
  2643. return page;
  2644. }
  2645. static struct vm_operations_struct kvm_vm_vm_ops = {
  2646. .nopage = kvm_vm_nopage,
  2647. };
  2648. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2649. {
  2650. vma->vm_ops = &kvm_vm_vm_ops;
  2651. return 0;
  2652. }
  2653. static struct file_operations kvm_vm_fops = {
  2654. .release = kvm_vm_release,
  2655. .unlocked_ioctl = kvm_vm_ioctl,
  2656. .compat_ioctl = kvm_vm_ioctl,
  2657. .mmap = kvm_vm_mmap,
  2658. };
  2659. static int kvm_dev_ioctl_create_vm(void)
  2660. {
  2661. int fd, r;
  2662. struct inode *inode;
  2663. struct file *file;
  2664. struct kvm *kvm;
  2665. kvm = kvm_create_vm();
  2666. if (IS_ERR(kvm))
  2667. return PTR_ERR(kvm);
  2668. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2669. if (r) {
  2670. kvm_destroy_vm(kvm);
  2671. return r;
  2672. }
  2673. kvm->filp = file;
  2674. return fd;
  2675. }
  2676. static long kvm_dev_ioctl(struct file *filp,
  2677. unsigned int ioctl, unsigned long arg)
  2678. {
  2679. void __user *argp = (void __user *)arg;
  2680. long r = -EINVAL;
  2681. switch (ioctl) {
  2682. case KVM_GET_API_VERSION:
  2683. r = -EINVAL;
  2684. if (arg)
  2685. goto out;
  2686. r = KVM_API_VERSION;
  2687. break;
  2688. case KVM_CREATE_VM:
  2689. r = -EINVAL;
  2690. if (arg)
  2691. goto out;
  2692. r = kvm_dev_ioctl_create_vm();
  2693. break;
  2694. case KVM_CHECK_EXTENSION: {
  2695. int ext = (long)argp;
  2696. switch (ext) {
  2697. case KVM_CAP_IRQCHIP:
  2698. case KVM_CAP_HLT:
  2699. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  2700. case KVM_CAP_USER_MEMORY:
  2701. r = 1;
  2702. break;
  2703. default:
  2704. r = 0;
  2705. break;
  2706. }
  2707. break;
  2708. }
  2709. case KVM_GET_VCPU_MMAP_SIZE:
  2710. r = -EINVAL;
  2711. if (arg)
  2712. goto out;
  2713. r = 2 * PAGE_SIZE;
  2714. break;
  2715. default:
  2716. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  2717. }
  2718. out:
  2719. return r;
  2720. }
  2721. static struct file_operations kvm_chardev_ops = {
  2722. .unlocked_ioctl = kvm_dev_ioctl,
  2723. .compat_ioctl = kvm_dev_ioctl,
  2724. };
  2725. static struct miscdevice kvm_dev = {
  2726. KVM_MINOR,
  2727. "kvm",
  2728. &kvm_chardev_ops,
  2729. };
  2730. /*
  2731. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2732. * cached on it.
  2733. */
  2734. static void decache_vcpus_on_cpu(int cpu)
  2735. {
  2736. struct kvm *vm;
  2737. struct kvm_vcpu *vcpu;
  2738. int i;
  2739. spin_lock(&kvm_lock);
  2740. list_for_each_entry(vm, &vm_list, vm_list)
  2741. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2742. vcpu = vm->vcpus[i];
  2743. if (!vcpu)
  2744. continue;
  2745. /*
  2746. * If the vcpu is locked, then it is running on some
  2747. * other cpu and therefore it is not cached on the
  2748. * cpu in question.
  2749. *
  2750. * If it's not locked, check the last cpu it executed
  2751. * on.
  2752. */
  2753. if (mutex_trylock(&vcpu->mutex)) {
  2754. if (vcpu->cpu == cpu) {
  2755. kvm_x86_ops->vcpu_decache(vcpu);
  2756. vcpu->cpu = -1;
  2757. }
  2758. mutex_unlock(&vcpu->mutex);
  2759. }
  2760. }
  2761. spin_unlock(&kvm_lock);
  2762. }
  2763. static void hardware_enable(void *junk)
  2764. {
  2765. int cpu = raw_smp_processor_id();
  2766. if (cpu_isset(cpu, cpus_hardware_enabled))
  2767. return;
  2768. cpu_set(cpu, cpus_hardware_enabled);
  2769. kvm_x86_ops->hardware_enable(NULL);
  2770. }
  2771. static void hardware_disable(void *junk)
  2772. {
  2773. int cpu = raw_smp_processor_id();
  2774. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2775. return;
  2776. cpu_clear(cpu, cpus_hardware_enabled);
  2777. decache_vcpus_on_cpu(cpu);
  2778. kvm_x86_ops->hardware_disable(NULL);
  2779. }
  2780. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2781. void *v)
  2782. {
  2783. int cpu = (long)v;
  2784. switch (val) {
  2785. case CPU_DYING:
  2786. case CPU_DYING_FROZEN:
  2787. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2788. cpu);
  2789. hardware_disable(NULL);
  2790. break;
  2791. case CPU_UP_CANCELED:
  2792. case CPU_UP_CANCELED_FROZEN:
  2793. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2794. cpu);
  2795. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2796. break;
  2797. case CPU_ONLINE:
  2798. case CPU_ONLINE_FROZEN:
  2799. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2800. cpu);
  2801. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2802. break;
  2803. }
  2804. return NOTIFY_OK;
  2805. }
  2806. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2807. void *v)
  2808. {
  2809. if (val == SYS_RESTART) {
  2810. /*
  2811. * Some (well, at least mine) BIOSes hang on reboot if
  2812. * in vmx root mode.
  2813. */
  2814. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2815. on_each_cpu(hardware_disable, NULL, 0, 1);
  2816. }
  2817. return NOTIFY_OK;
  2818. }
  2819. static struct notifier_block kvm_reboot_notifier = {
  2820. .notifier_call = kvm_reboot,
  2821. .priority = 0,
  2822. };
  2823. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2824. {
  2825. memset(bus, 0, sizeof(*bus));
  2826. }
  2827. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2828. {
  2829. int i;
  2830. for (i = 0; i < bus->dev_count; i++) {
  2831. struct kvm_io_device *pos = bus->devs[i];
  2832. kvm_iodevice_destructor(pos);
  2833. }
  2834. }
  2835. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2836. {
  2837. int i;
  2838. for (i = 0; i < bus->dev_count; i++) {
  2839. struct kvm_io_device *pos = bus->devs[i];
  2840. if (pos->in_range(pos, addr))
  2841. return pos;
  2842. }
  2843. return NULL;
  2844. }
  2845. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2846. {
  2847. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2848. bus->devs[bus->dev_count++] = dev;
  2849. }
  2850. static struct notifier_block kvm_cpu_notifier = {
  2851. .notifier_call = kvm_cpu_hotplug,
  2852. .priority = 20, /* must be > scheduler priority */
  2853. };
  2854. static u64 stat_get(void *_offset)
  2855. {
  2856. unsigned offset = (long)_offset;
  2857. u64 total = 0;
  2858. struct kvm *kvm;
  2859. struct kvm_vcpu *vcpu;
  2860. int i;
  2861. spin_lock(&kvm_lock);
  2862. list_for_each_entry(kvm, &vm_list, vm_list)
  2863. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2864. vcpu = kvm->vcpus[i];
  2865. if (vcpu)
  2866. total += *(u32 *)((void *)vcpu + offset);
  2867. }
  2868. spin_unlock(&kvm_lock);
  2869. return total;
  2870. }
  2871. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  2872. static __init void kvm_init_debug(void)
  2873. {
  2874. struct kvm_stats_debugfs_item *p;
  2875. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2876. for (p = debugfs_entries; p->name; ++p)
  2877. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2878. (void *)(long)p->offset,
  2879. &stat_fops);
  2880. }
  2881. static void kvm_exit_debug(void)
  2882. {
  2883. struct kvm_stats_debugfs_item *p;
  2884. for (p = debugfs_entries; p->name; ++p)
  2885. debugfs_remove(p->dentry);
  2886. debugfs_remove(debugfs_dir);
  2887. }
  2888. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2889. {
  2890. hardware_disable(NULL);
  2891. return 0;
  2892. }
  2893. static int kvm_resume(struct sys_device *dev)
  2894. {
  2895. hardware_enable(NULL);
  2896. return 0;
  2897. }
  2898. static struct sysdev_class kvm_sysdev_class = {
  2899. .name = "kvm",
  2900. .suspend = kvm_suspend,
  2901. .resume = kvm_resume,
  2902. };
  2903. static struct sys_device kvm_sysdev = {
  2904. .id = 0,
  2905. .cls = &kvm_sysdev_class,
  2906. };
  2907. struct page *bad_page;
  2908. static inline
  2909. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2910. {
  2911. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2912. }
  2913. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2914. {
  2915. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2916. kvm_x86_ops->vcpu_load(vcpu, cpu);
  2917. }
  2918. static void kvm_sched_out(struct preempt_notifier *pn,
  2919. struct task_struct *next)
  2920. {
  2921. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2922. kvm_x86_ops->vcpu_put(vcpu);
  2923. }
  2924. int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
  2925. struct module *module)
  2926. {
  2927. int r;
  2928. int cpu;
  2929. if (kvm_x86_ops) {
  2930. printk(KERN_ERR "kvm: already loaded the other module\n");
  2931. return -EEXIST;
  2932. }
  2933. if (!ops->cpu_has_kvm_support()) {
  2934. printk(KERN_ERR "kvm: no hardware support\n");
  2935. return -EOPNOTSUPP;
  2936. }
  2937. if (ops->disabled_by_bios()) {
  2938. printk(KERN_ERR "kvm: disabled by bios\n");
  2939. return -EOPNOTSUPP;
  2940. }
  2941. kvm_x86_ops = ops;
  2942. r = kvm_x86_ops->hardware_setup();
  2943. if (r < 0)
  2944. goto out;
  2945. for_each_online_cpu(cpu) {
  2946. smp_call_function_single(cpu,
  2947. kvm_x86_ops->check_processor_compatibility,
  2948. &r, 0, 1);
  2949. if (r < 0)
  2950. goto out_free_0;
  2951. }
  2952. on_each_cpu(hardware_enable, NULL, 0, 1);
  2953. r = register_cpu_notifier(&kvm_cpu_notifier);
  2954. if (r)
  2955. goto out_free_1;
  2956. register_reboot_notifier(&kvm_reboot_notifier);
  2957. r = sysdev_class_register(&kvm_sysdev_class);
  2958. if (r)
  2959. goto out_free_2;
  2960. r = sysdev_register(&kvm_sysdev);
  2961. if (r)
  2962. goto out_free_3;
  2963. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2964. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2965. __alignof__(struct kvm_vcpu), 0, 0);
  2966. if (!kvm_vcpu_cache) {
  2967. r = -ENOMEM;
  2968. goto out_free_4;
  2969. }
  2970. kvm_chardev_ops.owner = module;
  2971. r = misc_register(&kvm_dev);
  2972. if (r) {
  2973. printk(KERN_ERR "kvm: misc device register failed\n");
  2974. goto out_free;
  2975. }
  2976. kvm_preempt_ops.sched_in = kvm_sched_in;
  2977. kvm_preempt_ops.sched_out = kvm_sched_out;
  2978. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2979. return 0;
  2980. out_free:
  2981. kmem_cache_destroy(kvm_vcpu_cache);
  2982. out_free_4:
  2983. sysdev_unregister(&kvm_sysdev);
  2984. out_free_3:
  2985. sysdev_class_unregister(&kvm_sysdev_class);
  2986. out_free_2:
  2987. unregister_reboot_notifier(&kvm_reboot_notifier);
  2988. unregister_cpu_notifier(&kvm_cpu_notifier);
  2989. out_free_1:
  2990. on_each_cpu(hardware_disable, NULL, 0, 1);
  2991. out_free_0:
  2992. kvm_x86_ops->hardware_unsetup();
  2993. out:
  2994. kvm_x86_ops = NULL;
  2995. return r;
  2996. }
  2997. EXPORT_SYMBOL_GPL(kvm_init_x86);
  2998. void kvm_exit_x86(void)
  2999. {
  3000. misc_deregister(&kvm_dev);
  3001. kmem_cache_destroy(kvm_vcpu_cache);
  3002. sysdev_unregister(&kvm_sysdev);
  3003. sysdev_class_unregister(&kvm_sysdev_class);
  3004. unregister_reboot_notifier(&kvm_reboot_notifier);
  3005. unregister_cpu_notifier(&kvm_cpu_notifier);
  3006. on_each_cpu(hardware_disable, NULL, 0, 1);
  3007. kvm_x86_ops->hardware_unsetup();
  3008. kvm_x86_ops = NULL;
  3009. }
  3010. EXPORT_SYMBOL_GPL(kvm_exit_x86);
  3011. static __init int kvm_init(void)
  3012. {
  3013. int r;
  3014. r = kvm_mmu_module_init();
  3015. if (r)
  3016. goto out4;
  3017. kvm_init_debug();
  3018. kvm_arch_init();
  3019. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3020. if (bad_page == NULL) {
  3021. r = -ENOMEM;
  3022. goto out;
  3023. }
  3024. return 0;
  3025. out:
  3026. kvm_exit_debug();
  3027. kvm_mmu_module_exit();
  3028. out4:
  3029. return r;
  3030. }
  3031. static __exit void kvm_exit(void)
  3032. {
  3033. kvm_exit_debug();
  3034. __free_page(bad_page);
  3035. kvm_mmu_module_exit();
  3036. }
  3037. module_init(kvm_init)
  3038. module_exit(kvm_exit)