edac_mc.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855
  1. /*
  2. * edac_mc kernel module
  3. * (C) 2005, 2006 Linux Networx (http://lnxi.com)
  4. * This file may be distributed under the terms of the
  5. * GNU General Public License.
  6. *
  7. * Written by Thayne Harbaugh
  8. * Based on work by Dan Hollis <goemon at anime dot net> and others.
  9. * http://www.anime.net/~goemon/linux-ecc/
  10. *
  11. * Modified by Dave Peterson and Doug Thompson
  12. *
  13. */
  14. #include <linux/module.h>
  15. #include <linux/proc_fs.h>
  16. #include <linux/kernel.h>
  17. #include <linux/types.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/sysctl.h>
  21. #include <linux/highmem.h>
  22. #include <linux/timer.h>
  23. #include <linux/slab.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/list.h>
  27. #include <linux/sysdev.h>
  28. #include <linux/ctype.h>
  29. #include <linux/edac.h>
  30. #include <asm/uaccess.h>
  31. #include <asm/page.h>
  32. #include <asm/edac.h>
  33. #include "edac_core.h"
  34. #include "edac_module.h"
  35. /* lock to memory controller's control array */
  36. static DEFINE_MUTEX(mem_ctls_mutex);
  37. static struct list_head mc_devices = LIST_HEAD_INIT(mc_devices);
  38. #ifdef CONFIG_EDAC_DEBUG
  39. static void edac_mc_dump_channel(struct channel_info *chan)
  40. {
  41. debugf4("\tchannel = %p\n", chan);
  42. debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
  43. debugf4("\tchannel->ce_count = %d\n", chan->ce_count);
  44. debugf4("\tchannel->label = '%s'\n", chan->label);
  45. debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
  46. }
  47. static void edac_mc_dump_csrow(struct csrow_info *csrow)
  48. {
  49. debugf4("\tcsrow = %p\n", csrow);
  50. debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
  51. debugf4("\tcsrow->first_page = 0x%lx\n", csrow->first_page);
  52. debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
  53. debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
  54. debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages);
  55. debugf4("\tcsrow->nr_channels = %d\n", csrow->nr_channels);
  56. debugf4("\tcsrow->channels = %p\n", csrow->channels);
  57. debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
  58. }
  59. static void edac_mc_dump_mci(struct mem_ctl_info *mci)
  60. {
  61. debugf3("\tmci = %p\n", mci);
  62. debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
  63. debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
  64. debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
  65. debugf4("\tmci->edac_check = %p\n", mci->edac_check);
  66. debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
  67. mci->nr_csrows, mci->csrows);
  68. debugf3("\tdev = %p\n", mci->dev);
  69. debugf3("\tmod_name:ctl_name = %s:%s\n", mci->mod_name, mci->ctl_name);
  70. debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
  71. }
  72. #endif /* CONFIG_EDAC_DEBUG */
  73. /* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
  74. * Adjust 'ptr' so that its alignment is at least as stringent as what the
  75. * compiler would provide for X and return the aligned result.
  76. *
  77. * If 'size' is a constant, the compiler will optimize this whole function
  78. * down to either a no-op or the addition of a constant to the value of 'ptr'.
  79. */
  80. void *edac_align_ptr(void *ptr, unsigned size)
  81. {
  82. unsigned align, r;
  83. /* Here we assume that the alignment of a "long long" is the most
  84. * stringent alignment that the compiler will ever provide by default.
  85. * As far as I know, this is a reasonable assumption.
  86. */
  87. if (size > sizeof(long))
  88. align = sizeof(long long);
  89. else if (size > sizeof(int))
  90. align = sizeof(long);
  91. else if (size > sizeof(short))
  92. align = sizeof(int);
  93. else if (size > sizeof(char))
  94. align = sizeof(short);
  95. else
  96. return (char *)ptr;
  97. r = size % align;
  98. if (r == 0)
  99. return (char *)ptr;
  100. return (void *)(((unsigned long)ptr) + align - r);
  101. }
  102. /**
  103. * edac_mc_alloc: Allocate a struct mem_ctl_info structure
  104. * @size_pvt: size of private storage needed
  105. * @nr_csrows: Number of CWROWS needed for this MC
  106. * @nr_chans: Number of channels for the MC
  107. *
  108. * Everything is kmalloc'ed as one big chunk - more efficient.
  109. * Only can be used if all structures have the same lifetime - otherwise
  110. * you have to allocate and initialize your own structures.
  111. *
  112. * Use edac_mc_free() to free mc structures allocated by this function.
  113. *
  114. * Returns:
  115. * NULL allocation failed
  116. * struct mem_ctl_info pointer
  117. */
  118. struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
  119. unsigned nr_chans, int edac_index)
  120. {
  121. struct mem_ctl_info *mci;
  122. struct csrow_info *csi, *csrow;
  123. struct channel_info *chi, *chp, *chan;
  124. void *pvt;
  125. unsigned size;
  126. int row, chn;
  127. int err;
  128. /* Figure out the offsets of the various items from the start of an mc
  129. * structure. We want the alignment of each item to be at least as
  130. * stringent as what the compiler would provide if we could simply
  131. * hardcode everything into a single struct.
  132. */
  133. mci = (struct mem_ctl_info *)0;
  134. csi = edac_align_ptr(&mci[1], sizeof(*csi));
  135. chi = edac_align_ptr(&csi[nr_csrows], sizeof(*chi));
  136. pvt = edac_align_ptr(&chi[nr_chans * nr_csrows], sz_pvt);
  137. size = ((unsigned long)pvt) + sz_pvt;
  138. mci = kzalloc(size, GFP_KERNEL);
  139. if (mci == NULL)
  140. return NULL;
  141. /* Adjust pointers so they point within the memory we just allocated
  142. * rather than an imaginary chunk of memory located at address 0.
  143. */
  144. csi = (struct csrow_info *)(((char *)mci) + ((unsigned long)csi));
  145. chi = (struct channel_info *)(((char *)mci) + ((unsigned long)chi));
  146. pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
  147. /* setup index and various internal pointers */
  148. mci->mc_idx = edac_index;
  149. mci->csrows = csi;
  150. mci->pvt_info = pvt;
  151. mci->nr_csrows = nr_csrows;
  152. for (row = 0; row < nr_csrows; row++) {
  153. csrow = &csi[row];
  154. csrow->csrow_idx = row;
  155. csrow->mci = mci;
  156. csrow->nr_channels = nr_chans;
  157. chp = &chi[row * nr_chans];
  158. csrow->channels = chp;
  159. for (chn = 0; chn < nr_chans; chn++) {
  160. chan = &chp[chn];
  161. chan->chan_idx = chn;
  162. chan->csrow = csrow;
  163. }
  164. }
  165. mci->op_state = OP_ALLOC;
  166. /*
  167. * Initialize the 'root' kobj for the edac_mc controller
  168. */
  169. err = edac_mc_register_sysfs_main_kobj(mci);
  170. if (err) {
  171. kfree(mci);
  172. return NULL;
  173. }
  174. /* at this point, the root kobj is valid, and in order to
  175. * 'free' the object, then the function:
  176. * edac_mc_unregister_sysfs_main_kobj() must be called
  177. * which will perform kobj unregistration and the actual free
  178. * will occur during the kobject callback operation
  179. */
  180. return mci;
  181. }
  182. EXPORT_SYMBOL_GPL(edac_mc_alloc);
  183. /**
  184. * edac_mc_free
  185. * 'Free' a previously allocated 'mci' structure
  186. * @mci: pointer to a struct mem_ctl_info structure
  187. */
  188. void edac_mc_free(struct mem_ctl_info *mci)
  189. {
  190. edac_mc_unregister_sysfs_main_kobj(mci);
  191. }
  192. EXPORT_SYMBOL_GPL(edac_mc_free);
  193. static struct mem_ctl_info *find_mci_by_dev(struct device *dev)
  194. {
  195. struct mem_ctl_info *mci;
  196. struct list_head *item;
  197. debugf3("%s()\n", __func__);
  198. list_for_each(item, &mc_devices) {
  199. mci = list_entry(item, struct mem_ctl_info, link);
  200. if (mci->dev == dev)
  201. return mci;
  202. }
  203. return NULL;
  204. }
  205. /*
  206. * handler for EDAC to check if NMI type handler has asserted interrupt
  207. */
  208. static int edac_mc_assert_error_check_and_clear(void)
  209. {
  210. int old_state;
  211. if (edac_op_state == EDAC_OPSTATE_POLL)
  212. return 1;
  213. old_state = edac_err_assert;
  214. edac_err_assert = 0;
  215. return old_state;
  216. }
  217. /*
  218. * edac_mc_workq_function
  219. * performs the operation scheduled by a workq request
  220. */
  221. static void edac_mc_workq_function(struct work_struct *work_req)
  222. {
  223. struct delayed_work *d_work = (struct delayed_work *)work_req;
  224. struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
  225. mutex_lock(&mem_ctls_mutex);
  226. /* Only poll controllers that are running polled and have a check */
  227. if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
  228. mci->edac_check(mci);
  229. /*
  230. * FIXME: temp place holder for PCI checks,
  231. * goes away when we break out PCI
  232. */
  233. edac_pci_do_parity_check();
  234. mutex_unlock(&mem_ctls_mutex);
  235. /* Reschedule */
  236. queue_delayed_work(edac_workqueue, &mci->work,
  237. msecs_to_jiffies(edac_mc_get_poll_msec()));
  238. }
  239. /*
  240. * edac_mc_workq_setup
  241. * initialize a workq item for this mci
  242. * passing in the new delay period in msec
  243. */
  244. void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec)
  245. {
  246. debugf0("%s()\n", __func__);
  247. INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
  248. queue_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
  249. }
  250. /*
  251. * edac_mc_workq_teardown
  252. * stop the workq processing on this mci
  253. */
  254. void edac_mc_workq_teardown(struct mem_ctl_info *mci)
  255. {
  256. int status;
  257. status = cancel_delayed_work(&mci->work);
  258. if (status == 0) {
  259. /* workq instance might be running, wait for it */
  260. flush_workqueue(edac_workqueue);
  261. }
  262. }
  263. /*
  264. * edac_reset_delay_period
  265. */
  266. void edac_reset_delay_period(struct mem_ctl_info *mci, unsigned long value)
  267. {
  268. mutex_lock(&mem_ctls_mutex);
  269. /* cancel the current workq request */
  270. edac_mc_workq_teardown(mci);
  271. /* restart the workq request, with new delay value */
  272. edac_mc_workq_setup(mci, value);
  273. mutex_unlock(&mem_ctls_mutex);
  274. }
  275. /* Return 0 on success, 1 on failure.
  276. * Before calling this function, caller must
  277. * assign a unique value to mci->mc_idx.
  278. */
  279. static int add_mc_to_global_list(struct mem_ctl_info *mci)
  280. {
  281. struct list_head *item, *insert_before;
  282. struct mem_ctl_info *p;
  283. insert_before = &mc_devices;
  284. if (unlikely((p = find_mci_by_dev(mci->dev)) != NULL))
  285. goto fail0;
  286. list_for_each(item, &mc_devices) {
  287. p = list_entry(item, struct mem_ctl_info, link);
  288. if (p->mc_idx >= mci->mc_idx) {
  289. if (unlikely(p->mc_idx == mci->mc_idx))
  290. goto fail1;
  291. insert_before = item;
  292. break;
  293. }
  294. }
  295. list_add_tail_rcu(&mci->link, insert_before);
  296. atomic_inc(&edac_handlers);
  297. return 0;
  298. fail0:
  299. edac_printk(KERN_WARNING, EDAC_MC,
  300. "%s (%s) %s %s already assigned %d\n", p->dev->bus_id,
  301. dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
  302. return 1;
  303. fail1:
  304. edac_printk(KERN_WARNING, EDAC_MC,
  305. "bug in low-level driver: attempt to assign\n"
  306. " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
  307. return 1;
  308. }
  309. static void complete_mc_list_del(struct rcu_head *head)
  310. {
  311. struct mem_ctl_info *mci;
  312. mci = container_of(head, struct mem_ctl_info, rcu);
  313. INIT_LIST_HEAD(&mci->link);
  314. complete(&mci->complete);
  315. }
  316. static void del_mc_from_global_list(struct mem_ctl_info *mci)
  317. {
  318. atomic_dec(&edac_handlers);
  319. list_del_rcu(&mci->link);
  320. init_completion(&mci->complete);
  321. call_rcu(&mci->rcu, complete_mc_list_del);
  322. wait_for_completion(&mci->complete);
  323. }
  324. /**
  325. * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
  326. *
  327. * If found, return a pointer to the structure.
  328. * Else return NULL.
  329. *
  330. * Caller must hold mem_ctls_mutex.
  331. */
  332. struct mem_ctl_info *edac_mc_find(int idx)
  333. {
  334. struct list_head *item;
  335. struct mem_ctl_info *mci;
  336. list_for_each(item, &mc_devices) {
  337. mci = list_entry(item, struct mem_ctl_info, link);
  338. if (mci->mc_idx >= idx) {
  339. if (mci->mc_idx == idx)
  340. return mci;
  341. break;
  342. }
  343. }
  344. return NULL;
  345. }
  346. EXPORT_SYMBOL(edac_mc_find);
  347. /**
  348. * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
  349. * create sysfs entries associated with mci structure
  350. * @mci: pointer to the mci structure to be added to the list
  351. * @mc_idx: A unique numeric identifier to be assigned to the 'mci' structure.
  352. *
  353. * Return:
  354. * 0 Success
  355. * !0 Failure
  356. */
  357. /* FIXME - should a warning be printed if no error detection? correction? */
  358. int edac_mc_add_mc(struct mem_ctl_info *mci)
  359. {
  360. debugf0("%s()\n", __func__);
  361. #ifdef CONFIG_EDAC_DEBUG
  362. if (edac_debug_level >= 3)
  363. edac_mc_dump_mci(mci);
  364. if (edac_debug_level >= 4) {
  365. int i;
  366. for (i = 0; i < mci->nr_csrows; i++) {
  367. int j;
  368. edac_mc_dump_csrow(&mci->csrows[i]);
  369. for (j = 0; j < mci->csrows[i].nr_channels; j++)
  370. edac_mc_dump_channel(&mci->csrows[i].
  371. channels[j]);
  372. }
  373. }
  374. #endif
  375. mutex_lock(&mem_ctls_mutex);
  376. if (add_mc_to_global_list(mci))
  377. goto fail0;
  378. /* set load time so that error rate can be tracked */
  379. mci->start_time = jiffies;
  380. if (edac_create_sysfs_mci_device(mci)) {
  381. edac_mc_printk(mci, KERN_WARNING,
  382. "failed to create sysfs device\n");
  383. goto fail1;
  384. }
  385. /* If there IS a check routine, then we are running POLLED */
  386. if (mci->edac_check != NULL) {
  387. /* This instance is NOW RUNNING */
  388. mci->op_state = OP_RUNNING_POLL;
  389. edac_mc_workq_setup(mci, edac_mc_get_poll_msec());
  390. } else {
  391. mci->op_state = OP_RUNNING_INTERRUPT;
  392. }
  393. /* Report action taken */
  394. edac_mc_printk(mci, KERN_INFO, "Giving out device to %s %s: DEV %s\n",
  395. mci->mod_name, mci->ctl_name, dev_name(mci));
  396. mutex_unlock(&mem_ctls_mutex);
  397. return 0;
  398. fail1:
  399. del_mc_from_global_list(mci);
  400. fail0:
  401. mutex_unlock(&mem_ctls_mutex);
  402. return 1;
  403. }
  404. EXPORT_SYMBOL_GPL(edac_mc_add_mc);
  405. /**
  406. * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
  407. * remove mci structure from global list
  408. * @pdev: Pointer to 'struct device' representing mci structure to remove.
  409. *
  410. * Return pointer to removed mci structure, or NULL if device not found.
  411. */
  412. struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
  413. {
  414. struct mem_ctl_info *mci;
  415. debugf0("MC: %s()\n", __func__);
  416. mutex_lock(&mem_ctls_mutex);
  417. if ((mci = find_mci_by_dev(dev)) == NULL) {
  418. mutex_unlock(&mem_ctls_mutex);
  419. return NULL;
  420. }
  421. /* marking MCI offline */
  422. mci->op_state = OP_OFFLINE;
  423. /* flush workq processes */
  424. edac_mc_workq_teardown(mci);
  425. edac_remove_sysfs_mci_device(mci);
  426. del_mc_from_global_list(mci);
  427. mutex_unlock(&mem_ctls_mutex);
  428. edac_printk(KERN_INFO, EDAC_MC,
  429. "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
  430. mci->mod_name, mci->ctl_name, dev_name(mci));
  431. return mci;
  432. }
  433. EXPORT_SYMBOL_GPL(edac_mc_del_mc);
  434. static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
  435. u32 size)
  436. {
  437. struct page *pg;
  438. void *virt_addr;
  439. unsigned long flags = 0;
  440. debugf3("%s()\n", __func__);
  441. /* ECC error page was not in our memory. Ignore it. */
  442. if (!pfn_valid(page))
  443. return;
  444. /* Find the actual page structure then map it and fix */
  445. pg = pfn_to_page(page);
  446. if (PageHighMem(pg))
  447. local_irq_save(flags);
  448. virt_addr = kmap_atomic(pg, KM_BOUNCE_READ);
  449. /* Perform architecture specific atomic scrub operation */
  450. atomic_scrub(virt_addr + offset, size);
  451. /* Unmap and complete */
  452. kunmap_atomic(virt_addr, KM_BOUNCE_READ);
  453. if (PageHighMem(pg))
  454. local_irq_restore(flags);
  455. }
  456. /* FIXME - should return -1 */
  457. int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
  458. {
  459. struct csrow_info *csrows = mci->csrows;
  460. int row, i;
  461. debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
  462. row = -1;
  463. for (i = 0; i < mci->nr_csrows; i++) {
  464. struct csrow_info *csrow = &csrows[i];
  465. if (csrow->nr_pages == 0)
  466. continue;
  467. debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
  468. "mask(0x%lx)\n", mci->mc_idx, __func__,
  469. csrow->first_page, page, csrow->last_page,
  470. csrow->page_mask);
  471. if ((page >= csrow->first_page) &&
  472. (page <= csrow->last_page) &&
  473. ((page & csrow->page_mask) ==
  474. (csrow->first_page & csrow->page_mask))) {
  475. row = i;
  476. break;
  477. }
  478. }
  479. if (row == -1)
  480. edac_mc_printk(mci, KERN_ERR,
  481. "could not look up page error address %lx\n",
  482. (unsigned long)page);
  483. return row;
  484. }
  485. EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
  486. /* FIXME - setable log (warning/emerg) levels */
  487. /* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */
  488. void edac_mc_handle_ce(struct mem_ctl_info *mci,
  489. unsigned long page_frame_number,
  490. unsigned long offset_in_page, unsigned long syndrome,
  491. int row, int channel, const char *msg)
  492. {
  493. unsigned long remapped_page;
  494. debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
  495. /* FIXME - maybe make panic on INTERNAL ERROR an option */
  496. if (row >= mci->nr_csrows || row < 0) {
  497. /* something is wrong */
  498. edac_mc_printk(mci, KERN_ERR,
  499. "INTERNAL ERROR: row out of range "
  500. "(%d >= %d)\n", row, mci->nr_csrows);
  501. edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
  502. return;
  503. }
  504. if (channel >= mci->csrows[row].nr_channels || channel < 0) {
  505. /* something is wrong */
  506. edac_mc_printk(mci, KERN_ERR,
  507. "INTERNAL ERROR: channel out of range "
  508. "(%d >= %d)\n", channel,
  509. mci->csrows[row].nr_channels);
  510. edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
  511. return;
  512. }
  513. if (edac_mc_get_log_ce())
  514. /* FIXME - put in DIMM location */
  515. edac_mc_printk(mci, KERN_WARNING,
  516. "CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
  517. "0x%lx, row %d, channel %d, label \"%s\": %s\n",
  518. page_frame_number, offset_in_page,
  519. mci->csrows[row].grain, syndrome, row, channel,
  520. mci->csrows[row].channels[channel].label, msg);
  521. mci->ce_count++;
  522. mci->csrows[row].ce_count++;
  523. mci->csrows[row].channels[channel].ce_count++;
  524. if (mci->scrub_mode & SCRUB_SW_SRC) {
  525. /*
  526. * Some MC's can remap memory so that it is still available
  527. * at a different address when PCI devices map into memory.
  528. * MC's that can't do this lose the memory where PCI devices
  529. * are mapped. This mapping is MC dependant and so we call
  530. * back into the MC driver for it to map the MC page to
  531. * a physical (CPU) page which can then be mapped to a virtual
  532. * page - which can then be scrubbed.
  533. */
  534. remapped_page = mci->ctl_page_to_phys ?
  535. mci->ctl_page_to_phys(mci, page_frame_number) :
  536. page_frame_number;
  537. edac_mc_scrub_block(remapped_page, offset_in_page,
  538. mci->csrows[row].grain);
  539. }
  540. }
  541. EXPORT_SYMBOL_GPL(edac_mc_handle_ce);
  542. void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg)
  543. {
  544. if (edac_mc_get_log_ce())
  545. edac_mc_printk(mci, KERN_WARNING,
  546. "CE - no information available: %s\n", msg);
  547. mci->ce_noinfo_count++;
  548. mci->ce_count++;
  549. }
  550. EXPORT_SYMBOL_GPL(edac_mc_handle_ce_no_info);
  551. void edac_mc_handle_ue(struct mem_ctl_info *mci,
  552. unsigned long page_frame_number,
  553. unsigned long offset_in_page, int row, const char *msg)
  554. {
  555. int len = EDAC_MC_LABEL_LEN * 4;
  556. char labels[len + 1];
  557. char *pos = labels;
  558. int chan;
  559. int chars;
  560. debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
  561. /* FIXME - maybe make panic on INTERNAL ERROR an option */
  562. if (row >= mci->nr_csrows || row < 0) {
  563. /* something is wrong */
  564. edac_mc_printk(mci, KERN_ERR,
  565. "INTERNAL ERROR: row out of range "
  566. "(%d >= %d)\n", row, mci->nr_csrows);
  567. edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
  568. return;
  569. }
  570. chars = snprintf(pos, len + 1, "%s",
  571. mci->csrows[row].channels[0].label);
  572. len -= chars;
  573. pos += chars;
  574. for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0);
  575. chan++) {
  576. chars = snprintf(pos, len + 1, ":%s",
  577. mci->csrows[row].channels[chan].label);
  578. len -= chars;
  579. pos += chars;
  580. }
  581. if (edac_mc_get_log_ue())
  582. edac_mc_printk(mci, KERN_EMERG,
  583. "UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
  584. "labels \"%s\": %s\n", page_frame_number,
  585. offset_in_page, mci->csrows[row].grain, row,
  586. labels, msg);
  587. if (edac_mc_get_panic_on_ue())
  588. panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, "
  589. "row %d, labels \"%s\": %s\n", mci->mc_idx,
  590. page_frame_number, offset_in_page,
  591. mci->csrows[row].grain, row, labels, msg);
  592. mci->ue_count++;
  593. mci->csrows[row].ue_count++;
  594. }
  595. EXPORT_SYMBOL_GPL(edac_mc_handle_ue);
  596. void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg)
  597. {
  598. if (edac_mc_get_panic_on_ue())
  599. panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);
  600. if (edac_mc_get_log_ue())
  601. edac_mc_printk(mci, KERN_WARNING,
  602. "UE - no information available: %s\n", msg);
  603. mci->ue_noinfo_count++;
  604. mci->ue_count++;
  605. }
  606. EXPORT_SYMBOL_GPL(edac_mc_handle_ue_no_info);
  607. /*************************************************************
  608. * On Fully Buffered DIMM modules, this help function is
  609. * called to process UE events
  610. */
  611. void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci,
  612. unsigned int csrow,
  613. unsigned int channela,
  614. unsigned int channelb, char *msg)
  615. {
  616. int len = EDAC_MC_LABEL_LEN * 4;
  617. char labels[len + 1];
  618. char *pos = labels;
  619. int chars;
  620. if (csrow >= mci->nr_csrows) {
  621. /* something is wrong */
  622. edac_mc_printk(mci, KERN_ERR,
  623. "INTERNAL ERROR: row out of range (%d >= %d)\n",
  624. csrow, mci->nr_csrows);
  625. edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
  626. return;
  627. }
  628. if (channela >= mci->csrows[csrow].nr_channels) {
  629. /* something is wrong */
  630. edac_mc_printk(mci, KERN_ERR,
  631. "INTERNAL ERROR: channel-a out of range "
  632. "(%d >= %d)\n",
  633. channela, mci->csrows[csrow].nr_channels);
  634. edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
  635. return;
  636. }
  637. if (channelb >= mci->csrows[csrow].nr_channels) {
  638. /* something is wrong */
  639. edac_mc_printk(mci, KERN_ERR,
  640. "INTERNAL ERROR: channel-b out of range "
  641. "(%d >= %d)\n",
  642. channelb, mci->csrows[csrow].nr_channels);
  643. edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
  644. return;
  645. }
  646. mci->ue_count++;
  647. mci->csrows[csrow].ue_count++;
  648. /* Generate the DIMM labels from the specified channels */
  649. chars = snprintf(pos, len + 1, "%s",
  650. mci->csrows[csrow].channels[channela].label);
  651. len -= chars;
  652. pos += chars;
  653. chars = snprintf(pos, len + 1, "-%s",
  654. mci->csrows[csrow].channels[channelb].label);
  655. if (edac_mc_get_log_ue())
  656. edac_mc_printk(mci, KERN_EMERG,
  657. "UE row %d, channel-a= %d channel-b= %d "
  658. "labels \"%s\": %s\n", csrow, channela, channelb,
  659. labels, msg);
  660. if (edac_mc_get_panic_on_ue())
  661. panic("UE row %d, channel-a= %d channel-b= %d "
  662. "labels \"%s\": %s\n", csrow, channela,
  663. channelb, labels, msg);
  664. }
  665. EXPORT_SYMBOL(edac_mc_handle_fbd_ue);
  666. /*************************************************************
  667. * On Fully Buffered DIMM modules, this help function is
  668. * called to process CE events
  669. */
  670. void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci,
  671. unsigned int csrow, unsigned int channel, char *msg)
  672. {
  673. /* Ensure boundary values */
  674. if (csrow >= mci->nr_csrows) {
  675. /* something is wrong */
  676. edac_mc_printk(mci, KERN_ERR,
  677. "INTERNAL ERROR: row out of range (%d >= %d)\n",
  678. csrow, mci->nr_csrows);
  679. edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
  680. return;
  681. }
  682. if (channel >= mci->csrows[csrow].nr_channels) {
  683. /* something is wrong */
  684. edac_mc_printk(mci, KERN_ERR,
  685. "INTERNAL ERROR: channel out of range (%d >= %d)\n",
  686. channel, mci->csrows[csrow].nr_channels);
  687. edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
  688. return;
  689. }
  690. if (edac_mc_get_log_ce())
  691. /* FIXME - put in DIMM location */
  692. edac_mc_printk(mci, KERN_WARNING,
  693. "CE row %d, channel %d, label \"%s\": %s\n",
  694. csrow, channel,
  695. mci->csrows[csrow].channels[channel].label, msg);
  696. mci->ce_count++;
  697. mci->csrows[csrow].ce_count++;
  698. mci->csrows[csrow].channels[channel].ce_count++;
  699. }
  700. EXPORT_SYMBOL(edac_mc_handle_fbd_ce);
  701. /*
  702. * Iterate over all MC instances and check for ECC, et al, errors
  703. */
  704. void edac_check_mc_devices(void)
  705. {
  706. struct list_head *item;
  707. struct mem_ctl_info *mci;
  708. debugf3("%s()\n", __func__);
  709. mutex_lock(&mem_ctls_mutex);
  710. list_for_each(item, &mc_devices) {
  711. mci = list_entry(item, struct mem_ctl_info, link);
  712. if (mci->edac_check != NULL)
  713. mci->edac_check(mci);
  714. }
  715. mutex_unlock(&mem_ctls_mutex);
  716. }