xfs_inode.c 108 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_bit.h"
  23. #include "xfs_log.h"
  24. #include "xfs_inum.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_mount.h"
  30. #include "xfs_bmap_btree.h"
  31. #include "xfs_alloc_btree.h"
  32. #include "xfs_ialloc_btree.h"
  33. #include "xfs_attr_sf.h"
  34. #include "xfs_dinode.h"
  35. #include "xfs_inode.h"
  36. #include "xfs_buf_item.h"
  37. #include "xfs_inode_item.h"
  38. #include "xfs_btree.h"
  39. #include "xfs_alloc.h"
  40. #include "xfs_ialloc.h"
  41. #include "xfs_bmap.h"
  42. #include "xfs_error.h"
  43. #include "xfs_utils.h"
  44. #include "xfs_quota.h"
  45. #include "xfs_filestream.h"
  46. #include "xfs_vnodeops.h"
  47. #include "xfs_trace.h"
  48. kmem_zone_t *xfs_ifork_zone;
  49. kmem_zone_t *xfs_inode_zone;
  50. /*
  51. * Used in xfs_itruncate_extents(). This is the maximum number of extents
  52. * freed from a file in a single transaction.
  53. */
  54. #define XFS_ITRUNC_MAX_EXTENTS 2
  55. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  56. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  57. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  58. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  59. #ifdef DEBUG
  60. /*
  61. * Make sure that the extents in the given memory buffer
  62. * are valid.
  63. */
  64. STATIC void
  65. xfs_validate_extents(
  66. xfs_ifork_t *ifp,
  67. int nrecs,
  68. xfs_exntfmt_t fmt)
  69. {
  70. xfs_bmbt_irec_t irec;
  71. xfs_bmbt_rec_host_t rec;
  72. int i;
  73. for (i = 0; i < nrecs; i++) {
  74. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  75. rec.l0 = get_unaligned(&ep->l0);
  76. rec.l1 = get_unaligned(&ep->l1);
  77. xfs_bmbt_get_all(&rec, &irec);
  78. if (fmt == XFS_EXTFMT_NOSTATE)
  79. ASSERT(irec.br_state == XFS_EXT_NORM);
  80. }
  81. }
  82. #else /* DEBUG */
  83. #define xfs_validate_extents(ifp, nrecs, fmt)
  84. #endif /* DEBUG */
  85. /*
  86. * Check that none of the inode's in the buffer have a next
  87. * unlinked field of 0.
  88. */
  89. #if defined(DEBUG)
  90. void
  91. xfs_inobp_check(
  92. xfs_mount_t *mp,
  93. xfs_buf_t *bp)
  94. {
  95. int i;
  96. int j;
  97. xfs_dinode_t *dip;
  98. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  99. for (i = 0; i < j; i++) {
  100. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  101. i * mp->m_sb.sb_inodesize);
  102. if (!dip->di_next_unlinked) {
  103. xfs_alert(mp,
  104. "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
  105. bp);
  106. ASSERT(dip->di_next_unlinked);
  107. }
  108. }
  109. }
  110. #endif
  111. /*
  112. * Find the buffer associated with the given inode map
  113. * We do basic validation checks on the buffer once it has been
  114. * retrieved from disk.
  115. */
  116. STATIC int
  117. xfs_imap_to_bp(
  118. xfs_mount_t *mp,
  119. xfs_trans_t *tp,
  120. struct xfs_imap *imap,
  121. xfs_buf_t **bpp,
  122. uint buf_flags,
  123. uint iget_flags)
  124. {
  125. int error;
  126. int i;
  127. int ni;
  128. xfs_buf_t *bp;
  129. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
  130. (int)imap->im_len, buf_flags, &bp);
  131. if (error) {
  132. if (error != EAGAIN) {
  133. xfs_warn(mp,
  134. "%s: xfs_trans_read_buf() returned error %d.",
  135. __func__, error);
  136. } else {
  137. ASSERT(buf_flags & XBF_TRYLOCK);
  138. }
  139. return error;
  140. }
  141. /*
  142. * Validate the magic number and version of every inode in the buffer
  143. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  144. */
  145. #ifdef DEBUG
  146. ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
  147. #else /* usual case */
  148. ni = 1;
  149. #endif
  150. for (i = 0; i < ni; i++) {
  151. int di_ok;
  152. xfs_dinode_t *dip;
  153. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  154. (i << mp->m_sb.sb_inodelog));
  155. di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
  156. XFS_DINODE_GOOD_VERSION(dip->di_version);
  157. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  158. XFS_ERRTAG_ITOBP_INOTOBP,
  159. XFS_RANDOM_ITOBP_INOTOBP))) {
  160. if (iget_flags & XFS_IGET_UNTRUSTED) {
  161. xfs_trans_brelse(tp, bp);
  162. return XFS_ERROR(EINVAL);
  163. }
  164. XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
  165. XFS_ERRLEVEL_HIGH, mp, dip);
  166. #ifdef DEBUG
  167. xfs_emerg(mp,
  168. "bad inode magic/vsn daddr %lld #%d (magic=%x)",
  169. (unsigned long long)imap->im_blkno, i,
  170. be16_to_cpu(dip->di_magic));
  171. ASSERT(0);
  172. #endif
  173. xfs_trans_brelse(tp, bp);
  174. return XFS_ERROR(EFSCORRUPTED);
  175. }
  176. }
  177. xfs_inobp_check(mp, bp);
  178. *bpp = bp;
  179. return 0;
  180. }
  181. /*
  182. * This routine is called to map an inode number within a file
  183. * system to the buffer containing the on-disk version of the
  184. * inode. It returns a pointer to the buffer containing the
  185. * on-disk inode in the bpp parameter, and in the dip parameter
  186. * it returns a pointer to the on-disk inode within that buffer.
  187. *
  188. * If a non-zero error is returned, then the contents of bpp and
  189. * dipp are undefined.
  190. *
  191. * Use xfs_imap() to determine the size and location of the
  192. * buffer to read from disk.
  193. */
  194. int
  195. xfs_inotobp(
  196. xfs_mount_t *mp,
  197. xfs_trans_t *tp,
  198. xfs_ino_t ino,
  199. xfs_dinode_t **dipp,
  200. xfs_buf_t **bpp,
  201. int *offset,
  202. uint imap_flags)
  203. {
  204. struct xfs_imap imap;
  205. xfs_buf_t *bp;
  206. int error;
  207. imap.im_blkno = 0;
  208. error = xfs_imap(mp, tp, ino, &imap, imap_flags);
  209. if (error)
  210. return error;
  211. error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
  212. if (error)
  213. return error;
  214. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  215. *bpp = bp;
  216. *offset = imap.im_boffset;
  217. return 0;
  218. }
  219. /*
  220. * This routine is called to map an inode to the buffer containing
  221. * the on-disk version of the inode. It returns a pointer to the
  222. * buffer containing the on-disk inode in the bpp parameter, and in
  223. * the dip parameter it returns a pointer to the on-disk inode within
  224. * that buffer.
  225. *
  226. * If a non-zero error is returned, then the contents of bpp and
  227. * dipp are undefined.
  228. *
  229. * The inode is expected to already been mapped to its buffer and read
  230. * in once, thus we can use the mapping information stored in the inode
  231. * rather than calling xfs_imap(). This allows us to avoid the overhead
  232. * of looking at the inode btree for small block file systems
  233. * (see xfs_imap()).
  234. */
  235. int
  236. xfs_itobp(
  237. xfs_mount_t *mp,
  238. xfs_trans_t *tp,
  239. xfs_inode_t *ip,
  240. xfs_dinode_t **dipp,
  241. xfs_buf_t **bpp,
  242. uint buf_flags)
  243. {
  244. xfs_buf_t *bp;
  245. int error;
  246. ASSERT(ip->i_imap.im_blkno != 0);
  247. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
  248. if (error)
  249. return error;
  250. if (!bp) {
  251. ASSERT(buf_flags & XBF_TRYLOCK);
  252. ASSERT(tp == NULL);
  253. *bpp = NULL;
  254. return EAGAIN;
  255. }
  256. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  257. *bpp = bp;
  258. return 0;
  259. }
  260. /*
  261. * Move inode type and inode format specific information from the
  262. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  263. * this means set if_rdev to the proper value. For files, directories,
  264. * and symlinks this means to bring in the in-line data or extent
  265. * pointers. For a file in B-tree format, only the root is immediately
  266. * brought in-core. The rest will be in-lined in if_extents when it
  267. * is first referenced (see xfs_iread_extents()).
  268. */
  269. STATIC int
  270. xfs_iformat(
  271. xfs_inode_t *ip,
  272. xfs_dinode_t *dip)
  273. {
  274. xfs_attr_shortform_t *atp;
  275. int size;
  276. int error = 0;
  277. xfs_fsize_t di_size;
  278. if (unlikely(be32_to_cpu(dip->di_nextents) +
  279. be16_to_cpu(dip->di_anextents) >
  280. be64_to_cpu(dip->di_nblocks))) {
  281. xfs_warn(ip->i_mount,
  282. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  283. (unsigned long long)ip->i_ino,
  284. (int)(be32_to_cpu(dip->di_nextents) +
  285. be16_to_cpu(dip->di_anextents)),
  286. (unsigned long long)
  287. be64_to_cpu(dip->di_nblocks));
  288. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  289. ip->i_mount, dip);
  290. return XFS_ERROR(EFSCORRUPTED);
  291. }
  292. if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  293. xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
  294. (unsigned long long)ip->i_ino,
  295. dip->di_forkoff);
  296. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  297. ip->i_mount, dip);
  298. return XFS_ERROR(EFSCORRUPTED);
  299. }
  300. if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
  301. !ip->i_mount->m_rtdev_targp)) {
  302. xfs_warn(ip->i_mount,
  303. "corrupt dinode %Lu, has realtime flag set.",
  304. ip->i_ino);
  305. XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
  306. XFS_ERRLEVEL_LOW, ip->i_mount, dip);
  307. return XFS_ERROR(EFSCORRUPTED);
  308. }
  309. switch (ip->i_d.di_mode & S_IFMT) {
  310. case S_IFIFO:
  311. case S_IFCHR:
  312. case S_IFBLK:
  313. case S_IFSOCK:
  314. if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
  315. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  316. ip->i_mount, dip);
  317. return XFS_ERROR(EFSCORRUPTED);
  318. }
  319. ip->i_d.di_size = 0;
  320. ip->i_size = 0;
  321. ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
  322. break;
  323. case S_IFREG:
  324. case S_IFLNK:
  325. case S_IFDIR:
  326. switch (dip->di_format) {
  327. case XFS_DINODE_FMT_LOCAL:
  328. /*
  329. * no local regular files yet
  330. */
  331. if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
  332. xfs_warn(ip->i_mount,
  333. "corrupt inode %Lu (local format for regular file).",
  334. (unsigned long long) ip->i_ino);
  335. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  336. XFS_ERRLEVEL_LOW,
  337. ip->i_mount, dip);
  338. return XFS_ERROR(EFSCORRUPTED);
  339. }
  340. di_size = be64_to_cpu(dip->di_size);
  341. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  342. xfs_warn(ip->i_mount,
  343. "corrupt inode %Lu (bad size %Ld for local inode).",
  344. (unsigned long long) ip->i_ino,
  345. (long long) di_size);
  346. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  347. XFS_ERRLEVEL_LOW,
  348. ip->i_mount, dip);
  349. return XFS_ERROR(EFSCORRUPTED);
  350. }
  351. size = (int)di_size;
  352. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  353. break;
  354. case XFS_DINODE_FMT_EXTENTS:
  355. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  356. break;
  357. case XFS_DINODE_FMT_BTREE:
  358. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  359. break;
  360. default:
  361. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  362. ip->i_mount);
  363. return XFS_ERROR(EFSCORRUPTED);
  364. }
  365. break;
  366. default:
  367. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  368. return XFS_ERROR(EFSCORRUPTED);
  369. }
  370. if (error) {
  371. return error;
  372. }
  373. if (!XFS_DFORK_Q(dip))
  374. return 0;
  375. ASSERT(ip->i_afp == NULL);
  376. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
  377. switch (dip->di_aformat) {
  378. case XFS_DINODE_FMT_LOCAL:
  379. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  380. size = be16_to_cpu(atp->hdr.totsize);
  381. if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
  382. xfs_warn(ip->i_mount,
  383. "corrupt inode %Lu (bad attr fork size %Ld).",
  384. (unsigned long long) ip->i_ino,
  385. (long long) size);
  386. XFS_CORRUPTION_ERROR("xfs_iformat(8)",
  387. XFS_ERRLEVEL_LOW,
  388. ip->i_mount, dip);
  389. return XFS_ERROR(EFSCORRUPTED);
  390. }
  391. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  392. break;
  393. case XFS_DINODE_FMT_EXTENTS:
  394. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  395. break;
  396. case XFS_DINODE_FMT_BTREE:
  397. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  398. break;
  399. default:
  400. error = XFS_ERROR(EFSCORRUPTED);
  401. break;
  402. }
  403. if (error) {
  404. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  405. ip->i_afp = NULL;
  406. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  407. }
  408. return error;
  409. }
  410. /*
  411. * The file is in-lined in the on-disk inode.
  412. * If it fits into if_inline_data, then copy
  413. * it there, otherwise allocate a buffer for it
  414. * and copy the data there. Either way, set
  415. * if_data to point at the data.
  416. * If we allocate a buffer for the data, make
  417. * sure that its size is a multiple of 4 and
  418. * record the real size in i_real_bytes.
  419. */
  420. STATIC int
  421. xfs_iformat_local(
  422. xfs_inode_t *ip,
  423. xfs_dinode_t *dip,
  424. int whichfork,
  425. int size)
  426. {
  427. xfs_ifork_t *ifp;
  428. int real_size;
  429. /*
  430. * If the size is unreasonable, then something
  431. * is wrong and we just bail out rather than crash in
  432. * kmem_alloc() or memcpy() below.
  433. */
  434. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  435. xfs_warn(ip->i_mount,
  436. "corrupt inode %Lu (bad size %d for local fork, size = %d).",
  437. (unsigned long long) ip->i_ino, size,
  438. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  439. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  440. ip->i_mount, dip);
  441. return XFS_ERROR(EFSCORRUPTED);
  442. }
  443. ifp = XFS_IFORK_PTR(ip, whichfork);
  444. real_size = 0;
  445. if (size == 0)
  446. ifp->if_u1.if_data = NULL;
  447. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  448. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  449. else {
  450. real_size = roundup(size, 4);
  451. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
  452. }
  453. ifp->if_bytes = size;
  454. ifp->if_real_bytes = real_size;
  455. if (size)
  456. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  457. ifp->if_flags &= ~XFS_IFEXTENTS;
  458. ifp->if_flags |= XFS_IFINLINE;
  459. return 0;
  460. }
  461. /*
  462. * The file consists of a set of extents all
  463. * of which fit into the on-disk inode.
  464. * If there are few enough extents to fit into
  465. * the if_inline_ext, then copy them there.
  466. * Otherwise allocate a buffer for them and copy
  467. * them into it. Either way, set if_extents
  468. * to point at the extents.
  469. */
  470. STATIC int
  471. xfs_iformat_extents(
  472. xfs_inode_t *ip,
  473. xfs_dinode_t *dip,
  474. int whichfork)
  475. {
  476. xfs_bmbt_rec_t *dp;
  477. xfs_ifork_t *ifp;
  478. int nex;
  479. int size;
  480. int i;
  481. ifp = XFS_IFORK_PTR(ip, whichfork);
  482. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  483. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  484. /*
  485. * If the number of extents is unreasonable, then something
  486. * is wrong and we just bail out rather than crash in
  487. * kmem_alloc() or memcpy() below.
  488. */
  489. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  490. xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
  491. (unsigned long long) ip->i_ino, nex);
  492. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  493. ip->i_mount, dip);
  494. return XFS_ERROR(EFSCORRUPTED);
  495. }
  496. ifp->if_real_bytes = 0;
  497. if (nex == 0)
  498. ifp->if_u1.if_extents = NULL;
  499. else if (nex <= XFS_INLINE_EXTS)
  500. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  501. else
  502. xfs_iext_add(ifp, 0, nex);
  503. ifp->if_bytes = size;
  504. if (size) {
  505. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  506. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  507. for (i = 0; i < nex; i++, dp++) {
  508. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  509. ep->l0 = get_unaligned_be64(&dp->l0);
  510. ep->l1 = get_unaligned_be64(&dp->l1);
  511. }
  512. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  513. if (whichfork != XFS_DATA_FORK ||
  514. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  515. if (unlikely(xfs_check_nostate_extents(
  516. ifp, 0, nex))) {
  517. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  518. XFS_ERRLEVEL_LOW,
  519. ip->i_mount);
  520. return XFS_ERROR(EFSCORRUPTED);
  521. }
  522. }
  523. ifp->if_flags |= XFS_IFEXTENTS;
  524. return 0;
  525. }
  526. /*
  527. * The file has too many extents to fit into
  528. * the inode, so they are in B-tree format.
  529. * Allocate a buffer for the root of the B-tree
  530. * and copy the root into it. The i_extents
  531. * field will remain NULL until all of the
  532. * extents are read in (when they are needed).
  533. */
  534. STATIC int
  535. xfs_iformat_btree(
  536. xfs_inode_t *ip,
  537. xfs_dinode_t *dip,
  538. int whichfork)
  539. {
  540. xfs_bmdr_block_t *dfp;
  541. xfs_ifork_t *ifp;
  542. /* REFERENCED */
  543. int nrecs;
  544. int size;
  545. ifp = XFS_IFORK_PTR(ip, whichfork);
  546. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  547. size = XFS_BMAP_BROOT_SPACE(dfp);
  548. nrecs = be16_to_cpu(dfp->bb_numrecs);
  549. /*
  550. * blow out if -- fork has less extents than can fit in
  551. * fork (fork shouldn't be a btree format), root btree
  552. * block has more records than can fit into the fork,
  553. * or the number of extents is greater than the number of
  554. * blocks.
  555. */
  556. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
  557. XFS_IFORK_MAXEXT(ip, whichfork) ||
  558. XFS_BMDR_SPACE_CALC(nrecs) >
  559. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) ||
  560. XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  561. xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
  562. (unsigned long long) ip->i_ino);
  563. XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  564. ip->i_mount, dip);
  565. return XFS_ERROR(EFSCORRUPTED);
  566. }
  567. ifp->if_broot_bytes = size;
  568. ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
  569. ASSERT(ifp->if_broot != NULL);
  570. /*
  571. * Copy and convert from the on-disk structure
  572. * to the in-memory structure.
  573. */
  574. xfs_bmdr_to_bmbt(ip->i_mount, dfp,
  575. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  576. ifp->if_broot, size);
  577. ifp->if_flags &= ~XFS_IFEXTENTS;
  578. ifp->if_flags |= XFS_IFBROOT;
  579. return 0;
  580. }
  581. STATIC void
  582. xfs_dinode_from_disk(
  583. xfs_icdinode_t *to,
  584. xfs_dinode_t *from)
  585. {
  586. to->di_magic = be16_to_cpu(from->di_magic);
  587. to->di_mode = be16_to_cpu(from->di_mode);
  588. to->di_version = from ->di_version;
  589. to->di_format = from->di_format;
  590. to->di_onlink = be16_to_cpu(from->di_onlink);
  591. to->di_uid = be32_to_cpu(from->di_uid);
  592. to->di_gid = be32_to_cpu(from->di_gid);
  593. to->di_nlink = be32_to_cpu(from->di_nlink);
  594. to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
  595. to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
  596. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  597. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  598. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  599. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  600. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  601. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  602. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  603. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  604. to->di_size = be64_to_cpu(from->di_size);
  605. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  606. to->di_extsize = be32_to_cpu(from->di_extsize);
  607. to->di_nextents = be32_to_cpu(from->di_nextents);
  608. to->di_anextents = be16_to_cpu(from->di_anextents);
  609. to->di_forkoff = from->di_forkoff;
  610. to->di_aformat = from->di_aformat;
  611. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  612. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  613. to->di_flags = be16_to_cpu(from->di_flags);
  614. to->di_gen = be32_to_cpu(from->di_gen);
  615. }
  616. void
  617. xfs_dinode_to_disk(
  618. xfs_dinode_t *to,
  619. xfs_icdinode_t *from)
  620. {
  621. to->di_magic = cpu_to_be16(from->di_magic);
  622. to->di_mode = cpu_to_be16(from->di_mode);
  623. to->di_version = from ->di_version;
  624. to->di_format = from->di_format;
  625. to->di_onlink = cpu_to_be16(from->di_onlink);
  626. to->di_uid = cpu_to_be32(from->di_uid);
  627. to->di_gid = cpu_to_be32(from->di_gid);
  628. to->di_nlink = cpu_to_be32(from->di_nlink);
  629. to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
  630. to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
  631. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  632. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  633. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  634. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  635. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  636. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  637. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  638. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  639. to->di_size = cpu_to_be64(from->di_size);
  640. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  641. to->di_extsize = cpu_to_be32(from->di_extsize);
  642. to->di_nextents = cpu_to_be32(from->di_nextents);
  643. to->di_anextents = cpu_to_be16(from->di_anextents);
  644. to->di_forkoff = from->di_forkoff;
  645. to->di_aformat = from->di_aformat;
  646. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  647. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  648. to->di_flags = cpu_to_be16(from->di_flags);
  649. to->di_gen = cpu_to_be32(from->di_gen);
  650. }
  651. STATIC uint
  652. _xfs_dic2xflags(
  653. __uint16_t di_flags)
  654. {
  655. uint flags = 0;
  656. if (di_flags & XFS_DIFLAG_ANY) {
  657. if (di_flags & XFS_DIFLAG_REALTIME)
  658. flags |= XFS_XFLAG_REALTIME;
  659. if (di_flags & XFS_DIFLAG_PREALLOC)
  660. flags |= XFS_XFLAG_PREALLOC;
  661. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  662. flags |= XFS_XFLAG_IMMUTABLE;
  663. if (di_flags & XFS_DIFLAG_APPEND)
  664. flags |= XFS_XFLAG_APPEND;
  665. if (di_flags & XFS_DIFLAG_SYNC)
  666. flags |= XFS_XFLAG_SYNC;
  667. if (di_flags & XFS_DIFLAG_NOATIME)
  668. flags |= XFS_XFLAG_NOATIME;
  669. if (di_flags & XFS_DIFLAG_NODUMP)
  670. flags |= XFS_XFLAG_NODUMP;
  671. if (di_flags & XFS_DIFLAG_RTINHERIT)
  672. flags |= XFS_XFLAG_RTINHERIT;
  673. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  674. flags |= XFS_XFLAG_PROJINHERIT;
  675. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  676. flags |= XFS_XFLAG_NOSYMLINKS;
  677. if (di_flags & XFS_DIFLAG_EXTSIZE)
  678. flags |= XFS_XFLAG_EXTSIZE;
  679. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  680. flags |= XFS_XFLAG_EXTSZINHERIT;
  681. if (di_flags & XFS_DIFLAG_NODEFRAG)
  682. flags |= XFS_XFLAG_NODEFRAG;
  683. if (di_flags & XFS_DIFLAG_FILESTREAM)
  684. flags |= XFS_XFLAG_FILESTREAM;
  685. }
  686. return flags;
  687. }
  688. uint
  689. xfs_ip2xflags(
  690. xfs_inode_t *ip)
  691. {
  692. xfs_icdinode_t *dic = &ip->i_d;
  693. return _xfs_dic2xflags(dic->di_flags) |
  694. (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
  695. }
  696. uint
  697. xfs_dic2xflags(
  698. xfs_dinode_t *dip)
  699. {
  700. return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
  701. (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
  702. }
  703. /*
  704. * Read the disk inode attributes into the in-core inode structure.
  705. */
  706. int
  707. xfs_iread(
  708. xfs_mount_t *mp,
  709. xfs_trans_t *tp,
  710. xfs_inode_t *ip,
  711. uint iget_flags)
  712. {
  713. xfs_buf_t *bp;
  714. xfs_dinode_t *dip;
  715. int error;
  716. /*
  717. * Fill in the location information in the in-core inode.
  718. */
  719. error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
  720. if (error)
  721. return error;
  722. /*
  723. * Get pointers to the on-disk inode and the buffer containing it.
  724. */
  725. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
  726. XBF_LOCK, iget_flags);
  727. if (error)
  728. return error;
  729. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  730. /*
  731. * If we got something that isn't an inode it means someone
  732. * (nfs or dmi) has a stale handle.
  733. */
  734. if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
  735. #ifdef DEBUG
  736. xfs_alert(mp,
  737. "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
  738. __func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
  739. #endif /* DEBUG */
  740. error = XFS_ERROR(EINVAL);
  741. goto out_brelse;
  742. }
  743. /*
  744. * If the on-disk inode is already linked to a directory
  745. * entry, copy all of the inode into the in-core inode.
  746. * xfs_iformat() handles copying in the inode format
  747. * specific information.
  748. * Otherwise, just get the truly permanent information.
  749. */
  750. if (dip->di_mode) {
  751. xfs_dinode_from_disk(&ip->i_d, dip);
  752. error = xfs_iformat(ip, dip);
  753. if (error) {
  754. #ifdef DEBUG
  755. xfs_alert(mp, "%s: xfs_iformat() returned error %d",
  756. __func__, error);
  757. #endif /* DEBUG */
  758. goto out_brelse;
  759. }
  760. } else {
  761. ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
  762. ip->i_d.di_version = dip->di_version;
  763. ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
  764. ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
  765. /*
  766. * Make sure to pull in the mode here as well in
  767. * case the inode is released without being used.
  768. * This ensures that xfs_inactive() will see that
  769. * the inode is already free and not try to mess
  770. * with the uninitialized part of it.
  771. */
  772. ip->i_d.di_mode = 0;
  773. }
  774. /*
  775. * The inode format changed when we moved the link count and
  776. * made it 32 bits long. If this is an old format inode,
  777. * convert it in memory to look like a new one. If it gets
  778. * flushed to disk we will convert back before flushing or
  779. * logging it. We zero out the new projid field and the old link
  780. * count field. We'll handle clearing the pad field (the remains
  781. * of the old uuid field) when we actually convert the inode to
  782. * the new format. We don't change the version number so that we
  783. * can distinguish this from a real new format inode.
  784. */
  785. if (ip->i_d.di_version == 1) {
  786. ip->i_d.di_nlink = ip->i_d.di_onlink;
  787. ip->i_d.di_onlink = 0;
  788. xfs_set_projid(ip, 0);
  789. }
  790. ip->i_delayed_blks = 0;
  791. ip->i_size = ip->i_d.di_size;
  792. /*
  793. * Mark the buffer containing the inode as something to keep
  794. * around for a while. This helps to keep recently accessed
  795. * meta-data in-core longer.
  796. */
  797. xfs_buf_set_ref(bp, XFS_INO_REF);
  798. /*
  799. * Use xfs_trans_brelse() to release the buffer containing the
  800. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  801. * in xfs_itobp() above. If tp is NULL, this is just a normal
  802. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  803. * will only release the buffer if it is not dirty within the
  804. * transaction. It will be OK to release the buffer in this case,
  805. * because inodes on disk are never destroyed and we will be
  806. * locking the new in-core inode before putting it in the hash
  807. * table where other processes can find it. Thus we don't have
  808. * to worry about the inode being changed just because we released
  809. * the buffer.
  810. */
  811. out_brelse:
  812. xfs_trans_brelse(tp, bp);
  813. return error;
  814. }
  815. /*
  816. * Read in extents from a btree-format inode.
  817. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  818. */
  819. int
  820. xfs_iread_extents(
  821. xfs_trans_t *tp,
  822. xfs_inode_t *ip,
  823. int whichfork)
  824. {
  825. int error;
  826. xfs_ifork_t *ifp;
  827. xfs_extnum_t nextents;
  828. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  829. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  830. ip->i_mount);
  831. return XFS_ERROR(EFSCORRUPTED);
  832. }
  833. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  834. ifp = XFS_IFORK_PTR(ip, whichfork);
  835. /*
  836. * We know that the size is valid (it's checked in iformat_btree)
  837. */
  838. ifp->if_bytes = ifp->if_real_bytes = 0;
  839. ifp->if_flags |= XFS_IFEXTENTS;
  840. xfs_iext_add(ifp, 0, nextents);
  841. error = xfs_bmap_read_extents(tp, ip, whichfork);
  842. if (error) {
  843. xfs_iext_destroy(ifp);
  844. ifp->if_flags &= ~XFS_IFEXTENTS;
  845. return error;
  846. }
  847. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  848. return 0;
  849. }
  850. /*
  851. * Allocate an inode on disk and return a copy of its in-core version.
  852. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  853. * appropriately within the inode. The uid and gid for the inode are
  854. * set according to the contents of the given cred structure.
  855. *
  856. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  857. * has a free inode available, call xfs_iget()
  858. * to obtain the in-core version of the allocated inode. Finally,
  859. * fill in the inode and log its initial contents. In this case,
  860. * ialloc_context would be set to NULL and call_again set to false.
  861. *
  862. * If xfs_dialloc() does not have an available inode,
  863. * it will replenish its supply by doing an allocation. Since we can
  864. * only do one allocation within a transaction without deadlocks, we
  865. * must commit the current transaction before returning the inode itself.
  866. * In this case, therefore, we will set call_again to true and return.
  867. * The caller should then commit the current transaction, start a new
  868. * transaction, and call xfs_ialloc() again to actually get the inode.
  869. *
  870. * To ensure that some other process does not grab the inode that
  871. * was allocated during the first call to xfs_ialloc(), this routine
  872. * also returns the [locked] bp pointing to the head of the freelist
  873. * as ialloc_context. The caller should hold this buffer across
  874. * the commit and pass it back into this routine on the second call.
  875. *
  876. * If we are allocating quota inodes, we do not have a parent inode
  877. * to attach to or associate with (i.e. pip == NULL) because they
  878. * are not linked into the directory structure - they are attached
  879. * directly to the superblock - and so have no parent.
  880. */
  881. int
  882. xfs_ialloc(
  883. xfs_trans_t *tp,
  884. xfs_inode_t *pip,
  885. umode_t mode,
  886. xfs_nlink_t nlink,
  887. xfs_dev_t rdev,
  888. prid_t prid,
  889. int okalloc,
  890. xfs_buf_t **ialloc_context,
  891. boolean_t *call_again,
  892. xfs_inode_t **ipp)
  893. {
  894. xfs_ino_t ino;
  895. xfs_inode_t *ip;
  896. uint flags;
  897. int error;
  898. timespec_t tv;
  899. int filestreams = 0;
  900. /*
  901. * Call the space management code to pick
  902. * the on-disk inode to be allocated.
  903. */
  904. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  905. ialloc_context, call_again, &ino);
  906. if (error)
  907. return error;
  908. if (*call_again || ino == NULLFSINO) {
  909. *ipp = NULL;
  910. return 0;
  911. }
  912. ASSERT(*ialloc_context == NULL);
  913. /*
  914. * Get the in-core inode with the lock held exclusively.
  915. * This is because we're setting fields here we need
  916. * to prevent others from looking at until we're done.
  917. */
  918. error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
  919. XFS_ILOCK_EXCL, &ip);
  920. if (error)
  921. return error;
  922. ASSERT(ip != NULL);
  923. ip->i_d.di_mode = mode;
  924. ip->i_d.di_onlink = 0;
  925. ip->i_d.di_nlink = nlink;
  926. ASSERT(ip->i_d.di_nlink == nlink);
  927. ip->i_d.di_uid = current_fsuid();
  928. ip->i_d.di_gid = current_fsgid();
  929. xfs_set_projid(ip, prid);
  930. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  931. /*
  932. * If the superblock version is up to where we support new format
  933. * inodes and this is currently an old format inode, then change
  934. * the inode version number now. This way we only do the conversion
  935. * here rather than here and in the flush/logging code.
  936. */
  937. if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
  938. ip->i_d.di_version == 1) {
  939. ip->i_d.di_version = 2;
  940. /*
  941. * We've already zeroed the old link count, the projid field,
  942. * and the pad field.
  943. */
  944. }
  945. /*
  946. * Project ids won't be stored on disk if we are using a version 1 inode.
  947. */
  948. if ((prid != 0) && (ip->i_d.di_version == 1))
  949. xfs_bump_ino_vers2(tp, ip);
  950. if (pip && XFS_INHERIT_GID(pip)) {
  951. ip->i_d.di_gid = pip->i_d.di_gid;
  952. if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
  953. ip->i_d.di_mode |= S_ISGID;
  954. }
  955. }
  956. /*
  957. * If the group ID of the new file does not match the effective group
  958. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  959. * (and only if the irix_sgid_inherit compatibility variable is set).
  960. */
  961. if ((irix_sgid_inherit) &&
  962. (ip->i_d.di_mode & S_ISGID) &&
  963. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  964. ip->i_d.di_mode &= ~S_ISGID;
  965. }
  966. ip->i_d.di_size = 0;
  967. ip->i_size = 0;
  968. ip->i_d.di_nextents = 0;
  969. ASSERT(ip->i_d.di_nblocks == 0);
  970. nanotime(&tv);
  971. ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
  972. ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
  973. ip->i_d.di_atime = ip->i_d.di_mtime;
  974. ip->i_d.di_ctime = ip->i_d.di_mtime;
  975. /*
  976. * di_gen will have been taken care of in xfs_iread.
  977. */
  978. ip->i_d.di_extsize = 0;
  979. ip->i_d.di_dmevmask = 0;
  980. ip->i_d.di_dmstate = 0;
  981. ip->i_d.di_flags = 0;
  982. flags = XFS_ILOG_CORE;
  983. switch (mode & S_IFMT) {
  984. case S_IFIFO:
  985. case S_IFCHR:
  986. case S_IFBLK:
  987. case S_IFSOCK:
  988. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  989. ip->i_df.if_u2.if_rdev = rdev;
  990. ip->i_df.if_flags = 0;
  991. flags |= XFS_ILOG_DEV;
  992. break;
  993. case S_IFREG:
  994. /*
  995. * we can't set up filestreams until after the VFS inode
  996. * is set up properly.
  997. */
  998. if (pip && xfs_inode_is_filestream(pip))
  999. filestreams = 1;
  1000. /* fall through */
  1001. case S_IFDIR:
  1002. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1003. uint di_flags = 0;
  1004. if (S_ISDIR(mode)) {
  1005. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1006. di_flags |= XFS_DIFLAG_RTINHERIT;
  1007. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1008. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1009. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1010. }
  1011. } else if (S_ISREG(mode)) {
  1012. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1013. di_flags |= XFS_DIFLAG_REALTIME;
  1014. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1015. di_flags |= XFS_DIFLAG_EXTSIZE;
  1016. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1017. }
  1018. }
  1019. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1020. xfs_inherit_noatime)
  1021. di_flags |= XFS_DIFLAG_NOATIME;
  1022. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1023. xfs_inherit_nodump)
  1024. di_flags |= XFS_DIFLAG_NODUMP;
  1025. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1026. xfs_inherit_sync)
  1027. di_flags |= XFS_DIFLAG_SYNC;
  1028. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1029. xfs_inherit_nosymlinks)
  1030. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1031. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1032. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1033. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1034. xfs_inherit_nodefrag)
  1035. di_flags |= XFS_DIFLAG_NODEFRAG;
  1036. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1037. di_flags |= XFS_DIFLAG_FILESTREAM;
  1038. ip->i_d.di_flags |= di_flags;
  1039. }
  1040. /* FALLTHROUGH */
  1041. case S_IFLNK:
  1042. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1043. ip->i_df.if_flags = XFS_IFEXTENTS;
  1044. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1045. ip->i_df.if_u1.if_extents = NULL;
  1046. break;
  1047. default:
  1048. ASSERT(0);
  1049. }
  1050. /*
  1051. * Attribute fork settings for new inode.
  1052. */
  1053. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1054. ip->i_d.di_anextents = 0;
  1055. /*
  1056. * Log the new values stuffed into the inode.
  1057. */
  1058. xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  1059. xfs_trans_log_inode(tp, ip, flags);
  1060. /* now that we have an i_mode we can setup inode ops and unlock */
  1061. xfs_setup_inode(ip);
  1062. /* now we have set up the vfs inode we can associate the filestream */
  1063. if (filestreams) {
  1064. error = xfs_filestream_associate(pip, ip);
  1065. if (error < 0)
  1066. return -error;
  1067. if (!error)
  1068. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1069. }
  1070. *ipp = ip;
  1071. return 0;
  1072. }
  1073. /*
  1074. * Free up the underlying blocks past new_size. The new size must be smaller
  1075. * than the current size. This routine can be used both for the attribute and
  1076. * data fork, and does not modify the inode size, which is left to the caller.
  1077. *
  1078. * The transaction passed to this routine must have made a permanent log
  1079. * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
  1080. * given transaction and start new ones, so make sure everything involved in
  1081. * the transaction is tidy before calling here. Some transaction will be
  1082. * returned to the caller to be committed. The incoming transaction must
  1083. * already include the inode, and both inode locks must be held exclusively.
  1084. * The inode must also be "held" within the transaction. On return the inode
  1085. * will be "held" within the returned transaction. This routine does NOT
  1086. * require any disk space to be reserved for it within the transaction.
  1087. *
  1088. * If we get an error, we must return with the inode locked and linked into the
  1089. * current transaction. This keeps things simple for the higher level code,
  1090. * because it always knows that the inode is locked and held in the transaction
  1091. * that returns to it whether errors occur or not. We don't mark the inode
  1092. * dirty on error so that transactions can be easily aborted if possible.
  1093. */
  1094. int
  1095. xfs_itruncate_extents(
  1096. struct xfs_trans **tpp,
  1097. struct xfs_inode *ip,
  1098. int whichfork,
  1099. xfs_fsize_t new_size)
  1100. {
  1101. struct xfs_mount *mp = ip->i_mount;
  1102. struct xfs_trans *tp = *tpp;
  1103. struct xfs_trans *ntp;
  1104. xfs_bmap_free_t free_list;
  1105. xfs_fsblock_t first_block;
  1106. xfs_fileoff_t first_unmap_block;
  1107. xfs_fileoff_t last_block;
  1108. xfs_filblks_t unmap_len;
  1109. int committed;
  1110. int error = 0;
  1111. int done = 0;
  1112. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
  1113. ASSERT(new_size <= ip->i_size);
  1114. ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
  1115. ASSERT(ip->i_itemp != NULL);
  1116. ASSERT(ip->i_itemp->ili_lock_flags == 0);
  1117. ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
  1118. trace_xfs_itruncate_extents_start(ip, new_size);
  1119. /*
  1120. * Since it is possible for space to become allocated beyond
  1121. * the end of the file (in a crash where the space is allocated
  1122. * but the inode size is not yet updated), simply remove any
  1123. * blocks which show up between the new EOF and the maximum
  1124. * possible file size. If the first block to be removed is
  1125. * beyond the maximum file size (ie it is the same as last_block),
  1126. * then there is nothing to do.
  1127. */
  1128. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1129. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1130. if (first_unmap_block == last_block)
  1131. return 0;
  1132. ASSERT(first_unmap_block < last_block);
  1133. unmap_len = last_block - first_unmap_block + 1;
  1134. while (!done) {
  1135. xfs_bmap_init(&free_list, &first_block);
  1136. error = xfs_bunmapi(tp, ip,
  1137. first_unmap_block, unmap_len,
  1138. xfs_bmapi_aflag(whichfork),
  1139. XFS_ITRUNC_MAX_EXTENTS,
  1140. &first_block, &free_list,
  1141. &done);
  1142. if (error)
  1143. goto out_bmap_cancel;
  1144. /*
  1145. * Duplicate the transaction that has the permanent
  1146. * reservation and commit the old transaction.
  1147. */
  1148. error = xfs_bmap_finish(&tp, &free_list, &committed);
  1149. if (committed)
  1150. xfs_trans_ijoin(tp, ip, 0);
  1151. if (error)
  1152. goto out_bmap_cancel;
  1153. if (committed) {
  1154. /*
  1155. * Mark the inode dirty so it will be logged and
  1156. * moved forward in the log as part of every commit.
  1157. */
  1158. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1159. }
  1160. ntp = xfs_trans_dup(tp);
  1161. error = xfs_trans_commit(tp, 0);
  1162. tp = ntp;
  1163. xfs_trans_ijoin(tp, ip, 0);
  1164. if (error)
  1165. goto out;
  1166. /*
  1167. * Transaction commit worked ok so we can drop the extra ticket
  1168. * reference that we gained in xfs_trans_dup()
  1169. */
  1170. xfs_log_ticket_put(tp->t_ticket);
  1171. error = xfs_trans_reserve(tp, 0,
  1172. XFS_ITRUNCATE_LOG_RES(mp), 0,
  1173. XFS_TRANS_PERM_LOG_RES,
  1174. XFS_ITRUNCATE_LOG_COUNT);
  1175. if (error)
  1176. goto out;
  1177. }
  1178. /*
  1179. * Always re-log the inode so that our permanent transaction can keep
  1180. * on rolling it forward in the log.
  1181. */
  1182. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1183. trace_xfs_itruncate_extents_end(ip, new_size);
  1184. out:
  1185. *tpp = tp;
  1186. return error;
  1187. out_bmap_cancel:
  1188. /*
  1189. * If the bunmapi call encounters an error, return to the caller where
  1190. * the transaction can be properly aborted. We just need to make sure
  1191. * we're not holding any resources that we were not when we came in.
  1192. */
  1193. xfs_bmap_cancel(&free_list);
  1194. goto out;
  1195. }
  1196. /*
  1197. * This is called when the inode's link count goes to 0.
  1198. * We place the on-disk inode on a list in the AGI. It
  1199. * will be pulled from this list when the inode is freed.
  1200. */
  1201. int
  1202. xfs_iunlink(
  1203. xfs_trans_t *tp,
  1204. xfs_inode_t *ip)
  1205. {
  1206. xfs_mount_t *mp;
  1207. xfs_agi_t *agi;
  1208. xfs_dinode_t *dip;
  1209. xfs_buf_t *agibp;
  1210. xfs_buf_t *ibp;
  1211. xfs_agino_t agino;
  1212. short bucket_index;
  1213. int offset;
  1214. int error;
  1215. ASSERT(ip->i_d.di_nlink == 0);
  1216. ASSERT(ip->i_d.di_mode != 0);
  1217. mp = tp->t_mountp;
  1218. /*
  1219. * Get the agi buffer first. It ensures lock ordering
  1220. * on the list.
  1221. */
  1222. error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
  1223. if (error)
  1224. return error;
  1225. agi = XFS_BUF_TO_AGI(agibp);
  1226. /*
  1227. * Get the index into the agi hash table for the
  1228. * list this inode will go on.
  1229. */
  1230. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1231. ASSERT(agino != 0);
  1232. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1233. ASSERT(agi->agi_unlinked[bucket_index]);
  1234. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1235. if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
  1236. /*
  1237. * There is already another inode in the bucket we need
  1238. * to add ourselves to. Add us at the front of the list.
  1239. * Here we put the head pointer into our next pointer,
  1240. * and then we fall through to point the head at us.
  1241. */
  1242. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1243. if (error)
  1244. return error;
  1245. ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
  1246. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1247. offset = ip->i_imap.im_boffset +
  1248. offsetof(xfs_dinode_t, di_next_unlinked);
  1249. xfs_trans_inode_buf(tp, ibp);
  1250. xfs_trans_log_buf(tp, ibp, offset,
  1251. (offset + sizeof(xfs_agino_t) - 1));
  1252. xfs_inobp_check(mp, ibp);
  1253. }
  1254. /*
  1255. * Point the bucket head pointer at the inode being inserted.
  1256. */
  1257. ASSERT(agino != 0);
  1258. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1259. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1260. (sizeof(xfs_agino_t) * bucket_index);
  1261. xfs_trans_log_buf(tp, agibp, offset,
  1262. (offset + sizeof(xfs_agino_t) - 1));
  1263. return 0;
  1264. }
  1265. /*
  1266. * Pull the on-disk inode from the AGI unlinked list.
  1267. */
  1268. STATIC int
  1269. xfs_iunlink_remove(
  1270. xfs_trans_t *tp,
  1271. xfs_inode_t *ip)
  1272. {
  1273. xfs_ino_t next_ino;
  1274. xfs_mount_t *mp;
  1275. xfs_agi_t *agi;
  1276. xfs_dinode_t *dip;
  1277. xfs_buf_t *agibp;
  1278. xfs_buf_t *ibp;
  1279. xfs_agnumber_t agno;
  1280. xfs_agino_t agino;
  1281. xfs_agino_t next_agino;
  1282. xfs_buf_t *last_ibp;
  1283. xfs_dinode_t *last_dip = NULL;
  1284. short bucket_index;
  1285. int offset, last_offset = 0;
  1286. int error;
  1287. mp = tp->t_mountp;
  1288. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1289. /*
  1290. * Get the agi buffer first. It ensures lock ordering
  1291. * on the list.
  1292. */
  1293. error = xfs_read_agi(mp, tp, agno, &agibp);
  1294. if (error)
  1295. return error;
  1296. agi = XFS_BUF_TO_AGI(agibp);
  1297. /*
  1298. * Get the index into the agi hash table for the
  1299. * list this inode will go on.
  1300. */
  1301. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1302. ASSERT(agino != 0);
  1303. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1304. ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
  1305. ASSERT(agi->agi_unlinked[bucket_index]);
  1306. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1307. /*
  1308. * We're at the head of the list. Get the inode's
  1309. * on-disk buffer to see if there is anyone after us
  1310. * on the list. Only modify our next pointer if it
  1311. * is not already NULLAGINO. This saves us the overhead
  1312. * of dealing with the buffer when there is no need to
  1313. * change it.
  1314. */
  1315. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1316. if (error) {
  1317. xfs_warn(mp, "%s: xfs_itobp() returned error %d.",
  1318. __func__, error);
  1319. return error;
  1320. }
  1321. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1322. ASSERT(next_agino != 0);
  1323. if (next_agino != NULLAGINO) {
  1324. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1325. offset = ip->i_imap.im_boffset +
  1326. offsetof(xfs_dinode_t, di_next_unlinked);
  1327. xfs_trans_inode_buf(tp, ibp);
  1328. xfs_trans_log_buf(tp, ibp, offset,
  1329. (offset + sizeof(xfs_agino_t) - 1));
  1330. xfs_inobp_check(mp, ibp);
  1331. } else {
  1332. xfs_trans_brelse(tp, ibp);
  1333. }
  1334. /*
  1335. * Point the bucket head pointer at the next inode.
  1336. */
  1337. ASSERT(next_agino != 0);
  1338. ASSERT(next_agino != agino);
  1339. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1340. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1341. (sizeof(xfs_agino_t) * bucket_index);
  1342. xfs_trans_log_buf(tp, agibp, offset,
  1343. (offset + sizeof(xfs_agino_t) - 1));
  1344. } else {
  1345. /*
  1346. * We need to search the list for the inode being freed.
  1347. */
  1348. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1349. last_ibp = NULL;
  1350. while (next_agino != agino) {
  1351. /*
  1352. * If the last inode wasn't the one pointing to
  1353. * us, then release its buffer since we're not
  1354. * going to do anything with it.
  1355. */
  1356. if (last_ibp != NULL) {
  1357. xfs_trans_brelse(tp, last_ibp);
  1358. }
  1359. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1360. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1361. &last_ibp, &last_offset, 0);
  1362. if (error) {
  1363. xfs_warn(mp,
  1364. "%s: xfs_inotobp() returned error %d.",
  1365. __func__, error);
  1366. return error;
  1367. }
  1368. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1369. ASSERT(next_agino != NULLAGINO);
  1370. ASSERT(next_agino != 0);
  1371. }
  1372. /*
  1373. * Now last_ibp points to the buffer previous to us on
  1374. * the unlinked list. Pull us from the list.
  1375. */
  1376. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1377. if (error) {
  1378. xfs_warn(mp, "%s: xfs_itobp(2) returned error %d.",
  1379. __func__, error);
  1380. return error;
  1381. }
  1382. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1383. ASSERT(next_agino != 0);
  1384. ASSERT(next_agino != agino);
  1385. if (next_agino != NULLAGINO) {
  1386. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1387. offset = ip->i_imap.im_boffset +
  1388. offsetof(xfs_dinode_t, di_next_unlinked);
  1389. xfs_trans_inode_buf(tp, ibp);
  1390. xfs_trans_log_buf(tp, ibp, offset,
  1391. (offset + sizeof(xfs_agino_t) - 1));
  1392. xfs_inobp_check(mp, ibp);
  1393. } else {
  1394. xfs_trans_brelse(tp, ibp);
  1395. }
  1396. /*
  1397. * Point the previous inode on the list to the next inode.
  1398. */
  1399. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  1400. ASSERT(next_agino != 0);
  1401. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1402. xfs_trans_inode_buf(tp, last_ibp);
  1403. xfs_trans_log_buf(tp, last_ibp, offset,
  1404. (offset + sizeof(xfs_agino_t) - 1));
  1405. xfs_inobp_check(mp, last_ibp);
  1406. }
  1407. return 0;
  1408. }
  1409. /*
  1410. * A big issue when freeing the inode cluster is is that we _cannot_ skip any
  1411. * inodes that are in memory - they all must be marked stale and attached to
  1412. * the cluster buffer.
  1413. */
  1414. STATIC int
  1415. xfs_ifree_cluster(
  1416. xfs_inode_t *free_ip,
  1417. xfs_trans_t *tp,
  1418. xfs_ino_t inum)
  1419. {
  1420. xfs_mount_t *mp = free_ip->i_mount;
  1421. int blks_per_cluster;
  1422. int nbufs;
  1423. int ninodes;
  1424. int i, j;
  1425. xfs_daddr_t blkno;
  1426. xfs_buf_t *bp;
  1427. xfs_inode_t *ip;
  1428. xfs_inode_log_item_t *iip;
  1429. xfs_log_item_t *lip;
  1430. struct xfs_perag *pag;
  1431. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
  1432. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  1433. blks_per_cluster = 1;
  1434. ninodes = mp->m_sb.sb_inopblock;
  1435. nbufs = XFS_IALLOC_BLOCKS(mp);
  1436. } else {
  1437. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  1438. mp->m_sb.sb_blocksize;
  1439. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  1440. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  1441. }
  1442. for (j = 0; j < nbufs; j++, inum += ninodes) {
  1443. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  1444. XFS_INO_TO_AGBNO(mp, inum));
  1445. /*
  1446. * We obtain and lock the backing buffer first in the process
  1447. * here, as we have to ensure that any dirty inode that we
  1448. * can't get the flush lock on is attached to the buffer.
  1449. * If we scan the in-memory inodes first, then buffer IO can
  1450. * complete before we get a lock on it, and hence we may fail
  1451. * to mark all the active inodes on the buffer stale.
  1452. */
  1453. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  1454. mp->m_bsize * blks_per_cluster,
  1455. XBF_LOCK);
  1456. if (!bp)
  1457. return ENOMEM;
  1458. /*
  1459. * Walk the inodes already attached to the buffer and mark them
  1460. * stale. These will all have the flush locks held, so an
  1461. * in-memory inode walk can't lock them. By marking them all
  1462. * stale first, we will not attempt to lock them in the loop
  1463. * below as the XFS_ISTALE flag will be set.
  1464. */
  1465. lip = bp->b_fspriv;
  1466. while (lip) {
  1467. if (lip->li_type == XFS_LI_INODE) {
  1468. iip = (xfs_inode_log_item_t *)lip;
  1469. ASSERT(iip->ili_logged == 1);
  1470. lip->li_cb = xfs_istale_done;
  1471. xfs_trans_ail_copy_lsn(mp->m_ail,
  1472. &iip->ili_flush_lsn,
  1473. &iip->ili_item.li_lsn);
  1474. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  1475. }
  1476. lip = lip->li_bio_list;
  1477. }
  1478. /*
  1479. * For each inode in memory attempt to add it to the inode
  1480. * buffer and set it up for being staled on buffer IO
  1481. * completion. This is safe as we've locked out tail pushing
  1482. * and flushing by locking the buffer.
  1483. *
  1484. * We have already marked every inode that was part of a
  1485. * transaction stale above, which means there is no point in
  1486. * even trying to lock them.
  1487. */
  1488. for (i = 0; i < ninodes; i++) {
  1489. retry:
  1490. rcu_read_lock();
  1491. ip = radix_tree_lookup(&pag->pag_ici_root,
  1492. XFS_INO_TO_AGINO(mp, (inum + i)));
  1493. /* Inode not in memory, nothing to do */
  1494. if (!ip) {
  1495. rcu_read_unlock();
  1496. continue;
  1497. }
  1498. /*
  1499. * because this is an RCU protected lookup, we could
  1500. * find a recently freed or even reallocated inode
  1501. * during the lookup. We need to check under the
  1502. * i_flags_lock for a valid inode here. Skip it if it
  1503. * is not valid, the wrong inode or stale.
  1504. */
  1505. spin_lock(&ip->i_flags_lock);
  1506. if (ip->i_ino != inum + i ||
  1507. __xfs_iflags_test(ip, XFS_ISTALE)) {
  1508. spin_unlock(&ip->i_flags_lock);
  1509. rcu_read_unlock();
  1510. continue;
  1511. }
  1512. spin_unlock(&ip->i_flags_lock);
  1513. /*
  1514. * Don't try to lock/unlock the current inode, but we
  1515. * _cannot_ skip the other inodes that we did not find
  1516. * in the list attached to the buffer and are not
  1517. * already marked stale. If we can't lock it, back off
  1518. * and retry.
  1519. */
  1520. if (ip != free_ip &&
  1521. !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  1522. rcu_read_unlock();
  1523. delay(1);
  1524. goto retry;
  1525. }
  1526. rcu_read_unlock();
  1527. xfs_iflock(ip);
  1528. xfs_iflags_set(ip, XFS_ISTALE);
  1529. /*
  1530. * we don't need to attach clean inodes or those only
  1531. * with unlogged changes (which we throw away, anyway).
  1532. */
  1533. iip = ip->i_itemp;
  1534. if (!iip || xfs_inode_clean(ip)) {
  1535. ASSERT(ip != free_ip);
  1536. ip->i_update_core = 0;
  1537. xfs_ifunlock(ip);
  1538. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1539. continue;
  1540. }
  1541. iip->ili_last_fields = iip->ili_format.ilf_fields;
  1542. iip->ili_format.ilf_fields = 0;
  1543. iip->ili_logged = 1;
  1544. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  1545. &iip->ili_item.li_lsn);
  1546. xfs_buf_attach_iodone(bp, xfs_istale_done,
  1547. &iip->ili_item);
  1548. if (ip != free_ip)
  1549. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1550. }
  1551. xfs_trans_stale_inode_buf(tp, bp);
  1552. xfs_trans_binval(tp, bp);
  1553. }
  1554. xfs_perag_put(pag);
  1555. return 0;
  1556. }
  1557. /*
  1558. * This is called to return an inode to the inode free list.
  1559. * The inode should already be truncated to 0 length and have
  1560. * no pages associated with it. This routine also assumes that
  1561. * the inode is already a part of the transaction.
  1562. *
  1563. * The on-disk copy of the inode will have been added to the list
  1564. * of unlinked inodes in the AGI. We need to remove the inode from
  1565. * that list atomically with respect to freeing it here.
  1566. */
  1567. int
  1568. xfs_ifree(
  1569. xfs_trans_t *tp,
  1570. xfs_inode_t *ip,
  1571. xfs_bmap_free_t *flist)
  1572. {
  1573. int error;
  1574. int delete;
  1575. xfs_ino_t first_ino;
  1576. xfs_dinode_t *dip;
  1577. xfs_buf_t *ibp;
  1578. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  1579. ASSERT(ip->i_d.di_nlink == 0);
  1580. ASSERT(ip->i_d.di_nextents == 0);
  1581. ASSERT(ip->i_d.di_anextents == 0);
  1582. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  1583. (!S_ISREG(ip->i_d.di_mode)));
  1584. ASSERT(ip->i_d.di_nblocks == 0);
  1585. /*
  1586. * Pull the on-disk inode from the AGI unlinked list.
  1587. */
  1588. error = xfs_iunlink_remove(tp, ip);
  1589. if (error != 0) {
  1590. return error;
  1591. }
  1592. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  1593. if (error != 0) {
  1594. return error;
  1595. }
  1596. ip->i_d.di_mode = 0; /* mark incore inode as free */
  1597. ip->i_d.di_flags = 0;
  1598. ip->i_d.di_dmevmask = 0;
  1599. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  1600. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1601. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1602. /*
  1603. * Bump the generation count so no one will be confused
  1604. * by reincarnations of this inode.
  1605. */
  1606. ip->i_d.di_gen++;
  1607. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1608. error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
  1609. if (error)
  1610. return error;
  1611. /*
  1612. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  1613. * from picking up this inode when it is reclaimed (its incore state
  1614. * initialzed but not flushed to disk yet). The in-core di_mode is
  1615. * already cleared and a corresponding transaction logged.
  1616. * The hack here just synchronizes the in-core to on-disk
  1617. * di_mode value in advance before the actual inode sync to disk.
  1618. * This is OK because the inode is already unlinked and would never
  1619. * change its di_mode again for this inode generation.
  1620. * This is a temporary hack that would require a proper fix
  1621. * in the future.
  1622. */
  1623. dip->di_mode = 0;
  1624. if (delete) {
  1625. error = xfs_ifree_cluster(ip, tp, first_ino);
  1626. }
  1627. return error;
  1628. }
  1629. /*
  1630. * Reallocate the space for if_broot based on the number of records
  1631. * being added or deleted as indicated in rec_diff. Move the records
  1632. * and pointers in if_broot to fit the new size. When shrinking this
  1633. * will eliminate holes between the records and pointers created by
  1634. * the caller. When growing this will create holes to be filled in
  1635. * by the caller.
  1636. *
  1637. * The caller must not request to add more records than would fit in
  1638. * the on-disk inode root. If the if_broot is currently NULL, then
  1639. * if we adding records one will be allocated. The caller must also
  1640. * not request that the number of records go below zero, although
  1641. * it can go to zero.
  1642. *
  1643. * ip -- the inode whose if_broot area is changing
  1644. * ext_diff -- the change in the number of records, positive or negative,
  1645. * requested for the if_broot array.
  1646. */
  1647. void
  1648. xfs_iroot_realloc(
  1649. xfs_inode_t *ip,
  1650. int rec_diff,
  1651. int whichfork)
  1652. {
  1653. struct xfs_mount *mp = ip->i_mount;
  1654. int cur_max;
  1655. xfs_ifork_t *ifp;
  1656. struct xfs_btree_block *new_broot;
  1657. int new_max;
  1658. size_t new_size;
  1659. char *np;
  1660. char *op;
  1661. /*
  1662. * Handle the degenerate case quietly.
  1663. */
  1664. if (rec_diff == 0) {
  1665. return;
  1666. }
  1667. ifp = XFS_IFORK_PTR(ip, whichfork);
  1668. if (rec_diff > 0) {
  1669. /*
  1670. * If there wasn't any memory allocated before, just
  1671. * allocate it now and get out.
  1672. */
  1673. if (ifp->if_broot_bytes == 0) {
  1674. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  1675. ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
  1676. ifp->if_broot_bytes = (int)new_size;
  1677. return;
  1678. }
  1679. /*
  1680. * If there is already an existing if_broot, then we need
  1681. * to realloc() it and shift the pointers to their new
  1682. * location. The records don't change location because
  1683. * they are kept butted up against the btree block header.
  1684. */
  1685. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  1686. new_max = cur_max + rec_diff;
  1687. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  1688. ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
  1689. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  1690. KM_SLEEP | KM_NOFS);
  1691. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  1692. ifp->if_broot_bytes);
  1693. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  1694. (int)new_size);
  1695. ifp->if_broot_bytes = (int)new_size;
  1696. ASSERT(ifp->if_broot_bytes <=
  1697. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  1698. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  1699. return;
  1700. }
  1701. /*
  1702. * rec_diff is less than 0. In this case, we are shrinking the
  1703. * if_broot buffer. It must already exist. If we go to zero
  1704. * records, just get rid of the root and clear the status bit.
  1705. */
  1706. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  1707. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  1708. new_max = cur_max + rec_diff;
  1709. ASSERT(new_max >= 0);
  1710. if (new_max > 0)
  1711. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  1712. else
  1713. new_size = 0;
  1714. if (new_size > 0) {
  1715. new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
  1716. /*
  1717. * First copy over the btree block header.
  1718. */
  1719. memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
  1720. } else {
  1721. new_broot = NULL;
  1722. ifp->if_flags &= ~XFS_IFBROOT;
  1723. }
  1724. /*
  1725. * Only copy the records and pointers if there are any.
  1726. */
  1727. if (new_max > 0) {
  1728. /*
  1729. * First copy the records.
  1730. */
  1731. op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
  1732. np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
  1733. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  1734. /*
  1735. * Then copy the pointers.
  1736. */
  1737. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  1738. ifp->if_broot_bytes);
  1739. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
  1740. (int)new_size);
  1741. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  1742. }
  1743. kmem_free(ifp->if_broot);
  1744. ifp->if_broot = new_broot;
  1745. ifp->if_broot_bytes = (int)new_size;
  1746. ASSERT(ifp->if_broot_bytes <=
  1747. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  1748. return;
  1749. }
  1750. /*
  1751. * This is called when the amount of space needed for if_data
  1752. * is increased or decreased. The change in size is indicated by
  1753. * the number of bytes that need to be added or deleted in the
  1754. * byte_diff parameter.
  1755. *
  1756. * If the amount of space needed has decreased below the size of the
  1757. * inline buffer, then switch to using the inline buffer. Otherwise,
  1758. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  1759. * to what is needed.
  1760. *
  1761. * ip -- the inode whose if_data area is changing
  1762. * byte_diff -- the change in the number of bytes, positive or negative,
  1763. * requested for the if_data array.
  1764. */
  1765. void
  1766. xfs_idata_realloc(
  1767. xfs_inode_t *ip,
  1768. int byte_diff,
  1769. int whichfork)
  1770. {
  1771. xfs_ifork_t *ifp;
  1772. int new_size;
  1773. int real_size;
  1774. if (byte_diff == 0) {
  1775. return;
  1776. }
  1777. ifp = XFS_IFORK_PTR(ip, whichfork);
  1778. new_size = (int)ifp->if_bytes + byte_diff;
  1779. ASSERT(new_size >= 0);
  1780. if (new_size == 0) {
  1781. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  1782. kmem_free(ifp->if_u1.if_data);
  1783. }
  1784. ifp->if_u1.if_data = NULL;
  1785. real_size = 0;
  1786. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  1787. /*
  1788. * If the valid extents/data can fit in if_inline_ext/data,
  1789. * copy them from the malloc'd vector and free it.
  1790. */
  1791. if (ifp->if_u1.if_data == NULL) {
  1792. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  1793. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  1794. ASSERT(ifp->if_real_bytes != 0);
  1795. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  1796. new_size);
  1797. kmem_free(ifp->if_u1.if_data);
  1798. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  1799. }
  1800. real_size = 0;
  1801. } else {
  1802. /*
  1803. * Stuck with malloc/realloc.
  1804. * For inline data, the underlying buffer must be
  1805. * a multiple of 4 bytes in size so that it can be
  1806. * logged and stay on word boundaries. We enforce
  1807. * that here.
  1808. */
  1809. real_size = roundup(new_size, 4);
  1810. if (ifp->if_u1.if_data == NULL) {
  1811. ASSERT(ifp->if_real_bytes == 0);
  1812. ifp->if_u1.if_data = kmem_alloc(real_size,
  1813. KM_SLEEP | KM_NOFS);
  1814. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  1815. /*
  1816. * Only do the realloc if the underlying size
  1817. * is really changing.
  1818. */
  1819. if (ifp->if_real_bytes != real_size) {
  1820. ifp->if_u1.if_data =
  1821. kmem_realloc(ifp->if_u1.if_data,
  1822. real_size,
  1823. ifp->if_real_bytes,
  1824. KM_SLEEP | KM_NOFS);
  1825. }
  1826. } else {
  1827. ASSERT(ifp->if_real_bytes == 0);
  1828. ifp->if_u1.if_data = kmem_alloc(real_size,
  1829. KM_SLEEP | KM_NOFS);
  1830. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  1831. ifp->if_bytes);
  1832. }
  1833. }
  1834. ifp->if_real_bytes = real_size;
  1835. ifp->if_bytes = new_size;
  1836. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  1837. }
  1838. void
  1839. xfs_idestroy_fork(
  1840. xfs_inode_t *ip,
  1841. int whichfork)
  1842. {
  1843. xfs_ifork_t *ifp;
  1844. ifp = XFS_IFORK_PTR(ip, whichfork);
  1845. if (ifp->if_broot != NULL) {
  1846. kmem_free(ifp->if_broot);
  1847. ifp->if_broot = NULL;
  1848. }
  1849. /*
  1850. * If the format is local, then we can't have an extents
  1851. * array so just look for an inline data array. If we're
  1852. * not local then we may or may not have an extents list,
  1853. * so check and free it up if we do.
  1854. */
  1855. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  1856. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  1857. (ifp->if_u1.if_data != NULL)) {
  1858. ASSERT(ifp->if_real_bytes != 0);
  1859. kmem_free(ifp->if_u1.if_data);
  1860. ifp->if_u1.if_data = NULL;
  1861. ifp->if_real_bytes = 0;
  1862. }
  1863. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  1864. ((ifp->if_flags & XFS_IFEXTIREC) ||
  1865. ((ifp->if_u1.if_extents != NULL) &&
  1866. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  1867. ASSERT(ifp->if_real_bytes != 0);
  1868. xfs_iext_destroy(ifp);
  1869. }
  1870. ASSERT(ifp->if_u1.if_extents == NULL ||
  1871. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  1872. ASSERT(ifp->if_real_bytes == 0);
  1873. if (whichfork == XFS_ATTR_FORK) {
  1874. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  1875. ip->i_afp = NULL;
  1876. }
  1877. }
  1878. /*
  1879. * This is called to unpin an inode. The caller must have the inode locked
  1880. * in at least shared mode so that the buffer cannot be subsequently pinned
  1881. * once someone is waiting for it to be unpinned.
  1882. */
  1883. static void
  1884. xfs_iunpin_nowait(
  1885. struct xfs_inode *ip)
  1886. {
  1887. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  1888. trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
  1889. /* Give the log a push to start the unpinning I/O */
  1890. xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
  1891. }
  1892. void
  1893. xfs_iunpin_wait(
  1894. struct xfs_inode *ip)
  1895. {
  1896. if (xfs_ipincount(ip)) {
  1897. xfs_iunpin_nowait(ip);
  1898. wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
  1899. }
  1900. }
  1901. /*
  1902. * xfs_iextents_copy()
  1903. *
  1904. * This is called to copy the REAL extents (as opposed to the delayed
  1905. * allocation extents) from the inode into the given buffer. It
  1906. * returns the number of bytes copied into the buffer.
  1907. *
  1908. * If there are no delayed allocation extents, then we can just
  1909. * memcpy() the extents into the buffer. Otherwise, we need to
  1910. * examine each extent in turn and skip those which are delayed.
  1911. */
  1912. int
  1913. xfs_iextents_copy(
  1914. xfs_inode_t *ip,
  1915. xfs_bmbt_rec_t *dp,
  1916. int whichfork)
  1917. {
  1918. int copied;
  1919. int i;
  1920. xfs_ifork_t *ifp;
  1921. int nrecs;
  1922. xfs_fsblock_t start_block;
  1923. ifp = XFS_IFORK_PTR(ip, whichfork);
  1924. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  1925. ASSERT(ifp->if_bytes > 0);
  1926. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  1927. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  1928. ASSERT(nrecs > 0);
  1929. /*
  1930. * There are some delayed allocation extents in the
  1931. * inode, so copy the extents one at a time and skip
  1932. * the delayed ones. There must be at least one
  1933. * non-delayed extent.
  1934. */
  1935. copied = 0;
  1936. for (i = 0; i < nrecs; i++) {
  1937. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  1938. start_block = xfs_bmbt_get_startblock(ep);
  1939. if (isnullstartblock(start_block)) {
  1940. /*
  1941. * It's a delayed allocation extent, so skip it.
  1942. */
  1943. continue;
  1944. }
  1945. /* Translate to on disk format */
  1946. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  1947. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  1948. dp++;
  1949. copied++;
  1950. }
  1951. ASSERT(copied != 0);
  1952. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  1953. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  1954. }
  1955. /*
  1956. * Each of the following cases stores data into the same region
  1957. * of the on-disk inode, so only one of them can be valid at
  1958. * any given time. While it is possible to have conflicting formats
  1959. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  1960. * in EXTENTS format, this can only happen when the fork has
  1961. * changed formats after being modified but before being flushed.
  1962. * In these cases, the format always takes precedence, because the
  1963. * format indicates the current state of the fork.
  1964. */
  1965. /*ARGSUSED*/
  1966. STATIC void
  1967. xfs_iflush_fork(
  1968. xfs_inode_t *ip,
  1969. xfs_dinode_t *dip,
  1970. xfs_inode_log_item_t *iip,
  1971. int whichfork,
  1972. xfs_buf_t *bp)
  1973. {
  1974. char *cp;
  1975. xfs_ifork_t *ifp;
  1976. xfs_mount_t *mp;
  1977. #ifdef XFS_TRANS_DEBUG
  1978. int first;
  1979. #endif
  1980. static const short brootflag[2] =
  1981. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  1982. static const short dataflag[2] =
  1983. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  1984. static const short extflag[2] =
  1985. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  1986. if (!iip)
  1987. return;
  1988. ifp = XFS_IFORK_PTR(ip, whichfork);
  1989. /*
  1990. * This can happen if we gave up in iformat in an error path,
  1991. * for the attribute fork.
  1992. */
  1993. if (!ifp) {
  1994. ASSERT(whichfork == XFS_ATTR_FORK);
  1995. return;
  1996. }
  1997. cp = XFS_DFORK_PTR(dip, whichfork);
  1998. mp = ip->i_mount;
  1999. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2000. case XFS_DINODE_FMT_LOCAL:
  2001. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2002. (ifp->if_bytes > 0)) {
  2003. ASSERT(ifp->if_u1.if_data != NULL);
  2004. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2005. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2006. }
  2007. break;
  2008. case XFS_DINODE_FMT_EXTENTS:
  2009. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2010. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2011. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2012. (ifp->if_bytes > 0)) {
  2013. ASSERT(xfs_iext_get_ext(ifp, 0));
  2014. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2015. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2016. whichfork);
  2017. }
  2018. break;
  2019. case XFS_DINODE_FMT_BTREE:
  2020. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2021. (ifp->if_broot_bytes > 0)) {
  2022. ASSERT(ifp->if_broot != NULL);
  2023. ASSERT(ifp->if_broot_bytes <=
  2024. (XFS_IFORK_SIZE(ip, whichfork) +
  2025. XFS_BROOT_SIZE_ADJ));
  2026. xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
  2027. (xfs_bmdr_block_t *)cp,
  2028. XFS_DFORK_SIZE(dip, mp, whichfork));
  2029. }
  2030. break;
  2031. case XFS_DINODE_FMT_DEV:
  2032. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2033. ASSERT(whichfork == XFS_DATA_FORK);
  2034. xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
  2035. }
  2036. break;
  2037. case XFS_DINODE_FMT_UUID:
  2038. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2039. ASSERT(whichfork == XFS_DATA_FORK);
  2040. memcpy(XFS_DFORK_DPTR(dip),
  2041. &ip->i_df.if_u2.if_uuid,
  2042. sizeof(uuid_t));
  2043. }
  2044. break;
  2045. default:
  2046. ASSERT(0);
  2047. break;
  2048. }
  2049. }
  2050. STATIC int
  2051. xfs_iflush_cluster(
  2052. xfs_inode_t *ip,
  2053. xfs_buf_t *bp)
  2054. {
  2055. xfs_mount_t *mp = ip->i_mount;
  2056. struct xfs_perag *pag;
  2057. unsigned long first_index, mask;
  2058. unsigned long inodes_per_cluster;
  2059. int ilist_size;
  2060. xfs_inode_t **ilist;
  2061. xfs_inode_t *iq;
  2062. int nr_found;
  2063. int clcount = 0;
  2064. int bufwasdelwri;
  2065. int i;
  2066. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
  2067. inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
  2068. ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
  2069. ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
  2070. if (!ilist)
  2071. goto out_put;
  2072. mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
  2073. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
  2074. rcu_read_lock();
  2075. /* really need a gang lookup range call here */
  2076. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
  2077. first_index, inodes_per_cluster);
  2078. if (nr_found == 0)
  2079. goto out_free;
  2080. for (i = 0; i < nr_found; i++) {
  2081. iq = ilist[i];
  2082. if (iq == ip)
  2083. continue;
  2084. /*
  2085. * because this is an RCU protected lookup, we could find a
  2086. * recently freed or even reallocated inode during the lookup.
  2087. * We need to check under the i_flags_lock for a valid inode
  2088. * here. Skip it if it is not valid or the wrong inode.
  2089. */
  2090. spin_lock(&ip->i_flags_lock);
  2091. if (!ip->i_ino ||
  2092. (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
  2093. spin_unlock(&ip->i_flags_lock);
  2094. continue;
  2095. }
  2096. spin_unlock(&ip->i_flags_lock);
  2097. /*
  2098. * Do an un-protected check to see if the inode is dirty and
  2099. * is a candidate for flushing. These checks will be repeated
  2100. * later after the appropriate locks are acquired.
  2101. */
  2102. if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
  2103. continue;
  2104. /*
  2105. * Try to get locks. If any are unavailable or it is pinned,
  2106. * then this inode cannot be flushed and is skipped.
  2107. */
  2108. if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
  2109. continue;
  2110. if (!xfs_iflock_nowait(iq)) {
  2111. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2112. continue;
  2113. }
  2114. if (xfs_ipincount(iq)) {
  2115. xfs_ifunlock(iq);
  2116. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2117. continue;
  2118. }
  2119. /*
  2120. * arriving here means that this inode can be flushed. First
  2121. * re-check that it's dirty before flushing.
  2122. */
  2123. if (!xfs_inode_clean(iq)) {
  2124. int error;
  2125. error = xfs_iflush_int(iq, bp);
  2126. if (error) {
  2127. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2128. goto cluster_corrupt_out;
  2129. }
  2130. clcount++;
  2131. } else {
  2132. xfs_ifunlock(iq);
  2133. }
  2134. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2135. }
  2136. if (clcount) {
  2137. XFS_STATS_INC(xs_icluster_flushcnt);
  2138. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2139. }
  2140. out_free:
  2141. rcu_read_unlock();
  2142. kmem_free(ilist);
  2143. out_put:
  2144. xfs_perag_put(pag);
  2145. return 0;
  2146. cluster_corrupt_out:
  2147. /*
  2148. * Corruption detected in the clustering loop. Invalidate the
  2149. * inode buffer and shut down the filesystem.
  2150. */
  2151. rcu_read_unlock();
  2152. /*
  2153. * Clean up the buffer. If it was B_DELWRI, just release it --
  2154. * brelse can handle it with no problems. If not, shut down the
  2155. * filesystem before releasing the buffer.
  2156. */
  2157. bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
  2158. if (bufwasdelwri)
  2159. xfs_buf_relse(bp);
  2160. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2161. if (!bufwasdelwri) {
  2162. /*
  2163. * Just like incore_relse: if we have b_iodone functions,
  2164. * mark the buffer as an error and call them. Otherwise
  2165. * mark it as stale and brelse.
  2166. */
  2167. if (bp->b_iodone) {
  2168. XFS_BUF_UNDONE(bp);
  2169. xfs_buf_stale(bp);
  2170. xfs_buf_ioerror(bp, EIO);
  2171. xfs_buf_ioend(bp, 0);
  2172. } else {
  2173. xfs_buf_stale(bp);
  2174. xfs_buf_relse(bp);
  2175. }
  2176. }
  2177. /*
  2178. * Unlocks the flush lock
  2179. */
  2180. xfs_iflush_abort(iq);
  2181. kmem_free(ilist);
  2182. xfs_perag_put(pag);
  2183. return XFS_ERROR(EFSCORRUPTED);
  2184. }
  2185. /*
  2186. * xfs_iflush() will write a modified inode's changes out to the
  2187. * inode's on disk home. The caller must have the inode lock held
  2188. * in at least shared mode and the inode flush completion must be
  2189. * active as well. The inode lock will still be held upon return from
  2190. * the call and the caller is free to unlock it.
  2191. * The inode flush will be completed when the inode reaches the disk.
  2192. * The flags indicate how the inode's buffer should be written out.
  2193. */
  2194. int
  2195. xfs_iflush(
  2196. xfs_inode_t *ip,
  2197. uint flags)
  2198. {
  2199. xfs_inode_log_item_t *iip;
  2200. xfs_buf_t *bp;
  2201. xfs_dinode_t *dip;
  2202. xfs_mount_t *mp;
  2203. int error;
  2204. XFS_STATS_INC(xs_iflush_count);
  2205. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2206. ASSERT(!completion_done(&ip->i_flush));
  2207. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2208. ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
  2209. iip = ip->i_itemp;
  2210. mp = ip->i_mount;
  2211. /*
  2212. * We can't flush the inode until it is unpinned, so wait for it if we
  2213. * are allowed to block. We know no one new can pin it, because we are
  2214. * holding the inode lock shared and you need to hold it exclusively to
  2215. * pin the inode.
  2216. *
  2217. * If we are not allowed to block, force the log out asynchronously so
  2218. * that when we come back the inode will be unpinned. If other inodes
  2219. * in the same cluster are dirty, they will probably write the inode
  2220. * out for us if they occur after the log force completes.
  2221. */
  2222. if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
  2223. xfs_iunpin_nowait(ip);
  2224. xfs_ifunlock(ip);
  2225. return EAGAIN;
  2226. }
  2227. xfs_iunpin_wait(ip);
  2228. /*
  2229. * For stale inodes we cannot rely on the backing buffer remaining
  2230. * stale in cache for the remaining life of the stale inode and so
  2231. * xfs_itobp() below may give us a buffer that no longer contains
  2232. * inodes below. We have to check this after ensuring the inode is
  2233. * unpinned so that it is safe to reclaim the stale inode after the
  2234. * flush call.
  2235. */
  2236. if (xfs_iflags_test(ip, XFS_ISTALE)) {
  2237. xfs_ifunlock(ip);
  2238. return 0;
  2239. }
  2240. /*
  2241. * This may have been unpinned because the filesystem is shutting
  2242. * down forcibly. If that's the case we must not write this inode
  2243. * to disk, because the log record didn't make it to disk!
  2244. */
  2245. if (XFS_FORCED_SHUTDOWN(mp)) {
  2246. ip->i_update_core = 0;
  2247. if (iip)
  2248. iip->ili_format.ilf_fields = 0;
  2249. xfs_ifunlock(ip);
  2250. return XFS_ERROR(EIO);
  2251. }
  2252. /*
  2253. * Get the buffer containing the on-disk inode.
  2254. */
  2255. error = xfs_itobp(mp, NULL, ip, &dip, &bp,
  2256. (flags & SYNC_TRYLOCK) ? XBF_TRYLOCK : XBF_LOCK);
  2257. if (error || !bp) {
  2258. xfs_ifunlock(ip);
  2259. return error;
  2260. }
  2261. /*
  2262. * First flush out the inode that xfs_iflush was called with.
  2263. */
  2264. error = xfs_iflush_int(ip, bp);
  2265. if (error)
  2266. goto corrupt_out;
  2267. /*
  2268. * If the buffer is pinned then push on the log now so we won't
  2269. * get stuck waiting in the write for too long.
  2270. */
  2271. if (xfs_buf_ispinned(bp))
  2272. xfs_log_force(mp, 0);
  2273. /*
  2274. * inode clustering:
  2275. * see if other inodes can be gathered into this write
  2276. */
  2277. error = xfs_iflush_cluster(ip, bp);
  2278. if (error)
  2279. goto cluster_corrupt_out;
  2280. if (flags & SYNC_WAIT)
  2281. error = xfs_bwrite(bp);
  2282. else
  2283. xfs_buf_delwri_queue(bp);
  2284. xfs_buf_relse(bp);
  2285. return error;
  2286. corrupt_out:
  2287. xfs_buf_relse(bp);
  2288. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2289. cluster_corrupt_out:
  2290. /*
  2291. * Unlocks the flush lock
  2292. */
  2293. xfs_iflush_abort(ip);
  2294. return XFS_ERROR(EFSCORRUPTED);
  2295. }
  2296. STATIC int
  2297. xfs_iflush_int(
  2298. xfs_inode_t *ip,
  2299. xfs_buf_t *bp)
  2300. {
  2301. xfs_inode_log_item_t *iip;
  2302. xfs_dinode_t *dip;
  2303. xfs_mount_t *mp;
  2304. #ifdef XFS_TRANS_DEBUG
  2305. int first;
  2306. #endif
  2307. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2308. ASSERT(!completion_done(&ip->i_flush));
  2309. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2310. ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
  2311. iip = ip->i_itemp;
  2312. mp = ip->i_mount;
  2313. /* set *dip = inode's place in the buffer */
  2314. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  2315. /*
  2316. * Clear i_update_core before copying out the data.
  2317. * This is for coordination with our timestamp updates
  2318. * that don't hold the inode lock. They will always
  2319. * update the timestamps BEFORE setting i_update_core,
  2320. * so if we clear i_update_core after they set it we
  2321. * are guaranteed to see their updates to the timestamps.
  2322. * I believe that this depends on strongly ordered memory
  2323. * semantics, but we have that. We use the SYNCHRONIZE
  2324. * macro to make sure that the compiler does not reorder
  2325. * the i_update_core access below the data copy below.
  2326. */
  2327. ip->i_update_core = 0;
  2328. SYNCHRONIZE();
  2329. /*
  2330. * Make sure to get the latest timestamps from the Linux inode.
  2331. */
  2332. xfs_synchronize_times(ip);
  2333. if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
  2334. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  2335. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2336. "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  2337. __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
  2338. goto corrupt_out;
  2339. }
  2340. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  2341. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  2342. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2343. "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  2344. __func__, ip->i_ino, ip, ip->i_d.di_magic);
  2345. goto corrupt_out;
  2346. }
  2347. if (S_ISREG(ip->i_d.di_mode)) {
  2348. if (XFS_TEST_ERROR(
  2349. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2350. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  2351. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  2352. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2353. "%s: Bad regular inode %Lu, ptr 0x%p",
  2354. __func__, ip->i_ino, ip);
  2355. goto corrupt_out;
  2356. }
  2357. } else if (S_ISDIR(ip->i_d.di_mode)) {
  2358. if (XFS_TEST_ERROR(
  2359. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2360. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  2361. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  2362. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  2363. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2364. "%s: Bad directory inode %Lu, ptr 0x%p",
  2365. __func__, ip->i_ino, ip);
  2366. goto corrupt_out;
  2367. }
  2368. }
  2369. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  2370. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  2371. XFS_RANDOM_IFLUSH_5)) {
  2372. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2373. "%s: detected corrupt incore inode %Lu, "
  2374. "total extents = %d, nblocks = %Ld, ptr 0x%p",
  2375. __func__, ip->i_ino,
  2376. ip->i_d.di_nextents + ip->i_d.di_anextents,
  2377. ip->i_d.di_nblocks, ip);
  2378. goto corrupt_out;
  2379. }
  2380. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  2381. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  2382. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2383. "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  2384. __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
  2385. goto corrupt_out;
  2386. }
  2387. /*
  2388. * bump the flush iteration count, used to detect flushes which
  2389. * postdate a log record during recovery.
  2390. */
  2391. ip->i_d.di_flushiter++;
  2392. /*
  2393. * Copy the dirty parts of the inode into the on-disk
  2394. * inode. We always copy out the core of the inode,
  2395. * because if the inode is dirty at all the core must
  2396. * be.
  2397. */
  2398. xfs_dinode_to_disk(dip, &ip->i_d);
  2399. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  2400. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  2401. ip->i_d.di_flushiter = 0;
  2402. /*
  2403. * If this is really an old format inode and the superblock version
  2404. * has not been updated to support only new format inodes, then
  2405. * convert back to the old inode format. If the superblock version
  2406. * has been updated, then make the conversion permanent.
  2407. */
  2408. ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
  2409. if (ip->i_d.di_version == 1) {
  2410. if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
  2411. /*
  2412. * Convert it back.
  2413. */
  2414. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  2415. dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  2416. } else {
  2417. /*
  2418. * The superblock version has already been bumped,
  2419. * so just make the conversion to the new inode
  2420. * format permanent.
  2421. */
  2422. ip->i_d.di_version = 2;
  2423. dip->di_version = 2;
  2424. ip->i_d.di_onlink = 0;
  2425. dip->di_onlink = 0;
  2426. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  2427. memset(&(dip->di_pad[0]), 0,
  2428. sizeof(dip->di_pad));
  2429. ASSERT(xfs_get_projid(ip) == 0);
  2430. }
  2431. }
  2432. xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
  2433. if (XFS_IFORK_Q(ip))
  2434. xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  2435. xfs_inobp_check(mp, bp);
  2436. /*
  2437. * We've recorded everything logged in the inode, so we'd
  2438. * like to clear the ilf_fields bits so we don't log and
  2439. * flush things unnecessarily. However, we can't stop
  2440. * logging all this information until the data we've copied
  2441. * into the disk buffer is written to disk. If we did we might
  2442. * overwrite the copy of the inode in the log with all the
  2443. * data after re-logging only part of it, and in the face of
  2444. * a crash we wouldn't have all the data we need to recover.
  2445. *
  2446. * What we do is move the bits to the ili_last_fields field.
  2447. * When logging the inode, these bits are moved back to the
  2448. * ilf_fields field. In the xfs_iflush_done() routine we
  2449. * clear ili_last_fields, since we know that the information
  2450. * those bits represent is permanently on disk. As long as
  2451. * the flush completes before the inode is logged again, then
  2452. * both ilf_fields and ili_last_fields will be cleared.
  2453. *
  2454. * We can play with the ilf_fields bits here, because the inode
  2455. * lock must be held exclusively in order to set bits there
  2456. * and the flush lock protects the ili_last_fields bits.
  2457. * Set ili_logged so the flush done
  2458. * routine can tell whether or not to look in the AIL.
  2459. * Also, store the current LSN of the inode so that we can tell
  2460. * whether the item has moved in the AIL from xfs_iflush_done().
  2461. * In order to read the lsn we need the AIL lock, because
  2462. * it is a 64 bit value that cannot be read atomically.
  2463. */
  2464. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2465. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2466. iip->ili_format.ilf_fields = 0;
  2467. iip->ili_logged = 1;
  2468. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  2469. &iip->ili_item.li_lsn);
  2470. /*
  2471. * Attach the function xfs_iflush_done to the inode's
  2472. * buffer. This will remove the inode from the AIL
  2473. * and unlock the inode's flush lock when the inode is
  2474. * completely written to disk.
  2475. */
  2476. xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
  2477. ASSERT(bp->b_fspriv != NULL);
  2478. ASSERT(bp->b_iodone != NULL);
  2479. } else {
  2480. /*
  2481. * We're flushing an inode which is not in the AIL and has
  2482. * not been logged but has i_update_core set. For this
  2483. * case we can use a B_DELWRI flush and immediately drop
  2484. * the inode flush lock because we can avoid the whole
  2485. * AIL state thing. It's OK to drop the flush lock now,
  2486. * because we've already locked the buffer and to do anything
  2487. * you really need both.
  2488. */
  2489. if (iip != NULL) {
  2490. ASSERT(iip->ili_logged == 0);
  2491. ASSERT(iip->ili_last_fields == 0);
  2492. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  2493. }
  2494. xfs_ifunlock(ip);
  2495. }
  2496. return 0;
  2497. corrupt_out:
  2498. return XFS_ERROR(EFSCORRUPTED);
  2499. }
  2500. void
  2501. xfs_promote_inode(
  2502. struct xfs_inode *ip)
  2503. {
  2504. struct xfs_buf *bp;
  2505. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2506. bp = xfs_incore(ip->i_mount->m_ddev_targp, ip->i_imap.im_blkno,
  2507. ip->i_imap.im_len, XBF_TRYLOCK);
  2508. if (!bp)
  2509. return;
  2510. if (XFS_BUF_ISDELAYWRITE(bp)) {
  2511. xfs_buf_delwri_promote(bp);
  2512. wake_up_process(ip->i_mount->m_ddev_targp->bt_task);
  2513. }
  2514. xfs_buf_relse(bp);
  2515. }
  2516. /*
  2517. * Return a pointer to the extent record at file index idx.
  2518. */
  2519. xfs_bmbt_rec_host_t *
  2520. xfs_iext_get_ext(
  2521. xfs_ifork_t *ifp, /* inode fork pointer */
  2522. xfs_extnum_t idx) /* index of target extent */
  2523. {
  2524. ASSERT(idx >= 0);
  2525. ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
  2526. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  2527. return ifp->if_u1.if_ext_irec->er_extbuf;
  2528. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  2529. xfs_ext_irec_t *erp; /* irec pointer */
  2530. int erp_idx = 0; /* irec index */
  2531. xfs_extnum_t page_idx = idx; /* ext index in target list */
  2532. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  2533. return &erp->er_extbuf[page_idx];
  2534. } else if (ifp->if_bytes) {
  2535. return &ifp->if_u1.if_extents[idx];
  2536. } else {
  2537. return NULL;
  2538. }
  2539. }
  2540. /*
  2541. * Insert new item(s) into the extent records for incore inode
  2542. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  2543. */
  2544. void
  2545. xfs_iext_insert(
  2546. xfs_inode_t *ip, /* incore inode pointer */
  2547. xfs_extnum_t idx, /* starting index of new items */
  2548. xfs_extnum_t count, /* number of inserted items */
  2549. xfs_bmbt_irec_t *new, /* items to insert */
  2550. int state) /* type of extent conversion */
  2551. {
  2552. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  2553. xfs_extnum_t i; /* extent record index */
  2554. trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
  2555. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  2556. xfs_iext_add(ifp, idx, count);
  2557. for (i = idx; i < idx + count; i++, new++)
  2558. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  2559. }
  2560. /*
  2561. * This is called when the amount of space required for incore file
  2562. * extents needs to be increased. The ext_diff parameter stores the
  2563. * number of new extents being added and the idx parameter contains
  2564. * the extent index where the new extents will be added. If the new
  2565. * extents are being appended, then we just need to (re)allocate and
  2566. * initialize the space. Otherwise, if the new extents are being
  2567. * inserted into the middle of the existing entries, a bit more work
  2568. * is required to make room for the new extents to be inserted. The
  2569. * caller is responsible for filling in the new extent entries upon
  2570. * return.
  2571. */
  2572. void
  2573. xfs_iext_add(
  2574. xfs_ifork_t *ifp, /* inode fork pointer */
  2575. xfs_extnum_t idx, /* index to begin adding exts */
  2576. int ext_diff) /* number of extents to add */
  2577. {
  2578. int byte_diff; /* new bytes being added */
  2579. int new_size; /* size of extents after adding */
  2580. xfs_extnum_t nextents; /* number of extents in file */
  2581. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2582. ASSERT((idx >= 0) && (idx <= nextents));
  2583. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  2584. new_size = ifp->if_bytes + byte_diff;
  2585. /*
  2586. * If the new number of extents (nextents + ext_diff)
  2587. * fits inside the inode, then continue to use the inline
  2588. * extent buffer.
  2589. */
  2590. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  2591. if (idx < nextents) {
  2592. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  2593. &ifp->if_u2.if_inline_ext[idx],
  2594. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2595. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  2596. }
  2597. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  2598. ifp->if_real_bytes = 0;
  2599. }
  2600. /*
  2601. * Otherwise use a linear (direct) extent list.
  2602. * If the extents are currently inside the inode,
  2603. * xfs_iext_realloc_direct will switch us from
  2604. * inline to direct extent allocation mode.
  2605. */
  2606. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  2607. xfs_iext_realloc_direct(ifp, new_size);
  2608. if (idx < nextents) {
  2609. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  2610. &ifp->if_u1.if_extents[idx],
  2611. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2612. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  2613. }
  2614. }
  2615. /* Indirection array */
  2616. else {
  2617. xfs_ext_irec_t *erp;
  2618. int erp_idx = 0;
  2619. int page_idx = idx;
  2620. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  2621. if (ifp->if_flags & XFS_IFEXTIREC) {
  2622. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  2623. } else {
  2624. xfs_iext_irec_init(ifp);
  2625. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2626. erp = ifp->if_u1.if_ext_irec;
  2627. }
  2628. /* Extents fit in target extent page */
  2629. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  2630. if (page_idx < erp->er_extcount) {
  2631. memmove(&erp->er_extbuf[page_idx + ext_diff],
  2632. &erp->er_extbuf[page_idx],
  2633. (erp->er_extcount - page_idx) *
  2634. sizeof(xfs_bmbt_rec_t));
  2635. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  2636. }
  2637. erp->er_extcount += ext_diff;
  2638. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2639. }
  2640. /* Insert a new extent page */
  2641. else if (erp) {
  2642. xfs_iext_add_indirect_multi(ifp,
  2643. erp_idx, page_idx, ext_diff);
  2644. }
  2645. /*
  2646. * If extent(s) are being appended to the last page in
  2647. * the indirection array and the new extent(s) don't fit
  2648. * in the page, then erp is NULL and erp_idx is set to
  2649. * the next index needed in the indirection array.
  2650. */
  2651. else {
  2652. int count = ext_diff;
  2653. while (count) {
  2654. erp = xfs_iext_irec_new(ifp, erp_idx);
  2655. erp->er_extcount = count;
  2656. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  2657. if (count) {
  2658. erp_idx++;
  2659. }
  2660. }
  2661. }
  2662. }
  2663. ifp->if_bytes = new_size;
  2664. }
  2665. /*
  2666. * This is called when incore extents are being added to the indirection
  2667. * array and the new extents do not fit in the target extent list. The
  2668. * erp_idx parameter contains the irec index for the target extent list
  2669. * in the indirection array, and the idx parameter contains the extent
  2670. * index within the list. The number of extents being added is stored
  2671. * in the count parameter.
  2672. *
  2673. * |-------| |-------|
  2674. * | | | | idx - number of extents before idx
  2675. * | idx | | count |
  2676. * | | | | count - number of extents being inserted at idx
  2677. * |-------| |-------|
  2678. * | count | | nex2 | nex2 - number of extents after idx + count
  2679. * |-------| |-------|
  2680. */
  2681. void
  2682. xfs_iext_add_indirect_multi(
  2683. xfs_ifork_t *ifp, /* inode fork pointer */
  2684. int erp_idx, /* target extent irec index */
  2685. xfs_extnum_t idx, /* index within target list */
  2686. int count) /* new extents being added */
  2687. {
  2688. int byte_diff; /* new bytes being added */
  2689. xfs_ext_irec_t *erp; /* pointer to irec entry */
  2690. xfs_extnum_t ext_diff; /* number of extents to add */
  2691. xfs_extnum_t ext_cnt; /* new extents still needed */
  2692. xfs_extnum_t nex2; /* extents after idx + count */
  2693. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  2694. int nlists; /* number of irec's (lists) */
  2695. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2696. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  2697. nex2 = erp->er_extcount - idx;
  2698. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  2699. /*
  2700. * Save second part of target extent list
  2701. * (all extents past */
  2702. if (nex2) {
  2703. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  2704. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
  2705. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  2706. erp->er_extcount -= nex2;
  2707. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  2708. memset(&erp->er_extbuf[idx], 0, byte_diff);
  2709. }
  2710. /*
  2711. * Add the new extents to the end of the target
  2712. * list, then allocate new irec record(s) and
  2713. * extent buffer(s) as needed to store the rest
  2714. * of the new extents.
  2715. */
  2716. ext_cnt = count;
  2717. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  2718. if (ext_diff) {
  2719. erp->er_extcount += ext_diff;
  2720. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2721. ext_cnt -= ext_diff;
  2722. }
  2723. while (ext_cnt) {
  2724. erp_idx++;
  2725. erp = xfs_iext_irec_new(ifp, erp_idx);
  2726. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  2727. erp->er_extcount = ext_diff;
  2728. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2729. ext_cnt -= ext_diff;
  2730. }
  2731. /* Add nex2 extents back to indirection array */
  2732. if (nex2) {
  2733. xfs_extnum_t ext_avail;
  2734. int i;
  2735. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  2736. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  2737. i = 0;
  2738. /*
  2739. * If nex2 extents fit in the current page, append
  2740. * nex2_ep after the new extents.
  2741. */
  2742. if (nex2 <= ext_avail) {
  2743. i = erp->er_extcount;
  2744. }
  2745. /*
  2746. * Otherwise, check if space is available in the
  2747. * next page.
  2748. */
  2749. else if ((erp_idx < nlists - 1) &&
  2750. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  2751. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  2752. erp_idx++;
  2753. erp++;
  2754. /* Create a hole for nex2 extents */
  2755. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  2756. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  2757. }
  2758. /*
  2759. * Final choice, create a new extent page for
  2760. * nex2 extents.
  2761. */
  2762. else {
  2763. erp_idx++;
  2764. erp = xfs_iext_irec_new(ifp, erp_idx);
  2765. }
  2766. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  2767. kmem_free(nex2_ep);
  2768. erp->er_extcount += nex2;
  2769. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  2770. }
  2771. }
  2772. /*
  2773. * This is called when the amount of space required for incore file
  2774. * extents needs to be decreased. The ext_diff parameter stores the
  2775. * number of extents to be removed and the idx parameter contains
  2776. * the extent index where the extents will be removed from.
  2777. *
  2778. * If the amount of space needed has decreased below the linear
  2779. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  2780. * extent array. Otherwise, use kmem_realloc() to adjust the
  2781. * size to what is needed.
  2782. */
  2783. void
  2784. xfs_iext_remove(
  2785. xfs_inode_t *ip, /* incore inode pointer */
  2786. xfs_extnum_t idx, /* index to begin removing exts */
  2787. int ext_diff, /* number of extents to remove */
  2788. int state) /* type of extent conversion */
  2789. {
  2790. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  2791. xfs_extnum_t nextents; /* number of extents in file */
  2792. int new_size; /* size of extents after removal */
  2793. trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
  2794. ASSERT(ext_diff > 0);
  2795. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2796. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  2797. if (new_size == 0) {
  2798. xfs_iext_destroy(ifp);
  2799. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  2800. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  2801. } else if (ifp->if_real_bytes) {
  2802. xfs_iext_remove_direct(ifp, idx, ext_diff);
  2803. } else {
  2804. xfs_iext_remove_inline(ifp, idx, ext_diff);
  2805. }
  2806. ifp->if_bytes = new_size;
  2807. }
  2808. /*
  2809. * This removes ext_diff extents from the inline buffer, beginning
  2810. * at extent index idx.
  2811. */
  2812. void
  2813. xfs_iext_remove_inline(
  2814. xfs_ifork_t *ifp, /* inode fork pointer */
  2815. xfs_extnum_t idx, /* index to begin removing exts */
  2816. int ext_diff) /* number of extents to remove */
  2817. {
  2818. int nextents; /* number of extents in file */
  2819. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  2820. ASSERT(idx < XFS_INLINE_EXTS);
  2821. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2822. ASSERT(((nextents - ext_diff) > 0) &&
  2823. (nextents - ext_diff) < XFS_INLINE_EXTS);
  2824. if (idx + ext_diff < nextents) {
  2825. memmove(&ifp->if_u2.if_inline_ext[idx],
  2826. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  2827. (nextents - (idx + ext_diff)) *
  2828. sizeof(xfs_bmbt_rec_t));
  2829. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  2830. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  2831. } else {
  2832. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  2833. ext_diff * sizeof(xfs_bmbt_rec_t));
  2834. }
  2835. }
  2836. /*
  2837. * This removes ext_diff extents from a linear (direct) extent list,
  2838. * beginning at extent index idx. If the extents are being removed
  2839. * from the end of the list (ie. truncate) then we just need to re-
  2840. * allocate the list to remove the extra space. Otherwise, if the
  2841. * extents are being removed from the middle of the existing extent
  2842. * entries, then we first need to move the extent records beginning
  2843. * at idx + ext_diff up in the list to overwrite the records being
  2844. * removed, then remove the extra space via kmem_realloc.
  2845. */
  2846. void
  2847. xfs_iext_remove_direct(
  2848. xfs_ifork_t *ifp, /* inode fork pointer */
  2849. xfs_extnum_t idx, /* index to begin removing exts */
  2850. int ext_diff) /* number of extents to remove */
  2851. {
  2852. xfs_extnum_t nextents; /* number of extents in file */
  2853. int new_size; /* size of extents after removal */
  2854. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  2855. new_size = ifp->if_bytes -
  2856. (ext_diff * sizeof(xfs_bmbt_rec_t));
  2857. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2858. if (new_size == 0) {
  2859. xfs_iext_destroy(ifp);
  2860. return;
  2861. }
  2862. /* Move extents up in the list (if needed) */
  2863. if (idx + ext_diff < nextents) {
  2864. memmove(&ifp->if_u1.if_extents[idx],
  2865. &ifp->if_u1.if_extents[idx + ext_diff],
  2866. (nextents - (idx + ext_diff)) *
  2867. sizeof(xfs_bmbt_rec_t));
  2868. }
  2869. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  2870. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  2871. /*
  2872. * Reallocate the direct extent list. If the extents
  2873. * will fit inside the inode then xfs_iext_realloc_direct
  2874. * will switch from direct to inline extent allocation
  2875. * mode for us.
  2876. */
  2877. xfs_iext_realloc_direct(ifp, new_size);
  2878. ifp->if_bytes = new_size;
  2879. }
  2880. /*
  2881. * This is called when incore extents are being removed from the
  2882. * indirection array and the extents being removed span multiple extent
  2883. * buffers. The idx parameter contains the file extent index where we
  2884. * want to begin removing extents, and the count parameter contains
  2885. * how many extents need to be removed.
  2886. *
  2887. * |-------| |-------|
  2888. * | nex1 | | | nex1 - number of extents before idx
  2889. * |-------| | count |
  2890. * | | | | count - number of extents being removed at idx
  2891. * | count | |-------|
  2892. * | | | nex2 | nex2 - number of extents after idx + count
  2893. * |-------| |-------|
  2894. */
  2895. void
  2896. xfs_iext_remove_indirect(
  2897. xfs_ifork_t *ifp, /* inode fork pointer */
  2898. xfs_extnum_t idx, /* index to begin removing extents */
  2899. int count) /* number of extents to remove */
  2900. {
  2901. xfs_ext_irec_t *erp; /* indirection array pointer */
  2902. int erp_idx = 0; /* indirection array index */
  2903. xfs_extnum_t ext_cnt; /* extents left to remove */
  2904. xfs_extnum_t ext_diff; /* extents to remove in current list */
  2905. xfs_extnum_t nex1; /* number of extents before idx */
  2906. xfs_extnum_t nex2; /* extents after idx + count */
  2907. int page_idx = idx; /* index in target extent list */
  2908. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2909. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  2910. ASSERT(erp != NULL);
  2911. nex1 = page_idx;
  2912. ext_cnt = count;
  2913. while (ext_cnt) {
  2914. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  2915. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  2916. /*
  2917. * Check for deletion of entire list;
  2918. * xfs_iext_irec_remove() updates extent offsets.
  2919. */
  2920. if (ext_diff == erp->er_extcount) {
  2921. xfs_iext_irec_remove(ifp, erp_idx);
  2922. ext_cnt -= ext_diff;
  2923. nex1 = 0;
  2924. if (ext_cnt) {
  2925. ASSERT(erp_idx < ifp->if_real_bytes /
  2926. XFS_IEXT_BUFSZ);
  2927. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  2928. nex1 = 0;
  2929. continue;
  2930. } else {
  2931. break;
  2932. }
  2933. }
  2934. /* Move extents up (if needed) */
  2935. if (nex2) {
  2936. memmove(&erp->er_extbuf[nex1],
  2937. &erp->er_extbuf[nex1 + ext_diff],
  2938. nex2 * sizeof(xfs_bmbt_rec_t));
  2939. }
  2940. /* Zero out rest of page */
  2941. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  2942. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  2943. /* Update remaining counters */
  2944. erp->er_extcount -= ext_diff;
  2945. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  2946. ext_cnt -= ext_diff;
  2947. nex1 = 0;
  2948. erp_idx++;
  2949. erp++;
  2950. }
  2951. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  2952. xfs_iext_irec_compact(ifp);
  2953. }
  2954. /*
  2955. * Create, destroy, or resize a linear (direct) block of extents.
  2956. */
  2957. void
  2958. xfs_iext_realloc_direct(
  2959. xfs_ifork_t *ifp, /* inode fork pointer */
  2960. int new_size) /* new size of extents */
  2961. {
  2962. int rnew_size; /* real new size of extents */
  2963. rnew_size = new_size;
  2964. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  2965. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  2966. (new_size != ifp->if_real_bytes)));
  2967. /* Free extent records */
  2968. if (new_size == 0) {
  2969. xfs_iext_destroy(ifp);
  2970. }
  2971. /* Resize direct extent list and zero any new bytes */
  2972. else if (ifp->if_real_bytes) {
  2973. /* Check if extents will fit inside the inode */
  2974. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  2975. xfs_iext_direct_to_inline(ifp, new_size /
  2976. (uint)sizeof(xfs_bmbt_rec_t));
  2977. ifp->if_bytes = new_size;
  2978. return;
  2979. }
  2980. if (!is_power_of_2(new_size)){
  2981. rnew_size = roundup_pow_of_two(new_size);
  2982. }
  2983. if (rnew_size != ifp->if_real_bytes) {
  2984. ifp->if_u1.if_extents =
  2985. kmem_realloc(ifp->if_u1.if_extents,
  2986. rnew_size,
  2987. ifp->if_real_bytes, KM_NOFS);
  2988. }
  2989. if (rnew_size > ifp->if_real_bytes) {
  2990. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  2991. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  2992. rnew_size - ifp->if_real_bytes);
  2993. }
  2994. }
  2995. /*
  2996. * Switch from the inline extent buffer to a direct
  2997. * extent list. Be sure to include the inline extent
  2998. * bytes in new_size.
  2999. */
  3000. else {
  3001. new_size += ifp->if_bytes;
  3002. if (!is_power_of_2(new_size)) {
  3003. rnew_size = roundup_pow_of_two(new_size);
  3004. }
  3005. xfs_iext_inline_to_direct(ifp, rnew_size);
  3006. }
  3007. ifp->if_real_bytes = rnew_size;
  3008. ifp->if_bytes = new_size;
  3009. }
  3010. /*
  3011. * Switch from linear (direct) extent records to inline buffer.
  3012. */
  3013. void
  3014. xfs_iext_direct_to_inline(
  3015. xfs_ifork_t *ifp, /* inode fork pointer */
  3016. xfs_extnum_t nextents) /* number of extents in file */
  3017. {
  3018. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3019. ASSERT(nextents <= XFS_INLINE_EXTS);
  3020. /*
  3021. * The inline buffer was zeroed when we switched
  3022. * from inline to direct extent allocation mode,
  3023. * so we don't need to clear it here.
  3024. */
  3025. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3026. nextents * sizeof(xfs_bmbt_rec_t));
  3027. kmem_free(ifp->if_u1.if_extents);
  3028. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3029. ifp->if_real_bytes = 0;
  3030. }
  3031. /*
  3032. * Switch from inline buffer to linear (direct) extent records.
  3033. * new_size should already be rounded up to the next power of 2
  3034. * by the caller (when appropriate), so use new_size as it is.
  3035. * However, since new_size may be rounded up, we can't update
  3036. * if_bytes here. It is the caller's responsibility to update
  3037. * if_bytes upon return.
  3038. */
  3039. void
  3040. xfs_iext_inline_to_direct(
  3041. xfs_ifork_t *ifp, /* inode fork pointer */
  3042. int new_size) /* number of extents in file */
  3043. {
  3044. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
  3045. memset(ifp->if_u1.if_extents, 0, new_size);
  3046. if (ifp->if_bytes) {
  3047. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3048. ifp->if_bytes);
  3049. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3050. sizeof(xfs_bmbt_rec_t));
  3051. }
  3052. ifp->if_real_bytes = new_size;
  3053. }
  3054. /*
  3055. * Resize an extent indirection array to new_size bytes.
  3056. */
  3057. STATIC void
  3058. xfs_iext_realloc_indirect(
  3059. xfs_ifork_t *ifp, /* inode fork pointer */
  3060. int new_size) /* new indirection array size */
  3061. {
  3062. int nlists; /* number of irec's (ex lists) */
  3063. int size; /* current indirection array size */
  3064. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3065. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3066. size = nlists * sizeof(xfs_ext_irec_t);
  3067. ASSERT(ifp->if_real_bytes);
  3068. ASSERT((new_size >= 0) && (new_size != size));
  3069. if (new_size == 0) {
  3070. xfs_iext_destroy(ifp);
  3071. } else {
  3072. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3073. kmem_realloc(ifp->if_u1.if_ext_irec,
  3074. new_size, size, KM_NOFS);
  3075. }
  3076. }
  3077. /*
  3078. * Switch from indirection array to linear (direct) extent allocations.
  3079. */
  3080. STATIC void
  3081. xfs_iext_indirect_to_direct(
  3082. xfs_ifork_t *ifp) /* inode fork pointer */
  3083. {
  3084. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3085. xfs_extnum_t nextents; /* number of extents in file */
  3086. int size; /* size of file extents */
  3087. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3088. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3089. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3090. size = nextents * sizeof(xfs_bmbt_rec_t);
  3091. xfs_iext_irec_compact_pages(ifp);
  3092. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3093. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3094. kmem_free(ifp->if_u1.if_ext_irec);
  3095. ifp->if_flags &= ~XFS_IFEXTIREC;
  3096. ifp->if_u1.if_extents = ep;
  3097. ifp->if_bytes = size;
  3098. if (nextents < XFS_LINEAR_EXTS) {
  3099. xfs_iext_realloc_direct(ifp, size);
  3100. }
  3101. }
  3102. /*
  3103. * Free incore file extents.
  3104. */
  3105. void
  3106. xfs_iext_destroy(
  3107. xfs_ifork_t *ifp) /* inode fork pointer */
  3108. {
  3109. if (ifp->if_flags & XFS_IFEXTIREC) {
  3110. int erp_idx;
  3111. int nlists;
  3112. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3113. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3114. xfs_iext_irec_remove(ifp, erp_idx);
  3115. }
  3116. ifp->if_flags &= ~XFS_IFEXTIREC;
  3117. } else if (ifp->if_real_bytes) {
  3118. kmem_free(ifp->if_u1.if_extents);
  3119. } else if (ifp->if_bytes) {
  3120. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3121. sizeof(xfs_bmbt_rec_t));
  3122. }
  3123. ifp->if_u1.if_extents = NULL;
  3124. ifp->if_real_bytes = 0;
  3125. ifp->if_bytes = 0;
  3126. }
  3127. /*
  3128. * Return a pointer to the extent record for file system block bno.
  3129. */
  3130. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  3131. xfs_iext_bno_to_ext(
  3132. xfs_ifork_t *ifp, /* inode fork pointer */
  3133. xfs_fileoff_t bno, /* block number to search for */
  3134. xfs_extnum_t *idxp) /* index of target extent */
  3135. {
  3136. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  3137. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3138. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  3139. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3140. int high; /* upper boundary in search */
  3141. xfs_extnum_t idx = 0; /* index of target extent */
  3142. int low; /* lower boundary in search */
  3143. xfs_extnum_t nextents; /* number of file extents */
  3144. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3145. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3146. if (nextents == 0) {
  3147. *idxp = 0;
  3148. return NULL;
  3149. }
  3150. low = 0;
  3151. if (ifp->if_flags & XFS_IFEXTIREC) {
  3152. /* Find target extent list */
  3153. int erp_idx = 0;
  3154. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3155. base = erp->er_extbuf;
  3156. high = erp->er_extcount - 1;
  3157. } else {
  3158. base = ifp->if_u1.if_extents;
  3159. high = nextents - 1;
  3160. }
  3161. /* Binary search extent records */
  3162. while (low <= high) {
  3163. idx = (low + high) >> 1;
  3164. ep = base + idx;
  3165. startoff = xfs_bmbt_get_startoff(ep);
  3166. blockcount = xfs_bmbt_get_blockcount(ep);
  3167. if (bno < startoff) {
  3168. high = idx - 1;
  3169. } else if (bno >= startoff + blockcount) {
  3170. low = idx + 1;
  3171. } else {
  3172. /* Convert back to file-based extent index */
  3173. if (ifp->if_flags & XFS_IFEXTIREC) {
  3174. idx += erp->er_extoff;
  3175. }
  3176. *idxp = idx;
  3177. return ep;
  3178. }
  3179. }
  3180. /* Convert back to file-based extent index */
  3181. if (ifp->if_flags & XFS_IFEXTIREC) {
  3182. idx += erp->er_extoff;
  3183. }
  3184. if (bno >= startoff + blockcount) {
  3185. if (++idx == nextents) {
  3186. ep = NULL;
  3187. } else {
  3188. ep = xfs_iext_get_ext(ifp, idx);
  3189. }
  3190. }
  3191. *idxp = idx;
  3192. return ep;
  3193. }
  3194. /*
  3195. * Return a pointer to the indirection array entry containing the
  3196. * extent record for filesystem block bno. Store the index of the
  3197. * target irec in *erp_idxp.
  3198. */
  3199. xfs_ext_irec_t * /* pointer to found extent record */
  3200. xfs_iext_bno_to_irec(
  3201. xfs_ifork_t *ifp, /* inode fork pointer */
  3202. xfs_fileoff_t bno, /* block number to search for */
  3203. int *erp_idxp) /* irec index of target ext list */
  3204. {
  3205. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3206. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  3207. int erp_idx; /* indirection array index */
  3208. int nlists; /* number of extent irec's (lists) */
  3209. int high; /* binary search upper limit */
  3210. int low; /* binary search lower limit */
  3211. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3212. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3213. erp_idx = 0;
  3214. low = 0;
  3215. high = nlists - 1;
  3216. while (low <= high) {
  3217. erp_idx = (low + high) >> 1;
  3218. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3219. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  3220. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  3221. high = erp_idx - 1;
  3222. } else if (erp_next && bno >=
  3223. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  3224. low = erp_idx + 1;
  3225. } else {
  3226. break;
  3227. }
  3228. }
  3229. *erp_idxp = erp_idx;
  3230. return erp;
  3231. }
  3232. /*
  3233. * Return a pointer to the indirection array entry containing the
  3234. * extent record at file extent index *idxp. Store the index of the
  3235. * target irec in *erp_idxp and store the page index of the target
  3236. * extent record in *idxp.
  3237. */
  3238. xfs_ext_irec_t *
  3239. xfs_iext_idx_to_irec(
  3240. xfs_ifork_t *ifp, /* inode fork pointer */
  3241. xfs_extnum_t *idxp, /* extent index (file -> page) */
  3242. int *erp_idxp, /* pointer to target irec */
  3243. int realloc) /* new bytes were just added */
  3244. {
  3245. xfs_ext_irec_t *prev; /* pointer to previous irec */
  3246. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  3247. int erp_idx; /* indirection array index */
  3248. int nlists; /* number of irec's (ex lists) */
  3249. int high; /* binary search upper limit */
  3250. int low; /* binary search lower limit */
  3251. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  3252. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3253. ASSERT(page_idx >= 0);
  3254. ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
  3255. ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
  3256. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3257. erp_idx = 0;
  3258. low = 0;
  3259. high = nlists - 1;
  3260. /* Binary search extent irec's */
  3261. while (low <= high) {
  3262. erp_idx = (low + high) >> 1;
  3263. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3264. prev = erp_idx > 0 ? erp - 1 : NULL;
  3265. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  3266. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  3267. high = erp_idx - 1;
  3268. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  3269. (page_idx == erp->er_extoff + erp->er_extcount &&
  3270. !realloc)) {
  3271. low = erp_idx + 1;
  3272. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  3273. erp->er_extcount == XFS_LINEAR_EXTS) {
  3274. ASSERT(realloc);
  3275. page_idx = 0;
  3276. erp_idx++;
  3277. erp = erp_idx < nlists ? erp + 1 : NULL;
  3278. break;
  3279. } else {
  3280. page_idx -= erp->er_extoff;
  3281. break;
  3282. }
  3283. }
  3284. *idxp = page_idx;
  3285. *erp_idxp = erp_idx;
  3286. return(erp);
  3287. }
  3288. /*
  3289. * Allocate and initialize an indirection array once the space needed
  3290. * for incore extents increases above XFS_IEXT_BUFSZ.
  3291. */
  3292. void
  3293. xfs_iext_irec_init(
  3294. xfs_ifork_t *ifp) /* inode fork pointer */
  3295. {
  3296. xfs_ext_irec_t *erp; /* indirection array pointer */
  3297. xfs_extnum_t nextents; /* number of extents in file */
  3298. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3299. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3300. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3301. erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
  3302. if (nextents == 0) {
  3303. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3304. } else if (!ifp->if_real_bytes) {
  3305. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  3306. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  3307. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  3308. }
  3309. erp->er_extbuf = ifp->if_u1.if_extents;
  3310. erp->er_extcount = nextents;
  3311. erp->er_extoff = 0;
  3312. ifp->if_flags |= XFS_IFEXTIREC;
  3313. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  3314. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  3315. ifp->if_u1.if_ext_irec = erp;
  3316. return;
  3317. }
  3318. /*
  3319. * Allocate and initialize a new entry in the indirection array.
  3320. */
  3321. xfs_ext_irec_t *
  3322. xfs_iext_irec_new(
  3323. xfs_ifork_t *ifp, /* inode fork pointer */
  3324. int erp_idx) /* index for new irec */
  3325. {
  3326. xfs_ext_irec_t *erp; /* indirection array pointer */
  3327. int i; /* loop counter */
  3328. int nlists; /* number of irec's (ex lists) */
  3329. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3330. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3331. /* Resize indirection array */
  3332. xfs_iext_realloc_indirect(ifp, ++nlists *
  3333. sizeof(xfs_ext_irec_t));
  3334. /*
  3335. * Move records down in the array so the
  3336. * new page can use erp_idx.
  3337. */
  3338. erp = ifp->if_u1.if_ext_irec;
  3339. for (i = nlists - 1; i > erp_idx; i--) {
  3340. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  3341. }
  3342. ASSERT(i == erp_idx);
  3343. /* Initialize new extent record */
  3344. erp = ifp->if_u1.if_ext_irec;
  3345. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3346. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3347. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  3348. erp[erp_idx].er_extcount = 0;
  3349. erp[erp_idx].er_extoff = erp_idx > 0 ?
  3350. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  3351. return (&erp[erp_idx]);
  3352. }
  3353. /*
  3354. * Remove a record from the indirection array.
  3355. */
  3356. void
  3357. xfs_iext_irec_remove(
  3358. xfs_ifork_t *ifp, /* inode fork pointer */
  3359. int erp_idx) /* irec index to remove */
  3360. {
  3361. xfs_ext_irec_t *erp; /* indirection array pointer */
  3362. int i; /* loop counter */
  3363. int nlists; /* number of irec's (ex lists) */
  3364. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3365. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3366. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3367. if (erp->er_extbuf) {
  3368. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  3369. -erp->er_extcount);
  3370. kmem_free(erp->er_extbuf);
  3371. }
  3372. /* Compact extent records */
  3373. erp = ifp->if_u1.if_ext_irec;
  3374. for (i = erp_idx; i < nlists - 1; i++) {
  3375. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  3376. }
  3377. /*
  3378. * Manually free the last extent record from the indirection
  3379. * array. A call to xfs_iext_realloc_indirect() with a size
  3380. * of zero would result in a call to xfs_iext_destroy() which
  3381. * would in turn call this function again, creating a nasty
  3382. * infinite loop.
  3383. */
  3384. if (--nlists) {
  3385. xfs_iext_realloc_indirect(ifp,
  3386. nlists * sizeof(xfs_ext_irec_t));
  3387. } else {
  3388. kmem_free(ifp->if_u1.if_ext_irec);
  3389. }
  3390. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3391. }
  3392. /*
  3393. * This is called to clean up large amounts of unused memory allocated
  3394. * by the indirection array. Before compacting anything though, verify
  3395. * that the indirection array is still needed and switch back to the
  3396. * linear extent list (or even the inline buffer) if possible. The
  3397. * compaction policy is as follows:
  3398. *
  3399. * Full Compaction: Extents fit into a single page (or inline buffer)
  3400. * Partial Compaction: Extents occupy less than 50% of allocated space
  3401. * No Compaction: Extents occupy at least 50% of allocated space
  3402. */
  3403. void
  3404. xfs_iext_irec_compact(
  3405. xfs_ifork_t *ifp) /* inode fork pointer */
  3406. {
  3407. xfs_extnum_t nextents; /* number of extents in file */
  3408. int nlists; /* number of irec's (ex lists) */
  3409. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3410. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3411. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3412. if (nextents == 0) {
  3413. xfs_iext_destroy(ifp);
  3414. } else if (nextents <= XFS_INLINE_EXTS) {
  3415. xfs_iext_indirect_to_direct(ifp);
  3416. xfs_iext_direct_to_inline(ifp, nextents);
  3417. } else if (nextents <= XFS_LINEAR_EXTS) {
  3418. xfs_iext_indirect_to_direct(ifp);
  3419. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  3420. xfs_iext_irec_compact_pages(ifp);
  3421. }
  3422. }
  3423. /*
  3424. * Combine extents from neighboring extent pages.
  3425. */
  3426. void
  3427. xfs_iext_irec_compact_pages(
  3428. xfs_ifork_t *ifp) /* inode fork pointer */
  3429. {
  3430. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  3431. int erp_idx = 0; /* indirection array index */
  3432. int nlists; /* number of irec's (ex lists) */
  3433. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3434. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3435. while (erp_idx < nlists - 1) {
  3436. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3437. erp_next = erp + 1;
  3438. if (erp_next->er_extcount <=
  3439. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  3440. memcpy(&erp->er_extbuf[erp->er_extcount],
  3441. erp_next->er_extbuf, erp_next->er_extcount *
  3442. sizeof(xfs_bmbt_rec_t));
  3443. erp->er_extcount += erp_next->er_extcount;
  3444. /*
  3445. * Free page before removing extent record
  3446. * so er_extoffs don't get modified in
  3447. * xfs_iext_irec_remove.
  3448. */
  3449. kmem_free(erp_next->er_extbuf);
  3450. erp_next->er_extbuf = NULL;
  3451. xfs_iext_irec_remove(ifp, erp_idx + 1);
  3452. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3453. } else {
  3454. erp_idx++;
  3455. }
  3456. }
  3457. }
  3458. /*
  3459. * This is called to update the er_extoff field in the indirection
  3460. * array when extents have been added or removed from one of the
  3461. * extent lists. erp_idx contains the irec index to begin updating
  3462. * at and ext_diff contains the number of extents that were added
  3463. * or removed.
  3464. */
  3465. void
  3466. xfs_iext_irec_update_extoffs(
  3467. xfs_ifork_t *ifp, /* inode fork pointer */
  3468. int erp_idx, /* irec index to update */
  3469. int ext_diff) /* number of new extents */
  3470. {
  3471. int i; /* loop counter */
  3472. int nlists; /* number of irec's (ex lists */
  3473. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3474. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3475. for (i = erp_idx; i < nlists; i++) {
  3476. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  3477. }
  3478. }