sock.c 65 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Generic socket support routines. Memory allocators, socket lock/release
  7. * handler for protocols to use and generic option handler.
  8. *
  9. *
  10. * Authors: Ross Biro
  11. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Alan Cox, <A.Cox@swansea.ac.uk>
  14. *
  15. * Fixes:
  16. * Alan Cox : Numerous verify_area() problems
  17. * Alan Cox : Connecting on a connecting socket
  18. * now returns an error for tcp.
  19. * Alan Cox : sock->protocol is set correctly.
  20. * and is not sometimes left as 0.
  21. * Alan Cox : connect handles icmp errors on a
  22. * connect properly. Unfortunately there
  23. * is a restart syscall nasty there. I
  24. * can't match BSD without hacking the C
  25. * library. Ideas urgently sought!
  26. * Alan Cox : Disallow bind() to addresses that are
  27. * not ours - especially broadcast ones!!
  28. * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
  29. * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
  30. * instead they leave that for the DESTROY timer.
  31. * Alan Cox : Clean up error flag in accept
  32. * Alan Cox : TCP ack handling is buggy, the DESTROY timer
  33. * was buggy. Put a remove_sock() in the handler
  34. * for memory when we hit 0. Also altered the timer
  35. * code. The ACK stuff can wait and needs major
  36. * TCP layer surgery.
  37. * Alan Cox : Fixed TCP ack bug, removed remove sock
  38. * and fixed timer/inet_bh race.
  39. * Alan Cox : Added zapped flag for TCP
  40. * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
  41. * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42. * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
  43. * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44. * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45. * Rick Sladkey : Relaxed UDP rules for matching packets.
  46. * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
  47. * Pauline Middelink : identd support
  48. * Alan Cox : Fixed connect() taking signals I think.
  49. * Alan Cox : SO_LINGER supported
  50. * Alan Cox : Error reporting fixes
  51. * Anonymous : inet_create tidied up (sk->reuse setting)
  52. * Alan Cox : inet sockets don't set sk->type!
  53. * Alan Cox : Split socket option code
  54. * Alan Cox : Callbacks
  55. * Alan Cox : Nagle flag for Charles & Johannes stuff
  56. * Alex : Removed restriction on inet fioctl
  57. * Alan Cox : Splitting INET from NET core
  58. * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
  59. * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
  60. * Alan Cox : Split IP from generic code
  61. * Alan Cox : New kfree_skbmem()
  62. * Alan Cox : Make SO_DEBUG superuser only.
  63. * Alan Cox : Allow anyone to clear SO_DEBUG
  64. * (compatibility fix)
  65. * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
  66. * Alan Cox : Allocator for a socket is settable.
  67. * Alan Cox : SO_ERROR includes soft errors.
  68. * Alan Cox : Allow NULL arguments on some SO_ opts
  69. * Alan Cox : Generic socket allocation to make hooks
  70. * easier (suggested by Craig Metz).
  71. * Michael Pall : SO_ERROR returns positive errno again
  72. * Steve Whitehouse: Added default destructor to free
  73. * protocol private data.
  74. * Steve Whitehouse: Added various other default routines
  75. * common to several socket families.
  76. * Chris Evans : Call suser() check last on F_SETOWN
  77. * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78. * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
  79. * Andi Kleen : Fix write_space callback
  80. * Chris Evans : Security fixes - signedness again
  81. * Arnaldo C. Melo : cleanups, use skb_queue_purge
  82. *
  83. * To Fix:
  84. *
  85. *
  86. * This program is free software; you can redistribute it and/or
  87. * modify it under the terms of the GNU General Public License
  88. * as published by the Free Software Foundation; either version
  89. * 2 of the License, or (at your option) any later version.
  90. */
  91. #include <linux/capability.h>
  92. #include <linux/errno.h>
  93. #include <linux/types.h>
  94. #include <linux/socket.h>
  95. #include <linux/in.h>
  96. #include <linux/kernel.h>
  97. #include <linux/module.h>
  98. #include <linux/proc_fs.h>
  99. #include <linux/seq_file.h>
  100. #include <linux/sched.h>
  101. #include <linux/timer.h>
  102. #include <linux/string.h>
  103. #include <linux/sockios.h>
  104. #include <linux/net.h>
  105. #include <linux/mm.h>
  106. #include <linux/slab.h>
  107. #include <linux/interrupt.h>
  108. #include <linux/poll.h>
  109. #include <linux/tcp.h>
  110. #include <linux/init.h>
  111. #include <linux/highmem.h>
  112. #include <linux/user_namespace.h>
  113. #include <asm/uaccess.h>
  114. #include <asm/system.h>
  115. #include <linux/netdevice.h>
  116. #include <net/protocol.h>
  117. #include <linux/skbuff.h>
  118. #include <net/net_namespace.h>
  119. #include <net/request_sock.h>
  120. #include <net/sock.h>
  121. #include <linux/net_tstamp.h>
  122. #include <net/xfrm.h>
  123. #include <linux/ipsec.h>
  124. #include <net/cls_cgroup.h>
  125. #include <linux/filter.h>
  126. #include <trace/events/sock.h>
  127. #ifdef CONFIG_INET
  128. #include <net/tcp.h>
  129. #endif
  130. /*
  131. * Each address family might have different locking rules, so we have
  132. * one slock key per address family:
  133. */
  134. static struct lock_class_key af_family_keys[AF_MAX];
  135. static struct lock_class_key af_family_slock_keys[AF_MAX];
  136. /*
  137. * Make lock validator output more readable. (we pre-construct these
  138. * strings build-time, so that runtime initialization of socket
  139. * locks is fast):
  140. */
  141. static const char *const af_family_key_strings[AF_MAX+1] = {
  142. "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
  143. "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
  144. "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
  145. "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
  146. "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
  147. "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
  148. "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
  149. "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
  150. "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
  151. "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
  152. "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
  153. "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
  154. "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
  155. "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
  156. };
  157. static const char *const af_family_slock_key_strings[AF_MAX+1] = {
  158. "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
  159. "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
  160. "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
  161. "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
  162. "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
  163. "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
  164. "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
  165. "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
  166. "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
  167. "slock-27" , "slock-28" , "slock-AF_CAN" ,
  168. "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
  169. "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
  170. "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
  171. "slock-AF_NFC" , "slock-AF_MAX"
  172. };
  173. static const char *const af_family_clock_key_strings[AF_MAX+1] = {
  174. "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
  175. "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
  176. "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
  177. "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
  178. "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
  179. "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
  180. "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
  181. "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
  182. "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
  183. "clock-27" , "clock-28" , "clock-AF_CAN" ,
  184. "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
  185. "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
  186. "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
  187. "clock-AF_NFC" , "clock-AF_MAX"
  188. };
  189. /*
  190. * sk_callback_lock locking rules are per-address-family,
  191. * so split the lock classes by using a per-AF key:
  192. */
  193. static struct lock_class_key af_callback_keys[AF_MAX];
  194. /* Take into consideration the size of the struct sk_buff overhead in the
  195. * determination of these values, since that is non-constant across
  196. * platforms. This makes socket queueing behavior and performance
  197. * not depend upon such differences.
  198. */
  199. #define _SK_MEM_PACKETS 256
  200. #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
  201. #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  202. #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  203. /* Run time adjustable parameters. */
  204. __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
  205. __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
  206. __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
  207. __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
  208. /* Maximal space eaten by iovec or ancillary data plus some space */
  209. int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
  210. EXPORT_SYMBOL(sysctl_optmem_max);
  211. #if defined(CONFIG_CGROUPS) && !defined(CONFIG_NET_CLS_CGROUP)
  212. int net_cls_subsys_id = -1;
  213. EXPORT_SYMBOL_GPL(net_cls_subsys_id);
  214. #endif
  215. static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
  216. {
  217. struct timeval tv;
  218. if (optlen < sizeof(tv))
  219. return -EINVAL;
  220. if (copy_from_user(&tv, optval, sizeof(tv)))
  221. return -EFAULT;
  222. if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
  223. return -EDOM;
  224. if (tv.tv_sec < 0) {
  225. static int warned __read_mostly;
  226. *timeo_p = 0;
  227. if (warned < 10 && net_ratelimit()) {
  228. warned++;
  229. printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
  230. "tries to set negative timeout\n",
  231. current->comm, task_pid_nr(current));
  232. }
  233. return 0;
  234. }
  235. *timeo_p = MAX_SCHEDULE_TIMEOUT;
  236. if (tv.tv_sec == 0 && tv.tv_usec == 0)
  237. return 0;
  238. if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
  239. *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
  240. return 0;
  241. }
  242. static void sock_warn_obsolete_bsdism(const char *name)
  243. {
  244. static int warned;
  245. static char warncomm[TASK_COMM_LEN];
  246. if (strcmp(warncomm, current->comm) && warned < 5) {
  247. strcpy(warncomm, current->comm);
  248. printk(KERN_WARNING "process `%s' is using obsolete "
  249. "%s SO_BSDCOMPAT\n", warncomm, name);
  250. warned++;
  251. }
  252. }
  253. static void sock_disable_timestamp(struct sock *sk, int flag)
  254. {
  255. if (sock_flag(sk, flag)) {
  256. sock_reset_flag(sk, flag);
  257. if (!sock_flag(sk, SOCK_TIMESTAMP) &&
  258. !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
  259. net_disable_timestamp();
  260. }
  261. }
  262. }
  263. int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  264. {
  265. int err;
  266. int skb_len;
  267. unsigned long flags;
  268. struct sk_buff_head *list = &sk->sk_receive_queue;
  269. /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
  270. number of warnings when compiling with -W --ANK
  271. */
  272. if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
  273. (unsigned)sk->sk_rcvbuf) {
  274. atomic_inc(&sk->sk_drops);
  275. trace_sock_rcvqueue_full(sk, skb);
  276. return -ENOMEM;
  277. }
  278. err = sk_filter(sk, skb);
  279. if (err)
  280. return err;
  281. if (!sk_rmem_schedule(sk, skb->truesize)) {
  282. atomic_inc(&sk->sk_drops);
  283. return -ENOBUFS;
  284. }
  285. skb->dev = NULL;
  286. skb_set_owner_r(skb, sk);
  287. /* Cache the SKB length before we tack it onto the receive
  288. * queue. Once it is added it no longer belongs to us and
  289. * may be freed by other threads of control pulling packets
  290. * from the queue.
  291. */
  292. skb_len = skb->len;
  293. /* we escape from rcu protected region, make sure we dont leak
  294. * a norefcounted dst
  295. */
  296. skb_dst_force(skb);
  297. spin_lock_irqsave(&list->lock, flags);
  298. skb->dropcount = atomic_read(&sk->sk_drops);
  299. __skb_queue_tail(list, skb);
  300. spin_unlock_irqrestore(&list->lock, flags);
  301. if (!sock_flag(sk, SOCK_DEAD))
  302. sk->sk_data_ready(sk, skb_len);
  303. return 0;
  304. }
  305. EXPORT_SYMBOL(sock_queue_rcv_skb);
  306. int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
  307. {
  308. int rc = NET_RX_SUCCESS;
  309. if (sk_filter(sk, skb))
  310. goto discard_and_relse;
  311. skb->dev = NULL;
  312. if (sk_rcvqueues_full(sk, skb)) {
  313. atomic_inc(&sk->sk_drops);
  314. goto discard_and_relse;
  315. }
  316. if (nested)
  317. bh_lock_sock_nested(sk);
  318. else
  319. bh_lock_sock(sk);
  320. if (!sock_owned_by_user(sk)) {
  321. /*
  322. * trylock + unlock semantics:
  323. */
  324. mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
  325. rc = sk_backlog_rcv(sk, skb);
  326. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  327. } else if (sk_add_backlog(sk, skb)) {
  328. bh_unlock_sock(sk);
  329. atomic_inc(&sk->sk_drops);
  330. goto discard_and_relse;
  331. }
  332. bh_unlock_sock(sk);
  333. out:
  334. sock_put(sk);
  335. return rc;
  336. discard_and_relse:
  337. kfree_skb(skb);
  338. goto out;
  339. }
  340. EXPORT_SYMBOL(sk_receive_skb);
  341. void sk_reset_txq(struct sock *sk)
  342. {
  343. sk_tx_queue_clear(sk);
  344. }
  345. EXPORT_SYMBOL(sk_reset_txq);
  346. struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
  347. {
  348. struct dst_entry *dst = __sk_dst_get(sk);
  349. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  350. sk_tx_queue_clear(sk);
  351. RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
  352. dst_release(dst);
  353. return NULL;
  354. }
  355. return dst;
  356. }
  357. EXPORT_SYMBOL(__sk_dst_check);
  358. struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
  359. {
  360. struct dst_entry *dst = sk_dst_get(sk);
  361. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  362. sk_dst_reset(sk);
  363. dst_release(dst);
  364. return NULL;
  365. }
  366. return dst;
  367. }
  368. EXPORT_SYMBOL(sk_dst_check);
  369. static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
  370. {
  371. int ret = -ENOPROTOOPT;
  372. #ifdef CONFIG_NETDEVICES
  373. struct net *net = sock_net(sk);
  374. char devname[IFNAMSIZ];
  375. int index;
  376. /* Sorry... */
  377. ret = -EPERM;
  378. if (!capable(CAP_NET_RAW))
  379. goto out;
  380. ret = -EINVAL;
  381. if (optlen < 0)
  382. goto out;
  383. /* Bind this socket to a particular device like "eth0",
  384. * as specified in the passed interface name. If the
  385. * name is "" or the option length is zero the socket
  386. * is not bound.
  387. */
  388. if (optlen > IFNAMSIZ - 1)
  389. optlen = IFNAMSIZ - 1;
  390. memset(devname, 0, sizeof(devname));
  391. ret = -EFAULT;
  392. if (copy_from_user(devname, optval, optlen))
  393. goto out;
  394. index = 0;
  395. if (devname[0] != '\0') {
  396. struct net_device *dev;
  397. rcu_read_lock();
  398. dev = dev_get_by_name_rcu(net, devname);
  399. if (dev)
  400. index = dev->ifindex;
  401. rcu_read_unlock();
  402. ret = -ENODEV;
  403. if (!dev)
  404. goto out;
  405. }
  406. lock_sock(sk);
  407. sk->sk_bound_dev_if = index;
  408. sk_dst_reset(sk);
  409. release_sock(sk);
  410. ret = 0;
  411. out:
  412. #endif
  413. return ret;
  414. }
  415. static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
  416. {
  417. if (valbool)
  418. sock_set_flag(sk, bit);
  419. else
  420. sock_reset_flag(sk, bit);
  421. }
  422. /*
  423. * This is meant for all protocols to use and covers goings on
  424. * at the socket level. Everything here is generic.
  425. */
  426. int sock_setsockopt(struct socket *sock, int level, int optname,
  427. char __user *optval, unsigned int optlen)
  428. {
  429. struct sock *sk = sock->sk;
  430. int val;
  431. int valbool;
  432. struct linger ling;
  433. int ret = 0;
  434. /*
  435. * Options without arguments
  436. */
  437. if (optname == SO_BINDTODEVICE)
  438. return sock_bindtodevice(sk, optval, optlen);
  439. if (optlen < sizeof(int))
  440. return -EINVAL;
  441. if (get_user(val, (int __user *)optval))
  442. return -EFAULT;
  443. valbool = val ? 1 : 0;
  444. lock_sock(sk);
  445. switch (optname) {
  446. case SO_DEBUG:
  447. if (val && !capable(CAP_NET_ADMIN))
  448. ret = -EACCES;
  449. else
  450. sock_valbool_flag(sk, SOCK_DBG, valbool);
  451. break;
  452. case SO_REUSEADDR:
  453. sk->sk_reuse = valbool;
  454. break;
  455. case SO_TYPE:
  456. case SO_PROTOCOL:
  457. case SO_DOMAIN:
  458. case SO_ERROR:
  459. ret = -ENOPROTOOPT;
  460. break;
  461. case SO_DONTROUTE:
  462. sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
  463. break;
  464. case SO_BROADCAST:
  465. sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
  466. break;
  467. case SO_SNDBUF:
  468. /* Don't error on this BSD doesn't and if you think
  469. about it this is right. Otherwise apps have to
  470. play 'guess the biggest size' games. RCVBUF/SNDBUF
  471. are treated in BSD as hints */
  472. if (val > sysctl_wmem_max)
  473. val = sysctl_wmem_max;
  474. set_sndbuf:
  475. sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
  476. if ((val * 2) < SOCK_MIN_SNDBUF)
  477. sk->sk_sndbuf = SOCK_MIN_SNDBUF;
  478. else
  479. sk->sk_sndbuf = val * 2;
  480. /*
  481. * Wake up sending tasks if we
  482. * upped the value.
  483. */
  484. sk->sk_write_space(sk);
  485. break;
  486. case SO_SNDBUFFORCE:
  487. if (!capable(CAP_NET_ADMIN)) {
  488. ret = -EPERM;
  489. break;
  490. }
  491. goto set_sndbuf;
  492. case SO_RCVBUF:
  493. /* Don't error on this BSD doesn't and if you think
  494. about it this is right. Otherwise apps have to
  495. play 'guess the biggest size' games. RCVBUF/SNDBUF
  496. are treated in BSD as hints */
  497. if (val > sysctl_rmem_max)
  498. val = sysctl_rmem_max;
  499. set_rcvbuf:
  500. sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
  501. /*
  502. * We double it on the way in to account for
  503. * "struct sk_buff" etc. overhead. Applications
  504. * assume that the SO_RCVBUF setting they make will
  505. * allow that much actual data to be received on that
  506. * socket.
  507. *
  508. * Applications are unaware that "struct sk_buff" and
  509. * other overheads allocate from the receive buffer
  510. * during socket buffer allocation.
  511. *
  512. * And after considering the possible alternatives,
  513. * returning the value we actually used in getsockopt
  514. * is the most desirable behavior.
  515. */
  516. if ((val * 2) < SOCK_MIN_RCVBUF)
  517. sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
  518. else
  519. sk->sk_rcvbuf = val * 2;
  520. break;
  521. case SO_RCVBUFFORCE:
  522. if (!capable(CAP_NET_ADMIN)) {
  523. ret = -EPERM;
  524. break;
  525. }
  526. goto set_rcvbuf;
  527. case SO_KEEPALIVE:
  528. #ifdef CONFIG_INET
  529. if (sk->sk_protocol == IPPROTO_TCP)
  530. tcp_set_keepalive(sk, valbool);
  531. #endif
  532. sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
  533. break;
  534. case SO_OOBINLINE:
  535. sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
  536. break;
  537. case SO_NO_CHECK:
  538. sk->sk_no_check = valbool;
  539. break;
  540. case SO_PRIORITY:
  541. if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
  542. sk->sk_priority = val;
  543. else
  544. ret = -EPERM;
  545. break;
  546. case SO_LINGER:
  547. if (optlen < sizeof(ling)) {
  548. ret = -EINVAL; /* 1003.1g */
  549. break;
  550. }
  551. if (copy_from_user(&ling, optval, sizeof(ling))) {
  552. ret = -EFAULT;
  553. break;
  554. }
  555. if (!ling.l_onoff)
  556. sock_reset_flag(sk, SOCK_LINGER);
  557. else {
  558. #if (BITS_PER_LONG == 32)
  559. if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
  560. sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
  561. else
  562. #endif
  563. sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
  564. sock_set_flag(sk, SOCK_LINGER);
  565. }
  566. break;
  567. case SO_BSDCOMPAT:
  568. sock_warn_obsolete_bsdism("setsockopt");
  569. break;
  570. case SO_PASSCRED:
  571. if (valbool)
  572. set_bit(SOCK_PASSCRED, &sock->flags);
  573. else
  574. clear_bit(SOCK_PASSCRED, &sock->flags);
  575. break;
  576. case SO_TIMESTAMP:
  577. case SO_TIMESTAMPNS:
  578. if (valbool) {
  579. if (optname == SO_TIMESTAMP)
  580. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  581. else
  582. sock_set_flag(sk, SOCK_RCVTSTAMPNS);
  583. sock_set_flag(sk, SOCK_RCVTSTAMP);
  584. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  585. } else {
  586. sock_reset_flag(sk, SOCK_RCVTSTAMP);
  587. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  588. }
  589. break;
  590. case SO_TIMESTAMPING:
  591. if (val & ~SOF_TIMESTAMPING_MASK) {
  592. ret = -EINVAL;
  593. break;
  594. }
  595. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
  596. val & SOF_TIMESTAMPING_TX_HARDWARE);
  597. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
  598. val & SOF_TIMESTAMPING_TX_SOFTWARE);
  599. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
  600. val & SOF_TIMESTAMPING_RX_HARDWARE);
  601. if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
  602. sock_enable_timestamp(sk,
  603. SOCK_TIMESTAMPING_RX_SOFTWARE);
  604. else
  605. sock_disable_timestamp(sk,
  606. SOCK_TIMESTAMPING_RX_SOFTWARE);
  607. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
  608. val & SOF_TIMESTAMPING_SOFTWARE);
  609. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
  610. val & SOF_TIMESTAMPING_SYS_HARDWARE);
  611. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
  612. val & SOF_TIMESTAMPING_RAW_HARDWARE);
  613. break;
  614. case SO_RCVLOWAT:
  615. if (val < 0)
  616. val = INT_MAX;
  617. sk->sk_rcvlowat = val ? : 1;
  618. break;
  619. case SO_RCVTIMEO:
  620. ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
  621. break;
  622. case SO_SNDTIMEO:
  623. ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
  624. break;
  625. case SO_ATTACH_FILTER:
  626. ret = -EINVAL;
  627. if (optlen == sizeof(struct sock_fprog)) {
  628. struct sock_fprog fprog;
  629. ret = -EFAULT;
  630. if (copy_from_user(&fprog, optval, sizeof(fprog)))
  631. break;
  632. ret = sk_attach_filter(&fprog, sk);
  633. }
  634. break;
  635. case SO_DETACH_FILTER:
  636. ret = sk_detach_filter(sk);
  637. break;
  638. case SO_PASSSEC:
  639. if (valbool)
  640. set_bit(SOCK_PASSSEC, &sock->flags);
  641. else
  642. clear_bit(SOCK_PASSSEC, &sock->flags);
  643. break;
  644. case SO_MARK:
  645. if (!capable(CAP_NET_ADMIN))
  646. ret = -EPERM;
  647. else
  648. sk->sk_mark = val;
  649. break;
  650. /* We implement the SO_SNDLOWAT etc to
  651. not be settable (1003.1g 5.3) */
  652. case SO_RXQ_OVFL:
  653. sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
  654. break;
  655. default:
  656. ret = -ENOPROTOOPT;
  657. break;
  658. }
  659. release_sock(sk);
  660. return ret;
  661. }
  662. EXPORT_SYMBOL(sock_setsockopt);
  663. void cred_to_ucred(struct pid *pid, const struct cred *cred,
  664. struct ucred *ucred)
  665. {
  666. ucred->pid = pid_vnr(pid);
  667. ucred->uid = ucred->gid = -1;
  668. if (cred) {
  669. struct user_namespace *current_ns = current_user_ns();
  670. ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
  671. ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
  672. }
  673. }
  674. EXPORT_SYMBOL_GPL(cred_to_ucred);
  675. int sock_getsockopt(struct socket *sock, int level, int optname,
  676. char __user *optval, int __user *optlen)
  677. {
  678. struct sock *sk = sock->sk;
  679. union {
  680. int val;
  681. struct linger ling;
  682. struct timeval tm;
  683. } v;
  684. int lv = sizeof(int);
  685. int len;
  686. if (get_user(len, optlen))
  687. return -EFAULT;
  688. if (len < 0)
  689. return -EINVAL;
  690. memset(&v, 0, sizeof(v));
  691. switch (optname) {
  692. case SO_DEBUG:
  693. v.val = sock_flag(sk, SOCK_DBG);
  694. break;
  695. case SO_DONTROUTE:
  696. v.val = sock_flag(sk, SOCK_LOCALROUTE);
  697. break;
  698. case SO_BROADCAST:
  699. v.val = !!sock_flag(sk, SOCK_BROADCAST);
  700. break;
  701. case SO_SNDBUF:
  702. v.val = sk->sk_sndbuf;
  703. break;
  704. case SO_RCVBUF:
  705. v.val = sk->sk_rcvbuf;
  706. break;
  707. case SO_REUSEADDR:
  708. v.val = sk->sk_reuse;
  709. break;
  710. case SO_KEEPALIVE:
  711. v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
  712. break;
  713. case SO_TYPE:
  714. v.val = sk->sk_type;
  715. break;
  716. case SO_PROTOCOL:
  717. v.val = sk->sk_protocol;
  718. break;
  719. case SO_DOMAIN:
  720. v.val = sk->sk_family;
  721. break;
  722. case SO_ERROR:
  723. v.val = -sock_error(sk);
  724. if (v.val == 0)
  725. v.val = xchg(&sk->sk_err_soft, 0);
  726. break;
  727. case SO_OOBINLINE:
  728. v.val = !!sock_flag(sk, SOCK_URGINLINE);
  729. break;
  730. case SO_NO_CHECK:
  731. v.val = sk->sk_no_check;
  732. break;
  733. case SO_PRIORITY:
  734. v.val = sk->sk_priority;
  735. break;
  736. case SO_LINGER:
  737. lv = sizeof(v.ling);
  738. v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
  739. v.ling.l_linger = sk->sk_lingertime / HZ;
  740. break;
  741. case SO_BSDCOMPAT:
  742. sock_warn_obsolete_bsdism("getsockopt");
  743. break;
  744. case SO_TIMESTAMP:
  745. v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
  746. !sock_flag(sk, SOCK_RCVTSTAMPNS);
  747. break;
  748. case SO_TIMESTAMPNS:
  749. v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
  750. break;
  751. case SO_TIMESTAMPING:
  752. v.val = 0;
  753. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
  754. v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
  755. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
  756. v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
  757. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
  758. v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
  759. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
  760. v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
  761. if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
  762. v.val |= SOF_TIMESTAMPING_SOFTWARE;
  763. if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
  764. v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
  765. if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
  766. v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
  767. break;
  768. case SO_RCVTIMEO:
  769. lv = sizeof(struct timeval);
  770. if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
  771. v.tm.tv_sec = 0;
  772. v.tm.tv_usec = 0;
  773. } else {
  774. v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
  775. v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
  776. }
  777. break;
  778. case SO_SNDTIMEO:
  779. lv = sizeof(struct timeval);
  780. if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
  781. v.tm.tv_sec = 0;
  782. v.tm.tv_usec = 0;
  783. } else {
  784. v.tm.tv_sec = sk->sk_sndtimeo / HZ;
  785. v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
  786. }
  787. break;
  788. case SO_RCVLOWAT:
  789. v.val = sk->sk_rcvlowat;
  790. break;
  791. case SO_SNDLOWAT:
  792. v.val = 1;
  793. break;
  794. case SO_PASSCRED:
  795. v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
  796. break;
  797. case SO_PEERCRED:
  798. {
  799. struct ucred peercred;
  800. if (len > sizeof(peercred))
  801. len = sizeof(peercred);
  802. cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
  803. if (copy_to_user(optval, &peercred, len))
  804. return -EFAULT;
  805. goto lenout;
  806. }
  807. case SO_PEERNAME:
  808. {
  809. char address[128];
  810. if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
  811. return -ENOTCONN;
  812. if (lv < len)
  813. return -EINVAL;
  814. if (copy_to_user(optval, address, len))
  815. return -EFAULT;
  816. goto lenout;
  817. }
  818. /* Dubious BSD thing... Probably nobody even uses it, but
  819. * the UNIX standard wants it for whatever reason... -DaveM
  820. */
  821. case SO_ACCEPTCONN:
  822. v.val = sk->sk_state == TCP_LISTEN;
  823. break;
  824. case SO_PASSSEC:
  825. v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
  826. break;
  827. case SO_PEERSEC:
  828. return security_socket_getpeersec_stream(sock, optval, optlen, len);
  829. case SO_MARK:
  830. v.val = sk->sk_mark;
  831. break;
  832. case SO_RXQ_OVFL:
  833. v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
  834. break;
  835. default:
  836. return -ENOPROTOOPT;
  837. }
  838. if (len > lv)
  839. len = lv;
  840. if (copy_to_user(optval, &v, len))
  841. return -EFAULT;
  842. lenout:
  843. if (put_user(len, optlen))
  844. return -EFAULT;
  845. return 0;
  846. }
  847. /*
  848. * Initialize an sk_lock.
  849. *
  850. * (We also register the sk_lock with the lock validator.)
  851. */
  852. static inline void sock_lock_init(struct sock *sk)
  853. {
  854. sock_lock_init_class_and_name(sk,
  855. af_family_slock_key_strings[sk->sk_family],
  856. af_family_slock_keys + sk->sk_family,
  857. af_family_key_strings[sk->sk_family],
  858. af_family_keys + sk->sk_family);
  859. }
  860. /*
  861. * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
  862. * even temporarly, because of RCU lookups. sk_node should also be left as is.
  863. * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
  864. */
  865. static void sock_copy(struct sock *nsk, const struct sock *osk)
  866. {
  867. #ifdef CONFIG_SECURITY_NETWORK
  868. void *sptr = nsk->sk_security;
  869. #endif
  870. memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
  871. memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
  872. osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
  873. #ifdef CONFIG_SECURITY_NETWORK
  874. nsk->sk_security = sptr;
  875. security_sk_clone(osk, nsk);
  876. #endif
  877. }
  878. /*
  879. * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
  880. * un-modified. Special care is taken when initializing object to zero.
  881. */
  882. static inline void sk_prot_clear_nulls(struct sock *sk, int size)
  883. {
  884. if (offsetof(struct sock, sk_node.next) != 0)
  885. memset(sk, 0, offsetof(struct sock, sk_node.next));
  886. memset(&sk->sk_node.pprev, 0,
  887. size - offsetof(struct sock, sk_node.pprev));
  888. }
  889. void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
  890. {
  891. unsigned long nulls1, nulls2;
  892. nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
  893. nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
  894. if (nulls1 > nulls2)
  895. swap(nulls1, nulls2);
  896. if (nulls1 != 0)
  897. memset((char *)sk, 0, nulls1);
  898. memset((char *)sk + nulls1 + sizeof(void *), 0,
  899. nulls2 - nulls1 - sizeof(void *));
  900. memset((char *)sk + nulls2 + sizeof(void *), 0,
  901. size - nulls2 - sizeof(void *));
  902. }
  903. EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
  904. static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
  905. int family)
  906. {
  907. struct sock *sk;
  908. struct kmem_cache *slab;
  909. slab = prot->slab;
  910. if (slab != NULL) {
  911. sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
  912. if (!sk)
  913. return sk;
  914. if (priority & __GFP_ZERO) {
  915. if (prot->clear_sk)
  916. prot->clear_sk(sk, prot->obj_size);
  917. else
  918. sk_prot_clear_nulls(sk, prot->obj_size);
  919. }
  920. } else
  921. sk = kmalloc(prot->obj_size, priority);
  922. if (sk != NULL) {
  923. kmemcheck_annotate_bitfield(sk, flags);
  924. if (security_sk_alloc(sk, family, priority))
  925. goto out_free;
  926. if (!try_module_get(prot->owner))
  927. goto out_free_sec;
  928. sk_tx_queue_clear(sk);
  929. }
  930. return sk;
  931. out_free_sec:
  932. security_sk_free(sk);
  933. out_free:
  934. if (slab != NULL)
  935. kmem_cache_free(slab, sk);
  936. else
  937. kfree(sk);
  938. return NULL;
  939. }
  940. static void sk_prot_free(struct proto *prot, struct sock *sk)
  941. {
  942. struct kmem_cache *slab;
  943. struct module *owner;
  944. owner = prot->owner;
  945. slab = prot->slab;
  946. security_sk_free(sk);
  947. if (slab != NULL)
  948. kmem_cache_free(slab, sk);
  949. else
  950. kfree(sk);
  951. module_put(owner);
  952. }
  953. #ifdef CONFIG_CGROUPS
  954. void sock_update_classid(struct sock *sk)
  955. {
  956. u32 classid;
  957. rcu_read_lock(); /* doing current task, which cannot vanish. */
  958. classid = task_cls_classid(current);
  959. rcu_read_unlock();
  960. if (classid && classid != sk->sk_classid)
  961. sk->sk_classid = classid;
  962. }
  963. EXPORT_SYMBOL(sock_update_classid);
  964. #endif
  965. /**
  966. * sk_alloc - All socket objects are allocated here
  967. * @net: the applicable net namespace
  968. * @family: protocol family
  969. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  970. * @prot: struct proto associated with this new sock instance
  971. */
  972. struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
  973. struct proto *prot)
  974. {
  975. struct sock *sk;
  976. sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
  977. if (sk) {
  978. sk->sk_family = family;
  979. /*
  980. * See comment in struct sock definition to understand
  981. * why we need sk_prot_creator -acme
  982. */
  983. sk->sk_prot = sk->sk_prot_creator = prot;
  984. sock_lock_init(sk);
  985. sock_net_set(sk, get_net(net));
  986. atomic_set(&sk->sk_wmem_alloc, 1);
  987. sock_update_classid(sk);
  988. }
  989. return sk;
  990. }
  991. EXPORT_SYMBOL(sk_alloc);
  992. static void __sk_free(struct sock *sk)
  993. {
  994. struct sk_filter *filter;
  995. if (sk->sk_destruct)
  996. sk->sk_destruct(sk);
  997. filter = rcu_dereference_check(sk->sk_filter,
  998. atomic_read(&sk->sk_wmem_alloc) == 0);
  999. if (filter) {
  1000. sk_filter_uncharge(sk, filter);
  1001. RCU_INIT_POINTER(sk->sk_filter, NULL);
  1002. }
  1003. sock_disable_timestamp(sk, SOCK_TIMESTAMP);
  1004. sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
  1005. if (atomic_read(&sk->sk_omem_alloc))
  1006. printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
  1007. __func__, atomic_read(&sk->sk_omem_alloc));
  1008. if (sk->sk_peer_cred)
  1009. put_cred(sk->sk_peer_cred);
  1010. put_pid(sk->sk_peer_pid);
  1011. put_net(sock_net(sk));
  1012. sk_prot_free(sk->sk_prot_creator, sk);
  1013. }
  1014. void sk_free(struct sock *sk)
  1015. {
  1016. /*
  1017. * We subtract one from sk_wmem_alloc and can know if
  1018. * some packets are still in some tx queue.
  1019. * If not null, sock_wfree() will call __sk_free(sk) later
  1020. */
  1021. if (atomic_dec_and_test(&sk->sk_wmem_alloc))
  1022. __sk_free(sk);
  1023. }
  1024. EXPORT_SYMBOL(sk_free);
  1025. /*
  1026. * Last sock_put should drop reference to sk->sk_net. It has already
  1027. * been dropped in sk_change_net. Taking reference to stopping namespace
  1028. * is not an option.
  1029. * Take reference to a socket to remove it from hash _alive_ and after that
  1030. * destroy it in the context of init_net.
  1031. */
  1032. void sk_release_kernel(struct sock *sk)
  1033. {
  1034. if (sk == NULL || sk->sk_socket == NULL)
  1035. return;
  1036. sock_hold(sk);
  1037. sock_release(sk->sk_socket);
  1038. release_net(sock_net(sk));
  1039. sock_net_set(sk, get_net(&init_net));
  1040. sock_put(sk);
  1041. }
  1042. EXPORT_SYMBOL(sk_release_kernel);
  1043. struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
  1044. {
  1045. struct sock *newsk;
  1046. newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
  1047. if (newsk != NULL) {
  1048. struct sk_filter *filter;
  1049. sock_copy(newsk, sk);
  1050. /* SANITY */
  1051. get_net(sock_net(newsk));
  1052. sk_node_init(&newsk->sk_node);
  1053. sock_lock_init(newsk);
  1054. bh_lock_sock(newsk);
  1055. newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
  1056. newsk->sk_backlog.len = 0;
  1057. atomic_set(&newsk->sk_rmem_alloc, 0);
  1058. /*
  1059. * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
  1060. */
  1061. atomic_set(&newsk->sk_wmem_alloc, 1);
  1062. atomic_set(&newsk->sk_omem_alloc, 0);
  1063. skb_queue_head_init(&newsk->sk_receive_queue);
  1064. skb_queue_head_init(&newsk->sk_write_queue);
  1065. #ifdef CONFIG_NET_DMA
  1066. skb_queue_head_init(&newsk->sk_async_wait_queue);
  1067. #endif
  1068. spin_lock_init(&newsk->sk_dst_lock);
  1069. rwlock_init(&newsk->sk_callback_lock);
  1070. lockdep_set_class_and_name(&newsk->sk_callback_lock,
  1071. af_callback_keys + newsk->sk_family,
  1072. af_family_clock_key_strings[newsk->sk_family]);
  1073. newsk->sk_dst_cache = NULL;
  1074. newsk->sk_wmem_queued = 0;
  1075. newsk->sk_forward_alloc = 0;
  1076. newsk->sk_send_head = NULL;
  1077. newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
  1078. sock_reset_flag(newsk, SOCK_DONE);
  1079. skb_queue_head_init(&newsk->sk_error_queue);
  1080. filter = rcu_dereference_protected(newsk->sk_filter, 1);
  1081. if (filter != NULL)
  1082. sk_filter_charge(newsk, filter);
  1083. if (unlikely(xfrm_sk_clone_policy(newsk))) {
  1084. /* It is still raw copy of parent, so invalidate
  1085. * destructor and make plain sk_free() */
  1086. newsk->sk_destruct = NULL;
  1087. sk_free(newsk);
  1088. newsk = NULL;
  1089. goto out;
  1090. }
  1091. newsk->sk_err = 0;
  1092. newsk->sk_priority = 0;
  1093. /*
  1094. * Before updating sk_refcnt, we must commit prior changes to memory
  1095. * (Documentation/RCU/rculist_nulls.txt for details)
  1096. */
  1097. smp_wmb();
  1098. atomic_set(&newsk->sk_refcnt, 2);
  1099. /*
  1100. * Increment the counter in the same struct proto as the master
  1101. * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
  1102. * is the same as sk->sk_prot->socks, as this field was copied
  1103. * with memcpy).
  1104. *
  1105. * This _changes_ the previous behaviour, where
  1106. * tcp_create_openreq_child always was incrementing the
  1107. * equivalent to tcp_prot->socks (inet_sock_nr), so this have
  1108. * to be taken into account in all callers. -acme
  1109. */
  1110. sk_refcnt_debug_inc(newsk);
  1111. sk_set_socket(newsk, NULL);
  1112. newsk->sk_wq = NULL;
  1113. if (newsk->sk_prot->sockets_allocated)
  1114. percpu_counter_inc(newsk->sk_prot->sockets_allocated);
  1115. if (sock_flag(newsk, SOCK_TIMESTAMP) ||
  1116. sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
  1117. net_enable_timestamp();
  1118. }
  1119. out:
  1120. return newsk;
  1121. }
  1122. EXPORT_SYMBOL_GPL(sk_clone);
  1123. void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
  1124. {
  1125. __sk_dst_set(sk, dst);
  1126. sk->sk_route_caps = dst->dev->features;
  1127. if (sk->sk_route_caps & NETIF_F_GSO)
  1128. sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
  1129. sk->sk_route_caps &= ~sk->sk_route_nocaps;
  1130. if (sk_can_gso(sk)) {
  1131. if (dst->header_len) {
  1132. sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
  1133. } else {
  1134. sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
  1135. sk->sk_gso_max_size = dst->dev->gso_max_size;
  1136. }
  1137. }
  1138. }
  1139. EXPORT_SYMBOL_GPL(sk_setup_caps);
  1140. void __init sk_init(void)
  1141. {
  1142. if (totalram_pages <= 4096) {
  1143. sysctl_wmem_max = 32767;
  1144. sysctl_rmem_max = 32767;
  1145. sysctl_wmem_default = 32767;
  1146. sysctl_rmem_default = 32767;
  1147. } else if (totalram_pages >= 131072) {
  1148. sysctl_wmem_max = 131071;
  1149. sysctl_rmem_max = 131071;
  1150. }
  1151. }
  1152. /*
  1153. * Simple resource managers for sockets.
  1154. */
  1155. /*
  1156. * Write buffer destructor automatically called from kfree_skb.
  1157. */
  1158. void sock_wfree(struct sk_buff *skb)
  1159. {
  1160. struct sock *sk = skb->sk;
  1161. unsigned int len = skb->truesize;
  1162. if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
  1163. /*
  1164. * Keep a reference on sk_wmem_alloc, this will be released
  1165. * after sk_write_space() call
  1166. */
  1167. atomic_sub(len - 1, &sk->sk_wmem_alloc);
  1168. sk->sk_write_space(sk);
  1169. len = 1;
  1170. }
  1171. /*
  1172. * if sk_wmem_alloc reaches 0, we must finish what sk_free()
  1173. * could not do because of in-flight packets
  1174. */
  1175. if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
  1176. __sk_free(sk);
  1177. }
  1178. EXPORT_SYMBOL(sock_wfree);
  1179. /*
  1180. * Read buffer destructor automatically called from kfree_skb.
  1181. */
  1182. void sock_rfree(struct sk_buff *skb)
  1183. {
  1184. struct sock *sk = skb->sk;
  1185. unsigned int len = skb->truesize;
  1186. atomic_sub(len, &sk->sk_rmem_alloc);
  1187. sk_mem_uncharge(sk, len);
  1188. }
  1189. EXPORT_SYMBOL(sock_rfree);
  1190. int sock_i_uid(struct sock *sk)
  1191. {
  1192. int uid;
  1193. read_lock_bh(&sk->sk_callback_lock);
  1194. uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
  1195. read_unlock_bh(&sk->sk_callback_lock);
  1196. return uid;
  1197. }
  1198. EXPORT_SYMBOL(sock_i_uid);
  1199. unsigned long sock_i_ino(struct sock *sk)
  1200. {
  1201. unsigned long ino;
  1202. read_lock_bh(&sk->sk_callback_lock);
  1203. ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
  1204. read_unlock_bh(&sk->sk_callback_lock);
  1205. return ino;
  1206. }
  1207. EXPORT_SYMBOL(sock_i_ino);
  1208. /*
  1209. * Allocate a skb from the socket's send buffer.
  1210. */
  1211. struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
  1212. gfp_t priority)
  1213. {
  1214. if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1215. struct sk_buff *skb = alloc_skb(size, priority);
  1216. if (skb) {
  1217. skb_set_owner_w(skb, sk);
  1218. return skb;
  1219. }
  1220. }
  1221. return NULL;
  1222. }
  1223. EXPORT_SYMBOL(sock_wmalloc);
  1224. /*
  1225. * Allocate a skb from the socket's receive buffer.
  1226. */
  1227. struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
  1228. gfp_t priority)
  1229. {
  1230. if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
  1231. struct sk_buff *skb = alloc_skb(size, priority);
  1232. if (skb) {
  1233. skb_set_owner_r(skb, sk);
  1234. return skb;
  1235. }
  1236. }
  1237. return NULL;
  1238. }
  1239. /*
  1240. * Allocate a memory block from the socket's option memory buffer.
  1241. */
  1242. void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
  1243. {
  1244. if ((unsigned)size <= sysctl_optmem_max &&
  1245. atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
  1246. void *mem;
  1247. /* First do the add, to avoid the race if kmalloc
  1248. * might sleep.
  1249. */
  1250. atomic_add(size, &sk->sk_omem_alloc);
  1251. mem = kmalloc(size, priority);
  1252. if (mem)
  1253. return mem;
  1254. atomic_sub(size, &sk->sk_omem_alloc);
  1255. }
  1256. return NULL;
  1257. }
  1258. EXPORT_SYMBOL(sock_kmalloc);
  1259. /*
  1260. * Free an option memory block.
  1261. */
  1262. void sock_kfree_s(struct sock *sk, void *mem, int size)
  1263. {
  1264. kfree(mem);
  1265. atomic_sub(size, &sk->sk_omem_alloc);
  1266. }
  1267. EXPORT_SYMBOL(sock_kfree_s);
  1268. /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
  1269. I think, these locks should be removed for datagram sockets.
  1270. */
  1271. static long sock_wait_for_wmem(struct sock *sk, long timeo)
  1272. {
  1273. DEFINE_WAIT(wait);
  1274. clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1275. for (;;) {
  1276. if (!timeo)
  1277. break;
  1278. if (signal_pending(current))
  1279. break;
  1280. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1281. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1282. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
  1283. break;
  1284. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1285. break;
  1286. if (sk->sk_err)
  1287. break;
  1288. timeo = schedule_timeout(timeo);
  1289. }
  1290. finish_wait(sk_sleep(sk), &wait);
  1291. return timeo;
  1292. }
  1293. /*
  1294. * Generic send/receive buffer handlers
  1295. */
  1296. struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
  1297. unsigned long data_len, int noblock,
  1298. int *errcode)
  1299. {
  1300. struct sk_buff *skb;
  1301. gfp_t gfp_mask;
  1302. long timeo;
  1303. int err;
  1304. gfp_mask = sk->sk_allocation;
  1305. if (gfp_mask & __GFP_WAIT)
  1306. gfp_mask |= __GFP_REPEAT;
  1307. timeo = sock_sndtimeo(sk, noblock);
  1308. while (1) {
  1309. err = sock_error(sk);
  1310. if (err != 0)
  1311. goto failure;
  1312. err = -EPIPE;
  1313. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1314. goto failure;
  1315. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1316. skb = alloc_skb(header_len, gfp_mask);
  1317. if (skb) {
  1318. int npages;
  1319. int i;
  1320. /* No pages, we're done... */
  1321. if (!data_len)
  1322. break;
  1323. npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
  1324. skb->truesize += data_len;
  1325. skb_shinfo(skb)->nr_frags = npages;
  1326. for (i = 0; i < npages; i++) {
  1327. struct page *page;
  1328. page = alloc_pages(sk->sk_allocation, 0);
  1329. if (!page) {
  1330. err = -ENOBUFS;
  1331. skb_shinfo(skb)->nr_frags = i;
  1332. kfree_skb(skb);
  1333. goto failure;
  1334. }
  1335. __skb_fill_page_desc(skb, i,
  1336. page, 0,
  1337. (data_len >= PAGE_SIZE ?
  1338. PAGE_SIZE :
  1339. data_len));
  1340. data_len -= PAGE_SIZE;
  1341. }
  1342. /* Full success... */
  1343. break;
  1344. }
  1345. err = -ENOBUFS;
  1346. goto failure;
  1347. }
  1348. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1349. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1350. err = -EAGAIN;
  1351. if (!timeo)
  1352. goto failure;
  1353. if (signal_pending(current))
  1354. goto interrupted;
  1355. timeo = sock_wait_for_wmem(sk, timeo);
  1356. }
  1357. skb_set_owner_w(skb, sk);
  1358. return skb;
  1359. interrupted:
  1360. err = sock_intr_errno(timeo);
  1361. failure:
  1362. *errcode = err;
  1363. return NULL;
  1364. }
  1365. EXPORT_SYMBOL(sock_alloc_send_pskb);
  1366. struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
  1367. int noblock, int *errcode)
  1368. {
  1369. return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
  1370. }
  1371. EXPORT_SYMBOL(sock_alloc_send_skb);
  1372. static void __lock_sock(struct sock *sk)
  1373. __releases(&sk->sk_lock.slock)
  1374. __acquires(&sk->sk_lock.slock)
  1375. {
  1376. DEFINE_WAIT(wait);
  1377. for (;;) {
  1378. prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
  1379. TASK_UNINTERRUPTIBLE);
  1380. spin_unlock_bh(&sk->sk_lock.slock);
  1381. schedule();
  1382. spin_lock_bh(&sk->sk_lock.slock);
  1383. if (!sock_owned_by_user(sk))
  1384. break;
  1385. }
  1386. finish_wait(&sk->sk_lock.wq, &wait);
  1387. }
  1388. static void __release_sock(struct sock *sk)
  1389. __releases(&sk->sk_lock.slock)
  1390. __acquires(&sk->sk_lock.slock)
  1391. {
  1392. struct sk_buff *skb = sk->sk_backlog.head;
  1393. do {
  1394. sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
  1395. bh_unlock_sock(sk);
  1396. do {
  1397. struct sk_buff *next = skb->next;
  1398. WARN_ON_ONCE(skb_dst_is_noref(skb));
  1399. skb->next = NULL;
  1400. sk_backlog_rcv(sk, skb);
  1401. /*
  1402. * We are in process context here with softirqs
  1403. * disabled, use cond_resched_softirq() to preempt.
  1404. * This is safe to do because we've taken the backlog
  1405. * queue private:
  1406. */
  1407. cond_resched_softirq();
  1408. skb = next;
  1409. } while (skb != NULL);
  1410. bh_lock_sock(sk);
  1411. } while ((skb = sk->sk_backlog.head) != NULL);
  1412. /*
  1413. * Doing the zeroing here guarantee we can not loop forever
  1414. * while a wild producer attempts to flood us.
  1415. */
  1416. sk->sk_backlog.len = 0;
  1417. }
  1418. /**
  1419. * sk_wait_data - wait for data to arrive at sk_receive_queue
  1420. * @sk: sock to wait on
  1421. * @timeo: for how long
  1422. *
  1423. * Now socket state including sk->sk_err is changed only under lock,
  1424. * hence we may omit checks after joining wait queue.
  1425. * We check receive queue before schedule() only as optimization;
  1426. * it is very likely that release_sock() added new data.
  1427. */
  1428. int sk_wait_data(struct sock *sk, long *timeo)
  1429. {
  1430. int rc;
  1431. DEFINE_WAIT(wait);
  1432. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1433. set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1434. rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
  1435. clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1436. finish_wait(sk_sleep(sk), &wait);
  1437. return rc;
  1438. }
  1439. EXPORT_SYMBOL(sk_wait_data);
  1440. /**
  1441. * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
  1442. * @sk: socket
  1443. * @size: memory size to allocate
  1444. * @kind: allocation type
  1445. *
  1446. * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
  1447. * rmem allocation. This function assumes that protocols which have
  1448. * memory_pressure use sk_wmem_queued as write buffer accounting.
  1449. */
  1450. int __sk_mem_schedule(struct sock *sk, int size, int kind)
  1451. {
  1452. struct proto *prot = sk->sk_prot;
  1453. int amt = sk_mem_pages(size);
  1454. long allocated;
  1455. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  1456. allocated = atomic_long_add_return(amt, prot->memory_allocated);
  1457. /* Under limit. */
  1458. if (allocated <= prot->sysctl_mem[0]) {
  1459. if (prot->memory_pressure && *prot->memory_pressure)
  1460. *prot->memory_pressure = 0;
  1461. return 1;
  1462. }
  1463. /* Under pressure. */
  1464. if (allocated > prot->sysctl_mem[1])
  1465. if (prot->enter_memory_pressure)
  1466. prot->enter_memory_pressure(sk);
  1467. /* Over hard limit. */
  1468. if (allocated > prot->sysctl_mem[2])
  1469. goto suppress_allocation;
  1470. /* guarantee minimum buffer size under pressure */
  1471. if (kind == SK_MEM_RECV) {
  1472. if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
  1473. return 1;
  1474. } else { /* SK_MEM_SEND */
  1475. if (sk->sk_type == SOCK_STREAM) {
  1476. if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
  1477. return 1;
  1478. } else if (atomic_read(&sk->sk_wmem_alloc) <
  1479. prot->sysctl_wmem[0])
  1480. return 1;
  1481. }
  1482. if (prot->memory_pressure) {
  1483. int alloc;
  1484. if (!*prot->memory_pressure)
  1485. return 1;
  1486. alloc = percpu_counter_read_positive(prot->sockets_allocated);
  1487. if (prot->sysctl_mem[2] > alloc *
  1488. sk_mem_pages(sk->sk_wmem_queued +
  1489. atomic_read(&sk->sk_rmem_alloc) +
  1490. sk->sk_forward_alloc))
  1491. return 1;
  1492. }
  1493. suppress_allocation:
  1494. if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
  1495. sk_stream_moderate_sndbuf(sk);
  1496. /* Fail only if socket is _under_ its sndbuf.
  1497. * In this case we cannot block, so that we have to fail.
  1498. */
  1499. if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
  1500. return 1;
  1501. }
  1502. trace_sock_exceed_buf_limit(sk, prot, allocated);
  1503. /* Alas. Undo changes. */
  1504. sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
  1505. atomic_long_sub(amt, prot->memory_allocated);
  1506. return 0;
  1507. }
  1508. EXPORT_SYMBOL(__sk_mem_schedule);
  1509. /**
  1510. * __sk_reclaim - reclaim memory_allocated
  1511. * @sk: socket
  1512. */
  1513. void __sk_mem_reclaim(struct sock *sk)
  1514. {
  1515. struct proto *prot = sk->sk_prot;
  1516. atomic_long_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
  1517. prot->memory_allocated);
  1518. sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
  1519. if (prot->memory_pressure && *prot->memory_pressure &&
  1520. (atomic_long_read(prot->memory_allocated) < prot->sysctl_mem[0]))
  1521. *prot->memory_pressure = 0;
  1522. }
  1523. EXPORT_SYMBOL(__sk_mem_reclaim);
  1524. /*
  1525. * Set of default routines for initialising struct proto_ops when
  1526. * the protocol does not support a particular function. In certain
  1527. * cases where it makes no sense for a protocol to have a "do nothing"
  1528. * function, some default processing is provided.
  1529. */
  1530. int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
  1531. {
  1532. return -EOPNOTSUPP;
  1533. }
  1534. EXPORT_SYMBOL(sock_no_bind);
  1535. int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
  1536. int len, int flags)
  1537. {
  1538. return -EOPNOTSUPP;
  1539. }
  1540. EXPORT_SYMBOL(sock_no_connect);
  1541. int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
  1542. {
  1543. return -EOPNOTSUPP;
  1544. }
  1545. EXPORT_SYMBOL(sock_no_socketpair);
  1546. int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
  1547. {
  1548. return -EOPNOTSUPP;
  1549. }
  1550. EXPORT_SYMBOL(sock_no_accept);
  1551. int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
  1552. int *len, int peer)
  1553. {
  1554. return -EOPNOTSUPP;
  1555. }
  1556. EXPORT_SYMBOL(sock_no_getname);
  1557. unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
  1558. {
  1559. return 0;
  1560. }
  1561. EXPORT_SYMBOL(sock_no_poll);
  1562. int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  1563. {
  1564. return -EOPNOTSUPP;
  1565. }
  1566. EXPORT_SYMBOL(sock_no_ioctl);
  1567. int sock_no_listen(struct socket *sock, int backlog)
  1568. {
  1569. return -EOPNOTSUPP;
  1570. }
  1571. EXPORT_SYMBOL(sock_no_listen);
  1572. int sock_no_shutdown(struct socket *sock, int how)
  1573. {
  1574. return -EOPNOTSUPP;
  1575. }
  1576. EXPORT_SYMBOL(sock_no_shutdown);
  1577. int sock_no_setsockopt(struct socket *sock, int level, int optname,
  1578. char __user *optval, unsigned int optlen)
  1579. {
  1580. return -EOPNOTSUPP;
  1581. }
  1582. EXPORT_SYMBOL(sock_no_setsockopt);
  1583. int sock_no_getsockopt(struct socket *sock, int level, int optname,
  1584. char __user *optval, int __user *optlen)
  1585. {
  1586. return -EOPNOTSUPP;
  1587. }
  1588. EXPORT_SYMBOL(sock_no_getsockopt);
  1589. int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1590. size_t len)
  1591. {
  1592. return -EOPNOTSUPP;
  1593. }
  1594. EXPORT_SYMBOL(sock_no_sendmsg);
  1595. int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1596. size_t len, int flags)
  1597. {
  1598. return -EOPNOTSUPP;
  1599. }
  1600. EXPORT_SYMBOL(sock_no_recvmsg);
  1601. int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
  1602. {
  1603. /* Mirror missing mmap method error code */
  1604. return -ENODEV;
  1605. }
  1606. EXPORT_SYMBOL(sock_no_mmap);
  1607. ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
  1608. {
  1609. ssize_t res;
  1610. struct msghdr msg = {.msg_flags = flags};
  1611. struct kvec iov;
  1612. char *kaddr = kmap(page);
  1613. iov.iov_base = kaddr + offset;
  1614. iov.iov_len = size;
  1615. res = kernel_sendmsg(sock, &msg, &iov, 1, size);
  1616. kunmap(page);
  1617. return res;
  1618. }
  1619. EXPORT_SYMBOL(sock_no_sendpage);
  1620. /*
  1621. * Default Socket Callbacks
  1622. */
  1623. static void sock_def_wakeup(struct sock *sk)
  1624. {
  1625. struct socket_wq *wq;
  1626. rcu_read_lock();
  1627. wq = rcu_dereference(sk->sk_wq);
  1628. if (wq_has_sleeper(wq))
  1629. wake_up_interruptible_all(&wq->wait);
  1630. rcu_read_unlock();
  1631. }
  1632. static void sock_def_error_report(struct sock *sk)
  1633. {
  1634. struct socket_wq *wq;
  1635. rcu_read_lock();
  1636. wq = rcu_dereference(sk->sk_wq);
  1637. if (wq_has_sleeper(wq))
  1638. wake_up_interruptible_poll(&wq->wait, POLLERR);
  1639. sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
  1640. rcu_read_unlock();
  1641. }
  1642. static void sock_def_readable(struct sock *sk, int len)
  1643. {
  1644. struct socket_wq *wq;
  1645. rcu_read_lock();
  1646. wq = rcu_dereference(sk->sk_wq);
  1647. if (wq_has_sleeper(wq))
  1648. wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
  1649. POLLRDNORM | POLLRDBAND);
  1650. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  1651. rcu_read_unlock();
  1652. }
  1653. static void sock_def_write_space(struct sock *sk)
  1654. {
  1655. struct socket_wq *wq;
  1656. rcu_read_lock();
  1657. /* Do not wake up a writer until he can make "significant"
  1658. * progress. --DaveM
  1659. */
  1660. if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
  1661. wq = rcu_dereference(sk->sk_wq);
  1662. if (wq_has_sleeper(wq))
  1663. wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
  1664. POLLWRNORM | POLLWRBAND);
  1665. /* Should agree with poll, otherwise some programs break */
  1666. if (sock_writeable(sk))
  1667. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  1668. }
  1669. rcu_read_unlock();
  1670. }
  1671. static void sock_def_destruct(struct sock *sk)
  1672. {
  1673. kfree(sk->sk_protinfo);
  1674. }
  1675. void sk_send_sigurg(struct sock *sk)
  1676. {
  1677. if (sk->sk_socket && sk->sk_socket->file)
  1678. if (send_sigurg(&sk->sk_socket->file->f_owner))
  1679. sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
  1680. }
  1681. EXPORT_SYMBOL(sk_send_sigurg);
  1682. void sk_reset_timer(struct sock *sk, struct timer_list* timer,
  1683. unsigned long expires)
  1684. {
  1685. if (!mod_timer(timer, expires))
  1686. sock_hold(sk);
  1687. }
  1688. EXPORT_SYMBOL(sk_reset_timer);
  1689. void sk_stop_timer(struct sock *sk, struct timer_list* timer)
  1690. {
  1691. if (timer_pending(timer) && del_timer(timer))
  1692. __sock_put(sk);
  1693. }
  1694. EXPORT_SYMBOL(sk_stop_timer);
  1695. void sock_init_data(struct socket *sock, struct sock *sk)
  1696. {
  1697. skb_queue_head_init(&sk->sk_receive_queue);
  1698. skb_queue_head_init(&sk->sk_write_queue);
  1699. skb_queue_head_init(&sk->sk_error_queue);
  1700. #ifdef CONFIG_NET_DMA
  1701. skb_queue_head_init(&sk->sk_async_wait_queue);
  1702. #endif
  1703. sk->sk_send_head = NULL;
  1704. init_timer(&sk->sk_timer);
  1705. sk->sk_allocation = GFP_KERNEL;
  1706. sk->sk_rcvbuf = sysctl_rmem_default;
  1707. sk->sk_sndbuf = sysctl_wmem_default;
  1708. sk->sk_state = TCP_CLOSE;
  1709. sk_set_socket(sk, sock);
  1710. sock_set_flag(sk, SOCK_ZAPPED);
  1711. if (sock) {
  1712. sk->sk_type = sock->type;
  1713. sk->sk_wq = sock->wq;
  1714. sock->sk = sk;
  1715. } else
  1716. sk->sk_wq = NULL;
  1717. spin_lock_init(&sk->sk_dst_lock);
  1718. rwlock_init(&sk->sk_callback_lock);
  1719. lockdep_set_class_and_name(&sk->sk_callback_lock,
  1720. af_callback_keys + sk->sk_family,
  1721. af_family_clock_key_strings[sk->sk_family]);
  1722. sk->sk_state_change = sock_def_wakeup;
  1723. sk->sk_data_ready = sock_def_readable;
  1724. sk->sk_write_space = sock_def_write_space;
  1725. sk->sk_error_report = sock_def_error_report;
  1726. sk->sk_destruct = sock_def_destruct;
  1727. sk->sk_sndmsg_page = NULL;
  1728. sk->sk_sndmsg_off = 0;
  1729. sk->sk_peer_pid = NULL;
  1730. sk->sk_peer_cred = NULL;
  1731. sk->sk_write_pending = 0;
  1732. sk->sk_rcvlowat = 1;
  1733. sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
  1734. sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
  1735. sk->sk_stamp = ktime_set(-1L, 0);
  1736. /*
  1737. * Before updating sk_refcnt, we must commit prior changes to memory
  1738. * (Documentation/RCU/rculist_nulls.txt for details)
  1739. */
  1740. smp_wmb();
  1741. atomic_set(&sk->sk_refcnt, 1);
  1742. atomic_set(&sk->sk_drops, 0);
  1743. }
  1744. EXPORT_SYMBOL(sock_init_data);
  1745. void lock_sock_nested(struct sock *sk, int subclass)
  1746. {
  1747. might_sleep();
  1748. spin_lock_bh(&sk->sk_lock.slock);
  1749. if (sk->sk_lock.owned)
  1750. __lock_sock(sk);
  1751. sk->sk_lock.owned = 1;
  1752. spin_unlock(&sk->sk_lock.slock);
  1753. /*
  1754. * The sk_lock has mutex_lock() semantics here:
  1755. */
  1756. mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
  1757. local_bh_enable();
  1758. }
  1759. EXPORT_SYMBOL(lock_sock_nested);
  1760. void release_sock(struct sock *sk)
  1761. {
  1762. /*
  1763. * The sk_lock has mutex_unlock() semantics:
  1764. */
  1765. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  1766. spin_lock_bh(&sk->sk_lock.slock);
  1767. if (sk->sk_backlog.tail)
  1768. __release_sock(sk);
  1769. sk->sk_lock.owned = 0;
  1770. if (waitqueue_active(&sk->sk_lock.wq))
  1771. wake_up(&sk->sk_lock.wq);
  1772. spin_unlock_bh(&sk->sk_lock.slock);
  1773. }
  1774. EXPORT_SYMBOL(release_sock);
  1775. /**
  1776. * lock_sock_fast - fast version of lock_sock
  1777. * @sk: socket
  1778. *
  1779. * This version should be used for very small section, where process wont block
  1780. * return false if fast path is taken
  1781. * sk_lock.slock locked, owned = 0, BH disabled
  1782. * return true if slow path is taken
  1783. * sk_lock.slock unlocked, owned = 1, BH enabled
  1784. */
  1785. bool lock_sock_fast(struct sock *sk)
  1786. {
  1787. might_sleep();
  1788. spin_lock_bh(&sk->sk_lock.slock);
  1789. if (!sk->sk_lock.owned)
  1790. /*
  1791. * Note : We must disable BH
  1792. */
  1793. return false;
  1794. __lock_sock(sk);
  1795. sk->sk_lock.owned = 1;
  1796. spin_unlock(&sk->sk_lock.slock);
  1797. /*
  1798. * The sk_lock has mutex_lock() semantics here:
  1799. */
  1800. mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
  1801. local_bh_enable();
  1802. return true;
  1803. }
  1804. EXPORT_SYMBOL(lock_sock_fast);
  1805. int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
  1806. {
  1807. struct timeval tv;
  1808. if (!sock_flag(sk, SOCK_TIMESTAMP))
  1809. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  1810. tv = ktime_to_timeval(sk->sk_stamp);
  1811. if (tv.tv_sec == -1)
  1812. return -ENOENT;
  1813. if (tv.tv_sec == 0) {
  1814. sk->sk_stamp = ktime_get_real();
  1815. tv = ktime_to_timeval(sk->sk_stamp);
  1816. }
  1817. return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
  1818. }
  1819. EXPORT_SYMBOL(sock_get_timestamp);
  1820. int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
  1821. {
  1822. struct timespec ts;
  1823. if (!sock_flag(sk, SOCK_TIMESTAMP))
  1824. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  1825. ts = ktime_to_timespec(sk->sk_stamp);
  1826. if (ts.tv_sec == -1)
  1827. return -ENOENT;
  1828. if (ts.tv_sec == 0) {
  1829. sk->sk_stamp = ktime_get_real();
  1830. ts = ktime_to_timespec(sk->sk_stamp);
  1831. }
  1832. return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
  1833. }
  1834. EXPORT_SYMBOL(sock_get_timestampns);
  1835. void sock_enable_timestamp(struct sock *sk, int flag)
  1836. {
  1837. if (!sock_flag(sk, flag)) {
  1838. sock_set_flag(sk, flag);
  1839. /*
  1840. * we just set one of the two flags which require net
  1841. * time stamping, but time stamping might have been on
  1842. * already because of the other one
  1843. */
  1844. if (!sock_flag(sk,
  1845. flag == SOCK_TIMESTAMP ?
  1846. SOCK_TIMESTAMPING_RX_SOFTWARE :
  1847. SOCK_TIMESTAMP))
  1848. net_enable_timestamp();
  1849. }
  1850. }
  1851. /*
  1852. * Get a socket option on an socket.
  1853. *
  1854. * FIX: POSIX 1003.1g is very ambiguous here. It states that
  1855. * asynchronous errors should be reported by getsockopt. We assume
  1856. * this means if you specify SO_ERROR (otherwise whats the point of it).
  1857. */
  1858. int sock_common_getsockopt(struct socket *sock, int level, int optname,
  1859. char __user *optval, int __user *optlen)
  1860. {
  1861. struct sock *sk = sock->sk;
  1862. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  1863. }
  1864. EXPORT_SYMBOL(sock_common_getsockopt);
  1865. #ifdef CONFIG_COMPAT
  1866. int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
  1867. char __user *optval, int __user *optlen)
  1868. {
  1869. struct sock *sk = sock->sk;
  1870. if (sk->sk_prot->compat_getsockopt != NULL)
  1871. return sk->sk_prot->compat_getsockopt(sk, level, optname,
  1872. optval, optlen);
  1873. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  1874. }
  1875. EXPORT_SYMBOL(compat_sock_common_getsockopt);
  1876. #endif
  1877. int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
  1878. struct msghdr *msg, size_t size, int flags)
  1879. {
  1880. struct sock *sk = sock->sk;
  1881. int addr_len = 0;
  1882. int err;
  1883. err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
  1884. flags & ~MSG_DONTWAIT, &addr_len);
  1885. if (err >= 0)
  1886. msg->msg_namelen = addr_len;
  1887. return err;
  1888. }
  1889. EXPORT_SYMBOL(sock_common_recvmsg);
  1890. /*
  1891. * Set socket options on an inet socket.
  1892. */
  1893. int sock_common_setsockopt(struct socket *sock, int level, int optname,
  1894. char __user *optval, unsigned int optlen)
  1895. {
  1896. struct sock *sk = sock->sk;
  1897. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  1898. }
  1899. EXPORT_SYMBOL(sock_common_setsockopt);
  1900. #ifdef CONFIG_COMPAT
  1901. int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
  1902. char __user *optval, unsigned int optlen)
  1903. {
  1904. struct sock *sk = sock->sk;
  1905. if (sk->sk_prot->compat_setsockopt != NULL)
  1906. return sk->sk_prot->compat_setsockopt(sk, level, optname,
  1907. optval, optlen);
  1908. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  1909. }
  1910. EXPORT_SYMBOL(compat_sock_common_setsockopt);
  1911. #endif
  1912. void sk_common_release(struct sock *sk)
  1913. {
  1914. if (sk->sk_prot->destroy)
  1915. sk->sk_prot->destroy(sk);
  1916. /*
  1917. * Observation: when sock_common_release is called, processes have
  1918. * no access to socket. But net still has.
  1919. * Step one, detach it from networking:
  1920. *
  1921. * A. Remove from hash tables.
  1922. */
  1923. sk->sk_prot->unhash(sk);
  1924. /*
  1925. * In this point socket cannot receive new packets, but it is possible
  1926. * that some packets are in flight because some CPU runs receiver and
  1927. * did hash table lookup before we unhashed socket. They will achieve
  1928. * receive queue and will be purged by socket destructor.
  1929. *
  1930. * Also we still have packets pending on receive queue and probably,
  1931. * our own packets waiting in device queues. sock_destroy will drain
  1932. * receive queue, but transmitted packets will delay socket destruction
  1933. * until the last reference will be released.
  1934. */
  1935. sock_orphan(sk);
  1936. xfrm_sk_free_policy(sk);
  1937. sk_refcnt_debug_release(sk);
  1938. sock_put(sk);
  1939. }
  1940. EXPORT_SYMBOL(sk_common_release);
  1941. static DEFINE_RWLOCK(proto_list_lock);
  1942. static LIST_HEAD(proto_list);
  1943. #ifdef CONFIG_PROC_FS
  1944. #define PROTO_INUSE_NR 64 /* should be enough for the first time */
  1945. struct prot_inuse {
  1946. int val[PROTO_INUSE_NR];
  1947. };
  1948. static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
  1949. #ifdef CONFIG_NET_NS
  1950. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  1951. {
  1952. __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
  1953. }
  1954. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  1955. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  1956. {
  1957. int cpu, idx = prot->inuse_idx;
  1958. int res = 0;
  1959. for_each_possible_cpu(cpu)
  1960. res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
  1961. return res >= 0 ? res : 0;
  1962. }
  1963. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  1964. static int __net_init sock_inuse_init_net(struct net *net)
  1965. {
  1966. net->core.inuse = alloc_percpu(struct prot_inuse);
  1967. return net->core.inuse ? 0 : -ENOMEM;
  1968. }
  1969. static void __net_exit sock_inuse_exit_net(struct net *net)
  1970. {
  1971. free_percpu(net->core.inuse);
  1972. }
  1973. static struct pernet_operations net_inuse_ops = {
  1974. .init = sock_inuse_init_net,
  1975. .exit = sock_inuse_exit_net,
  1976. };
  1977. static __init int net_inuse_init(void)
  1978. {
  1979. if (register_pernet_subsys(&net_inuse_ops))
  1980. panic("Cannot initialize net inuse counters");
  1981. return 0;
  1982. }
  1983. core_initcall(net_inuse_init);
  1984. #else
  1985. static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
  1986. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  1987. {
  1988. __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
  1989. }
  1990. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  1991. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  1992. {
  1993. int cpu, idx = prot->inuse_idx;
  1994. int res = 0;
  1995. for_each_possible_cpu(cpu)
  1996. res += per_cpu(prot_inuse, cpu).val[idx];
  1997. return res >= 0 ? res : 0;
  1998. }
  1999. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2000. #endif
  2001. static void assign_proto_idx(struct proto *prot)
  2002. {
  2003. prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
  2004. if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
  2005. printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
  2006. return;
  2007. }
  2008. set_bit(prot->inuse_idx, proto_inuse_idx);
  2009. }
  2010. static void release_proto_idx(struct proto *prot)
  2011. {
  2012. if (prot->inuse_idx != PROTO_INUSE_NR - 1)
  2013. clear_bit(prot->inuse_idx, proto_inuse_idx);
  2014. }
  2015. #else
  2016. static inline void assign_proto_idx(struct proto *prot)
  2017. {
  2018. }
  2019. static inline void release_proto_idx(struct proto *prot)
  2020. {
  2021. }
  2022. #endif
  2023. int proto_register(struct proto *prot, int alloc_slab)
  2024. {
  2025. if (alloc_slab) {
  2026. prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
  2027. SLAB_HWCACHE_ALIGN | prot->slab_flags,
  2028. NULL);
  2029. if (prot->slab == NULL) {
  2030. printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
  2031. prot->name);
  2032. goto out;
  2033. }
  2034. if (prot->rsk_prot != NULL) {
  2035. prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
  2036. if (prot->rsk_prot->slab_name == NULL)
  2037. goto out_free_sock_slab;
  2038. prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
  2039. prot->rsk_prot->obj_size, 0,
  2040. SLAB_HWCACHE_ALIGN, NULL);
  2041. if (prot->rsk_prot->slab == NULL) {
  2042. printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
  2043. prot->name);
  2044. goto out_free_request_sock_slab_name;
  2045. }
  2046. }
  2047. if (prot->twsk_prot != NULL) {
  2048. prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
  2049. if (prot->twsk_prot->twsk_slab_name == NULL)
  2050. goto out_free_request_sock_slab;
  2051. prot->twsk_prot->twsk_slab =
  2052. kmem_cache_create(prot->twsk_prot->twsk_slab_name,
  2053. prot->twsk_prot->twsk_obj_size,
  2054. 0,
  2055. SLAB_HWCACHE_ALIGN |
  2056. prot->slab_flags,
  2057. NULL);
  2058. if (prot->twsk_prot->twsk_slab == NULL)
  2059. goto out_free_timewait_sock_slab_name;
  2060. }
  2061. }
  2062. write_lock(&proto_list_lock);
  2063. list_add(&prot->node, &proto_list);
  2064. assign_proto_idx(prot);
  2065. write_unlock(&proto_list_lock);
  2066. return 0;
  2067. out_free_timewait_sock_slab_name:
  2068. kfree(prot->twsk_prot->twsk_slab_name);
  2069. out_free_request_sock_slab:
  2070. if (prot->rsk_prot && prot->rsk_prot->slab) {
  2071. kmem_cache_destroy(prot->rsk_prot->slab);
  2072. prot->rsk_prot->slab = NULL;
  2073. }
  2074. out_free_request_sock_slab_name:
  2075. if (prot->rsk_prot)
  2076. kfree(prot->rsk_prot->slab_name);
  2077. out_free_sock_slab:
  2078. kmem_cache_destroy(prot->slab);
  2079. prot->slab = NULL;
  2080. out:
  2081. return -ENOBUFS;
  2082. }
  2083. EXPORT_SYMBOL(proto_register);
  2084. void proto_unregister(struct proto *prot)
  2085. {
  2086. write_lock(&proto_list_lock);
  2087. release_proto_idx(prot);
  2088. list_del(&prot->node);
  2089. write_unlock(&proto_list_lock);
  2090. if (prot->slab != NULL) {
  2091. kmem_cache_destroy(prot->slab);
  2092. prot->slab = NULL;
  2093. }
  2094. if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
  2095. kmem_cache_destroy(prot->rsk_prot->slab);
  2096. kfree(prot->rsk_prot->slab_name);
  2097. prot->rsk_prot->slab = NULL;
  2098. }
  2099. if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
  2100. kmem_cache_destroy(prot->twsk_prot->twsk_slab);
  2101. kfree(prot->twsk_prot->twsk_slab_name);
  2102. prot->twsk_prot->twsk_slab = NULL;
  2103. }
  2104. }
  2105. EXPORT_SYMBOL(proto_unregister);
  2106. #ifdef CONFIG_PROC_FS
  2107. static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
  2108. __acquires(proto_list_lock)
  2109. {
  2110. read_lock(&proto_list_lock);
  2111. return seq_list_start_head(&proto_list, *pos);
  2112. }
  2113. static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2114. {
  2115. return seq_list_next(v, &proto_list, pos);
  2116. }
  2117. static void proto_seq_stop(struct seq_file *seq, void *v)
  2118. __releases(proto_list_lock)
  2119. {
  2120. read_unlock(&proto_list_lock);
  2121. }
  2122. static char proto_method_implemented(const void *method)
  2123. {
  2124. return method == NULL ? 'n' : 'y';
  2125. }
  2126. static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
  2127. {
  2128. seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
  2129. "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
  2130. proto->name,
  2131. proto->obj_size,
  2132. sock_prot_inuse_get(seq_file_net(seq), proto),
  2133. proto->memory_allocated != NULL ? atomic_long_read(proto->memory_allocated) : -1L,
  2134. proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
  2135. proto->max_header,
  2136. proto->slab == NULL ? "no" : "yes",
  2137. module_name(proto->owner),
  2138. proto_method_implemented(proto->close),
  2139. proto_method_implemented(proto->connect),
  2140. proto_method_implemented(proto->disconnect),
  2141. proto_method_implemented(proto->accept),
  2142. proto_method_implemented(proto->ioctl),
  2143. proto_method_implemented(proto->init),
  2144. proto_method_implemented(proto->destroy),
  2145. proto_method_implemented(proto->shutdown),
  2146. proto_method_implemented(proto->setsockopt),
  2147. proto_method_implemented(proto->getsockopt),
  2148. proto_method_implemented(proto->sendmsg),
  2149. proto_method_implemented(proto->recvmsg),
  2150. proto_method_implemented(proto->sendpage),
  2151. proto_method_implemented(proto->bind),
  2152. proto_method_implemented(proto->backlog_rcv),
  2153. proto_method_implemented(proto->hash),
  2154. proto_method_implemented(proto->unhash),
  2155. proto_method_implemented(proto->get_port),
  2156. proto_method_implemented(proto->enter_memory_pressure));
  2157. }
  2158. static int proto_seq_show(struct seq_file *seq, void *v)
  2159. {
  2160. if (v == &proto_list)
  2161. seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
  2162. "protocol",
  2163. "size",
  2164. "sockets",
  2165. "memory",
  2166. "press",
  2167. "maxhdr",
  2168. "slab",
  2169. "module",
  2170. "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
  2171. else
  2172. proto_seq_printf(seq, list_entry(v, struct proto, node));
  2173. return 0;
  2174. }
  2175. static const struct seq_operations proto_seq_ops = {
  2176. .start = proto_seq_start,
  2177. .next = proto_seq_next,
  2178. .stop = proto_seq_stop,
  2179. .show = proto_seq_show,
  2180. };
  2181. static int proto_seq_open(struct inode *inode, struct file *file)
  2182. {
  2183. return seq_open_net(inode, file, &proto_seq_ops,
  2184. sizeof(struct seq_net_private));
  2185. }
  2186. static const struct file_operations proto_seq_fops = {
  2187. .owner = THIS_MODULE,
  2188. .open = proto_seq_open,
  2189. .read = seq_read,
  2190. .llseek = seq_lseek,
  2191. .release = seq_release_net,
  2192. };
  2193. static __net_init int proto_init_net(struct net *net)
  2194. {
  2195. if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
  2196. return -ENOMEM;
  2197. return 0;
  2198. }
  2199. static __net_exit void proto_exit_net(struct net *net)
  2200. {
  2201. proc_net_remove(net, "protocols");
  2202. }
  2203. static __net_initdata struct pernet_operations proto_net_ops = {
  2204. .init = proto_init_net,
  2205. .exit = proto_exit_net,
  2206. };
  2207. static int __init proto_init(void)
  2208. {
  2209. return register_pernet_subsys(&proto_net_ops);
  2210. }
  2211. subsys_initcall(proto_init);
  2212. #endif /* PROC_FS */