svm.c 69 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * AMD SVM support
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Yaniv Kamay <yaniv@qumranet.com>
  10. * Avi Kivity <avi@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include <linux/kvm_host.h>
  17. #include "kvm_svm.h"
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include "kvm_cache_regs.h"
  21. #include "x86.h"
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/highmem.h>
  26. #include <linux/sched.h>
  27. #include <asm/desc.h>
  28. #include <asm/virtext.h>
  29. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  30. MODULE_AUTHOR("Qumranet");
  31. MODULE_LICENSE("GPL");
  32. #define IOPM_ALLOC_ORDER 2
  33. #define MSRPM_ALLOC_ORDER 1
  34. #define SEG_TYPE_LDT 2
  35. #define SEG_TYPE_BUSY_TSS16 3
  36. #define SVM_FEATURE_NPT (1 << 0)
  37. #define SVM_FEATURE_LBRV (1 << 1)
  38. #define SVM_FEATURE_SVML (1 << 2)
  39. #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
  40. /* Turn on to get debugging output*/
  41. /* #define NESTED_DEBUG */
  42. #ifdef NESTED_DEBUG
  43. #define nsvm_printk(fmt, args...) printk(KERN_INFO fmt, ## args)
  44. #else
  45. #define nsvm_printk(fmt, args...) do {} while(0)
  46. #endif
  47. /* enable NPT for AMD64 and X86 with PAE */
  48. #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
  49. static bool npt_enabled = true;
  50. #else
  51. static bool npt_enabled = false;
  52. #endif
  53. static int npt = 1;
  54. module_param(npt, int, S_IRUGO);
  55. static int nested = 0;
  56. module_param(nested, int, S_IRUGO);
  57. static void kvm_reput_irq(struct vcpu_svm *svm);
  58. static void svm_flush_tlb(struct kvm_vcpu *vcpu);
  59. static int nested_svm_exit_handled(struct vcpu_svm *svm, bool kvm_override);
  60. static int nested_svm_vmexit(struct vcpu_svm *svm);
  61. static int nested_svm_vmsave(struct vcpu_svm *svm, void *nested_vmcb,
  62. void *arg2, void *opaque);
  63. static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
  64. bool has_error_code, u32 error_code);
  65. static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
  66. {
  67. return container_of(vcpu, struct vcpu_svm, vcpu);
  68. }
  69. static inline bool is_nested(struct vcpu_svm *svm)
  70. {
  71. return svm->nested_vmcb;
  72. }
  73. static unsigned long iopm_base;
  74. struct kvm_ldttss_desc {
  75. u16 limit0;
  76. u16 base0;
  77. unsigned base1 : 8, type : 5, dpl : 2, p : 1;
  78. unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
  79. u32 base3;
  80. u32 zero1;
  81. } __attribute__((packed));
  82. struct svm_cpu_data {
  83. int cpu;
  84. u64 asid_generation;
  85. u32 max_asid;
  86. u32 next_asid;
  87. struct kvm_ldttss_desc *tss_desc;
  88. struct page *save_area;
  89. };
  90. static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
  91. static uint32_t svm_features;
  92. struct svm_init_data {
  93. int cpu;
  94. int r;
  95. };
  96. static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
  97. #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
  98. #define MSRS_RANGE_SIZE 2048
  99. #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
  100. #define MAX_INST_SIZE 15
  101. static inline u32 svm_has(u32 feat)
  102. {
  103. return svm_features & feat;
  104. }
  105. static inline void clgi(void)
  106. {
  107. asm volatile (__ex(SVM_CLGI));
  108. }
  109. static inline void stgi(void)
  110. {
  111. asm volatile (__ex(SVM_STGI));
  112. }
  113. static inline void invlpga(unsigned long addr, u32 asid)
  114. {
  115. asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
  116. }
  117. static inline unsigned long kvm_read_cr2(void)
  118. {
  119. unsigned long cr2;
  120. asm volatile ("mov %%cr2, %0" : "=r" (cr2));
  121. return cr2;
  122. }
  123. static inline void kvm_write_cr2(unsigned long val)
  124. {
  125. asm volatile ("mov %0, %%cr2" :: "r" (val));
  126. }
  127. static inline void force_new_asid(struct kvm_vcpu *vcpu)
  128. {
  129. to_svm(vcpu)->asid_generation--;
  130. }
  131. static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
  132. {
  133. force_new_asid(vcpu);
  134. }
  135. static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  136. {
  137. if (!npt_enabled && !(efer & EFER_LMA))
  138. efer &= ~EFER_LME;
  139. to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
  140. vcpu->arch.shadow_efer = efer;
  141. }
  142. static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  143. bool has_error_code, u32 error_code)
  144. {
  145. struct vcpu_svm *svm = to_svm(vcpu);
  146. /* If we are within a nested VM we'd better #VMEXIT and let the
  147. guest handle the exception */
  148. if (nested_svm_check_exception(svm, nr, has_error_code, error_code))
  149. return;
  150. svm->vmcb->control.event_inj = nr
  151. | SVM_EVTINJ_VALID
  152. | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
  153. | SVM_EVTINJ_TYPE_EXEPT;
  154. svm->vmcb->control.event_inj_err = error_code;
  155. }
  156. static bool svm_exception_injected(struct kvm_vcpu *vcpu)
  157. {
  158. struct vcpu_svm *svm = to_svm(vcpu);
  159. return !(svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID);
  160. }
  161. static int is_external_interrupt(u32 info)
  162. {
  163. info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
  164. return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
  165. }
  166. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  167. {
  168. struct vcpu_svm *svm = to_svm(vcpu);
  169. if (!svm->next_rip) {
  170. printk(KERN_DEBUG "%s: NOP\n", __func__);
  171. return;
  172. }
  173. if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
  174. printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
  175. __func__, kvm_rip_read(vcpu), svm->next_rip);
  176. kvm_rip_write(vcpu, svm->next_rip);
  177. svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
  178. vcpu->arch.interrupt_window_open = (svm->vcpu.arch.hflags & HF_GIF_MASK);
  179. }
  180. static int has_svm(void)
  181. {
  182. const char *msg;
  183. if (!cpu_has_svm(&msg)) {
  184. printk(KERN_INFO "has_svm: %s\n", msg);
  185. return 0;
  186. }
  187. return 1;
  188. }
  189. static void svm_hardware_disable(void *garbage)
  190. {
  191. cpu_svm_disable();
  192. }
  193. static void svm_hardware_enable(void *garbage)
  194. {
  195. struct svm_cpu_data *svm_data;
  196. uint64_t efer;
  197. struct desc_ptr gdt_descr;
  198. struct desc_struct *gdt;
  199. int me = raw_smp_processor_id();
  200. if (!has_svm()) {
  201. printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
  202. return;
  203. }
  204. svm_data = per_cpu(svm_data, me);
  205. if (!svm_data) {
  206. printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
  207. me);
  208. return;
  209. }
  210. svm_data->asid_generation = 1;
  211. svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
  212. svm_data->next_asid = svm_data->max_asid + 1;
  213. asm volatile ("sgdt %0" : "=m"(gdt_descr));
  214. gdt = (struct desc_struct *)gdt_descr.address;
  215. svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
  216. rdmsrl(MSR_EFER, efer);
  217. wrmsrl(MSR_EFER, efer | EFER_SVME);
  218. wrmsrl(MSR_VM_HSAVE_PA,
  219. page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
  220. }
  221. static void svm_cpu_uninit(int cpu)
  222. {
  223. struct svm_cpu_data *svm_data
  224. = per_cpu(svm_data, raw_smp_processor_id());
  225. if (!svm_data)
  226. return;
  227. per_cpu(svm_data, raw_smp_processor_id()) = NULL;
  228. __free_page(svm_data->save_area);
  229. kfree(svm_data);
  230. }
  231. static int svm_cpu_init(int cpu)
  232. {
  233. struct svm_cpu_data *svm_data;
  234. int r;
  235. svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
  236. if (!svm_data)
  237. return -ENOMEM;
  238. svm_data->cpu = cpu;
  239. svm_data->save_area = alloc_page(GFP_KERNEL);
  240. r = -ENOMEM;
  241. if (!svm_data->save_area)
  242. goto err_1;
  243. per_cpu(svm_data, cpu) = svm_data;
  244. return 0;
  245. err_1:
  246. kfree(svm_data);
  247. return r;
  248. }
  249. static void set_msr_interception(u32 *msrpm, unsigned msr,
  250. int read, int write)
  251. {
  252. int i;
  253. for (i = 0; i < NUM_MSR_MAPS; i++) {
  254. if (msr >= msrpm_ranges[i] &&
  255. msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
  256. u32 msr_offset = (i * MSRS_IN_RANGE + msr -
  257. msrpm_ranges[i]) * 2;
  258. u32 *base = msrpm + (msr_offset / 32);
  259. u32 msr_shift = msr_offset % 32;
  260. u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
  261. *base = (*base & ~(0x3 << msr_shift)) |
  262. (mask << msr_shift);
  263. return;
  264. }
  265. }
  266. BUG();
  267. }
  268. static void svm_vcpu_init_msrpm(u32 *msrpm)
  269. {
  270. memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
  271. #ifdef CONFIG_X86_64
  272. set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
  273. set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
  274. set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
  275. set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
  276. set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
  277. set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
  278. #endif
  279. set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
  280. set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
  281. set_msr_interception(msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
  282. set_msr_interception(msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
  283. }
  284. static void svm_enable_lbrv(struct vcpu_svm *svm)
  285. {
  286. u32 *msrpm = svm->msrpm;
  287. svm->vmcb->control.lbr_ctl = 1;
  288. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
  289. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
  290. set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
  291. set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
  292. }
  293. static void svm_disable_lbrv(struct vcpu_svm *svm)
  294. {
  295. u32 *msrpm = svm->msrpm;
  296. svm->vmcb->control.lbr_ctl = 0;
  297. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
  298. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
  299. set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
  300. set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
  301. }
  302. static __init int svm_hardware_setup(void)
  303. {
  304. int cpu;
  305. struct page *iopm_pages;
  306. void *iopm_va;
  307. int r;
  308. iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
  309. if (!iopm_pages)
  310. return -ENOMEM;
  311. iopm_va = page_address(iopm_pages);
  312. memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
  313. iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
  314. if (boot_cpu_has(X86_FEATURE_NX))
  315. kvm_enable_efer_bits(EFER_NX);
  316. if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
  317. kvm_enable_efer_bits(EFER_FFXSR);
  318. if (nested) {
  319. printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
  320. kvm_enable_efer_bits(EFER_SVME);
  321. }
  322. for_each_online_cpu(cpu) {
  323. r = svm_cpu_init(cpu);
  324. if (r)
  325. goto err;
  326. }
  327. svm_features = cpuid_edx(SVM_CPUID_FUNC);
  328. if (!svm_has(SVM_FEATURE_NPT))
  329. npt_enabled = false;
  330. if (npt_enabled && !npt) {
  331. printk(KERN_INFO "kvm: Nested Paging disabled\n");
  332. npt_enabled = false;
  333. }
  334. if (npt_enabled) {
  335. printk(KERN_INFO "kvm: Nested Paging enabled\n");
  336. kvm_enable_tdp();
  337. } else
  338. kvm_disable_tdp();
  339. return 0;
  340. err:
  341. __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
  342. iopm_base = 0;
  343. return r;
  344. }
  345. static __exit void svm_hardware_unsetup(void)
  346. {
  347. int cpu;
  348. for_each_online_cpu(cpu)
  349. svm_cpu_uninit(cpu);
  350. __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
  351. iopm_base = 0;
  352. }
  353. static void init_seg(struct vmcb_seg *seg)
  354. {
  355. seg->selector = 0;
  356. seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
  357. SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
  358. seg->limit = 0xffff;
  359. seg->base = 0;
  360. }
  361. static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
  362. {
  363. seg->selector = 0;
  364. seg->attrib = SVM_SELECTOR_P_MASK | type;
  365. seg->limit = 0xffff;
  366. seg->base = 0;
  367. }
  368. static void init_vmcb(struct vcpu_svm *svm)
  369. {
  370. struct vmcb_control_area *control = &svm->vmcb->control;
  371. struct vmcb_save_area *save = &svm->vmcb->save;
  372. control->intercept_cr_read = INTERCEPT_CR0_MASK |
  373. INTERCEPT_CR3_MASK |
  374. INTERCEPT_CR4_MASK;
  375. control->intercept_cr_write = INTERCEPT_CR0_MASK |
  376. INTERCEPT_CR3_MASK |
  377. INTERCEPT_CR4_MASK |
  378. INTERCEPT_CR8_MASK;
  379. control->intercept_dr_read = INTERCEPT_DR0_MASK |
  380. INTERCEPT_DR1_MASK |
  381. INTERCEPT_DR2_MASK |
  382. INTERCEPT_DR3_MASK;
  383. control->intercept_dr_write = INTERCEPT_DR0_MASK |
  384. INTERCEPT_DR1_MASK |
  385. INTERCEPT_DR2_MASK |
  386. INTERCEPT_DR3_MASK |
  387. INTERCEPT_DR5_MASK |
  388. INTERCEPT_DR7_MASK;
  389. control->intercept_exceptions = (1 << PF_VECTOR) |
  390. (1 << UD_VECTOR) |
  391. (1 << MC_VECTOR);
  392. control->intercept = (1ULL << INTERCEPT_INTR) |
  393. (1ULL << INTERCEPT_NMI) |
  394. (1ULL << INTERCEPT_SMI) |
  395. (1ULL << INTERCEPT_CPUID) |
  396. (1ULL << INTERCEPT_INVD) |
  397. (1ULL << INTERCEPT_HLT) |
  398. (1ULL << INTERCEPT_INVLPG) |
  399. (1ULL << INTERCEPT_INVLPGA) |
  400. (1ULL << INTERCEPT_IOIO_PROT) |
  401. (1ULL << INTERCEPT_MSR_PROT) |
  402. (1ULL << INTERCEPT_TASK_SWITCH) |
  403. (1ULL << INTERCEPT_SHUTDOWN) |
  404. (1ULL << INTERCEPT_VMRUN) |
  405. (1ULL << INTERCEPT_VMMCALL) |
  406. (1ULL << INTERCEPT_VMLOAD) |
  407. (1ULL << INTERCEPT_VMSAVE) |
  408. (1ULL << INTERCEPT_STGI) |
  409. (1ULL << INTERCEPT_CLGI) |
  410. (1ULL << INTERCEPT_SKINIT) |
  411. (1ULL << INTERCEPT_WBINVD) |
  412. (1ULL << INTERCEPT_MONITOR) |
  413. (1ULL << INTERCEPT_MWAIT);
  414. control->iopm_base_pa = iopm_base;
  415. control->msrpm_base_pa = __pa(svm->msrpm);
  416. control->tsc_offset = 0;
  417. control->int_ctl = V_INTR_MASKING_MASK;
  418. init_seg(&save->es);
  419. init_seg(&save->ss);
  420. init_seg(&save->ds);
  421. init_seg(&save->fs);
  422. init_seg(&save->gs);
  423. save->cs.selector = 0xf000;
  424. /* Executable/Readable Code Segment */
  425. save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
  426. SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
  427. save->cs.limit = 0xffff;
  428. /*
  429. * cs.base should really be 0xffff0000, but vmx can't handle that, so
  430. * be consistent with it.
  431. *
  432. * Replace when we have real mode working for vmx.
  433. */
  434. save->cs.base = 0xf0000;
  435. save->gdtr.limit = 0xffff;
  436. save->idtr.limit = 0xffff;
  437. init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
  438. init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
  439. save->efer = EFER_SVME;
  440. save->dr6 = 0xffff0ff0;
  441. save->dr7 = 0x400;
  442. save->rflags = 2;
  443. save->rip = 0x0000fff0;
  444. svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
  445. /*
  446. * cr0 val on cpu init should be 0x60000010, we enable cpu
  447. * cache by default. the orderly way is to enable cache in bios.
  448. */
  449. save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
  450. save->cr4 = X86_CR4_PAE;
  451. /* rdx = ?? */
  452. if (npt_enabled) {
  453. /* Setup VMCB for Nested Paging */
  454. control->nested_ctl = 1;
  455. control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
  456. (1ULL << INTERCEPT_INVLPG));
  457. control->intercept_exceptions &= ~(1 << PF_VECTOR);
  458. control->intercept_cr_read &= ~(INTERCEPT_CR0_MASK|
  459. INTERCEPT_CR3_MASK);
  460. control->intercept_cr_write &= ~(INTERCEPT_CR0_MASK|
  461. INTERCEPT_CR3_MASK);
  462. save->g_pat = 0x0007040600070406ULL;
  463. /* enable caching because the QEMU Bios doesn't enable it */
  464. save->cr0 = X86_CR0_ET;
  465. save->cr3 = 0;
  466. save->cr4 = 0;
  467. }
  468. force_new_asid(&svm->vcpu);
  469. svm->nested_vmcb = 0;
  470. svm->vcpu.arch.hflags = HF_GIF_MASK;
  471. }
  472. static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
  473. {
  474. struct vcpu_svm *svm = to_svm(vcpu);
  475. init_vmcb(svm);
  476. if (vcpu->vcpu_id != 0) {
  477. kvm_rip_write(vcpu, 0);
  478. svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
  479. svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
  480. }
  481. vcpu->arch.regs_avail = ~0;
  482. vcpu->arch.regs_dirty = ~0;
  483. return 0;
  484. }
  485. static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
  486. {
  487. struct vcpu_svm *svm;
  488. struct page *page;
  489. struct page *msrpm_pages;
  490. struct page *hsave_page;
  491. struct page *nested_msrpm_pages;
  492. int err;
  493. svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  494. if (!svm) {
  495. err = -ENOMEM;
  496. goto out;
  497. }
  498. err = kvm_vcpu_init(&svm->vcpu, kvm, id);
  499. if (err)
  500. goto free_svm;
  501. page = alloc_page(GFP_KERNEL);
  502. if (!page) {
  503. err = -ENOMEM;
  504. goto uninit;
  505. }
  506. err = -ENOMEM;
  507. msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
  508. if (!msrpm_pages)
  509. goto uninit;
  510. nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
  511. if (!nested_msrpm_pages)
  512. goto uninit;
  513. svm->msrpm = page_address(msrpm_pages);
  514. svm_vcpu_init_msrpm(svm->msrpm);
  515. hsave_page = alloc_page(GFP_KERNEL);
  516. if (!hsave_page)
  517. goto uninit;
  518. svm->hsave = page_address(hsave_page);
  519. svm->nested_msrpm = page_address(nested_msrpm_pages);
  520. svm->vmcb = page_address(page);
  521. clear_page(svm->vmcb);
  522. svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
  523. svm->asid_generation = 0;
  524. init_vmcb(svm);
  525. fx_init(&svm->vcpu);
  526. svm->vcpu.fpu_active = 1;
  527. svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  528. if (svm->vcpu.vcpu_id == 0)
  529. svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
  530. return &svm->vcpu;
  531. uninit:
  532. kvm_vcpu_uninit(&svm->vcpu);
  533. free_svm:
  534. kmem_cache_free(kvm_vcpu_cache, svm);
  535. out:
  536. return ERR_PTR(err);
  537. }
  538. static void svm_free_vcpu(struct kvm_vcpu *vcpu)
  539. {
  540. struct vcpu_svm *svm = to_svm(vcpu);
  541. __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
  542. __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
  543. __free_page(virt_to_page(svm->hsave));
  544. __free_pages(virt_to_page(svm->nested_msrpm), MSRPM_ALLOC_ORDER);
  545. kvm_vcpu_uninit(vcpu);
  546. kmem_cache_free(kvm_vcpu_cache, svm);
  547. }
  548. static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  549. {
  550. struct vcpu_svm *svm = to_svm(vcpu);
  551. int i;
  552. if (unlikely(cpu != vcpu->cpu)) {
  553. u64 tsc_this, delta;
  554. /*
  555. * Make sure that the guest sees a monotonically
  556. * increasing TSC.
  557. */
  558. rdtscll(tsc_this);
  559. delta = vcpu->arch.host_tsc - tsc_this;
  560. svm->vmcb->control.tsc_offset += delta;
  561. vcpu->cpu = cpu;
  562. kvm_migrate_timers(vcpu);
  563. }
  564. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  565. rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
  566. }
  567. static void svm_vcpu_put(struct kvm_vcpu *vcpu)
  568. {
  569. struct vcpu_svm *svm = to_svm(vcpu);
  570. int i;
  571. ++vcpu->stat.host_state_reload;
  572. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  573. wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
  574. rdtscll(vcpu->arch.host_tsc);
  575. }
  576. static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
  577. {
  578. return to_svm(vcpu)->vmcb->save.rflags;
  579. }
  580. static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  581. {
  582. to_svm(vcpu)->vmcb->save.rflags = rflags;
  583. }
  584. static void svm_set_vintr(struct vcpu_svm *svm)
  585. {
  586. svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
  587. }
  588. static void svm_clear_vintr(struct vcpu_svm *svm)
  589. {
  590. svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
  591. }
  592. static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
  593. {
  594. struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
  595. switch (seg) {
  596. case VCPU_SREG_CS: return &save->cs;
  597. case VCPU_SREG_DS: return &save->ds;
  598. case VCPU_SREG_ES: return &save->es;
  599. case VCPU_SREG_FS: return &save->fs;
  600. case VCPU_SREG_GS: return &save->gs;
  601. case VCPU_SREG_SS: return &save->ss;
  602. case VCPU_SREG_TR: return &save->tr;
  603. case VCPU_SREG_LDTR: return &save->ldtr;
  604. }
  605. BUG();
  606. return NULL;
  607. }
  608. static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  609. {
  610. struct vmcb_seg *s = svm_seg(vcpu, seg);
  611. return s->base;
  612. }
  613. static void svm_get_segment(struct kvm_vcpu *vcpu,
  614. struct kvm_segment *var, int seg)
  615. {
  616. struct vmcb_seg *s = svm_seg(vcpu, seg);
  617. var->base = s->base;
  618. var->limit = s->limit;
  619. var->selector = s->selector;
  620. var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
  621. var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
  622. var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
  623. var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
  624. var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
  625. var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
  626. var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
  627. var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
  628. /* AMD's VMCB does not have an explicit unusable field, so emulate it
  629. * for cross vendor migration purposes by "not present"
  630. */
  631. var->unusable = !var->present || (var->type == 0);
  632. switch (seg) {
  633. case VCPU_SREG_CS:
  634. /*
  635. * SVM always stores 0 for the 'G' bit in the CS selector in
  636. * the VMCB on a VMEXIT. This hurts cross-vendor migration:
  637. * Intel's VMENTRY has a check on the 'G' bit.
  638. */
  639. var->g = s->limit > 0xfffff;
  640. break;
  641. case VCPU_SREG_TR:
  642. /*
  643. * Work around a bug where the busy flag in the tr selector
  644. * isn't exposed
  645. */
  646. var->type |= 0x2;
  647. break;
  648. case VCPU_SREG_DS:
  649. case VCPU_SREG_ES:
  650. case VCPU_SREG_FS:
  651. case VCPU_SREG_GS:
  652. /*
  653. * The accessed bit must always be set in the segment
  654. * descriptor cache, although it can be cleared in the
  655. * descriptor, the cached bit always remains at 1. Since
  656. * Intel has a check on this, set it here to support
  657. * cross-vendor migration.
  658. */
  659. if (!var->unusable)
  660. var->type |= 0x1;
  661. break;
  662. }
  663. }
  664. static int svm_get_cpl(struct kvm_vcpu *vcpu)
  665. {
  666. struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
  667. return save->cpl;
  668. }
  669. static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  670. {
  671. struct vcpu_svm *svm = to_svm(vcpu);
  672. dt->limit = svm->vmcb->save.idtr.limit;
  673. dt->base = svm->vmcb->save.idtr.base;
  674. }
  675. static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  676. {
  677. struct vcpu_svm *svm = to_svm(vcpu);
  678. svm->vmcb->save.idtr.limit = dt->limit;
  679. svm->vmcb->save.idtr.base = dt->base ;
  680. }
  681. static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  682. {
  683. struct vcpu_svm *svm = to_svm(vcpu);
  684. dt->limit = svm->vmcb->save.gdtr.limit;
  685. dt->base = svm->vmcb->save.gdtr.base;
  686. }
  687. static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  688. {
  689. struct vcpu_svm *svm = to_svm(vcpu);
  690. svm->vmcb->save.gdtr.limit = dt->limit;
  691. svm->vmcb->save.gdtr.base = dt->base ;
  692. }
  693. static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  694. {
  695. }
  696. static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  697. {
  698. struct vcpu_svm *svm = to_svm(vcpu);
  699. #ifdef CONFIG_X86_64
  700. if (vcpu->arch.shadow_efer & EFER_LME) {
  701. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  702. vcpu->arch.shadow_efer |= EFER_LMA;
  703. svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
  704. }
  705. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
  706. vcpu->arch.shadow_efer &= ~EFER_LMA;
  707. svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
  708. }
  709. }
  710. #endif
  711. if (npt_enabled)
  712. goto set;
  713. if ((vcpu->arch.cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
  714. svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
  715. vcpu->fpu_active = 1;
  716. }
  717. vcpu->arch.cr0 = cr0;
  718. cr0 |= X86_CR0_PG | X86_CR0_WP;
  719. if (!vcpu->fpu_active) {
  720. svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
  721. cr0 |= X86_CR0_TS;
  722. }
  723. set:
  724. /*
  725. * re-enable caching here because the QEMU bios
  726. * does not do it - this results in some delay at
  727. * reboot
  728. */
  729. cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
  730. svm->vmcb->save.cr0 = cr0;
  731. }
  732. static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  733. {
  734. unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
  735. unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
  736. if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
  737. force_new_asid(vcpu);
  738. vcpu->arch.cr4 = cr4;
  739. if (!npt_enabled)
  740. cr4 |= X86_CR4_PAE;
  741. cr4 |= host_cr4_mce;
  742. to_svm(vcpu)->vmcb->save.cr4 = cr4;
  743. }
  744. static void svm_set_segment(struct kvm_vcpu *vcpu,
  745. struct kvm_segment *var, int seg)
  746. {
  747. struct vcpu_svm *svm = to_svm(vcpu);
  748. struct vmcb_seg *s = svm_seg(vcpu, seg);
  749. s->base = var->base;
  750. s->limit = var->limit;
  751. s->selector = var->selector;
  752. if (var->unusable)
  753. s->attrib = 0;
  754. else {
  755. s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
  756. s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
  757. s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
  758. s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
  759. s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
  760. s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
  761. s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
  762. s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
  763. }
  764. if (seg == VCPU_SREG_CS)
  765. svm->vmcb->save.cpl
  766. = (svm->vmcb->save.cs.attrib
  767. >> SVM_SELECTOR_DPL_SHIFT) & 3;
  768. }
  769. static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  770. {
  771. int old_debug = vcpu->guest_debug;
  772. struct vcpu_svm *svm = to_svm(vcpu);
  773. vcpu->guest_debug = dbg->control;
  774. svm->vmcb->control.intercept_exceptions &=
  775. ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
  776. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  777. if (vcpu->guest_debug &
  778. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  779. svm->vmcb->control.intercept_exceptions |=
  780. 1 << DB_VECTOR;
  781. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  782. svm->vmcb->control.intercept_exceptions |=
  783. 1 << BP_VECTOR;
  784. } else
  785. vcpu->guest_debug = 0;
  786. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  787. svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
  788. else
  789. svm->vmcb->save.dr7 = vcpu->arch.dr7;
  790. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  791. svm->vmcb->save.rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  792. else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
  793. svm->vmcb->save.rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  794. return 0;
  795. }
  796. static int svm_get_irq(struct kvm_vcpu *vcpu)
  797. {
  798. struct vcpu_svm *svm = to_svm(vcpu);
  799. u32 exit_int_info = svm->vmcb->control.exit_int_info;
  800. if (is_external_interrupt(exit_int_info))
  801. return exit_int_info & SVM_EVTINJ_VEC_MASK;
  802. return -1;
  803. }
  804. static void load_host_msrs(struct kvm_vcpu *vcpu)
  805. {
  806. #ifdef CONFIG_X86_64
  807. wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
  808. #endif
  809. }
  810. static void save_host_msrs(struct kvm_vcpu *vcpu)
  811. {
  812. #ifdef CONFIG_X86_64
  813. rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
  814. #endif
  815. }
  816. static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
  817. {
  818. if (svm_data->next_asid > svm_data->max_asid) {
  819. ++svm_data->asid_generation;
  820. svm_data->next_asid = 1;
  821. svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
  822. }
  823. svm->vcpu.cpu = svm_data->cpu;
  824. svm->asid_generation = svm_data->asid_generation;
  825. svm->vmcb->control.asid = svm_data->next_asid++;
  826. }
  827. static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
  828. {
  829. struct vcpu_svm *svm = to_svm(vcpu);
  830. unsigned long val;
  831. switch (dr) {
  832. case 0 ... 3:
  833. val = vcpu->arch.db[dr];
  834. break;
  835. case 6:
  836. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  837. val = vcpu->arch.dr6;
  838. else
  839. val = svm->vmcb->save.dr6;
  840. break;
  841. case 7:
  842. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  843. val = vcpu->arch.dr7;
  844. else
  845. val = svm->vmcb->save.dr7;
  846. break;
  847. default:
  848. val = 0;
  849. }
  850. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  851. return val;
  852. }
  853. static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
  854. int *exception)
  855. {
  856. struct vcpu_svm *svm = to_svm(vcpu);
  857. KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)value, handler);
  858. *exception = 0;
  859. switch (dr) {
  860. case 0 ... 3:
  861. vcpu->arch.db[dr] = value;
  862. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  863. vcpu->arch.eff_db[dr] = value;
  864. return;
  865. case 4 ... 5:
  866. if (vcpu->arch.cr4 & X86_CR4_DE)
  867. *exception = UD_VECTOR;
  868. return;
  869. case 6:
  870. if (value & 0xffffffff00000000ULL) {
  871. *exception = GP_VECTOR;
  872. return;
  873. }
  874. vcpu->arch.dr6 = (value & DR6_VOLATILE) | DR6_FIXED_1;
  875. return;
  876. case 7:
  877. if (value & 0xffffffff00000000ULL) {
  878. *exception = GP_VECTOR;
  879. return;
  880. }
  881. vcpu->arch.dr7 = (value & DR7_VOLATILE) | DR7_FIXED_1;
  882. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  883. svm->vmcb->save.dr7 = vcpu->arch.dr7;
  884. vcpu->arch.switch_db_regs = (value & DR7_BP_EN_MASK);
  885. }
  886. return;
  887. default:
  888. /* FIXME: Possible case? */
  889. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  890. __func__, dr);
  891. *exception = UD_VECTOR;
  892. return;
  893. }
  894. }
  895. static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  896. {
  897. u32 exit_int_info = svm->vmcb->control.exit_int_info;
  898. struct kvm *kvm = svm->vcpu.kvm;
  899. u64 fault_address;
  900. u32 error_code;
  901. bool event_injection = false;
  902. if (!irqchip_in_kernel(kvm) &&
  903. is_external_interrupt(exit_int_info)) {
  904. event_injection = true;
  905. kvm_push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
  906. }
  907. fault_address = svm->vmcb->control.exit_info_2;
  908. error_code = svm->vmcb->control.exit_info_1;
  909. if (!npt_enabled)
  910. KVMTRACE_3D(PAGE_FAULT, &svm->vcpu, error_code,
  911. (u32)fault_address, (u32)(fault_address >> 32),
  912. handler);
  913. else
  914. KVMTRACE_3D(TDP_FAULT, &svm->vcpu, error_code,
  915. (u32)fault_address, (u32)(fault_address >> 32),
  916. handler);
  917. /*
  918. * FIXME: Tis shouldn't be necessary here, but there is a flush
  919. * missing in the MMU code. Until we find this bug, flush the
  920. * complete TLB here on an NPF
  921. */
  922. if (npt_enabled)
  923. svm_flush_tlb(&svm->vcpu);
  924. if (!npt_enabled && event_injection)
  925. kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
  926. return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
  927. }
  928. static int db_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  929. {
  930. if (!(svm->vcpu.guest_debug &
  931. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  932. kvm_queue_exception(&svm->vcpu, DB_VECTOR);
  933. return 1;
  934. }
  935. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  936. kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
  937. kvm_run->debug.arch.exception = DB_VECTOR;
  938. return 0;
  939. }
  940. static int bp_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  941. {
  942. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  943. kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
  944. kvm_run->debug.arch.exception = BP_VECTOR;
  945. return 0;
  946. }
  947. static int ud_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  948. {
  949. int er;
  950. er = emulate_instruction(&svm->vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  951. if (er != EMULATE_DONE)
  952. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  953. return 1;
  954. }
  955. static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  956. {
  957. svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
  958. if (!(svm->vcpu.arch.cr0 & X86_CR0_TS))
  959. svm->vmcb->save.cr0 &= ~X86_CR0_TS;
  960. svm->vcpu.fpu_active = 1;
  961. return 1;
  962. }
  963. static int mc_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  964. {
  965. /*
  966. * On an #MC intercept the MCE handler is not called automatically in
  967. * the host. So do it by hand here.
  968. */
  969. asm volatile (
  970. "int $0x12\n");
  971. /* not sure if we ever come back to this point */
  972. return 1;
  973. }
  974. static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  975. {
  976. /*
  977. * VMCB is undefined after a SHUTDOWN intercept
  978. * so reinitialize it.
  979. */
  980. clear_page(svm->vmcb);
  981. init_vmcb(svm);
  982. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  983. return 0;
  984. }
  985. static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  986. {
  987. u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
  988. int size, in, string;
  989. unsigned port;
  990. ++svm->vcpu.stat.io_exits;
  991. svm->next_rip = svm->vmcb->control.exit_info_2;
  992. string = (io_info & SVM_IOIO_STR_MASK) != 0;
  993. if (string) {
  994. if (emulate_instruction(&svm->vcpu,
  995. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  996. return 0;
  997. return 1;
  998. }
  999. in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
  1000. port = io_info >> 16;
  1001. size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
  1002. skip_emulated_instruction(&svm->vcpu);
  1003. return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
  1004. }
  1005. static int nmi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  1006. {
  1007. KVMTRACE_0D(NMI, &svm->vcpu, handler);
  1008. return 1;
  1009. }
  1010. static int intr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  1011. {
  1012. ++svm->vcpu.stat.irq_exits;
  1013. KVMTRACE_0D(INTR, &svm->vcpu, handler);
  1014. return 1;
  1015. }
  1016. static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  1017. {
  1018. return 1;
  1019. }
  1020. static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  1021. {
  1022. svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
  1023. skip_emulated_instruction(&svm->vcpu);
  1024. return kvm_emulate_halt(&svm->vcpu);
  1025. }
  1026. static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  1027. {
  1028. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1029. skip_emulated_instruction(&svm->vcpu);
  1030. kvm_emulate_hypercall(&svm->vcpu);
  1031. return 1;
  1032. }
  1033. static int nested_svm_check_permissions(struct vcpu_svm *svm)
  1034. {
  1035. if (!(svm->vcpu.arch.shadow_efer & EFER_SVME)
  1036. || !is_paging(&svm->vcpu)) {
  1037. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  1038. return 1;
  1039. }
  1040. if (svm->vmcb->save.cpl) {
  1041. kvm_inject_gp(&svm->vcpu, 0);
  1042. return 1;
  1043. }
  1044. return 0;
  1045. }
  1046. static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
  1047. bool has_error_code, u32 error_code)
  1048. {
  1049. if (is_nested(svm)) {
  1050. svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
  1051. svm->vmcb->control.exit_code_hi = 0;
  1052. svm->vmcb->control.exit_info_1 = error_code;
  1053. svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
  1054. if (nested_svm_exit_handled(svm, false)) {
  1055. nsvm_printk("VMexit -> EXCP 0x%x\n", nr);
  1056. nested_svm_vmexit(svm);
  1057. return 1;
  1058. }
  1059. }
  1060. return 0;
  1061. }
  1062. static inline int nested_svm_intr(struct vcpu_svm *svm)
  1063. {
  1064. if (is_nested(svm)) {
  1065. if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
  1066. return 0;
  1067. if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
  1068. return 0;
  1069. svm->vmcb->control.exit_code = SVM_EXIT_INTR;
  1070. if (nested_svm_exit_handled(svm, false)) {
  1071. nsvm_printk("VMexit -> INTR\n");
  1072. nested_svm_vmexit(svm);
  1073. return 1;
  1074. }
  1075. }
  1076. return 0;
  1077. }
  1078. static struct page *nested_svm_get_page(struct vcpu_svm *svm, u64 gpa)
  1079. {
  1080. struct page *page;
  1081. down_read(&current->mm->mmap_sem);
  1082. page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
  1083. up_read(&current->mm->mmap_sem);
  1084. if (is_error_page(page)) {
  1085. printk(KERN_INFO "%s: could not find page at 0x%llx\n",
  1086. __func__, gpa);
  1087. kvm_release_page_clean(page);
  1088. kvm_inject_gp(&svm->vcpu, 0);
  1089. return NULL;
  1090. }
  1091. return page;
  1092. }
  1093. static int nested_svm_do(struct vcpu_svm *svm,
  1094. u64 arg1_gpa, u64 arg2_gpa, void *opaque,
  1095. int (*handler)(struct vcpu_svm *svm,
  1096. void *arg1,
  1097. void *arg2,
  1098. void *opaque))
  1099. {
  1100. struct page *arg1_page;
  1101. struct page *arg2_page = NULL;
  1102. void *arg1;
  1103. void *arg2 = NULL;
  1104. int retval;
  1105. arg1_page = nested_svm_get_page(svm, arg1_gpa);
  1106. if(arg1_page == NULL)
  1107. return 1;
  1108. if (arg2_gpa) {
  1109. arg2_page = nested_svm_get_page(svm, arg2_gpa);
  1110. if(arg2_page == NULL) {
  1111. kvm_release_page_clean(arg1_page);
  1112. return 1;
  1113. }
  1114. }
  1115. arg1 = kmap_atomic(arg1_page, KM_USER0);
  1116. if (arg2_gpa)
  1117. arg2 = kmap_atomic(arg2_page, KM_USER1);
  1118. retval = handler(svm, arg1, arg2, opaque);
  1119. kunmap_atomic(arg1, KM_USER0);
  1120. if (arg2_gpa)
  1121. kunmap_atomic(arg2, KM_USER1);
  1122. kvm_release_page_dirty(arg1_page);
  1123. if (arg2_gpa)
  1124. kvm_release_page_dirty(arg2_page);
  1125. return retval;
  1126. }
  1127. static int nested_svm_exit_handled_real(struct vcpu_svm *svm,
  1128. void *arg1,
  1129. void *arg2,
  1130. void *opaque)
  1131. {
  1132. struct vmcb *nested_vmcb = (struct vmcb *)arg1;
  1133. bool kvm_overrides = *(bool *)opaque;
  1134. u32 exit_code = svm->vmcb->control.exit_code;
  1135. if (kvm_overrides) {
  1136. switch (exit_code) {
  1137. case SVM_EXIT_INTR:
  1138. case SVM_EXIT_NMI:
  1139. return 0;
  1140. /* For now we are always handling NPFs when using them */
  1141. case SVM_EXIT_NPF:
  1142. if (npt_enabled)
  1143. return 0;
  1144. break;
  1145. /* When we're shadowing, trap PFs */
  1146. case SVM_EXIT_EXCP_BASE + PF_VECTOR:
  1147. if (!npt_enabled)
  1148. return 0;
  1149. break;
  1150. default:
  1151. break;
  1152. }
  1153. }
  1154. switch (exit_code) {
  1155. case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
  1156. u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
  1157. if (nested_vmcb->control.intercept_cr_read & cr_bits)
  1158. return 1;
  1159. break;
  1160. }
  1161. case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
  1162. u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
  1163. if (nested_vmcb->control.intercept_cr_write & cr_bits)
  1164. return 1;
  1165. break;
  1166. }
  1167. case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
  1168. u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
  1169. if (nested_vmcb->control.intercept_dr_read & dr_bits)
  1170. return 1;
  1171. break;
  1172. }
  1173. case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
  1174. u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
  1175. if (nested_vmcb->control.intercept_dr_write & dr_bits)
  1176. return 1;
  1177. break;
  1178. }
  1179. case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
  1180. u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
  1181. if (nested_vmcb->control.intercept_exceptions & excp_bits)
  1182. return 1;
  1183. break;
  1184. }
  1185. default: {
  1186. u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
  1187. nsvm_printk("exit code: 0x%x\n", exit_code);
  1188. if (nested_vmcb->control.intercept & exit_bits)
  1189. return 1;
  1190. }
  1191. }
  1192. return 0;
  1193. }
  1194. static int nested_svm_exit_handled_msr(struct vcpu_svm *svm,
  1195. void *arg1, void *arg2,
  1196. void *opaque)
  1197. {
  1198. struct vmcb *nested_vmcb = (struct vmcb *)arg1;
  1199. u8 *msrpm = (u8 *)arg2;
  1200. u32 t0, t1;
  1201. u32 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  1202. u32 param = svm->vmcb->control.exit_info_1 & 1;
  1203. if (!(nested_vmcb->control.intercept & (1ULL << INTERCEPT_MSR_PROT)))
  1204. return 0;
  1205. switch(msr) {
  1206. case 0 ... 0x1fff:
  1207. t0 = (msr * 2) % 8;
  1208. t1 = msr / 8;
  1209. break;
  1210. case 0xc0000000 ... 0xc0001fff:
  1211. t0 = (8192 + msr - 0xc0000000) * 2;
  1212. t1 = (t0 / 8);
  1213. t0 %= 8;
  1214. break;
  1215. case 0xc0010000 ... 0xc0011fff:
  1216. t0 = (16384 + msr - 0xc0010000) * 2;
  1217. t1 = (t0 / 8);
  1218. t0 %= 8;
  1219. break;
  1220. default:
  1221. return 1;
  1222. break;
  1223. }
  1224. if (msrpm[t1] & ((1 << param) << t0))
  1225. return 1;
  1226. return 0;
  1227. }
  1228. static int nested_svm_exit_handled(struct vcpu_svm *svm, bool kvm_override)
  1229. {
  1230. bool k = kvm_override;
  1231. switch (svm->vmcb->control.exit_code) {
  1232. case SVM_EXIT_MSR:
  1233. return nested_svm_do(svm, svm->nested_vmcb,
  1234. svm->nested_vmcb_msrpm, NULL,
  1235. nested_svm_exit_handled_msr);
  1236. default: break;
  1237. }
  1238. return nested_svm_do(svm, svm->nested_vmcb, 0, &k,
  1239. nested_svm_exit_handled_real);
  1240. }
  1241. static int nested_svm_vmexit_real(struct vcpu_svm *svm, void *arg1,
  1242. void *arg2, void *opaque)
  1243. {
  1244. struct vmcb *nested_vmcb = (struct vmcb *)arg1;
  1245. struct vmcb *hsave = svm->hsave;
  1246. u64 nested_save[] = { nested_vmcb->save.cr0,
  1247. nested_vmcb->save.cr3,
  1248. nested_vmcb->save.cr4,
  1249. nested_vmcb->save.efer,
  1250. nested_vmcb->control.intercept_cr_read,
  1251. nested_vmcb->control.intercept_cr_write,
  1252. nested_vmcb->control.intercept_dr_read,
  1253. nested_vmcb->control.intercept_dr_write,
  1254. nested_vmcb->control.intercept_exceptions,
  1255. nested_vmcb->control.intercept,
  1256. nested_vmcb->control.msrpm_base_pa,
  1257. nested_vmcb->control.iopm_base_pa,
  1258. nested_vmcb->control.tsc_offset };
  1259. /* Give the current vmcb to the guest */
  1260. memcpy(nested_vmcb, svm->vmcb, sizeof(struct vmcb));
  1261. nested_vmcb->save.cr0 = nested_save[0];
  1262. if (!npt_enabled)
  1263. nested_vmcb->save.cr3 = nested_save[1];
  1264. nested_vmcb->save.cr4 = nested_save[2];
  1265. nested_vmcb->save.efer = nested_save[3];
  1266. nested_vmcb->control.intercept_cr_read = nested_save[4];
  1267. nested_vmcb->control.intercept_cr_write = nested_save[5];
  1268. nested_vmcb->control.intercept_dr_read = nested_save[6];
  1269. nested_vmcb->control.intercept_dr_write = nested_save[7];
  1270. nested_vmcb->control.intercept_exceptions = nested_save[8];
  1271. nested_vmcb->control.intercept = nested_save[9];
  1272. nested_vmcb->control.msrpm_base_pa = nested_save[10];
  1273. nested_vmcb->control.iopm_base_pa = nested_save[11];
  1274. nested_vmcb->control.tsc_offset = nested_save[12];
  1275. /* We always set V_INTR_MASKING and remember the old value in hflags */
  1276. if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
  1277. nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
  1278. if ((nested_vmcb->control.int_ctl & V_IRQ_MASK) &&
  1279. (nested_vmcb->control.int_vector)) {
  1280. nsvm_printk("WARNING: IRQ 0x%x still enabled on #VMEXIT\n",
  1281. nested_vmcb->control.int_vector);
  1282. }
  1283. /* Restore the original control entries */
  1284. svm->vmcb->control = hsave->control;
  1285. /* Kill any pending exceptions */
  1286. if (svm->vcpu.arch.exception.pending == true)
  1287. nsvm_printk("WARNING: Pending Exception\n");
  1288. svm->vcpu.arch.exception.pending = false;
  1289. /* Restore selected save entries */
  1290. svm->vmcb->save.es = hsave->save.es;
  1291. svm->vmcb->save.cs = hsave->save.cs;
  1292. svm->vmcb->save.ss = hsave->save.ss;
  1293. svm->vmcb->save.ds = hsave->save.ds;
  1294. svm->vmcb->save.gdtr = hsave->save.gdtr;
  1295. svm->vmcb->save.idtr = hsave->save.idtr;
  1296. svm->vmcb->save.rflags = hsave->save.rflags;
  1297. svm_set_efer(&svm->vcpu, hsave->save.efer);
  1298. svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
  1299. svm_set_cr4(&svm->vcpu, hsave->save.cr4);
  1300. if (npt_enabled) {
  1301. svm->vmcb->save.cr3 = hsave->save.cr3;
  1302. svm->vcpu.arch.cr3 = hsave->save.cr3;
  1303. } else {
  1304. kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
  1305. }
  1306. kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
  1307. kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
  1308. kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
  1309. svm->vmcb->save.dr7 = 0;
  1310. svm->vmcb->save.cpl = 0;
  1311. svm->vmcb->control.exit_int_info = 0;
  1312. svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
  1313. /* Exit nested SVM mode */
  1314. svm->nested_vmcb = 0;
  1315. return 0;
  1316. }
  1317. static int nested_svm_vmexit(struct vcpu_svm *svm)
  1318. {
  1319. nsvm_printk("VMexit\n");
  1320. if (nested_svm_do(svm, svm->nested_vmcb, 0,
  1321. NULL, nested_svm_vmexit_real))
  1322. return 1;
  1323. kvm_mmu_reset_context(&svm->vcpu);
  1324. kvm_mmu_load(&svm->vcpu);
  1325. return 0;
  1326. }
  1327. static int nested_svm_vmrun_msrpm(struct vcpu_svm *svm, void *arg1,
  1328. void *arg2, void *opaque)
  1329. {
  1330. int i;
  1331. u32 *nested_msrpm = (u32*)arg1;
  1332. for (i=0; i< PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER) / 4; i++)
  1333. svm->nested_msrpm[i] = svm->msrpm[i] | nested_msrpm[i];
  1334. svm->vmcb->control.msrpm_base_pa = __pa(svm->nested_msrpm);
  1335. return 0;
  1336. }
  1337. static int nested_svm_vmrun(struct vcpu_svm *svm, void *arg1,
  1338. void *arg2, void *opaque)
  1339. {
  1340. struct vmcb *nested_vmcb = (struct vmcb *)arg1;
  1341. struct vmcb *hsave = svm->hsave;
  1342. /* nested_vmcb is our indicator if nested SVM is activated */
  1343. svm->nested_vmcb = svm->vmcb->save.rax;
  1344. /* Clear internal status */
  1345. svm->vcpu.arch.exception.pending = false;
  1346. /* Save the old vmcb, so we don't need to pick what we save, but
  1347. can restore everything when a VMEXIT occurs */
  1348. memcpy(hsave, svm->vmcb, sizeof(struct vmcb));
  1349. /* We need to remember the original CR3 in the SPT case */
  1350. if (!npt_enabled)
  1351. hsave->save.cr3 = svm->vcpu.arch.cr3;
  1352. hsave->save.cr4 = svm->vcpu.arch.cr4;
  1353. hsave->save.rip = svm->next_rip;
  1354. if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
  1355. svm->vcpu.arch.hflags |= HF_HIF_MASK;
  1356. else
  1357. svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
  1358. /* Load the nested guest state */
  1359. svm->vmcb->save.es = nested_vmcb->save.es;
  1360. svm->vmcb->save.cs = nested_vmcb->save.cs;
  1361. svm->vmcb->save.ss = nested_vmcb->save.ss;
  1362. svm->vmcb->save.ds = nested_vmcb->save.ds;
  1363. svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
  1364. svm->vmcb->save.idtr = nested_vmcb->save.idtr;
  1365. svm->vmcb->save.rflags = nested_vmcb->save.rflags;
  1366. svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
  1367. svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
  1368. svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
  1369. if (npt_enabled) {
  1370. svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
  1371. svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
  1372. } else {
  1373. kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
  1374. kvm_mmu_reset_context(&svm->vcpu);
  1375. }
  1376. svm->vmcb->save.cr2 = nested_vmcb->save.cr2;
  1377. kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
  1378. kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
  1379. kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
  1380. /* In case we don't even reach vcpu_run, the fields are not updated */
  1381. svm->vmcb->save.rax = nested_vmcb->save.rax;
  1382. svm->vmcb->save.rsp = nested_vmcb->save.rsp;
  1383. svm->vmcb->save.rip = nested_vmcb->save.rip;
  1384. svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
  1385. svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
  1386. svm->vmcb->save.cpl = nested_vmcb->save.cpl;
  1387. /* We don't want a nested guest to be more powerful than the guest,
  1388. so all intercepts are ORed */
  1389. svm->vmcb->control.intercept_cr_read |=
  1390. nested_vmcb->control.intercept_cr_read;
  1391. svm->vmcb->control.intercept_cr_write |=
  1392. nested_vmcb->control.intercept_cr_write;
  1393. svm->vmcb->control.intercept_dr_read |=
  1394. nested_vmcb->control.intercept_dr_read;
  1395. svm->vmcb->control.intercept_dr_write |=
  1396. nested_vmcb->control.intercept_dr_write;
  1397. svm->vmcb->control.intercept_exceptions |=
  1398. nested_vmcb->control.intercept_exceptions;
  1399. svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
  1400. svm->nested_vmcb_msrpm = nested_vmcb->control.msrpm_base_pa;
  1401. force_new_asid(&svm->vcpu);
  1402. svm->vmcb->control.exit_int_info = nested_vmcb->control.exit_int_info;
  1403. svm->vmcb->control.exit_int_info_err = nested_vmcb->control.exit_int_info_err;
  1404. svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
  1405. if (nested_vmcb->control.int_ctl & V_IRQ_MASK) {
  1406. nsvm_printk("nSVM Injecting Interrupt: 0x%x\n",
  1407. nested_vmcb->control.int_ctl);
  1408. }
  1409. if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
  1410. svm->vcpu.arch.hflags |= HF_VINTR_MASK;
  1411. else
  1412. svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
  1413. nsvm_printk("nSVM exit_int_info: 0x%x | int_state: 0x%x\n",
  1414. nested_vmcb->control.exit_int_info,
  1415. nested_vmcb->control.int_state);
  1416. svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
  1417. svm->vmcb->control.int_state = nested_vmcb->control.int_state;
  1418. svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
  1419. if (nested_vmcb->control.event_inj & SVM_EVTINJ_VALID)
  1420. nsvm_printk("Injecting Event: 0x%x\n",
  1421. nested_vmcb->control.event_inj);
  1422. svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
  1423. svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
  1424. svm->vcpu.arch.hflags |= HF_GIF_MASK;
  1425. return 0;
  1426. }
  1427. static int nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
  1428. {
  1429. to_vmcb->save.fs = from_vmcb->save.fs;
  1430. to_vmcb->save.gs = from_vmcb->save.gs;
  1431. to_vmcb->save.tr = from_vmcb->save.tr;
  1432. to_vmcb->save.ldtr = from_vmcb->save.ldtr;
  1433. to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
  1434. to_vmcb->save.star = from_vmcb->save.star;
  1435. to_vmcb->save.lstar = from_vmcb->save.lstar;
  1436. to_vmcb->save.cstar = from_vmcb->save.cstar;
  1437. to_vmcb->save.sfmask = from_vmcb->save.sfmask;
  1438. to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
  1439. to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
  1440. to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
  1441. return 1;
  1442. }
  1443. static int nested_svm_vmload(struct vcpu_svm *svm, void *nested_vmcb,
  1444. void *arg2, void *opaque)
  1445. {
  1446. return nested_svm_vmloadsave((struct vmcb *)nested_vmcb, svm->vmcb);
  1447. }
  1448. static int nested_svm_vmsave(struct vcpu_svm *svm, void *nested_vmcb,
  1449. void *arg2, void *opaque)
  1450. {
  1451. return nested_svm_vmloadsave(svm->vmcb, (struct vmcb *)nested_vmcb);
  1452. }
  1453. static int vmload_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  1454. {
  1455. if (nested_svm_check_permissions(svm))
  1456. return 1;
  1457. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1458. skip_emulated_instruction(&svm->vcpu);
  1459. nested_svm_do(svm, svm->vmcb->save.rax, 0, NULL, nested_svm_vmload);
  1460. return 1;
  1461. }
  1462. static int vmsave_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  1463. {
  1464. if (nested_svm_check_permissions(svm))
  1465. return 1;
  1466. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1467. skip_emulated_instruction(&svm->vcpu);
  1468. nested_svm_do(svm, svm->vmcb->save.rax, 0, NULL, nested_svm_vmsave);
  1469. return 1;
  1470. }
  1471. static int vmrun_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  1472. {
  1473. nsvm_printk("VMrun\n");
  1474. if (nested_svm_check_permissions(svm))
  1475. return 1;
  1476. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1477. skip_emulated_instruction(&svm->vcpu);
  1478. if (nested_svm_do(svm, svm->vmcb->save.rax, 0,
  1479. NULL, nested_svm_vmrun))
  1480. return 1;
  1481. if (nested_svm_do(svm, svm->nested_vmcb_msrpm, 0,
  1482. NULL, nested_svm_vmrun_msrpm))
  1483. return 1;
  1484. return 1;
  1485. }
  1486. static int stgi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  1487. {
  1488. if (nested_svm_check_permissions(svm))
  1489. return 1;
  1490. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1491. skip_emulated_instruction(&svm->vcpu);
  1492. svm->vcpu.arch.hflags |= HF_GIF_MASK;
  1493. return 1;
  1494. }
  1495. static int clgi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  1496. {
  1497. if (nested_svm_check_permissions(svm))
  1498. return 1;
  1499. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1500. skip_emulated_instruction(&svm->vcpu);
  1501. svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
  1502. /* After a CLGI no interrupts should come */
  1503. svm_clear_vintr(svm);
  1504. svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
  1505. return 1;
  1506. }
  1507. static int invalid_op_interception(struct vcpu_svm *svm,
  1508. struct kvm_run *kvm_run)
  1509. {
  1510. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  1511. return 1;
  1512. }
  1513. static int task_switch_interception(struct vcpu_svm *svm,
  1514. struct kvm_run *kvm_run)
  1515. {
  1516. u16 tss_selector;
  1517. int reason;
  1518. int int_type = svm->vmcb->control.exit_int_info &
  1519. SVM_EXITINTINFO_TYPE_MASK;
  1520. int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
  1521. tss_selector = (u16)svm->vmcb->control.exit_info_1;
  1522. if (svm->vmcb->control.exit_info_2 &
  1523. (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
  1524. reason = TASK_SWITCH_IRET;
  1525. else if (svm->vmcb->control.exit_info_2 &
  1526. (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
  1527. reason = TASK_SWITCH_JMP;
  1528. else if (svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID)
  1529. reason = TASK_SWITCH_GATE;
  1530. else
  1531. reason = TASK_SWITCH_CALL;
  1532. if (reason != TASK_SWITCH_GATE ||
  1533. int_type == SVM_EXITINTINFO_TYPE_SOFT ||
  1534. (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
  1535. (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
  1536. if (emulate_instruction(&svm->vcpu, kvm_run, 0, 0,
  1537. EMULTYPE_SKIP) != EMULATE_DONE)
  1538. return 0;
  1539. }
  1540. return kvm_task_switch(&svm->vcpu, tss_selector, reason);
  1541. }
  1542. static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  1543. {
  1544. svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
  1545. kvm_emulate_cpuid(&svm->vcpu);
  1546. return 1;
  1547. }
  1548. static int invlpg_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  1549. {
  1550. if (emulate_instruction(&svm->vcpu, kvm_run, 0, 0, 0) != EMULATE_DONE)
  1551. pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
  1552. return 1;
  1553. }
  1554. static int emulate_on_interception(struct vcpu_svm *svm,
  1555. struct kvm_run *kvm_run)
  1556. {
  1557. if (emulate_instruction(&svm->vcpu, NULL, 0, 0, 0) != EMULATE_DONE)
  1558. pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
  1559. return 1;
  1560. }
  1561. static int cr8_write_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  1562. {
  1563. emulate_instruction(&svm->vcpu, NULL, 0, 0, 0);
  1564. if (irqchip_in_kernel(svm->vcpu.kvm))
  1565. return 1;
  1566. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  1567. return 0;
  1568. }
  1569. static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
  1570. {
  1571. struct vcpu_svm *svm = to_svm(vcpu);
  1572. switch (ecx) {
  1573. case MSR_IA32_TIME_STAMP_COUNTER: {
  1574. u64 tsc;
  1575. rdtscll(tsc);
  1576. *data = svm->vmcb->control.tsc_offset + tsc;
  1577. break;
  1578. }
  1579. case MSR_K6_STAR:
  1580. *data = svm->vmcb->save.star;
  1581. break;
  1582. #ifdef CONFIG_X86_64
  1583. case MSR_LSTAR:
  1584. *data = svm->vmcb->save.lstar;
  1585. break;
  1586. case MSR_CSTAR:
  1587. *data = svm->vmcb->save.cstar;
  1588. break;
  1589. case MSR_KERNEL_GS_BASE:
  1590. *data = svm->vmcb->save.kernel_gs_base;
  1591. break;
  1592. case MSR_SYSCALL_MASK:
  1593. *data = svm->vmcb->save.sfmask;
  1594. break;
  1595. #endif
  1596. case MSR_IA32_SYSENTER_CS:
  1597. *data = svm->vmcb->save.sysenter_cs;
  1598. break;
  1599. case MSR_IA32_SYSENTER_EIP:
  1600. *data = svm->vmcb->save.sysenter_eip;
  1601. break;
  1602. case MSR_IA32_SYSENTER_ESP:
  1603. *data = svm->vmcb->save.sysenter_esp;
  1604. break;
  1605. /* Nobody will change the following 5 values in the VMCB so
  1606. we can safely return them on rdmsr. They will always be 0
  1607. until LBRV is implemented. */
  1608. case MSR_IA32_DEBUGCTLMSR:
  1609. *data = svm->vmcb->save.dbgctl;
  1610. break;
  1611. case MSR_IA32_LASTBRANCHFROMIP:
  1612. *data = svm->vmcb->save.br_from;
  1613. break;
  1614. case MSR_IA32_LASTBRANCHTOIP:
  1615. *data = svm->vmcb->save.br_to;
  1616. break;
  1617. case MSR_IA32_LASTINTFROMIP:
  1618. *data = svm->vmcb->save.last_excp_from;
  1619. break;
  1620. case MSR_IA32_LASTINTTOIP:
  1621. *data = svm->vmcb->save.last_excp_to;
  1622. break;
  1623. case MSR_VM_HSAVE_PA:
  1624. *data = svm->hsave_msr;
  1625. break;
  1626. case MSR_VM_CR:
  1627. *data = 0;
  1628. break;
  1629. case MSR_IA32_UCODE_REV:
  1630. *data = 0x01000065;
  1631. break;
  1632. default:
  1633. return kvm_get_msr_common(vcpu, ecx, data);
  1634. }
  1635. return 0;
  1636. }
  1637. static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  1638. {
  1639. u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  1640. u64 data;
  1641. if (svm_get_msr(&svm->vcpu, ecx, &data))
  1642. kvm_inject_gp(&svm->vcpu, 0);
  1643. else {
  1644. KVMTRACE_3D(MSR_READ, &svm->vcpu, ecx, (u32)data,
  1645. (u32)(data >> 32), handler);
  1646. svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
  1647. svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
  1648. svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
  1649. skip_emulated_instruction(&svm->vcpu);
  1650. }
  1651. return 1;
  1652. }
  1653. static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
  1654. {
  1655. struct vcpu_svm *svm = to_svm(vcpu);
  1656. switch (ecx) {
  1657. case MSR_IA32_TIME_STAMP_COUNTER: {
  1658. u64 tsc;
  1659. rdtscll(tsc);
  1660. svm->vmcb->control.tsc_offset = data - tsc;
  1661. break;
  1662. }
  1663. case MSR_K6_STAR:
  1664. svm->vmcb->save.star = data;
  1665. break;
  1666. #ifdef CONFIG_X86_64
  1667. case MSR_LSTAR:
  1668. svm->vmcb->save.lstar = data;
  1669. break;
  1670. case MSR_CSTAR:
  1671. svm->vmcb->save.cstar = data;
  1672. break;
  1673. case MSR_KERNEL_GS_BASE:
  1674. svm->vmcb->save.kernel_gs_base = data;
  1675. break;
  1676. case MSR_SYSCALL_MASK:
  1677. svm->vmcb->save.sfmask = data;
  1678. break;
  1679. #endif
  1680. case MSR_IA32_SYSENTER_CS:
  1681. svm->vmcb->save.sysenter_cs = data;
  1682. break;
  1683. case MSR_IA32_SYSENTER_EIP:
  1684. svm->vmcb->save.sysenter_eip = data;
  1685. break;
  1686. case MSR_IA32_SYSENTER_ESP:
  1687. svm->vmcb->save.sysenter_esp = data;
  1688. break;
  1689. case MSR_IA32_DEBUGCTLMSR:
  1690. if (!svm_has(SVM_FEATURE_LBRV)) {
  1691. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
  1692. __func__, data);
  1693. break;
  1694. }
  1695. if (data & DEBUGCTL_RESERVED_BITS)
  1696. return 1;
  1697. svm->vmcb->save.dbgctl = data;
  1698. if (data & (1ULL<<0))
  1699. svm_enable_lbrv(svm);
  1700. else
  1701. svm_disable_lbrv(svm);
  1702. break;
  1703. case MSR_K7_EVNTSEL0:
  1704. case MSR_K7_EVNTSEL1:
  1705. case MSR_K7_EVNTSEL2:
  1706. case MSR_K7_EVNTSEL3:
  1707. case MSR_K7_PERFCTR0:
  1708. case MSR_K7_PERFCTR1:
  1709. case MSR_K7_PERFCTR2:
  1710. case MSR_K7_PERFCTR3:
  1711. /*
  1712. * Just discard all writes to the performance counters; this
  1713. * should keep both older linux and windows 64-bit guests
  1714. * happy
  1715. */
  1716. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", ecx, data);
  1717. break;
  1718. case MSR_VM_HSAVE_PA:
  1719. svm->hsave_msr = data;
  1720. break;
  1721. default:
  1722. return kvm_set_msr_common(vcpu, ecx, data);
  1723. }
  1724. return 0;
  1725. }
  1726. static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  1727. {
  1728. u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  1729. u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
  1730. | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  1731. KVMTRACE_3D(MSR_WRITE, &svm->vcpu, ecx, (u32)data, (u32)(data >> 32),
  1732. handler);
  1733. svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
  1734. if (svm_set_msr(&svm->vcpu, ecx, data))
  1735. kvm_inject_gp(&svm->vcpu, 0);
  1736. else
  1737. skip_emulated_instruction(&svm->vcpu);
  1738. return 1;
  1739. }
  1740. static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  1741. {
  1742. if (svm->vmcb->control.exit_info_1)
  1743. return wrmsr_interception(svm, kvm_run);
  1744. else
  1745. return rdmsr_interception(svm, kvm_run);
  1746. }
  1747. static int interrupt_window_interception(struct vcpu_svm *svm,
  1748. struct kvm_run *kvm_run)
  1749. {
  1750. KVMTRACE_0D(PEND_INTR, &svm->vcpu, handler);
  1751. svm_clear_vintr(svm);
  1752. svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
  1753. /*
  1754. * If the user space waits to inject interrupts, exit as soon as
  1755. * possible
  1756. */
  1757. if (!irqchip_in_kernel(svm->vcpu.kvm) &&
  1758. kvm_run->request_interrupt_window &&
  1759. !kvm_cpu_has_interrupt(&svm->vcpu)) {
  1760. ++svm->vcpu.stat.irq_window_exits;
  1761. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1762. return 0;
  1763. }
  1764. return 1;
  1765. }
  1766. static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
  1767. struct kvm_run *kvm_run) = {
  1768. [SVM_EXIT_READ_CR0] = emulate_on_interception,
  1769. [SVM_EXIT_READ_CR3] = emulate_on_interception,
  1770. [SVM_EXIT_READ_CR4] = emulate_on_interception,
  1771. [SVM_EXIT_READ_CR8] = emulate_on_interception,
  1772. /* for now: */
  1773. [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
  1774. [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
  1775. [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
  1776. [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
  1777. [SVM_EXIT_READ_DR0] = emulate_on_interception,
  1778. [SVM_EXIT_READ_DR1] = emulate_on_interception,
  1779. [SVM_EXIT_READ_DR2] = emulate_on_interception,
  1780. [SVM_EXIT_READ_DR3] = emulate_on_interception,
  1781. [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
  1782. [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
  1783. [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
  1784. [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
  1785. [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
  1786. [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
  1787. [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
  1788. [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
  1789. [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
  1790. [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
  1791. [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
  1792. [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
  1793. [SVM_EXIT_INTR] = intr_interception,
  1794. [SVM_EXIT_NMI] = nmi_interception,
  1795. [SVM_EXIT_SMI] = nop_on_interception,
  1796. [SVM_EXIT_INIT] = nop_on_interception,
  1797. [SVM_EXIT_VINTR] = interrupt_window_interception,
  1798. /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
  1799. [SVM_EXIT_CPUID] = cpuid_interception,
  1800. [SVM_EXIT_INVD] = emulate_on_interception,
  1801. [SVM_EXIT_HLT] = halt_interception,
  1802. [SVM_EXIT_INVLPG] = invlpg_interception,
  1803. [SVM_EXIT_INVLPGA] = invalid_op_interception,
  1804. [SVM_EXIT_IOIO] = io_interception,
  1805. [SVM_EXIT_MSR] = msr_interception,
  1806. [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
  1807. [SVM_EXIT_SHUTDOWN] = shutdown_interception,
  1808. [SVM_EXIT_VMRUN] = vmrun_interception,
  1809. [SVM_EXIT_VMMCALL] = vmmcall_interception,
  1810. [SVM_EXIT_VMLOAD] = vmload_interception,
  1811. [SVM_EXIT_VMSAVE] = vmsave_interception,
  1812. [SVM_EXIT_STGI] = stgi_interception,
  1813. [SVM_EXIT_CLGI] = clgi_interception,
  1814. [SVM_EXIT_SKINIT] = invalid_op_interception,
  1815. [SVM_EXIT_WBINVD] = emulate_on_interception,
  1816. [SVM_EXIT_MONITOR] = invalid_op_interception,
  1817. [SVM_EXIT_MWAIT] = invalid_op_interception,
  1818. [SVM_EXIT_NPF] = pf_interception,
  1819. };
  1820. static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1821. {
  1822. struct vcpu_svm *svm = to_svm(vcpu);
  1823. u32 exit_code = svm->vmcb->control.exit_code;
  1824. KVMTRACE_3D(VMEXIT, vcpu, exit_code, (u32)svm->vmcb->save.rip,
  1825. (u32)((u64)svm->vmcb->save.rip >> 32), entryexit);
  1826. if (is_nested(svm)) {
  1827. nsvm_printk("nested handle_exit: 0x%x | 0x%lx | 0x%lx | 0x%lx\n",
  1828. exit_code, svm->vmcb->control.exit_info_1,
  1829. svm->vmcb->control.exit_info_2, svm->vmcb->save.rip);
  1830. if (nested_svm_exit_handled(svm, true)) {
  1831. nested_svm_vmexit(svm);
  1832. nsvm_printk("-> #VMEXIT\n");
  1833. return 1;
  1834. }
  1835. }
  1836. if (npt_enabled) {
  1837. int mmu_reload = 0;
  1838. if ((vcpu->arch.cr0 ^ svm->vmcb->save.cr0) & X86_CR0_PG) {
  1839. svm_set_cr0(vcpu, svm->vmcb->save.cr0);
  1840. mmu_reload = 1;
  1841. }
  1842. vcpu->arch.cr0 = svm->vmcb->save.cr0;
  1843. vcpu->arch.cr3 = svm->vmcb->save.cr3;
  1844. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1845. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1846. kvm_inject_gp(vcpu, 0);
  1847. return 1;
  1848. }
  1849. }
  1850. if (mmu_reload) {
  1851. kvm_mmu_reset_context(vcpu);
  1852. kvm_mmu_load(vcpu);
  1853. }
  1854. }
  1855. kvm_reput_irq(svm);
  1856. if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
  1857. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1858. kvm_run->fail_entry.hardware_entry_failure_reason
  1859. = svm->vmcb->control.exit_code;
  1860. return 0;
  1861. }
  1862. if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
  1863. exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
  1864. exit_code != SVM_EXIT_NPF)
  1865. printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
  1866. "exit_code 0x%x\n",
  1867. __func__, svm->vmcb->control.exit_int_info,
  1868. exit_code);
  1869. if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
  1870. || !svm_exit_handlers[exit_code]) {
  1871. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1872. kvm_run->hw.hardware_exit_reason = exit_code;
  1873. return 0;
  1874. }
  1875. return svm_exit_handlers[exit_code](svm, kvm_run);
  1876. }
  1877. static void reload_tss(struct kvm_vcpu *vcpu)
  1878. {
  1879. int cpu = raw_smp_processor_id();
  1880. struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
  1881. svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
  1882. load_TR_desc();
  1883. }
  1884. static void pre_svm_run(struct vcpu_svm *svm)
  1885. {
  1886. int cpu = raw_smp_processor_id();
  1887. struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
  1888. svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
  1889. if (svm->vcpu.cpu != cpu ||
  1890. svm->asid_generation != svm_data->asid_generation)
  1891. new_asid(svm, svm_data);
  1892. }
  1893. static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
  1894. {
  1895. struct vmcb_control_area *control;
  1896. KVMTRACE_1D(INJ_VIRQ, &svm->vcpu, (u32)irq, handler);
  1897. ++svm->vcpu.stat.irq_injections;
  1898. control = &svm->vmcb->control;
  1899. control->int_vector = irq;
  1900. control->int_ctl &= ~V_INTR_PRIO_MASK;
  1901. control->int_ctl |= V_IRQ_MASK |
  1902. ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
  1903. }
  1904. static void svm_set_irq(struct kvm_vcpu *vcpu, int irq)
  1905. {
  1906. struct vcpu_svm *svm = to_svm(vcpu);
  1907. nested_svm_intr(svm);
  1908. svm_inject_irq(svm, irq);
  1909. }
  1910. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  1911. {
  1912. struct vcpu_svm *svm = to_svm(vcpu);
  1913. struct vmcb *vmcb = svm->vmcb;
  1914. int max_irr, tpr;
  1915. if (!irqchip_in_kernel(vcpu->kvm) || vcpu->arch.apic->vapic_addr)
  1916. return;
  1917. vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
  1918. max_irr = kvm_lapic_find_highest_irr(vcpu);
  1919. if (max_irr == -1)
  1920. return;
  1921. tpr = kvm_lapic_get_cr8(vcpu) << 4;
  1922. if (tpr >= (max_irr & 0xf0))
  1923. vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
  1924. }
  1925. static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
  1926. {
  1927. struct vcpu_svm *svm = to_svm(vcpu);
  1928. struct vmcb *vmcb = svm->vmcb;
  1929. return (vmcb->save.rflags & X86_EFLAGS_IF) &&
  1930. !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
  1931. (svm->vcpu.arch.hflags & HF_GIF_MASK);
  1932. }
  1933. static void svm_intr_assist(struct kvm_vcpu *vcpu)
  1934. {
  1935. struct vcpu_svm *svm = to_svm(vcpu);
  1936. struct vmcb *vmcb = svm->vmcb;
  1937. int intr_vector = -1;
  1938. if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
  1939. ((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
  1940. intr_vector = vmcb->control.exit_int_info &
  1941. SVM_EVTINJ_VEC_MASK;
  1942. vmcb->control.exit_int_info = 0;
  1943. svm_inject_irq(svm, intr_vector);
  1944. goto out;
  1945. }
  1946. if (vmcb->control.int_ctl & V_IRQ_MASK)
  1947. goto out;
  1948. if (!kvm_cpu_has_interrupt(vcpu))
  1949. goto out;
  1950. if (nested_svm_intr(svm))
  1951. goto out;
  1952. if (!(svm->vcpu.arch.hflags & HF_GIF_MASK))
  1953. goto out;
  1954. if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
  1955. (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
  1956. (vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
  1957. /* unable to deliver irq, set pending irq */
  1958. svm_set_vintr(svm);
  1959. svm_inject_irq(svm, 0x0);
  1960. goto out;
  1961. }
  1962. /* Okay, we can deliver the interrupt: grab it and update PIC state. */
  1963. intr_vector = kvm_cpu_get_interrupt(vcpu);
  1964. svm_inject_irq(svm, intr_vector);
  1965. out:
  1966. update_cr8_intercept(vcpu);
  1967. }
  1968. static void kvm_reput_irq(struct vcpu_svm *svm)
  1969. {
  1970. struct vmcb_control_area *control = &svm->vmcb->control;
  1971. if ((control->int_ctl & V_IRQ_MASK)
  1972. && !irqchip_in_kernel(svm->vcpu.kvm)) {
  1973. control->int_ctl &= ~V_IRQ_MASK;
  1974. kvm_push_irq(&svm->vcpu, control->int_vector);
  1975. }
  1976. svm->vcpu.arch.interrupt_window_open =
  1977. !(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
  1978. (svm->vcpu.arch.hflags & HF_GIF_MASK);
  1979. }
  1980. static void svm_do_inject_vector(struct vcpu_svm *svm)
  1981. {
  1982. svm_inject_irq(svm, kvm_pop_irq(&svm->vcpu));
  1983. }
  1984. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1985. struct kvm_run *kvm_run)
  1986. {
  1987. struct vcpu_svm *svm = to_svm(vcpu);
  1988. struct vmcb_control_area *control = &svm->vmcb->control;
  1989. if (nested_svm_intr(svm))
  1990. return;
  1991. svm->vcpu.arch.interrupt_window_open =
  1992. (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
  1993. (svm->vmcb->save.rflags & X86_EFLAGS_IF) &&
  1994. (svm->vcpu.arch.hflags & HF_GIF_MASK));
  1995. if (svm->vcpu.arch.interrupt_window_open &&
  1996. kvm_cpu_has_interrupt(&svm->vcpu))
  1997. /*
  1998. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1999. */
  2000. svm_do_inject_vector(svm);
  2001. /*
  2002. * Interrupts blocked. Wait for unblock.
  2003. */
  2004. if (!svm->vcpu.arch.interrupt_window_open &&
  2005. (kvm_cpu_has_interrupt(&svm->vcpu) ||
  2006. kvm_run->request_interrupt_window))
  2007. svm_set_vintr(svm);
  2008. else
  2009. svm_clear_vintr(svm);
  2010. }
  2011. static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2012. {
  2013. return 0;
  2014. }
  2015. static void svm_flush_tlb(struct kvm_vcpu *vcpu)
  2016. {
  2017. force_new_asid(vcpu);
  2018. }
  2019. static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
  2020. {
  2021. }
  2022. static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
  2023. {
  2024. struct vcpu_svm *svm = to_svm(vcpu);
  2025. if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
  2026. int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
  2027. kvm_lapic_set_tpr(vcpu, cr8);
  2028. }
  2029. }
  2030. static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
  2031. {
  2032. struct vcpu_svm *svm = to_svm(vcpu);
  2033. u64 cr8;
  2034. if (!irqchip_in_kernel(vcpu->kvm))
  2035. return;
  2036. cr8 = kvm_get_cr8(vcpu);
  2037. svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
  2038. svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
  2039. }
  2040. #ifdef CONFIG_X86_64
  2041. #define R "r"
  2042. #else
  2043. #define R "e"
  2044. #endif
  2045. static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2046. {
  2047. struct vcpu_svm *svm = to_svm(vcpu);
  2048. u16 fs_selector;
  2049. u16 gs_selector;
  2050. u16 ldt_selector;
  2051. svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
  2052. svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
  2053. svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
  2054. pre_svm_run(svm);
  2055. sync_lapic_to_cr8(vcpu);
  2056. save_host_msrs(vcpu);
  2057. fs_selector = kvm_read_fs();
  2058. gs_selector = kvm_read_gs();
  2059. ldt_selector = kvm_read_ldt();
  2060. svm->host_cr2 = kvm_read_cr2();
  2061. if (!is_nested(svm))
  2062. svm->vmcb->save.cr2 = vcpu->arch.cr2;
  2063. /* required for live migration with NPT */
  2064. if (npt_enabled)
  2065. svm->vmcb->save.cr3 = vcpu->arch.cr3;
  2066. clgi();
  2067. local_irq_enable();
  2068. asm volatile (
  2069. "push %%"R"bp; \n\t"
  2070. "mov %c[rbx](%[svm]), %%"R"bx \n\t"
  2071. "mov %c[rcx](%[svm]), %%"R"cx \n\t"
  2072. "mov %c[rdx](%[svm]), %%"R"dx \n\t"
  2073. "mov %c[rsi](%[svm]), %%"R"si \n\t"
  2074. "mov %c[rdi](%[svm]), %%"R"di \n\t"
  2075. "mov %c[rbp](%[svm]), %%"R"bp \n\t"
  2076. #ifdef CONFIG_X86_64
  2077. "mov %c[r8](%[svm]), %%r8 \n\t"
  2078. "mov %c[r9](%[svm]), %%r9 \n\t"
  2079. "mov %c[r10](%[svm]), %%r10 \n\t"
  2080. "mov %c[r11](%[svm]), %%r11 \n\t"
  2081. "mov %c[r12](%[svm]), %%r12 \n\t"
  2082. "mov %c[r13](%[svm]), %%r13 \n\t"
  2083. "mov %c[r14](%[svm]), %%r14 \n\t"
  2084. "mov %c[r15](%[svm]), %%r15 \n\t"
  2085. #endif
  2086. /* Enter guest mode */
  2087. "push %%"R"ax \n\t"
  2088. "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
  2089. __ex(SVM_VMLOAD) "\n\t"
  2090. __ex(SVM_VMRUN) "\n\t"
  2091. __ex(SVM_VMSAVE) "\n\t"
  2092. "pop %%"R"ax \n\t"
  2093. /* Save guest registers, load host registers */
  2094. "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
  2095. "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
  2096. "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
  2097. "mov %%"R"si, %c[rsi](%[svm]) \n\t"
  2098. "mov %%"R"di, %c[rdi](%[svm]) \n\t"
  2099. "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
  2100. #ifdef CONFIG_X86_64
  2101. "mov %%r8, %c[r8](%[svm]) \n\t"
  2102. "mov %%r9, %c[r9](%[svm]) \n\t"
  2103. "mov %%r10, %c[r10](%[svm]) \n\t"
  2104. "mov %%r11, %c[r11](%[svm]) \n\t"
  2105. "mov %%r12, %c[r12](%[svm]) \n\t"
  2106. "mov %%r13, %c[r13](%[svm]) \n\t"
  2107. "mov %%r14, %c[r14](%[svm]) \n\t"
  2108. "mov %%r15, %c[r15](%[svm]) \n\t"
  2109. #endif
  2110. "pop %%"R"bp"
  2111. :
  2112. : [svm]"a"(svm),
  2113. [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
  2114. [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
  2115. [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
  2116. [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
  2117. [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
  2118. [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
  2119. [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
  2120. #ifdef CONFIG_X86_64
  2121. , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
  2122. [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
  2123. [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
  2124. [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
  2125. [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
  2126. [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
  2127. [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
  2128. [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
  2129. #endif
  2130. : "cc", "memory"
  2131. , R"bx", R"cx", R"dx", R"si", R"di"
  2132. #ifdef CONFIG_X86_64
  2133. , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
  2134. #endif
  2135. );
  2136. vcpu->arch.cr2 = svm->vmcb->save.cr2;
  2137. vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
  2138. vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
  2139. vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
  2140. kvm_write_cr2(svm->host_cr2);
  2141. kvm_load_fs(fs_selector);
  2142. kvm_load_gs(gs_selector);
  2143. kvm_load_ldt(ldt_selector);
  2144. load_host_msrs(vcpu);
  2145. reload_tss(vcpu);
  2146. local_irq_disable();
  2147. stgi();
  2148. sync_cr8_to_lapic(vcpu);
  2149. svm->next_rip = 0;
  2150. }
  2151. #undef R
  2152. static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
  2153. {
  2154. struct vcpu_svm *svm = to_svm(vcpu);
  2155. if (npt_enabled) {
  2156. svm->vmcb->control.nested_cr3 = root;
  2157. force_new_asid(vcpu);
  2158. return;
  2159. }
  2160. svm->vmcb->save.cr3 = root;
  2161. force_new_asid(vcpu);
  2162. if (vcpu->fpu_active) {
  2163. svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
  2164. svm->vmcb->save.cr0 |= X86_CR0_TS;
  2165. vcpu->fpu_active = 0;
  2166. }
  2167. }
  2168. static int is_disabled(void)
  2169. {
  2170. u64 vm_cr;
  2171. rdmsrl(MSR_VM_CR, vm_cr);
  2172. if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
  2173. return 1;
  2174. return 0;
  2175. }
  2176. static void
  2177. svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2178. {
  2179. /*
  2180. * Patch in the VMMCALL instruction:
  2181. */
  2182. hypercall[0] = 0x0f;
  2183. hypercall[1] = 0x01;
  2184. hypercall[2] = 0xd9;
  2185. }
  2186. static void svm_check_processor_compat(void *rtn)
  2187. {
  2188. *(int *)rtn = 0;
  2189. }
  2190. static bool svm_cpu_has_accelerated_tpr(void)
  2191. {
  2192. return false;
  2193. }
  2194. static int get_npt_level(void)
  2195. {
  2196. #ifdef CONFIG_X86_64
  2197. return PT64_ROOT_LEVEL;
  2198. #else
  2199. return PT32E_ROOT_LEVEL;
  2200. #endif
  2201. }
  2202. static int svm_get_mt_mask_shift(void)
  2203. {
  2204. return 0;
  2205. }
  2206. static struct kvm_x86_ops svm_x86_ops = {
  2207. .cpu_has_kvm_support = has_svm,
  2208. .disabled_by_bios = is_disabled,
  2209. .hardware_setup = svm_hardware_setup,
  2210. .hardware_unsetup = svm_hardware_unsetup,
  2211. .check_processor_compatibility = svm_check_processor_compat,
  2212. .hardware_enable = svm_hardware_enable,
  2213. .hardware_disable = svm_hardware_disable,
  2214. .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
  2215. .vcpu_create = svm_create_vcpu,
  2216. .vcpu_free = svm_free_vcpu,
  2217. .vcpu_reset = svm_vcpu_reset,
  2218. .prepare_guest_switch = svm_prepare_guest_switch,
  2219. .vcpu_load = svm_vcpu_load,
  2220. .vcpu_put = svm_vcpu_put,
  2221. .set_guest_debug = svm_guest_debug,
  2222. .get_msr = svm_get_msr,
  2223. .set_msr = svm_set_msr,
  2224. .get_segment_base = svm_get_segment_base,
  2225. .get_segment = svm_get_segment,
  2226. .set_segment = svm_set_segment,
  2227. .get_cpl = svm_get_cpl,
  2228. .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
  2229. .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
  2230. .set_cr0 = svm_set_cr0,
  2231. .set_cr3 = svm_set_cr3,
  2232. .set_cr4 = svm_set_cr4,
  2233. .set_efer = svm_set_efer,
  2234. .get_idt = svm_get_idt,
  2235. .set_idt = svm_set_idt,
  2236. .get_gdt = svm_get_gdt,
  2237. .set_gdt = svm_set_gdt,
  2238. .get_dr = svm_get_dr,
  2239. .set_dr = svm_set_dr,
  2240. .get_rflags = svm_get_rflags,
  2241. .set_rflags = svm_set_rflags,
  2242. .tlb_flush = svm_flush_tlb,
  2243. .run = svm_vcpu_run,
  2244. .handle_exit = handle_exit,
  2245. .skip_emulated_instruction = skip_emulated_instruction,
  2246. .patch_hypercall = svm_patch_hypercall,
  2247. .get_irq = svm_get_irq,
  2248. .set_irq = svm_set_irq,
  2249. .queue_exception = svm_queue_exception,
  2250. .exception_injected = svm_exception_injected,
  2251. .inject_pending_irq = svm_intr_assist,
  2252. .inject_pending_vectors = do_interrupt_requests,
  2253. .interrupt_allowed = svm_interrupt_allowed,
  2254. .set_tss_addr = svm_set_tss_addr,
  2255. .get_tdp_level = get_npt_level,
  2256. .get_mt_mask_shift = svm_get_mt_mask_shift,
  2257. };
  2258. static int __init svm_init(void)
  2259. {
  2260. return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
  2261. THIS_MODULE);
  2262. }
  2263. static void __exit svm_exit(void)
  2264. {
  2265. kvm_exit();
  2266. }
  2267. module_init(svm_init)
  2268. module_exit(svm_exit)